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Heterogeneity of agents in aggregate systems is an important issue in the study of innovation
diffusion. In this paper, we propose a modelling approach to latent heterogeneity, based on a
few fundamental types, which avoids cumbersome integrations with not easy to motivate a
priori distributions. This approach gives rise to a discrete non-parametric Bayesian mixture
model with a possibly multimodal distributional behaviour. The result is inspired by two
alternative theories: the first is based on the Rosenblueth two-point distributions (TPD), and
the second is related to Cellular Automata models. From a statistical point of view, the
proposed reduction allows for the recognition of discrete heterogeneous sub-populations by
assessing their significance within a realistic diffusion process. An illustrative application is
discussed with reference to Compact Cassettes for pre-recorded music in Italy.

© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Consumer response to innovation is a general issue in
marketing research characterized by three main aspects:
customer innovativeness, growth modelling of new products,
and network externalities, as highlighted, for instance, in
Hauser et al. [17], Meade and Islam [22], and Peres et al. [23].
Customer innovativeness is an individual property that
expresses a willingness to adopt innovations and is usually
considered a function of cultural, behavioural, demographic,
and economic characteristics. As such, it has a natural
variability among agents and over time. Due to costs and
reliability problems related to collecting personal information,
new product growth modelling, substantially beginning with
Bass [2], is focused on an aggregate level. The cumulative
adoption process is dynamically governed by two latent and
separate forces: an external influence, associated to innovators,
x: +39 049 8274170.
),
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and an internal one, associated to imitators. The Bass model
opened a new way in the characterization of new product
life-cycle, despite some limitations due to an assumed
homogeneity of agents and a uniform accessibility to innova-
tions. Stability of its parameters over the cycle, over different
countries, and over product categories brought into question
some of its typical assumptions jointly with the need to
introduce interaction or control variables in it. Bass et al. [3] is
an outstanding answer for describing the effect of external time
dependent control effects on diffusion. Moreover, the presence
of phases in the life-cycle, such as take-off, slowdown and
saddle, also required convenient modifications of basic model
assumptions and related equations. For instance, the take-off of
many products may be prevented by network externality
effects. Network externalitymodelling (direct and indirect) is a
relevant area of research, which may link individual and
aggregate levels in innovation diffusion. Cellular Automata
modelling, and related mean-field approximation, define a
fruitful bridge between Complex Systems representations,
usually based on simulative tools, and System Analysis based
on aggregate descriptions through differential equations. See,
iffusion of innovations modelling: A few fundamental types,
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for instance, Guseo and Guidolin [12,13], where S-shaped
growth curves (or their modified versions) emerge from social
contagion or through the increasing affordability of heteroge-
neous consumers with a different willingness-to-pay. In [13],
latent heterogeneity is micro-modelled through a threshold,
which generates a dynamic market potential with a precise
take-off effect when a sufficient critical mass is reached.

A micro-modelling of latent heterogeneity of agents was
also proposed in Chatterjee and Eliashberg [6] through a
mixing distribution in the definition of the adoption process.
However, the direct application of the model was partially
limited by its complex nature.

A comparison between Agent-Based models (AB) and
differential equation models (DE) is examined in Rahmandad
and Sterman [24] relaxing the homogeneity of agents and
perfect mixing in network hypotheses. They examine a
classical SEIR model (Susceptible, Exposed, Infective, Re-
moved) by considering an AB representation as a ‘real-world’
reference and a DE as an inferential counterpart. Results of
their simulations highlight strong effects when different
network topologies are considered. Heterogeneity of agents
appears less sensitive to variations. We may notice that all
simulations are performed under a unimodality hypothesis,
thus excluding possible alternative multimodal patterns.

Most studies on heterogeneity in innovation diffusion have
generally focused on latent structures. A different contribution,
among others, dealing with observed heterogeneity, based on
duration models, is due to Sinha and Chandrashekaran [28].

In this paper, we focus our interest on the latent case: in
particular, we suggest that the lack of homogeneity may be
related to the different relationships among agents that gen-
erate stationary or dynamic networks in a complex system. In
the Bass models, interactions among agents are assumed to be
homogeneous over space and time. The correspondingword-of-
mouth effect,WOM, is described through a share q of all possible
interactions, i.e., qF(t) (1 − F(t)), where F(t) defines the relative
cumulative number of adoptions (or adopters) at time t.

A first way to relax this assumption may be found in
Easingwood et al. [7], where a simplemodulation of interactions
is proposed to act on the basic factor responsible of WOM, F(t).
Its exponential form induces an acceleration or delay of
adoptions which is not uniform over time. The selected
interaction component is qFδ(t) (1 − F(t)). For δ b 1, we have
a rapid concentration of sales for increasing time t, and vice
versa, a delay for δ N 1. This non-uniform influence gives rise to
an asymmetric behaviour as compared with the Bass model,
though preserving a unimodal distribution of adoptions over
time. In the past, analogous transformations of the basic inter-
action effects F(t) (1 − F(t)) were introduced: see, for instance,
Gompertz [11], Floyd [9], Sharif and Kabir [27], and Jeuland [18].
Previous expressions of heterogeneity are described through
differential equations whose solutions are not always explicit.

Based on a mixture of special densities, a different approach
in heterogeneity modelling is considered by Bemmaor [4] and
Bemmaor and Lee [5]. The basic hypothesis expresses heteroge-
neity of agents by assuming that someparameters characterizing
local Bass-like dynamics are stochastic over the current popula-
tion. Starting, in particular, with a shifted-Gompertz distribution,

F tjη;pþ qð Þ ¼ 1−e− pþqð Þt� �
exp −ηe− pþqð Þtn o

; ð1Þ
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where (p + q) is considered fixed, the parameter η that defines
agents' propensity to buy, is assumed gamma distributed,
η ∼ G(λ = 1/β, A).

Based on the moment generating function, the marginal
mixture is an immediate result:

F tð Þ ¼
Z ∞

0
F tjη;pþ qð Þ 1

Γ Að Þ
1
β

� �A

ηA−1e−
η
βdη

¼ 1−e− pþqð Þt� �
= 1þ βe− pþqð Þt� �A

:

ð2Þ

For A = 1 and β = q / p, the standard Bass model results
as a special barycentric case. Parameter A N 0 characterizes
different asymmetries, even though F(t) in Eq. (2) is always
unimodal. Low levels of parameter A, A b 1, define homoge-
neous agents with a common propensity to buy and a
corresponding acceleration of the adoption process. Vice
versa, high levels of A, A N 1, denote heterogeneous agents
with different propensities that determine a distributed delay
of the adoptions.

Notice that previously introduced models, and in partic-
ular, Bass [2], Bemmaor and Lee [5], Easingwood et al. [7],
among others, and further covariate dependent models, such
as Bass et al. [3], consider the market potential as fixed,
m(t) = m, over the whole life-cycle. A different possibility
may be the definition of a more flexible market potential
m(t). In Guseo and Guidolin [12], for instance, a generic
market potential m(t) is introduced through Cellular Autom-
ata representations, and in particular, its dynamic is obtained
by exploiting a latent evolving network of relationships that
mimics the heterogeneity of agents over space and time. The

proposed cumulative model is m tð Þ 1−e− pþqð Þ∫t

0
x τð Þdτ

� �
=

1þ βe� pþqð Þ∫t

0
x τð Þdτ

� �
, and it may represent, for x(t) = 1, at

most bimodal situations of the corresponding rate process
not yielded through a classical mixture. Interpretations of
both components are effective in applied contexts. See, in
particular, Guseo and Guidolin [13,14].

An alternative perspective considers heterogeneity as
characterized by a discrete number of different types or
segments. In this sense, the hazard of the category process,
h(t) = f(t) / (1 − F(t)), is composed through different local
hazards, hi(t) = fi / (1 − Fi(t)), i=1, 2,⋯, k, where k is the
number of separate sub-populations. The non-homogeneity
of composed hazards recognizes a kind of clustering effect in
the development of diffusion with different local dynamics.
An example among others, based on a discrete mixture of
Gompertz distributions, may be found in Robertson et al. [25]
where information on separate segments is known through
separate time series. A more interesting and common context
would be the analysis of composed dynamics under an
aggregate time series that does not distinguish the separate
origins of adoption data.

The purpose of this paper is to deal with latent hetero-
geneity in innovation diffusion, but unlike previously cited
papers, we focus our attention on modelling processes that
do not have a unimodal behaviour, but rather a multimodal
one. Such multimodality results from the co-existence of
different sub-populations of adopters in the diffusion pro-
cess. In doing so, we propose a reduced approach based on a
few latent types avoiding difficult integrations through not
iffusion of innovations modelling: A few fundamental types,
echfore.2014.02.023
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easy tomotivate a priori distributions. The results are obtained
by following two alternative theories: the first is based on the
Rosenblueth two-point distributions (TPD), and the second is
related to Cellular Automata representations, and in particular
to the description of clustered connectivity among agents. An
illustrative application is discussed with reference to Compact
Cassettes for pre-recorded music in Italy whose life-cycle
was characterized by four significantly heterogeneous sub-
populations with proportional dynamic parameters.

The paper is organized as follows. Section 2 introduces
the general Bass model and the mixing device to control
heterogeneity. Section 3 introduces the TPD formalism by
Rosenblueth [26]. Section 4 proposes a simplified version of a
four-point distribution representation with proportional
dynamics in parallel sub-populations referred to a bench-
mark one. Section 5 provides the same results following von
Neumann and Moore metrics in describing connectivity of
neighboring clusters of agents. Section 6 extends the main
results with further local asymmetric effects as in Bemmaor
and Lee [5]. Section 7 is devoted to the application of
the proposed model to the life-cycle of Compact Cassettes
in Italy. Final remarks and discussion are included in
Section 8.

2. The standard Bass model and heterogeneity of agents

The standard Bass model [2] refers to a homogeneous
system. Instantaneous adoptions z′(t) are modelled through
an autonomous Riccati equation with further non-negativity
constraints, i.e.,

z′ tð Þ ¼ pþ q
z tð Þ
m

� �
m−z tð Þð Þ; z t0ð Þ ¼ z0; ð3Þ

where z(t) denotes the cumulative adoptions (sales),m is the
asymptotic market potential, P represents the “external
influence” usually describing the contribution of innovators,
and q the “internal influence” related to the share imputed to
imitators. Dividing by m both members of Eq. (3), we obtain
an equivalent normalized equation where y(t) = z(t) / m:

y′ tð Þ ¼ pþ qy tð Þð Þ 1−y tð Þð Þ; y t0ð Þ ¼ y0: ð4Þ

The solution process depends upon all involved parameters,
p, q, and y0, in a nonlinear form, y(t|p, q, y0). In a homogeneous
system, parameters p and q may be interpreted as specific
dynamic aspects of the population. In a more complex
situation, p and q may be referred to as limited homogeneous
sub-populations and considered as time independent random
variables depicting heterogeneous agents with a specific
density ϕ(p, q). The observable normalized process is, there-
fore, a mixture due to the latency of (p, q):

y1 tð Þ ¼ ∬y tjp; q; y0ð Þϕ p; qð Þ dp dq: ð5Þ

This approach apparently introduces an infinite two-
dimensional class of (p, q) sub-populations with a bivariate
density ϕ(p, q), which is usually unknown.
Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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The solution y(t|p, q, y0) does not depend upon the
deterministic or stochastic nature of the dynamic factors p
and q, namely,

y t p; q; y0jð Þ ¼ 1−αpe− pþqð Þ t−t0ð Þ

1þ αqe− pþqð Þ t−t0ð Þ ; t≥t0; ð6Þ

and zero elsewhere in order to exclude negative behaviour in
the diffusion of innovations context. The constant α is a
function of the initial condition, α = (1 − y0)/(p + qy0). For
t0 = 0 and y0 = 0, we have α = 1 / p obtaining the usual
Bass solution (see Bass, 1969 [2]),

y tð Þ ¼ 1−e− pþqð Þt

1þ q
p e

− pþqð Þt ; t≥0; ð7Þ

and zero elsewhere.
The observable process y1(t) in Eq. (5) depends upon a

complex integration and usually the density ϕ(p, q) is not
realistically known. Formally, it is a firstmoment of the random
variable y(t|p, q, y0), and in this perspective, we can use the
results by Rosenblueth [26], Karmeshu and Lara-Rosano [20],
Karmeshu and Goswami [19], and Goswami and Karmeshu
[21] in order to obtain the first moment of a function of a
random variable through the TPD formalism based on few
moments of two-point distributions. This approach is based
on a minimal discretization of a general continuous random
variable and allows for a corresponding approximate repre-
sentation of Eq. (5), simplifying computations both theoreti-
cally and practically. In other words, the continuous density
ϕ(p, q) is converted to a discretized version with equivalent
low-order moments and a minimal discrete support. This
approach strongly simplifies integration in Eq. (5).

3. TPD formalism

Let us consider a random variable X characterized by
the moments μX, σX, and vX, mean, standard deviation and
skewness, respectively. Following Rosenblueth [26], we may
construct a two-point distribution with the same three
moments based on the following density,

ψ xð Þ ¼ P−
X δ X−x−ð Þ þ Pþ

X δ X−xþ
� �

; ð8Þ

where δ(⋅) is a Dirac's delta function. The properties of the
discrete distribution (PX±, x±) are,

1 ¼ P−
X þ Pþ

X

μX ¼ P−
X x− þ Pþ

X x
þ

σ2
X ¼ P−

X x−−μxð Þ2 þ Pþ
X xþ−μx

� �2
νXσ

3
X ¼ P−

X x−−μxð Þ3 þ Pþ
X xþ−μx

� �3 ð9Þ

and, therefore,

P�
X ¼ 1

2
1∓ νXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ν2
X

q
264

375; ð10Þ
iffusion of innovations modelling: A few fundamental types,
echfore.2014.02.023
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x� ¼ μX þ 1
2

νX �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ν2

X

q� �
σX : ð11Þ

If we consider the transformation Y(X), we can determine
its moments in a simple way, i.e.,

E Yr Xð Þ� � ¼ ∫Yr xð Þψ xð Þdx ¼ P−
X y−ð Þr þ Pþ

X yþ
� �r

; r ¼ 1;2; ⋯
ð12Þ

where y± = Y(x±). Following again Rosenblueth [26], we
can consider a real transformation of a bivariate random
variable Y(X1, X2) obtaining the subsequent density, avoiding
independence assumptions of components X1 and X2,

ϕ X1;X2ð Þ ¼ P−−
X1X2

δ X1−x−1ð Þδ X2−x−2ð Þ þ Pþþ
X1X2

δ X1−xþ1
� �

δ X2−xþ2
� �

þ P−þ
X1X2

δ X1−x−1ð Þδ X2−xþ2
� �

þ Pþ−
X1X2

δ X1−xþ1
� �

δ X2−x−2ð Þ:
ð13Þ

Notice that Eqs. (10) and (11) allow the determination of
the univariate marginals X1 and X2 under the knowledge of
the correspondent first moments up to order three μX1

, σX1 ,
νX1 , μX2

, σX2 , and νX2 .
The joint discrete distribution Eq. (13) may be deter-

mined by imposing a final constraint on the correlation
coefficient ρ between X1 and X2. We do not perform such
computations because they are difficult to implement and
not relevant in the sequel. Nevertheless, we observe that the
parametric dimension of density Eq. (13) is 7.

4. The observable adoption process

The observable adoption process y1(t) is defined through
the integral in Eq. (5) as a first order moment of the solution
Eq. (7) based on the distribution ϕ(p, q) that characterizes
the agents' heterogeneity with reference to the dynamic
parameters of a local Bass-like evolutionary process. We can
discretize previous integral with the help of the seven-
dimensional density Eq. (13) based on μp, σp, vp, μq, σq, vq and
ρ, and obtain the following mixture model,

y1 tð Þ ¼ P−−
p q

1−e− p−þq−ð Þt

1þ q−

p−e
− p−þq−ð Þt þ Pþþ

p q
1−e− pþþqþð Þt
1þ qþ

pþe
− pþþqþð Þt

þ Pþ−
p q

1−e− pþþq−ð Þt
1þ q−

pþe
− pþþq−ð Þt þ P−þ

p q
1−e− p−þqþð Þt
1þ qþ

p−e
− p−þqþð Þt ;

ð14Þ

which may be represented without reference to the seven
original moments, i.e., it may be based on three parameters
for the joint distribution, Pp q

− −, Pp q
+ +, and Pp q

− +, and four
parameters for the four separate minimal trajectory types
implemented by the four distinct couples p±, q±.

Previous minimal representation of the aggregate observ-
able process y1(t) may be reshaped with a further parameter
in order to increase flexibility and simplify interpretation.
This suggestion is due to the difficulty in establishing closed
form solutions for the joint distribution Pp q

± ± as an explicit
function of the seven moments.
Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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To this end, we introduce a convenient parametrization
for the sums p± + q±, which suggests the introduction of an
invariance for the ratio q±/p±, in particular,

pþ þ qþ
� �

↔
qþ

pþ
⇒ pþ qð Þ↔ q

p
; P1 ¼ Pþþ

p q

p− þ q−ð Þ↔ q−

p−
⇒a pþ qð Þ↔ q

p
; P2 ¼ P−−

p q

pþ þ q−
� �

↔
q−

pþ
⇒b pþ qð Þ↔ q

p
; P3 ¼ Pþ−

p q

p− þ qþ
� �

↔
qþ

p−
⇒c pþ qð Þ↔ q

p
; P4 ¼ P−þ

p q:

ð15Þ

This extended parametrization, which adds one more
parameter, q / p, with respect to those involved in Eq. (14),
allows for a more direct interpretation. We have a benchmark
trajectory driven by two parameters, p and q, or the equivalent
couple (p + q), q / p. The other three define a slower
behaviour for a b b b c b 1. Notice that the ratios aq

ap ¼ bq
bp ¼ cq

cp

¼ q
p are invariant.
We propose a common system with an internal bench-

mark controlled by the p, q dynamic factors. The parallel
sub-populations share a scaled proportion of this common
dynamic through types a, b, and c that modify the local speed
of adoptions with reference to the benchmark.

The marginal observable adoption process Eq. (14) has,
therefore, a modified approximate aspect with a simple form
that does not require a direct reference to the marginal first
few moments of (p, q) and related correlation coefficient ρ,
namely,

y1 tð Þ ¼ P1
1−e− pþqð Þt

1þ q
pe

− pþqð Þt þ P2
1−e− pþqð Þat

1þ q
pe

− pþqð Þat

þ P3
1−e− pþqð Þbt

1þ q
pe

− pþqð Þbt þ P4
1−e− pþqð Þct

1þ q
pe

− pþqð Þct ;
ð16Þ

where ∑ i = 1
4 Pi = 1.

In other words, we have imagined a population of agents
characterized by possible infinite homogeneous cells with
different dynamic factors (p, q) and with a time independent
density ϕ(p, q). The mean behaviour of the observable
normalized process Eq. (5), under local Bass-like dynamics,
may be approximated, within the logic of the first three
moments, by the discretized mixture of four local Bass
‘witnesses’ characterized in Eq. (16) by four specific parameters:
the constant 1 for the benchmark process with ‘relevance’ P1,
and a, b and c for the coordinated local main components with
relevance P2, P3 and P4, respectively. This description is quite
simple and efficient but does not explain why local
sub-populations have different levels in the dynamic factors
(pδ, qδ), δ = 1, a, b, c. In the following section we propose a
possible motivation for a discrete differentiation through a few
heterogeneous groups.

5. Topological and metric aspects of diffusion

When we describe an aggregate diffusion of innovation
process we express its behaviour under latent environmental
constraints which are generally unknown and locally con-
centrated. The environmental space is not homogeneous:
iffusion of innovations modelling: A few fundamental types,
echfore.2014.02.023
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Table 1
Connectivity strength based on the cardinality of the Moore neighborhood
(upper figure) or on the cardinality of the von Neumann neighborhood
(lower figure).

j 1 2 3 4

i

3 5 5 3

1

2 3 3 2

5 8 8 5

2

3 4 4 3

5 8 8 5

3

3 4 4 3

3 5 5 3

4

2 3 3 2
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Cultural, behavioural, demographic and economic dimen-
sions are often complementary and heterogeneous in
different areas. The multidimensional structure of this space
may be simplified through a qualitative lattice of contiguous
cells based on a few dimensions (for instance two or three)
with possibly internal non-accessible sub-regions. Under a
fixed conventional neighborhood of a cell, we may measure
the local strength of connectivity among cells through the
cardinality of the surrounding cells. The emerging types are
only a few. Let us consider, for example, agents or cells of a
system distributed within a two-dimensional square lattice.
In Cellular Automata representations, the Moore neighbor-
hood of a central cell C is defined by 8 cells surrounding it
(see Fig. 1).

This number is smaller for borderline cells (5 or 3).
Table 1 represents a square lattice of cells. In the upper part
of each cell we denote the connectivity strength through the
cardinality of the Moore neighborhood based on Chebyshev
distance 1.

A different approach is based on the von Neumann
neighborhood, which considers only the four cells surround-
ing a central cell C in a two-dimensional square lattice. This
neighborhood is equivalent to the set of cells at a Manhattan
distance of 1 (see Fig. 1).

In the square lattice of Table 1, the number in the lower
part of each cell represents the connectivity strength through
the cardinality of the von Neumann neighborhood.

The proposed metrics define only three types of connec-
tivity strength in different scales, (8, 5, 3) for the Moore
neighborhood, and (4, 3, 2) for the von Neumann. If we
extend Table 1 to a cubic lattice, we can distinguish four
separate types: (26, 17, 11, 7) for the Moore approach and (6,
5, 4, 3) for the von Neumann.

Notice that there is a one-to-one correspondence between
the different metric definitions. All cells which are equivalent
for the Moore metric are exactly equivalent under the von
Newmann. We may summarize the connectivity strength,
as a proxy of the interaction among cells, through some
parameters that compare dynamic effects with a benchmark.
In a normalized version, we can state β b α b γ = 1. For a
two-dimensional square lattice see Table 2.

The diffusion process stemming from cells in a lattice may
be specified for each of them. For instance, with reference to a
local Bass-like dynamic we may express the cumulative
behaviour of a cell (i, j) in the absolute scale as:

zij tð Þ ¼ mij
1−e− pijþqijð Þt

1þ qij
pij
e− pijþqijð Þt ; t≥0; ð17Þ
Fig. 1. Von Neumann neighborhood at a Manhattan distance of 1, and Moore
neighborhood at a Chebyshev distance of 1.

Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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and obtain an aggregate observable model defined by

z tð Þ ¼ m
X
ij

Pij
1−e− pijþqijð Þt

1þ qij
pij
e− pijþqijð Þt ; t≥0; ð18Þ

where mij = mPij and ∑ ijPij = 1.
Even if model (18) is quite general, there are many

difficulties in identifying it from a statistical point of view
when we only observe z(t). In this respect, it is much more
plausible to detect only a smaller set of fundamental types
in Eq. (18). Following the common classification based on
connectivity strength in a square or cubic lattice, under
Moore or von Neumann measures of interactions, we can
select a benchmark with the full effect of local dynamic
factors (p, q). The other few components may be scaled with
coefficients less than γ = 1, i.e., β b α b 1.

The reduced model based on fundamental types within a
square lattice may be,

z tð Þ ¼ m P1
1−e− pþqð Þt

1þ q
pe

− pþqð Þt þ P2
1−e− pþqð Þαt

1þ q
pe

− pþqð Þαt þ P3
1−e− pþqð Þβt

1þ q
pe

− pþqð Þβt

( )
;

ð19Þ

where ∑ i
3Pi = 1 and mi = mPi, i = 1, 2, 3, are the local

aggregate market potentials of the fundamental types. Under
a cubic lattice, the fundamental types are four, both with
Moore or von Neumann neighboring and related metrics.
Table 2
Connectivity strength equivalence between Moore and von Neumann
neighboring. In a normalized version, we can state γ = 1 and β b α b 1 = γ.

i j

1 2 3 4

1 β α α β
2 α γ γ α
3 α γ γ α
4 β α α β

iffusion of innovations modelling: A few fundamental types,
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6. Further improvements

From a statistical point of view, the proposed theoretical
reduction based on two different approaches – the TPD
formalism and the Cellular Automata framework – depicts a
more realistic diffusion dynamic with heterogeneous agents.
In this case, we limit generality to fundamental types that
may be introduced and tested.

Moreover, following Bemmaor [4], and Bemmaor and Lee
[5], we may specify further aspects of heterogeneity that
generate local asymmetric behaviour. The corresponding
model may be easy to obtain, namely,

zB tð Þ ¼ m P1
1−e− pþqð Þt

1þ q
pe

− pþqð Þt
� �A1

þ P2
1−e− pþqð Þαt

1þ q
pe

− pþqð Þαt
� �A2

8><>:
þ P3

1−e− pþqð Þβt

1þ q
pe

− pþqð Þβt
� �A3

9>=>;:

ð20Þ

Further extensions may incorporate exogenous interven-
tion functions xi(t) mimicking the Generalized Bass model,
GBM, by Bass et al. [3], obtaining, for a simple two component
model, the following representation,

zGBM tð Þ ¼ m P1
1−e

− pþqð Þ
Z t

0
x1 τð Þdτ

 
1þ q

pe
− pþqð Þ

Z t

0
x1 τð Þdτ!A1

8>>>>>>><>>>>>>>:

þP2
1−e

− pþqð Þα
Z t

0
x2 τð Þdτ

 
1þ q

pe
− pþqð Þα

Z t

0
x2 τð Þdτ!A2

9>>>>>>>=>>>>>>>;
:

ð21Þ

Moreover, market potential m or its local versions mi =
mPi may be generalized following Guseo and Guidolin [12] in
order to take into account its dependence upon time. As an
example, we may model it through a general communication
process based on a network knowledge expansion:

m tð Þ ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e− pcþqcð Þt

1þ qc
pc
e− pcþqcð Þt

vuut : t≥0: ð22Þ

Further aspects that may be considered are the local
times. Different types may have different origins but this
should be introduced with parsimony in order to balance
complexity of the model with its empirical identification and
estimate.

6.1. Network interactions

Heterogeneity discussed in this paper is mainly focused
on local perfect communication among agents. In Guseo
and Guidolin [12], some effort is spent in order to describe
the evolving latent network of relevant knowledge that is
necessary for adoption.
Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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Following a static approach, Fibich andGibori [8], introduced
a one-dimensional network structure that strongly constrains
the development of knowledge within a system. Every agent
may receive relevant information only from a left-or right-
positioned member of the system. The resulting limiting cumu-
lative distribution function is defined by:

FFG tð Þ ¼ 1−e− pþqð Þtþq 1−e−ptð Þ=p: ð23Þ

If we introduce a first order approximation of e−pt,
i.e., e−pt = 1 − pt, the approximate cumulative distribution of
Fibich and Gibori equals a special monomolecular case:

eFFG tð Þ ¼ 1−e−pt
; ð24Þ

which explains the limited role of the q parameter in Eq. (23).
When we imagine a limited local communication among
agents of relative homogeneous sub-populations, we may
substitute, partially or completely, the basic Bass-like kernel
adopted in Eqs. (14), (16), and (19)with a Fibich–Gibori kernel
as described in Eqs. (23) or (24).

7. Compact Cassette format for pre-recorded music in Italy

In this section, we present an application of the proposed
modelling approach to a multimodal diffusion process in the
music industry.

Music is not only a form of artistic expression, but also an
important medium of social communication. It has always
been a part of life for people in many cultures and historical
periods. Music has been evolved with civilization through the
creation of instruments and the development of new modes
of performance and use. Musicians and singers have been
performing for millennia in houses, under nomad tents, and
in public spaces, such as squares, theaters, courts and concert
halls. Today, music may be played live, or it may be recorded.
In industrialized countries in the 20th century, listening to
music through a recorded form became more common than
experiencing live performances. This occurred thanks to the
introduction and diffusion of many technological innovations
in recording and reproduction, which also gave rise to a
flourishing industrial sector connected with the creation
and sale of recorded music. Even if the magnetic recording
attempts date back to the end of the 18th century when
Valdemar Poulsen patented the telegraphone in 1898, the
commercial development grounded on mechanical repro-
duction began in 1887 with the phonograph by Thomas
Edison, based on tin cylinders, and more importantly, the
gramophone based on disks. A positive interaction between
disks and the radio highly supported the diffusion of music.
After World War II, microgroove technology of vinyl disks,
long-playing records (33 rpm) and extended-play records
(45 rpm) based on electromechanical players brought music
to fruition for almost everybody.

Magnetic recording on tapes was developed in Germany.
The AEG Magnetophon (1935) was systematically used in
Hitlerian propaganda. After World War II, magnetic tape
recording saw increased development even if this music
technology never exceeded a limited market of customers
with good technical skills.
iffusion of innovations modelling: A few fundamental types,
echfore.2014.02.023

http://dx.doi.org/10.1016/j.techfore.2014.02.023


Fig. 2. Pre-recorded music in Italy. Compact Cassette in millions of units. Four heterogeneous Bass sub-populations with decreasing proportional dynamics and
Bemmaor asymmetry correction.
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In 1963, Philips introduced a prototype of the Compact
Cassette in Europe, and in 1965, based on a patent open to
compatibility, launched the new technology free of charge to
manufacturers. At the world level, the Compact Cassette tech-
nology covered a long life-cycle (1965–1990) with continuous
improvements in signal-to-noise performances. The new
technology increased the market potential of pre-recorded
music with a parallel expansion of personal recording and
duplications. Piracy phenomena were concomitant aspects of
its diffusion, with not necessarily negative effects due to illegal
reproduction under copyright regulations (see, for instance,
Givon et al. [10] for a first representation of the problem
and further extensions in Guseo and Mortarino [15,16] for
more general aspects of competition). During the 1980s, the
cassettes' popularity grew further as a result of portable pocket
recorders and high-fidelity players, such as Sony's Walkman
launched in 1979. The Walkman defined the portable music
market in the 1980s with sales overtaking those of LPs. The
Compact Cassette has been defined ‘the winner’, the greatest
commercial success in the history of audio reproduction (see
Andriessen [1]). The reasons for this success may be derived
from its technical features, which provided the possibility of
enjoying music at any time and any place.
Table 3
Pre-recorded music in Italy. Compact Cassette in millions of units. Four heterogen
components mc, mb, and ma, a benchmark dynamic, p, q and corresponding dec
asymmetry correction, A. Marginal linearized asymptotic 95% confidence limits are i
data.

mg p q

59.5168 0.00000226025 1.42974
(53.8131) (0.00000010192) (1.37609)
(65.2204) (0.00000441859) (1.48339)

c mb b

0.598316 179.218 0.371327
(0.581892) (165.332) (0.359076)
(0.614739) (193.105) (0.383579)

Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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In Western Europe and America, the market for cassettes
has declined since its peak in the late 1980s. In particular, the
decline is connected with the introduction of the Compact
Disk (CD), even though sales remained quite high for at least
10 years.

In this paper,we analyze the special case of the Italianmarket
for Musicassettes. The time series, expressed in million of units
sold (source: Musica e Dischi), covers a period from 1966 to
2003, and is characterized by a multimodal distribution over
time (see Fig. 2). We argue that this multimodal pattern may be
due to the presence of some fundamental sub-populations of
adopters.

The proposed statistical model is a special version of
Eq. (20), namely:

z tð Þ ¼ mg
1−e− pþqð Þt

1þ q
pe

− pþqð Þt
� �A þmc

1−e− pþqð Þ c t

1þ q
pe

− pþqð Þ c t
� �A

þmb
1−e− pþqð Þ b t

1þ q
pe

− pþqð Þ b t
� �A þma

1−e− pþqð Þ a t

1þ q
pe

− pþqð Þ a t
� �A :

ð25Þ

This model is based on the recognition of four fundamen-
tal types that define the basic sources of heterogeneity with a
eous Bass sub-populations: a benchmark market potential mg, and further
reasing proportional dynamic effects c, b, and a, and a common Bemmaor
n parentheses. R2 = 0.999932 is a determination index based on cumulative

A mc R2

0.465723 104.182 0.999932
(0.402494) (98.5084) SSE
(0.528952) (109.856) 88.8903

ma a D–W

209.727 0.280703 1.14617
(195.452) (0.270973)
(224.002) (0.290432)

iffusion of innovations modelling: A few fundamental types,
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Fig. 3. Pre-recorded music in Italy. Compact Cassette in millions of units. Standard Bass and Bemmaor models.
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common asymmetry Bemmaor effect referred to as standard
Bass sub-models. For a statistical implementation, we embed
model (25) in a nonlinear regression,

w tð Þ ¼ z tð Þ þ ε tð Þ ð26Þ

where ε(t) is a residual noise factor and apply a two-step
inferential procedure: a nonlinear least squares (NLS) for the
estimation of parameters of Eq. (25), and a subsequent
ARMAX (auto-regressive moving average with control vari-
ables X), in order to identify and estimate the structure of the
residual noise ε(t). Notice that ARMAX is implemented, in
this case, with the NLS solution ẑ tð Þ as a control variable.

NLS results are summarized in Table 3. Fig. 2 depicts the
efficient description of the multimodal behaviour of Compact
Cassette in Italy. The NLS global goodness-of-fit of the cumu-
lative model (25) is very high, R2 = 0.999932, in comparison
with a single cycle standard cumulative Bass model with R2 =
Fig. 4. Pre-recorded music in Italy. Compact Cassette in millions of units. Four hete
Bemmaor asymmetry correction: segments.

Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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0.997727, and the cumulative Bemmaor model with R2 =
0.998373 here not reported in extended form for brevity. For
a graphical comparison of instantaneous Bass and Bemmaor
models see Fig. 3.

The estimated sub-populations in Table 3 present increasing
local market potentials, mg = 59.5, mc = 104.2, mb = 179.2,
and ma = 209.7, and are temporally subsequent denoting an
increasing delay expressed by the factor thatmultiplies time t in
the exponential forms, 1 for the first component assumed as the
benchmark, c = 0.598 for the second wave, b = 0.371 for the
third, and finally a = 0.281. Notice that all marginal asymptotic
confidence intervals are very smallwith coherent signs, and that
the Durbin–Watson statistic may suggest an important struc-
ture in the residuals after the NLS estimation phase, D–W =
1.14. For a graphical description of global rate sales, and for the
identification of four heterogeneous Bass-like sub-populations
with decreasing proportional dynamics and local Bemmaor
asymmetric correction, see Fig. 4.
rogeneous Bass sub-populations with decreasing proportional dynamics and

iffusion of innovations modelling: A few fundamental types,
echfore.2014.02.023

http://dx.doi.org/10.1016/j.techfore.2014.02.023


Table 4
Pre-recorded music in Italy. Compact Cassette in millions of units. Discrete type heterogeneous Bass sub-populations with decreasing proportional dynamic
effects: ARMAX (5,5) on autocorrelated residuals with the proposed model as input variable; t-statistics are in parentheses, p values are in square brackets.

AR (1) AR (2) AR (3) AR (4) AR (5) Proposed model

0.542679 −0.188258 0.495087 −0.799886 0.545088 1.00223
(2.14569) (−0.825715) (1.78518) (−3.51274) (2.05299) (340.363)
[0.041408] [0.416479] [0.085905] [0.001642] [0.050264] [0.000000]

MA (1) MA (2) MA (3) MA (4) MA (5) Mean

−0.155015 0.677711 0.868257 −0.366528 −0.614611 −0.811504
(−0.735962) (3.47271) (3.29165) (−1.85001) (−2.44636) (−0.901945)
[0.468342] [0.001818] [0.002868] [0.075710] [0.021505] [0.375366]
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We may improve the description of model (26) by
examining theNLS residuals ε̂ tð Þ ¼ w tð Þ−ẑ tð Þwith a convenient
ARMAX model,

Φ Bð Þ w tð Þ−ξẑ tð Þ½ � ¼ Θ Bð Þat ; ð27Þ

in order to detect further autoregressive or moving average
components that allow, jointly with NLS predicted values ẑ tð Þ, a
better forecast for a short-termhorizon. Results are summarized
in Table 4 and confirm the proposedmean trajectorymodel (25)
with a practically unitary coefficient, ξ̂ ¼ 1:00223 and a very
high t-statistic, t = 340.4.

In order to compare model (25) with a similar multimodal
model we consider a restriction in Bemmaor asymmetric
effect by imposing a neutral level, A = 1. The reduced model
with 9 parameters attains a lower determination index under
NLS, namely, R92 = 0.999879 which has to be compared with
R10
2 = 0.999932 associated to the model (25) with 10

parameters. The squared partial correlation coefficienteR2 ¼ R2
10−R2

9

� �
= 1−R2

9

� �
¼ 0:438016 presents a high value.

The corresponding non-parametric F-ratio, which take into
account the involved degrees of freedom between the nested

models, is surely significant: F ¼ eR2
n−kð Þ= 1−eR2Þ ¼ 21:82

�
(where n = 38 is the number of observations and k = 10 the
number of parameter of the more complex model (25)). The
Bemmaor effect is therefore relevant and cannot be omitted.

A further aspect in evaluating the stability and sensitivity
of the proposed model, with reference to forecasting
properties, is summarized in Table 5 where we report MAPE
and RMSE indexes for both BM and model (25) for different
time horizons by eliminating from the observed 38 data the
last h = 4, 8, 12, and 16 time points. The results denote an
Table 5
Pre-recorded music in Italy. Compact Cassette in millions of units. Four
discrete type heterogeneous Bass sub-populations with decreasing propor-
tional dynamic effects compared with standard Bass model BM in terms of
MAPE for h = 4, 8, 12, and 16, and RMSE.

MAPE RMSE

h BM 4-Types BM 4-Types

4 0.83629 1.62261 5.05638 10.82289
8 2.70209 7.11721 14.3084 41.00707
12 13.5159 2.58781 71.5425 13.07708
16 32.3352 12.1660 166.331 78.887514

Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
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alternate behaviour where, in particular model (25) performs
better for h = 12 and h = 16.

If we explore the stability of the estimated response
function we notice an exceptional robustness also with h =
16 excluded points over 38. Fig. 5 shows that the estimated
trajectories are exactly superimposed. With a number of
h = 20 excluded points – twenty years – the life-cycle does
not have sufficient data to discover the multimodalities of the
non-observed second period of time. This stress test confirms
that the proposed model (25) is quite realistic.

In Fig. 6, we present the cumulative behaviour of the four
heterogeneous Bass-like sub-populations with decreasing
proportional dynamics and local Bemmaor asymmetry correc-
tion. This cumulative overlapping effect of delayed segments
gives evidence to the presence of different sub-populations of
adopters or adoptions. The first generation of adoptions, with
an estimated market potential of about 60 million units sold,
represented themost innovative component of the process and
peaked in 1974. In particular, wemay argue that this first wave
is due to high fidelity fans, interested in the technological
innovation of Compact Cassette and related players, which
were quite expensive in the initial stages.

During the period 1974–1980, microgroove technology,
based on extended-play records (45 rpm) and long-playing
records (33 rpm), contrasted the expansion of the Compact
Cassette support that reached, with a second wave, a market
potential of about 104 million units sold. After 1980, the
45 rpm records declined within a few years. The LPs were
able to maintain a good level of sales for 10 years although
declined rapidly after 1990. Sales of pre-recorded music
Compact Cassettes exceeded LP sales in Italy for the first
time in 1986. A possible interpretation of this second sub-
population, with a higher market potential, is connected with
the wide adoption of cassette players for home listening and
the parallel diffusion of the car audio culture. In fact, one of
the greatest merits of cassettes with respect to vinyls is to
have mobilized music listening. The decline in sales occurring
after 1980 may be imputed to the concurrent phenomenon of
home reproduction of albums using blank cassettes.

The third wave, which peaked in 1990, had a market
potential of about 180 millions of units sold, and may be
reasonably connected with the introduction and massive
diffusion in Italy of theWalkman, which individualized music
listening, becoming a lifestyle symbol. The introduction of CD
supports in 1983 did not produce an immediate effect on
Compact Cassette sales. After 1990, its expansion became
much stronger, implying a decreasing behaviour in cassette
iffusion of innovations modelling: A few fundamental types,
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Fig. 5. Pre-recorded music in Italy. Compact Cassette in millions of units. Sensitivity analysis of the four types of heterogeneous Bass sub-populations with
decreasing proportional dynamics and Bemmaor asymmetry correction. The estimated NLS trajectories for 38, 34, 30, and 22 observed points with h = 0, 4, 8 and
16, are practically indistinguishable.
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sales, with a partial revival due to the fourth large generation
peaked in 2000 with about 210 million units sold. This fourth
generation may be interpreted as an inertial effect: cassettes
remained popular for specific applications, such as car audio,
for many years, being more resistant to dust, heat and shocks
than the competitor (CD).

As we have seen, the life-cycle of the Compact Cassette in
Italy has been characterized by a multimodal behaviour,
which we interpreted as the result of the co-existence of four
heterogeneous populations. It is worth observing that the
same user may have been part of different populations over
time; for instance, he may have listened to cassettes at home
first, then while driving, and finally with the Walkman. So,
what qualifies heterogeneity is a different mode of usage,
which appears strongly related to the diffusion of new
technologies for music listening.
Fig. 6. Pre-recorded music in Italy. Compact Cassette in millions of units. Four hete
Bemmaor asymmetry correction: cumulative segments.
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8. Final remarks and conclusions

Heterogeneity of agents and network structure may affect
the dynamics of the diffusion of an innovation. In this paper, we
chose an aggregate and sufficiently flexible multimodal descrip-
tion of heterogeneity, which allows for an efficient and cost-
effective prediction process. As discussed in the Introduction,
heterogeneity in innovation diffusion is not limited to individual
properties of agents, but has much to do with individual access
to information, and thus with relationships, WOM effects and
network structures. Heterogeneity may also affect the market
potential structure and the corresponding adoption process. In
the literature, we find different solutions based on micro-
modelling approaches. In Chatterjee and Eliashberg [6], hetero-
geneity is modelled within the adoption process, while in Guseo
and Guidolin [12] it generates a dynamic market potential.
rogeneous Bass sub-populations with decreasing proportional dynamics and
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In this paper, we consider heterogeneity at the adoption
level and propose a general composite populationwith random
dynamic factors under an unknown mixing distribution. The
assumed conditional kernel is a Bass-like distribution, which
may be modified under different conditions. The proposed
discrete mixture is based on Rosenblueth TPD formalism
with some extensions in order to achieve easy-to-implement
models. In particular, the multimodal model (16) is based on a
benchmark and few other parallel types. A similar result is
obtained following connectivity criteria based on von Neu-
mann and Moore metrics. Bemmaor-like improvements may
be obtained by accommodating local asymmetric behaviour
Eq. (20).

We have applied the proposed multimodal model to the
life-cycle of the Compact Cassette format for pre-recorded
music in Italy. The obtained decomposition in parallel waves
is statistically significant and quite interesting for substantive
interpretations. Residual components around the proposed
model may be adequately described through an ARMAX
model (27) in order to improve short-term forecasting.
Comparisons with other models and sensitivity tests confirm
the significance of the proposed model.

Further improvements and extensions may be studied in
the future in order to take into account, especially with
reference to the fourth wave, some effects introduced by the
successive technologies.

Acknowledgments

The authors would like to express their gratitude to the
anonymous reviewers for helpful comments and suggestions.

References

[1] W. Andriessen, ‘THE WINNER’; compact cassette. A commercial and
technical look back at the greatest success story in the history of AUDIO
up to now, J. Magn. Magn. Mater. 193 (1999) 11–16.

[2] F.M. Bass, A new product growth model for consumer durables, Manag.
Sci. 15 (1969) 215–227.

[3] F. Bass, T. Krishnan, D. Jain, Why the Bass model fits without decision
variables, Mark. Sci. 13 (1994) 203–223.

[4] A.C. Bemmaor, Modelling the diffusion of new durable goods:
word-of-mouth effect versus consumer heterogeneity, in: G. Laurent,
G.L. Lilien, B. Pras (Eds.), Research Traditions and Marketing, Kluwer
Academic, Boston, MA, 1994.

[5] A.C. Bemmaor, J. Lee, The impact of heterogeneity and ill-conditioning
on diffusion model parameter estimates, Mark. Sci. 21 (2002) 209–220.

[6] R. Chatterjee, J. Eliashberg, The innovation diffusion process in a
heterogeneous population: a micromodeling approach, Manag. Sci. 36
(9) (1990) 1057–1079.

[7] C. Easingwood, V. Mahajan, E. Muller, A nonuniform influence
innovation diffusion model of new product acceptance, Mark. Sci. 2
(3) (1983) 273–295.

[8] G. Fibich, R. Gibori, Aggregate diffusion dynamics in agent-based
models with spatial structure, Oper. Res. 58 (5) (2010) 1450–1468.

[9] A. Floyd, Trend forecasting: a methodology for figure of merit, in: J.
Bright (Ed.), Technological Forecasting for Industry and Government:
Methods and Applications, Prentice Hall, Englewood Cliffs, NJ, 1962,
pp. 95–105.
Please cite this article as: R. Guseo, M. Guidolin, Heterogeneity in d
Technol. Forecast. Soc. Change (2014), http://dx.doi.org/10.1016/j.t
[10] M. Givon, V. Mahajan, E. Muller, Software piracy: estimation of lost
sales and the impact on software diffusion, J. Mark. 59 (1) (1995)
29–37.

[11] B. Gompertz, On the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life
contingencies, Philos. Trans. R. Soc. B 115 (1825) 513–583.

[12] R. Guseo, M. Guidolin, Modelling a dynamic market potential: a class of
automata networks for diffusion of innovations, Technol. Forecast. Soc.
Chang. 76 (6) (2009) 806–820.

[13] R. Guseo, M. Guidolin, Cellular Automata with network incubation in
information technology diffusion, Phys. A 389 (2010) 2422–2433.

[14] R. Guseo, M. Guidolin, Market potential dynamics in innovation
diffusion: modelling the synergy between two driving forces, Technol.
Forecast. Soc. Chang. 78 (1) (2011) 13–24.

[15] R. Guseo, C. Mortarino, Sequential market entries and competition
modelling in multi-innovation diffusion, Eur. J. Oper. Res. 216 (2012)
658–667.

[16] R. Guseo, C. Mortarino, Within-brand and cross-brand word-of-mouth
for sequential multi-innovation diffusions, IMA J. Manag. Math. (2014),
http://dx.doi.org/10.1093/imaman/dpt008 (in press, available online).

[17] J. Hauser, G.J. Tellis, A. Griffin, Research on innovation: a review and
agenda for marketing science, Mark. Sci. 25 (6) (2006) 687–717.

[18] A. Jeuland, Parsimonious Models of Diffusion of Innovations: Deriva-
tions and Comparisons, Working Paper, Marketing Department,
Graduate School of Business, University of Chicago, 1981.

[19] D. Goswami, Karmeshu, Stochastic evolution of innovation diffusion in
heterogeneous groups: study of life cycle patterns, IMA J. Manag. Math.
12 (2001) 107–126.

[20] F. Lara-Rosano Karmeshu, Modelling data uncertainty in growth
forecasts, Appl. Math. Model. 11 (1987) 62–68.

[21] D. Goswami, Karmeshu, Study of population heterogeneity in innova-
tion diffusion model: estimation based on simulated annealing,
Technol. Forecast. Soc. Chang. 71 (2004) 705–722.

[22] N. Meade, T. Islam, Modelling and forecasting the diffusion of
innovations. A 25-year review, Int. J. Forecast. 22 (2006) 519–545.

[23] R. Peres, E. Muller, V. Mahajan, Innovation diffusion and new product
growth models: a critical review and research directions, Int. J. Res.
Mark. 27 (2010) 91–106.

[24] H. Rahmandad, J. Sterman, Heterogeneity and network structure in the
dynamics of diffusion: comparing agent-based and differential equa-
tions models, Manag. Sci. 54 (5) (2008) 998–1014.

[25] A. Robertson, D. Soopramanien, R. Fildes, Segmental new-product
diffusion of residential broadband services, Telecommun. Policy 31
(2007) 265–275.

[26] E. Rosenblueth, Point estimates for probability moments, Proc. Natl.
Acad. Sci. U. S. A. 72 (10) (1975) 3812–3814.

[27] M.N. Sharif, C. Kabir, A generalized model for forecasting technological
substitution, Technol. Forecast. Soc. Chang. 8 (1976) 353–364.

[28] R.K. Sinha, M. Chandrashekaran, A split hazard model for analyzing the
diffusion of innovations, J. Mark. Res. 29 (1992) 116–127.

Renato Guseo is a full Professor in Statistics, since 1994, at the University of
Padua, Department of Statistical Sciences, Italy. Born in 1951 and educated at
the University of Padua, he was Assistant Professor in Statistics at the Catholic
University S.C. ofMilan, director of the Department of Statistical Sciences at the
University of Udine and president of a B.Sc. course in “Regional economics and
firms’ networks”, University of Padua. Current research is on diffusion of
innovations, competition and substitution, oil and gas depletion models, and
diffusion of emerging energy technologies.

Mariangela Guidolin, PhD, is an Assistant Professor at the University of
Padua, Department of Statistical Sciences, Italy. Born in 1978, she has had
research experiences at University of Padua and University of Venice, Ca'
Foscari. Her current research interests include innovation diffusion models,
technological forecasting, and emerging energy trends.
iffusion of innovations modelling: A few fundamental types,
echfore.2014.02.023

http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0055
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0055
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0055
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0060
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0060
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0065
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0065
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0005
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0005
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0005
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0005
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0070
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0070
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0010
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0010
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0010
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0015
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0015
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0015
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0020
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0020
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0075
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0075
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0075
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0075
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0025
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0025
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0025
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0080
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0080
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0080
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0030
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0030
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0030
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0085
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0085
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0090
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0090
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0090
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0095
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0095
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0095
http://dx.doi.org/10.1093/imaman/dpt008
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0035
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0035
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0040
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0040
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0040
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0105
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0105
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0105
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0110
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0110
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0115
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0115
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0115
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0120
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0120
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0125
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0125
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0125
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0045
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0045
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0045
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0130
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0130
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0130
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0050
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0050
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0135
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0135
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0140
http://refhub.elsevier.com/S0040-1625(14)00087-0/rf0140
http://dx.doi.org/10.1016/j.techfore.2014.02.023

