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A B S T R A C T

High-dimensional data with many features are usually challenging to represent with standard visualization
techniques. Usually, one has to resort to dimensionality reduction techniques such as PCA, MDS or 𝑡-SNE
to represent such data. Such dimensionality reduction techniques make it possible to highlight the high-
dimensional structures of data. In many of such visualizations, comparable instances appear to form visual
clusters. However, no feedback is directly given by these techniques to the user about the features that make
the instances cluster together in the visualization. As such, the interpretation of which features define a given
visual cluster is a complicated task. In this paper, we propose a novel interactive approach (called Interactive
eXplanation of Visual Clusters — IXVC) to explain dimensionality reduction visualizations by mapping their
clusters to explanations provided by decision trees. The decision trees use features in high-dimensional data to
explain two-dimensional clusters, filling the gap between the dimensionality reduction visualization and the
original data.
1. Introduction

In machine learning, dimensionality reduction (DR) techniques
are designed to reduce the number of features of the original high-
dimensional (HD) data. Reducing the number of features to, e.g., two
dimensions, provides low-dimensional (LD) data that can be visually
presented to users. DR techniques are used in many different fields. For
instance, multidimensional scaling (MDS) [1] is used in psychology to
explore data or validate hypotheses [2,3] (e.g., see Koch et al. [4]).
Principal component analysis (PCA) [5] is another famous technique
that can produce visualizations if the first components are kept.

One of the main differences between MDS and PCA is their in-
terpretability, which is defined by the intrinsic capacity of a model
to be understandable [6,7]. In the context of DR visualizations, the
link between the dimensions of a PCA visualization (called principal
components) and the corresponding HD data is commonly considered
interpretable, as the principal components are linear combinations of
the HD features. By looking at the weights in the linear combinations,
features from HD data that are used for defining the LD dimensions can
be identified. On the contrary, the mapping between the HD dimensions
and the LD dimensions produced by nonlinear DR (NLDR) techniques
is not always clear. This lack of interpretability is an issue, but methods
can be developed to explain such black-box models or mappings [8]. In
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machine learning, explaining a black-box model or mapping is defined
as the use of external resources, e.g., interpretable models, to provide
insights about the black box behavior [8].

In some cases of NLDR visualizations (e.g., with 𝑡-SNE [9]), the
dimensions have no meaning and therefore cannot be used as a ba-
sis for explanation. Instead, explanations must rely on visual clusters
present in the visualization. However, there are issues pertaining to
visual cluster analysis such as arbitrary cluster shapes and the analyst’s
intuitiveness injected in the explaining process. Currently, none of the
approaches proposed in the literature address most issues related to
explaining NLDR through visual clusters. This paper aims to fill this
gap and studies the following research question:

If visual clusters clearly appear in a given NLDR visualization, can
we explain these visual clusters based on the original dimensions?

In order to handle this research question, corresponding to ex-
plaining black-box DR mappings through visual clusters, an interactive
pipeline is proposed. Our pipeline, called Interactive eXplanation of Vi-
sual Clusters (IXVC), explains the link between clusters visually present
in LD and the original HD features by using a decision tree [10].
Decision trees are considered for providing explanations because they
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can nonlinearly predict the visual clusters while being interpretable.
Furthermore, decision trees stay interpretable even in the case where
the original data are high-dimensional (as opposed to, e.g., linear
models), as the decisions in the trees consider features one by one.
This makes the proposed solution scalable in terms of the number of
HD dimensions. The pipeline is interactive and therefore involves the
analyst in the selection of clusters to be explained. IXVC is implemented
in a web application that has been used for the pipeline evaluation.

In order to present IXVC, Section 2 reviews the explanation of DR
visualizations through dimensions and clusters. Section 3.1 motivates
the need for the explanation of visual clusters. Section 3 then introduces
IXVC. Section 4 presents the tool that implements IXVC, as well as
examples of use. A user-based experiment has been conducted for
evaluating the pipeline and the tool, and is presented in Section 6.
A discussion on the limitations of IXVC is presented in Section 6.4.
Directions for future work are proposed in Section 8 and Section 9
concludes the paper.

2. Explaining DR visualizations

Dimensionality reduction (DR) is the process of reducing the num-
ber of features that are available in high dimension. DR techniques are
often used for data exploration through visualization techniques, which
is made easier when the number of features is reduced. For instance,
scatter plots can be used when the number of dimensions is reduced to
two. Fig. 1 presents an example of a DR visualization.

Through the DR process, information is inevitably lost. In mul-
tidimensional scaling (MDS), for instance, the measure of this loss,
called the stress, is defined as the difference between pairwise distances
between instances in HD and in LD. More formally, let 𝑑𝙷𝙳𝑖𝑗 be the
distance between the instances 𝑖 and 𝑗 in HD, and 𝑑𝙻𝙳𝑖𝑗 the distance
between the instances 𝑖 and 𝑗 in LD, the Kruskal’s stress [1] is defined
as

𝑆𝑡𝑟𝑒𝑠𝑠 =
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The DR loss of information, called DR errors in this paper for the sake
of generality, is an essential element to consider while interpreting or
explaining DR visualizations. Indeed, because of DR errors, some in-
stances are not positioned correctly in LD, with respect to their position
in HD. These DR errors make the task of analyzing the visualization
more difficult. Some visual techniques, as reviewed by Nonato and
Aupetit [11], have already been developed to hint the presence of DR
errors in visualizations (see, e.g., [12–15]).

Interpreting a particular DR means understanding the mapping be-
tween the instances in HD and the corresponding instances in 2D. When
the mapping is not interpretable, techniques can be used to explain
it. There are two main ways to interpret or explain DR mappings [1].
First, the mapping can be interpreted or explained by focusing on the
interpretation of the two new dimensions. The literature concerned
by the interpretation and the explanation of the reduced dimensions
is developed in Section 2.1. Second, the visual clusters in the 2D
visualization can also be used to find an interpretation or explanation,
as developed in Section 2.2.

2.1. Explaining DR visualizations using dimensions

Among the two ways to interpret DR visualizations, using the LD
dimensions is the most widespread in the literature. Some DR tech-
niques, such as principal component analysis (PCA) [5], are considered
interpretable because the mapping between the HD and LD dimensions
is defined by linear combinations of the HD features. One classical way
to link reduced dimensions from a linear DR and the original HD fea-
tures is by using axis legends [17]. These legends are often represented
as bar charts representing the contribution of HD features for each new
2

Fig. 1. DR visualization (generated by 𝑡-SNE [9]) of the 2006 Human Development
Report [16]. This visualization is composed of 76 countries from the dataset. Based on
the HD socio-economic features, the DR derives two dimensions. Even if visual clusters
can intuitively be identified, it is not clear how the HD features have been used to
generate them.

dimension. In the case of linear DR, these contributions are contained
in the weights. Another way to visualize the contribution of the HD
features to the embedding constructed by a linear DR technique is by
using biplots [18,19]. Biplots are plots to visualize the instances, such
as in traditional scatter plots, but the HD features as well. The HD
features are visualized as vectors in the biplot, where their direction
and length are based on the contribution of each HD feature to the two
reduced dimensions.

In the case of nonlinear DR (NLDR), the contribution of each HD fea-
ture to the reduced dimensions is, most of the time, not given through
parameters, which makes NLDR mappings hard to interpret [20]. For
transferring biplots to the NLDR case, Coimbra et al. make uniform
perturbations in the values of each HD feature, while setting the
unperturbed HD features to their mean value [21]. By doing so, they
obtain curved axes representing the tendencies of HD features in the
2D plot. Following the same idea, Cavallo and Demiralp propose to
draw prolines for each point and each feature of interest in a scatter
plot [22]. A proline is drawn in LD by creating new samples by varying
the value of a feature of interest, while all others are fixed, and then by
computing the projection of all generated samples to LD. The proline
corresponds to the line that connects the projection in 2D of all created
samples.

Coimbra et al. also present axis legends for NLDR, based on their
curved biplot axes [21]. They define the height of the bars correspond-
ing to the contributions of the HD features to the reduced dimensions
by a combination of how parallel the projected curve is to each scatter
plot axis, and of how linear the curve is.

Turkay et al. [23] developed an interactive analysis of DR dimen-
sions using dual views of the instances and of the HD features. The
idea is to select instances that are then used to compute a scatter
plot in which the points are features from the HD space and where
the dimensions are chosen statistics. Users can then choose points in
this scatter plot, i.e. HD features, which are then the features used to
compute a new DR visualization of the instances.

Similarly, Yuan et al. [24] propose a dual view composed of a DR
visualization of the HD features and a DR visualization of the instances.
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The two visualizations are linked to one another as selecting elements
in one visualization is reflected on the other visualization (e.g., points
representing the features selected on one visualization are used to
compute a new visualization of the instances). While the works of
Turkay et al. and Yuan et al. allow users to have a sense of the impact
of the original features on a DR visualization of instances, they do not
provide an approximation of the DR mapping that uses the HD features
to build the two dimensions of the visualization.

Another way to deal with the interpretability issue of NLDR is by
transforming the mapping to be linear. For instance, Gisbrecht et al.
apply a linear kernel to the NLDR algorithm 𝑡-SNE [9], in order to make
the mapping linear [25].

External resources can also be used to explain the LD dimensions.
For instance, social scientists often use property fitting (PROFIT) [26]
to find trends in a visualization (for an example of use of PROFIT, see
Koch et al. [4]). These trends are created using linear combinations of
features that have not been used to make the visualization (i.e. exter-
nal features). Best interpretable rotation (BIR) is another solution that
explains DR visualization dimensions by using linear combinations of
external features [27,28].

2.2. Explaining DR visualizations using clusters

As shown in Fig. 1, visual clusters can be formed in a DR visualiza-
tion. Explaining a DR visualization mapping using its visual clusters is
another way to explain the HD-to-2D mapping. This task is related to
the combination of the verify clusters task of Brehmer et al. and the name
clusters task [29]. Nonato and Aupetit call this task discover relation
between visual pattern and original dimensions [11]. The visual clusters
that serve as basis for an explanation can either be identified manually
by a user or automatically by a clustering algorithm.

It can be useful to use clustering algorithms in HD to get some clues
about the visual clusters in 2D. For instance, if 𝑘-means [5] is used
on HD instances and the labels of the HD clusters found are shown
in 2D, it is possible to use the relation between the HD features and
the centroids of the HD clusters to get some insights about the visual
clusters. However, first, the visual clusters may not correspond to the
HD clusters found by 𝑘-means. Second, the HD centroids provided to
the user by 𝑘-means are defined in terms of each and every HD fea-
ture, which makes them difficult to interpret in practice. Wenskovitch
et al. review different ways to combine DR techniques with clusters
automatically found by clustering algorithms [30].

One recent example of such a combination is Clustrophile 2 [31],
which lets users select the DR technique and the clustering algorithm
applied in HD in order to visualize HD clusters. Some explanations
about the HD clusters are provided alongside visualizations, such as the
importance of each feature in each cluster under the form of a heatmap
and a decision tree predicting the HD clusters with the HD features.
While Clustrophile 2 has some connection with our work, it is designed
to explain clustering algorithms applied on the HD data, while our
problem is the explanation of the HD-to -2D mapping through the visual
clusters produced by the DR method used. Again, the key distinction
being that the 2D visual clusters do not necessarily correspond to
HD clusters automatically found by, e.g., 𝑘-means applied in HD. Our
work focuses on explaining the visual clusters that users see in the
DR visualization and do not understand, hence the need for a manual
clustering.

When the visual clusters are identified, an explanation of these
clusters can be provided. Most of the time, the explanation is provided
by experts (e.g., Lebel et al. [32]). This makes the name clusters task
subjective [2]. One drawback of this approach is the extra knowledge
experts may inject during the explanation that does not come from the
data used to generate the visualization. Furthermore, even if they do
not inject extra knowledge (e.g., by restricting their explanation to the
original HD features), it is still difficult for a user to explain how the
3

HD features are combined to form clusters in 2D.
Approaches exist in the literature to detect and rank features ac-
cording to their significance regarding a classification, a regression or
a clustering procedure [33]. For instance, recursive feature elimination
(RFE) can be used to remove features one by one iteratively by using
the model coefficients in the case of linear models or the feature
importance score in, e.g., random forests [33]. In the case of clustering,
several different metrics of feature interest can be used to prune the
initial set of features [34] (see, e.g., [35–38]).

da Silva et al. propose to rank HD features according to an euclidean
ranking and a variance ranking [39]. For each instance in the dataset, a
set of neighbors is chosen by the user in LD and the euclidean distance
between each instance and their LD neighbors is computed for each HD
feature. The visualization is then colored by following the top ranked
HD features in the different neighborhoods.

After automatically detecting clusters using a grid in LD, Kandogan
proposes to rank HD features by labeling each cluster according to a
score associated to each HD feature [40]. This score is computed for
each automatically detected LD cluster and for each HD feature as a
linear combination of measures on properties of the LD cluster (e.g., its
density). The weights of the linear combinations, i.e. the importance of
the properties, are set by the user.

Joia et al. use a singular-value decomposition (SVD) on the transposed
matrices containing the HD features of instances contained in each
automatically found cluster to compute the importance of HD features
for those clusters [41].

Rauber et al. propose to let the user select a group of instances
and a ranking of HD features is provided following a discrimination
criterion (i.e. how individual HD features explain the separation of
selected instances from the rest) or a coherence criterion (i.e. how the
compactness of the selected instances are explained by individual HD
features) [42]. However, the HD features are not combined for the
explanation.

Parisot et al. use an evolutionary algorithm in order to find the
dataset preprocessing that leads to a new dataset for which a clustering
result is easier to interpret [43]. In order to find such a new dataset,
the objective of the evolutionary algorithm is to find a small decision
tree that is used to explain the clustering of the preprocessed dataset,
while having a clustering on the preprocessed dataset that is as similar
as possible to the clustering on the original dataset.

van Ham et al. consider a scatter plot made from two HD features
and use a decision tree to explain a selection of instances in the scatter
plot by using HD features that are not used in the scatter plot [44].
Their decision tree is a binary classification tree that has the task
of explaining the selected instances versus all others, which does not
address the issue of explaining visual clusters in DR visualizations.

Contrasting clusters in PCA (ccPCA) [45] adapts contrasting PCA to
find the HD features that best explain the contrast between a particular
cluster versus the others in a visualization.

t-viSNE is a tool that includes different techniques for getting in-
sights about 𝑡-SNE visualizations [46]. In particular, the authors use
the first component of a PCA on user-selected points in order to know
the main HD features that describe the selected points. However, (i) this
selection has no link with the projection, as it explains the HD points in-
stead of how the HD points are projected in LD, and (ii) the explanation
is linear because of the PCA, while the projection is nonlinear. In order
to take into account these limits, another tool that considers polylines
is proposed in t-viSNE. The idea is to draw lines in the visualization
and then rank the HD features according to how they explain, for each
LD dimension, the order of the LD points on the polylines. Concerning
the problem we address in our work, the shortcomings of this tool are
that (i) the dimensions are explained instead of the clusters and (ii) the
relative importance of the HD features is known, but not how they are
combined to explain the dimensions.

A recent approach based on linear segments from Ma and Maciejew-
ski has been proposed to explain NLDR visualizations [47]. The idea,

based on LIME in classification [48], is to locally and linearly explain
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the NLDR visualization. The two drawbacks of such a technique is that
(1) the visualization is explained locally and not globally by a model
and (2) the linear models do not scale well with the number of HD
features. Because of this last issue, only the top features used in each
model are presented.

The idea of generating a DT from a user selection of clusters in a
scatter plot, as done in this work, was previously considered by Ware
et al. [49]. In our work, however, instead of representing two HD
features, the scatter plot is the result of a DR process and the DT is
used to approximate the DR mapping. Moreover, the decision tree of
Ware et al. is built manually by defining splits through the scatter plot,
whereas it is automatically generated from the selection of clusters in
our method.

3. Interactive explanation of clusters using decision trees

NLDR visualizations are used without any clue about the mapping
between the visualization and the original features that were used to
generate it. In order to introduce the importance of explaining this
mapping through visual clusters, Section 3.1 presents some challenges
related to the state-of-the-art neighborhood preservation techniques.
Section 3.2 then proposes answers to the challenges discussed in Sec-
tions 2.2 and 3.1. Section 3.3 builds on the proposed answers and
presents IXVC, a machine learning pipeline that helps data analysts to
explain DR visualizations through visual clusters.

3.1. Challenges when explaining DR through clusters

Explaining DR visualizations through their visual clusters is needed,
but the existing solutions that could be used face several challenges. In
order to make these challenges explicit, we take neighborhood preser-
vation techniques (𝑡-SNE, UMAP, etc.), as an example. The objective of
hese techniques is to preserve HD proximity by making neighbors two
nstances in 2D if they are neighbors in HD. More precisely, the closer
he instances are in HD, the more these techniques try to put them close
n 2D. An example of a 𝑡-SNE visualization is shown in Fig. 1. Each

following challenges is given a name in square brackets.
Explanations Based on Dimensions may not be Possible [Di-

mensions not Explainable (DNE)] First, given its focus on neigh-
borhoods in HD, neighborhood preserving techniques naturally tend
to accentuate clusters in 2D, which makes them good candidates for
the explanation through clusters. Furthermore, the dimensions of the
visualizations produced by such techniques have no meaning [50]
and cannot be used as a basis for explanations. Because of that, only
the cluster approach for explaining can be used, and no technique
for explaining through dimensions can make neighborhood preserving
techniques more interpretable [50], unless they are modified (e.g., Gis-
brecht et al. [25]).

LD Clusters have Arbitrary Shapes [Arbitrary Shapes (AS)]
Second, visual clusters resulting from neighborhood preserving tech-
niques can have complex shapes, which make clustering algorithms
with predefined cluster shapes, such as 𝑘-means, not suitable. Indeed,
the predefined shapes of such clustering algorithms restrain the possible
cluster explanations to the clusters that can be possibly formed by the
clustering algorithm.

LD Clusters can be Misleading [Misleading Clusters (MC)]
Third, cluster analysis performed manually by experts, or automatically
by clustering algorithms, can be misleading because of the propensity of
neighborhood preserving techniques to show clusters. Indeed, despite
their strength in the detection of real HD clusters, these techniques are
also known for sometimes presenting clusters in 2D that do not exist in
HD [50].

All the issues are shared by the state-of-the-art NLDR algorithms,
such as 𝑡-SNE [9], UMAP [51] and LargeVis [52]. To the best of
our knowledge, no techniques addressing all these issues exist in the
literature. IXVC, the solution proposed in this paper to the task discover
relation between visual pattern and original dimensions [11] tackles these
4

issues. b
3.2. Answers to the cluster explanation challenges

A first issue, mentioned in Section 2.2, is the intuitive explanation
of clusters. This issue arises when data analysts use their intuition to
explain clusters that are made of errors from the DR algorithm. Having
access to objective reasons behind visual clusters, based on the HD
features, would help data analysts to overcome this issue of intuitive
assessment.

The issue called [AS], presented in Section 3.1, concerns the possi-
bility for 2D clusters to have arbitrary complex shapes. The hypotheses
made on the form of clusters by clustering algorithms may not be
suitable when clusters take complex shapes. However, in the case of
a 2D visualization analysis, data analysts can draw the limits of visual
clusters themselves (e.g., with a hand-made selection).

The issue [MC] is about the role of DR errors in cluster explanations.
In this case, having a feedback on DR errors may help data analysts
to explain the mapping. Indeed, if individual errors, for each instance
in 2D, are provided to data analysts, it would be possible to decide
whether to discard or not some instances during the visual analysis.
This issue is important, since the presence of instances erroneously
placed in visual clusters because of DR errors can mislead the analyst.

The issue [DNE], related to the absence of meaning of the visualiza-
tion dimensions, forces the use of the visual cluster to understand the
HD-to -2D mapping. When dimensions can be explained, like with MDS
visualizations, techniques can be used to approximate the mapping
between the original features and the dimensions of the visualization.
However, when explaining the visualization dimensions do not make
sense, like in 𝑡-SNE and UMAP [50], a way to approximate the mapping
between the original features and the clusters in the visualization must
be found.

Ideally, in addition to an easier explanation of visual clusters,
providing feedback on visual clusters would also help data analysts
to decide to take several actions. For instance, in order to improve
the interpretation, they may want to choose a more appropriate DR
algorithm, to change the hyperparameters (or meta-parameters) of the DR
algorithm or to remove instances that make the DR process difficult.

3.3. IXVC: the interactive machine learning pipeline

In this section, the interactive pipeline developed for explaining
clusters in DR visualizations, Interactive eXplanation of Visual Clusters
(IXVC), is presented.

The pipeline is used in the context of a DR visualization exploration.
As such, the first step is to consider a particular DR visualization V
(𝑛 × 2) built from a dataset X (𝑛 × 𝑑), which corresponds to the scatter
plot 1 in Fig. 2. The error made by the DR algorithm for each of
the 𝑛 instance in the visualization should be provided, in order for the
data analyst to unselect elements that have a DR error that is too high.
Unselecting elements, in our context, only means that instances that are
erroneously projected are hidden in the visualization, so that they do
not interfere with users analysis.

The second step is to manually select the visual clusters for which
the analyst wants an objective explanation (see P1 in Fig. 2). All of

the 𝑛 instances in the visualization do not have to be selected and the
number 𝑝 of 2D clusters can be arbitrary.

Next, a decision tree (DT) is built based on the 𝑝 2D clusters
provided in the second step (see DT 2a in Fig. 2). The 2D cluster
memberships serve as labels for the decision tree and the 𝑑 original
features of X, the HD data, are the criteria on which the decisions in the
ecision tree are made. As mentioned in Section 2.2, one can note that
ecision trees can be used to explain HD clusters (see, e.g., [43,53,54]).
owever, our task is different because the goal is not to cluster data

n HD, but to understand a given DR visualization through its 2D
isual clusters. Therefore, we propose to understand the visualization
y interactively querying the meaning of visual clusters of interest.
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Fig. 2. From a given DR visualization 1 , the data analyst manually selects visual

clusters P1 (the colors correspond to the selected clusters), and a visualization of

the errors made by a decision tree 2a explaining the manual clusters using the HD

features is provided 2b . Given the provided feedback, a new manual clustering can

be performed by the data analyst P3 .

A 𝑘-fold cross validation is then used to select the best hyperpa-
rameters for the decision tree (see 2a in Fig. 2). By doing so, the
decision tree provides its best possible solution for interpreting the DR
visualization V by explaining the 𝑝 manually selected clusters by using
the 𝑑 original features. While the first information provided by the
decision tree to the analyst is the explanation in terms of the original
features, the second information comes from the prediction errors of
the decision tree (see the scatter plot 2b in Fig. 2). Indeed, visualizing
the errors made by the DT when predicting the selected visual clusters
allows the analyst to see where, in the visualization, the clustering of
the analyst cannot be explained. This information may hint that the DT
cannot help in the explanation of the selected visual clusters, but can
also hint that the selected 2D clusters do not represent real HD clusters
and, so, that the instances need to be clustered in a different way in
2D.

Finally, the analyst may either stop the analysis or choose to cluster
the instances differently. In the latter case, the analyst proceeds with
the second step again by selecting other visual clusters (see P3

in Fig. 2), which are then explained with a new decision tree. In
the former case, the analyst stops the analysis because the multiple
iterative explanations of clusters have provided enough information to
the analyst. IXVC is summed up in Algorithm 1.

Sacha et al. [55] developed a process model describing interactive
DR with seven scenarios of interaction. Although our work proposes to
combine user interaction and DR, this interaction takes place after the
DR was performed rather than during its computation. In our approach,
the data, feature space, and the DR in the process model of Sacha
et al. [55] are considered as given, and the interaction augments the
data in order to train a DT that will, in turn, augment the visualization
(see Fig. 3). These augmentations will help the analyst understand
how clusters are mapped onto the embedding. Scenarios S1 (i.e. data
selection) and S2 (i.e. annotation and labeling) from Sacha et al. [55]
are supported in the explaining process, as users can filter instances and
define visual clusters (hence, assigning a label to instances) to build the
DT.

Note that as the goal is to help understanding visual clusters in a
visualization, and not an automatically computed clustering, users can
draw the frontiers of the clusters they see and assess the explanation
5

Algorithm 1: IXVC
Data: An input matrix X and a visualization V
Result: An explanation of V that satisfies users
while users are not satisfied with the explanation do

ask users to group some instances in visualization V into 𝑝
clusters c;
foreach fold f in k folds of X do

foreach hyperparameter values hp do
DT−𝑓 , hp = train_decision_tree(data=X−𝑓 , target=c−𝑓 ,
hyperparameters=hp);
score−𝑓 , hp = predict(DT−𝑓 , hp, X𝑓 )

end
end
hp∗ = arg max

hp
mean(score∙, hp);

DT∗ = train_decision_tree(data=X, target=c,
hyperparameters=hp∗);
show DT∗ to users;
show predict(DT∗, X) in the visualization V to users;

end

Fig. 3. In our approach, the data, feature space, and the DR in the process model
from Sacha et al. [55] are considered as given, and the interaction augments the data
in order to train a DT that will, in turn, augment the visualization.

received via the DT. This particular setup explains why our pipeline is
interactive (users must be in the loop), as well as iterative (users can
try other explanations in order to expand their understanding of the
visualization).

4. Interactive explanation interface

This section introduces the interface implemented to evaluate IXVC.
Fig. 4 shows the IXVC interface. The top part of the interface shows
the DR scatter plot from which the user selects the clusters (top-left),
a list of the selected clusters (top-middle) and a scatter plot (top-right)
showing the predictions resulting from the DT (bottom of the interface).

The IXVC interface is implemented as a web application running on
a Python web server. The visuals were developed in Javascript using
the D3.js library [56]. The Python web server handles the execution
of the machine learning algorithms, such as the decision tree, using
scikit-learn [57]. For the evaluation of IXVC, visualizations generated
by 𝑡-SNE are used.

When launching the IXVC interface, the user is presented with a
scatter plot (located at the top-left part of the interface) generated by
running 𝑡-SNE (without PCA preprocessing). Each instance is repre-
sented as a black dot with an associated text label showing its name,
thus allowing the identification of individual instances. The individual
errors resulting from 𝑡-SNE are depicted by the opacity of each dot,
with the whitest dots representing the highest error. This error for each
individual instance 𝑖 is measured using the individual Kullback–Leibler
divergence loss

D (𝐩 ∥ 𝐪 ) = 𝐩 log(𝐩 ∕𝐪 ),
KL 𝑖 𝑖 𝑖 𝑖 𝑖
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Fig. 4. IXVC interface. Top left scatter plot (A) corresponds to the DR visualization. Instances are colored with respect to the user selection of clusters shown in the top
middle part (B). On the bottom, the decision tree (D) explaining the user selection is provided. The colors corresponding to the tree predictions are presented in the top right
visualization (C). For the evaluation (see Section 6), users can switch between the country and the zoo datasets by using the earth and cat icons (E).
where p𝑖 (resp. q𝑖) is a vector containing the probability of each 𝑛
instance to be neighbor of the instance 𝑖 in HD (resp. 2D). A low diver-
gence for 𝑖 means that the neighborhood of 𝑖 in HD is well preserved
in 2D. Instances can be filtered out according to a threshold defined by
the user on the individual Kullback–Leibler divergence loss (called DR
error in the interface for the sake of generality). The DR error threshold
is labeled as error tolerance instead of loss tolerance in the interface, as a
preliminary evaluation (see Section 6.1) of the interface suggested that
it is more meaningful for users and more generic formulated as such.

A major challenge when displaying a scatter plot is the visual clutter
that can occur when there are numerous data points to show, which
can impede the analyst’s work and cause delay in the rendering of the
visualization in the interface. Previous work in the literature suggests to
implement techniques, including interaction features, in order to tackle
visual clutter (e.g., [58,59]) and to ensure that the visualization at hand
possesses desirable properties such as scalability and individual data
point localization. Ellis and Dix [59] have identified eight properties
and eleven clutter reduction techniques that can be used to achieve
these desirable properties. In the context of the IXVC interface, three
clutter reduction techniques, namely sampling (discussed in Section 6),
filtering and opacity, were implemented. This combination allows us to
obtain all the desirable properties listed in Ellis and Dix [59] that are
necessary to the interface. In particular, the scalability regarding the
number of data points (achieved through sampling and filtering), and
the ability to discriminate individual points on the visual representation
(achieved through opacity) are of utmost importance.

The scatter plot provides a lasso-like interaction allowing users to
select visual clusters. The selected instances are subsequently colored
alike to mark their belonging to the same cluster following a categorical
color scale generated with ColorBrewer [60]. The clusters thus defined
by the user are displayed in a pane to the right of the scatter plot.
The interface uses the word groups instead of clusters in order for the
evaluation participants to avoid the confusion with clusters that would
be obtained from an automatic clustering technique.
6

When the user is finished selecting visual clusters, a decision tree
generated from the cluster selection is displayed under the scatter
plot. The decision tree attempts to predict the cluster of each selected
instance using the HD features. The representation of the decision tree
shows the features selected to build the tree as well as the entropy
(named impurity in the leaves of the decision tree). The entropy char-
acterizes the distribution of instances by cluster in a specific node. It is
equal to 0 if only elements of one cluster are present in the node, and to
log2(# of clusters) if elements are spread equally between all the visual
clusters to predict. For each leaf in the tree, the number of instances
predicted for each cluster is presented.

The prediction for each instance is shown in a second scatter plot
in the upper right part of the interface. Whereas the decision tree gives
the number of incorrect predictions in each leaf, this scatter plot makes
it possible to identify the incorrectly predicted instances in question.
The instances are colored according to their predicted cluster and are
shaped as a dot if the prediction is consistent with the user selection,
and as a cross otherwise. The level of confidence of the predictions
made by the decision tree is denoted by the opacity of the points on
the scatter plot. Again, instances can be filtered out according to a
threshold defined by the user on the minimal confidence provided by
the DT.

Based on the DT and the scatter plot showing the predictions, the
user can reflect on the explanations and draw a new cluster selection.
In turn, he can cycle through the visual cluster explanation pipeline
again by generating a new DT with new selected visual clusters. This
iterative process is repeated until the user feels that he has a sufficient
understanding of the visualization.

5. Case study examples

In this section, two case studies demonstrate the application of
the IXVC pipeline. In a first case study, the data analyst works with
50 instances extracted from the 138 countries of the 2006 Human
Development Report [16], hereafter called the country dataset. The
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Fig. 5. DR visualizations used in our experiments. The luminance of the dots indicates the individual DR errors (the whiter the dots are, the higher the error is).
countries are characterized by 45 socio-economical indicators such as
GDP and population growth.

In the first step, the data analyst discovers the scatter plot shown
in Fig. 5a. In the second step, he makes a selection of clusters. In
the example of Fig. 6a, three clusters have been selected. In the third
step, a decision tree and a second scatter plot are generated based
on the cluster selection. The decision tree (Fig. 6c) shows that the
red cluster can be flawlessly explained by the money spent on assisting
least developed countries, with the countries in red spending more.
The decision tree separates the 40 remaining instances according to
their GDP. It also explains the blue cluster as the set of countries
above 64.9 billion USD of GDP. Among the 15 concerned instances,
10 are correctly predicted as belonging to the blue cluster. However,
5 instances selected in the green cluster by the user are erroneously
predicted as blue. All the remaining instances are predicted to belong
to the green cluster. The decision tree uses the primary exports feature to
separate the 25 remaining instances. Among the countries under 57%
of primary export, 2 instances being in the blue cluster are erroneously
predicted as green. The scatter plot in Fig. 6b shows the predictions
and highlights the errors.

Unsatisfied with the 7 erroneous predictions of the decision tree, the
data analyst undertakes a second iteration of the pipeline, setting aside
the red cluster, for which there was no prediction error. The analyst
divides the remaining 40 instances into two significantly changed clus-
ters (Fig. 7a). In this new selection, the former blue cluster (cluster B in
Fig. 6a) has been enlarged to include the countries that were selected in
the green cluster before, but predicted as blue by the decision tree, such
as Columbia, Mexico, Indonesia and Philippines (see Fig. 6b). The new
decision tree (Fig. 7b) is trained based on the new selection of clusters
and explains the new clusters using the GDP per capita feature. It results
in only 2 prediction errors instead of the 7 errors that occurred in the
first iteration that used the GDP to separate the 40 instances. This new
explanation, which would have been tedious, or even impossible, to
reach without the IXVC pipeline, leaves the data analyst satisfied with
the cluster explanation. The selected clusters can be explained by the
money spent on assisting least developed countries and the GDP per capita.
48 instances out of 50 are correctly predicted by the corresponding
decision tree.

In a second case study, a data analyst works with an MDS visual-
ization of the Boston dataset [61]. This dataset is composed of house
features describing 506 instances. When dealing with the visualization
of these 506 instances, the data analyst notices, before using IXVC,
that the compact visualization that MDS often provides is separated
into two visual clusters (see Fig. 8a). In order to verify that these
clusters can be explained with the HD features that were used to build
the visualization, the data analyst relies on IXVC. IXVC shows to the
data analyst that the DT built to explain the top and bottom visual
clusters makes many errors. Therefore, the analyst decides to discard
the instances that have a too high projection error and to split the
top cluster into two clusters. One of these two new clusters consists of
7

instances in the dense center and constitutes the blue cluster. The other
cluster groups the instances that gravitate around the dense center
and forms the green cluster. After having refined the visual clusters as
such, the data analyst learns that, indeed, this difficult-to-understand
visualization is the representation of different clusters in the HD space.
The data analyst conclusion enlightened by the decision tree is that
the red cluster corresponds to the neighborhoods with a high rate of
criminality, by opposition to the neighborhoods in the blue and green
clusters. The blue cluster corresponds to neighborhoods with a low rate
of criminality, with a percentage of the land which is residential lower
than 57.5%, with few industries nearby, and with houses having an
average number of rooms strictly lower than 8. In other words, the blue
cluster correspond to city centers with residences and rental businesses.
The green cluster contains instances that are variations of the ones in
the blue cluster. Indeed, any neighborhood being more residential, with
more industries or with bigger dwellings is in the green cluster.

6. Evaluation

This section presents the evaluation of the IXVC pipeline and inter-
face. Note that the datasets that are relevant with the pipeline need to
contain understandable features in order to be used with decision trees.
For evaluation purposes, two datasets are available for analysis with the
interface. First, the country dataset presented in Section 5 (see the DR
visualization of the dataset used in our experiment in Fig. 5a). Second,
the zoo dataset [61] characterizes 101 animals with 16 features such as
the number of legs and whether they have feathers or not (see the DR
visualization of the dataset used in our experiment in Fig. 5b). A table
displaying the whole dataset under scrutiny is available to users via a
button on the interface. The 𝑡-SNE perplexities for generating the DR
visualizations of the country and zoo datasets are 6 and 18 respectively.
Each time a DT is built to explain visual clusters, the value of the hyper-
parameter minimum samples per leaf is chosen among the 40 values in
the range [10, 50[ by a 10-fold cross-validation.

For each dataset, 50 instances were randomly sampled. The goal
of the evaluation was to evaluate the IXVC pipeline rather than the
interface developed to implement it. The participants would have been
confronted to a barrier not related to the pipeline, which would have
thus tweaked the evaluation results. Showing more than 50 instances
at once would hinder the readability of the scatter plot and sampling
is one technique commonly suggested to tackle such visual clutter
issues [59].

6.1. Preliminary feedback

During the development of the IXVC interface, early feedback has
been sought from two researchers that are non-experts, but knowledge-
able, in machine learning and information visualization. Their profile
was sought to fit a profile of users who would have enough knowledge
to use the tool, but not enough to compensate the potential flaws of the
interface with their knowledge. The goal of this preliminary feedback
was to detect usability flaws in the interface before the evaluation.
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Fig. 6. Case study example 1: first iteration of the IXVC pipeline to explain the visual clusters of countries. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 7. Case study example 1: second iteration of the IXVC pipeline to explain the visual clusters of countries. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Overall, the two researchers made a few suggestions such as adding
captions and changing labels in order to make the interface clearer.
For example, the ‘‘group’’ label was previously ‘‘cluster’’. The two
participants explained that ‘‘group’’ would be a clearer term, as using
‘‘cluster’’ could wrongly indicate that IXVC conducts an automated clus-
ter analysis. The term ‘‘error’’ was also suggested by the participants as
a replacement for the more technical term of ‘‘loss’’ that was previously
used. The two participants also made suggestions regarding the color
encoding of the selected groups, which led to the color scale used in
the evaluation.
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6.2. Evaluation methodology

The objective of the evaluation is to measure whether IXVC helps
to conduct an analysis of a DR visualization, and if so, with more
objectivity. As a tool supporting analysis through a DR visualization
and decision trees, IXVC is destined to users knowledgeable of these
techniques. 16 students (13 males and 3 females) following a graduate-
level data science program in which DR and decision trees are taught
were recruited. The age of the participants ranged from 20 to 53 years
(two participants are older students resuming their studies), with a
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Fig. 8. Case study example 2: separation of a difficult-to-understand MDS visualization of the Boston dataset into three clusters. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
,

median of 22. The students had previously carried out a class project on
intuitive visual cluster explanation (without any tool) with the country
dataset.

The evaluation consisted of 45-minute sessions following quasi-
empirical evaluation practices [62]. The sessions began with a brief
introduction to the goal of the IXVC pipeline. No explanation on how
the interface works was provided at this point. Two researchers were
present throughout the session in order to answer participants’ ques-
tions and to take note of their remarks as well as observations. Then,
the two datasets participants were asked to work on were introduced.
The country dataset was presented as a set of countries characterized by
various socio-economical indicators and the zoo dataset was presented
as a set of animals described by biological traits. It was essential to
provide only the minimum, but necessary, information in order not to
guide the explanations towards specific HD features. Observation and
questionnaire filling were used to collect data.

6.2.1. Observations
Observations were conducted throughout the sessions by two re-

searchers to detect usability issues and to see whether the analysis
behavior of the participants was consistent with the pipeline. Observa-
tions were mainly passive with questions from participants answered
when asked.

6.2.2. Questionnaire
When participants were finished with the analysis of the two datasets

they were invited to fill a short three-part questionnaire. First, the
initial perceived expertise of the participants was measured. The second
part of the questionnaire was about the data analysis process with IXVC.
Lastly, the general usability of the IXVC interface was measured in
order to control the impact of the interface in the evaluation of the
pipeline. For this latter part, the System Usability Scale (SUS) question-
naire [63] was used. The SUS is a questionnaire scoring the usability of
a system with 10 questions measured on a 5-point Likert scale. It has
the advantage of being quick to complete and highly reliable. Following
literature recommendations, two adaptations were made to the original
SUS. In the eighth item of the SUS, ‘‘cumbersome’’ was replaced by ‘‘awk-
ward’’, as the participants are non-native English speakers. The word
‘‘cumbersome’’ in the SUS has been reported to cause confusion [64],
especially among non-native English speakers [65]. The first item of the
SUS measures the extent to which users would like to use a system
frequently. Since the participants of the evaluation are students, who
only perform cluster explanation in the context of a class, the first
item of the SUS formulated as such was not relevant, and would have
tweaked the SUS score. Instead, an adapted version of this question
was included in the questionnaire, formulated as ‘‘I would like to use
the tool in the future if I need to analyze a visualization generated by
t-SNE’’. Although the answers to this question are of interest to the
9

evaluation, it was not included in the computation of the SUS score in
order to preserve its reliability. Rather, the score was computed from
the 9 other questions, as Lewis and Sauro [66] showed that removing
an item inducts a negligible deviation from the results of the 10-item
scale and has no impact on the reliability of the score.

6.3. Evaluation results

This section presents the results of the user evaluation. The re-
sults obtained from the observations and from the answers to the
questionnaire are successively discussed.

6.3.1. Observations
Most participants intuitively followed the pipeline to get explana-

tions about visual clusters. However, some usages of the IXVC interface
that differed from how participants were expected to apply the pipeline
were observed. First, the analysis process was more exploratory than
expected. The pipeline describes an iterative process in which a se-
lection of clusters is refined by adjusting the manual clustering. How-
ever, a few participants tended to try many different cluster selections
instead of iteratively refining one.

Second, one participant (P11) was attempting to generate a decision
tree involving an intuitive feature not necessarily present among the
HD features. Indeed, in the scatter plot of the zoo dataset, the partici-
pant selected clusters separating aquatic animals from another. At this
point, P11 did not consult the dataset table to see if there was indeed a
feature distinguishing aquatic animals. In doing so, P11 tried to build a
decision tree where this feature appears. P11 made repeated attempts
until such a tree was displayed on the screen.

6.3.2. Questionnaire
Overall, participants rated, on a scale from 1 to 5, their knowledge

of 𝑡-SNE as intermediate (median = 3) and of decision trees as good
(median = 4). They felt familiar with the dataset on countries (median
= 4), but not with the one on animals (median = 2). In both cases,
access to the dataset tables during the analysis was useful to the
participants (median = 4 and 4.5 for countries and animals).

75% of the participants stated that they prefer the IXVC interface to
the tool-free approach they used in the prior class project. Furthermore,
81% reported they would like to use the IXVC interface again if they
have to work on a 𝑡-SNE generated visualization in the future (see
Fig. 9a). Participants felt that the interface helped them to gain a better
understanding of the datasets (median = 4 (agree) for both datasets, see
Fig. 9b). The IXVC interface scored 3.5 (between neutral and agree) as
support to a more objective analysis for both datasets (see Fig. 9c).

The SUS score of IXVC is 77 (95% confidence interval is [72,82]),
which is above the ‘‘good usability’’ threshold defined by Bangor
et al. [67] at 71.4. Fig. 10 shows the Likert distribution for the 9 items
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Fig. 9. Distribution of the answers from the 16 participants.

Fig. 10. Likert distribution for the 9 items used to compute the SUS score.

used to compute the SUS score. Lewis and Sauro [68] showed that the
data gathered through the SUS can also be used to reliably derive a
learnability score that can be interpreted in the same way as the SUS
score. It measures the extent to which an interface enables its users to
learn how to use it. The learnability score is computed by considering
the fourth and tenth items of the questionnaire. For the IXVC interface,
the score stands at 78, very close to the SUS score, which indicates that
it has a good learnability.

6.4. Discussion

The first observation from the experimental results is that the
interface did not alter the evaluation of the pipeline. Indeed, with a SUS
score of 77, the interface usability has been considered good, meaning
that the implementation has not, for the most part, interfered with the
evaluation of the pipeline.
10
Considering the pipeline itself, it has been considered more useful
than the intuitive analysis performed without it by 75% of the partici-
pants. This indicates that providing information on the explanation of
the selected clusters is important when explaining DR visualizations.
Moreover, the participants showed great enthusiasm towards the ex-
planations given by the decision tree and the interactivity of the IXVC
interface. In the questionnaire, P1 wrote that ‘‘the decision tree is
great to visualize how the different groups can be divided and what
differentiates them the most’’. P9 wrote ‘‘the real added value is in the
decision tree. I think it is very valuable to have an objective reason for
clusters’’.

However, while some participants felt that IXVC brings added-value,
the question ‘‘I feel that the tool helped me to conduct a more objective
analysis’’ scored between neutral and agree. In an open field of the
questionnaire, one participant wrote that ‘‘the analysis, in my point of
view, is not more objective since there is a great part of [intuitivity]
when choosing the clusters’’. It seems that some participants interpreted
the question as ‘‘is the whole process objective’’ and did not understand
that the objectivity resides in the explanations given by the decision
tree.

Finally, although the familiarity of the participants was quite differ-
ent between the two datasets, the same results were observed for both.
This leads us to conclude that IXVC is beneficial to the DR explainability
process, irrespective of the prior knowledge of the data at hand.

7. Limitations of IXVC

In order to explain visual clusters, IXVC uses DTs. These models
are interesting because they provide a nonlinear, though interpretable,
decision boundary. However, if the visual clusters cannot be easily
explained by a decision tree kind of decision boundary, the DT can
ultimately be large and uninterpretable. One solution to this limitation
would be to integrate other techniques from the literature into the
pipeline, such that if the DT is too large to explain the visual clusters,
other useful information (e.g., from ccPCA [45]) can be provided.

Another limitation of IXVC is the fact that the convergence of the
pipeline (i.e. being satisfied by the explanation of the visual clusters) is
rooted in the expertise of the user. This expertise is domain-dependent
and is therefore difficult to define as a prerequisite for the use of the
pipeline.

8. Future work

The evaluation results and open fields in the questionnaire allow
considering future directions to improve IXVC. A first future work is the
development of IXVC for making it an educational tool. As mentioned
in Section 6, IXVC is destined to users knowledgeable on DR and
decision trees. However, several participants pointed out that the use
of IXVC, in fact, needs little knowledge of these techniques. Since the
participants are students following a data science program, they are
eager to use tools that may ease the understanding of techniques such
as 𝑡-SNE. Moreover, the playful character of IXVC was emphasized by
one participant.

Another future work can be identified following the observation
of P11 described in Section 6.3.1. P11 used IXVC for checking if a
feature he had in mind played a role in the visual cluster separation.
Based on this use, the IXVC interface could propose all features as
clickable buttons, which would show how the selected feature would
make it possible to separate the visual clusters. In the IXVC pipeline,
this corresponds to providing all possible decision trees with only
one decision node. This feature can also be added before the use of
decision trees, by coloring the instances in the visualization according
to a selected HD feature. This pre-exploration step can indicate to the
analyst how to manually cluster the 2D instances in step 2 of IXVC.

Participant P16 suggested to generate several decision trees in order
to have the opportunity to consider different possible explanations. This
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means that, in another future work, several trees could be suggested in
step 3 of IXVC. For instance, after building the first decision tree, a
second one could be built by removing, from the possible features to
choose for a decision, the feature that is chosen in the first node of the
tree.

Finally, an analysis of the use of IXVC to compare DR techniques
can be performed. Using, e.g., synthetic datasets, one would be able
to check how hard it is to explain visualizations from particular DR
techniques based on different conditions. Such a condition can be
that the DR technique projects distinct visual clusters that are in fact
controlled to be intertwined in HD, or the opposite.

9. Conclusion

In this paper, we proposed an interactive machine learning pipeline
called IXVC (for Interactive eXplanation of Visual Clusters). The pipeline
provides explanations of visual clusters manually selected by a data an-
alyst in a dimensionality reduction (DR) visualization. The explanatory
feedback on the manually selected clusters is provided by a decision
tree whose decisions are based on the high-dimensional (HD) features.
Interactively, the data analyst can thus select clusters in the visual-
ization and receive an explanation of the selected clusters through a
decision tree. IXVC is a need for data analysts [29] and handles a
task that is called discover relation between visual pattern and original
dimensions [11].

IXVC was implemented as a web application for its evaluation. The
results of the evaluation suggest that using the proposed interactive
pipeline helps users to explain how visual clusters in a DR visualization
are related to the HD features that have been used to create the
visualization, even when the mapping between the high and the low
dimensions is not provided. It is also suggested by the evaluation
results that the usefulness of the pipeline does not depend on the prior
knowledge the analyst has on the dataset.
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