
Open Universiteit
www.ou.nl

MASTER'S THESIS

Development of a Method for Consistent Enterprise Modelling in ArchiMate

Severin, Sefanja

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 19. Nov. 2022

https://research.ou.nl/en/studentTheses/7f764d66-a6ea-4b75-8395-62cc44f595fe

i

Development of a Method for Consistent
Enterprise Modelling in ArchiMate

Opleiding: Open Universiteit, faculteit Betawetenschappen

Masteropleiding Business Process Management & IT

Degree programme: Open University of the Netherlands, Faculty Science

Master of Science Business Process Management & IT

Course: IM0602 BPMIT Graduation Assignment Preparation

IM9806 Business Process Management and IT Graduation Assignment

Student: Sefanja

Severin Identification number:

Date: 7 June 2022

Thesis supervisor dr. E. Roubtsova

Second reader dr. B. Roelens

Version number: 1.3

Status: final

ii

Abstract

ArchiMate is an enterprise modelling language that is designed to support consistency checking.

However, it does not provide guidelines on how to create consistent models. By taking inspiration

from goal-oriented requirements engineering (GORE) methods such as KAOS and ExtREME, and by

thoroughly analysing the semantics of the ArchiMate metamodel, we have formulated the semantic

relationships between three ArchiMate viewpoints as consistency rules and guidelines. They clarify

the undefined justification of sub-models by goals in KAOS. Based on these consistency rules and

guidelines, a method to create consistent multi-view models in ArchiMate has been proposed. This

method has been evaluated by modelling an insurance case. The resulting set of views complies with

our consistency requirements. The method can be used by ArchiMate practitioners and inspire

researchers to further develop formal languages for the automatic validation of ArchiMate models.

As an aside, our research shows that the goal refinement relationship is missing in ArchiMate.

Key terms

ArchiMate, multi-view consistency, enterprise modelling, goal-oriented requirements engineering

(GORE), KAOS, ExtREME.

Acknowledgements

I wish to extend my special thanks to my supervisor, dr. E. Roubtsova, who guided me throughout

this project and whose articles and insights were a welcome source of inspiration. To express the

feeling that this thesis is a team result, I have used the plural form.

iii

Contents

Abstract ... ii

Key terms .. ii

Acknowledgements ... ii

Contents ... iii

1. Introduction .. 1

1.1. Background ... 1

1.2. ArchiMate modelling language ... 1

1.3. Problem statement ... 2

1.4. Research objective and questions .. 8

1.5. Motivation/relevance ... 9

2. Theoretical framework ... 10

2.1. Research approach.. 10

2.2. Implementation .. 10

2.3. Results and discussion of the literature review .. 11

3. Method ... 14

3.1. Conceptual design ... 14

3.2. Technical design .. 14

3.3. Data analysis ... 14

3.4. Reflection w.r.t. validity, reliability, and ethical aspects .. 15

4. Formulating a method for multi-view consistency in ArchiMate ... 16

4.1. Identifying consistency requirements... 16

4.2. Formulating a method for multi-view consistency ... 24

4.3. Testing our method on a case ... 26

5. Discussion, conclusions and recommendations ... 34

5.1. Discussion – reflection .. 34

5.2. Conclusions ... 34

5.3. Recommendations for practice ... 35

5.4. Recommendations for further research ... 35

References ... 36

Appendix 1: Customized relationships table in Archi .. 38

Appendix 2: Translation of each KAOS concept to ArchiMate ... 40

1

1. Introduction

1.1. Background
An enterprise model is an abstract representation of an organization. It consists of a set of related

views, where each view describes the organization from a different perspective and in its own

language. It is essential that these views are consistent, or else these different perspectives are in

fact different truths. This would undermine the purpose of the enterprise model, namely to describe

the organization as a coherent whole.

ArchiMate (The Open Group, 2019) is an enterprise modelling language. An ArchiMate model can,

and typically will, consist of multiple views. Thorough study of the ArchiMate specification and

guiding literature shows that ArchiMate does not offer any guidelines or rules that ensure

consistency between views.

Our goal is to discover what elements from other multi-view modelling approaches can be applied to

ensure consistency between ArchiMate views and how the modelling tool Archi (Beauvoir, Sarrodie,

& The Open Group, 2021) can help to ensure consistency.

1.2. ArchiMate modelling language
ArchiMate is a visual enterprise architecture modelling language based on an abstract syntax. For

the definition of architecture, ArchiMate refers the reader to the TOGAF framework which defines

architecture as ‘the structure of components, their inter-relationships, and the principles and

guidelines governing their design and evolution over time’ (The Open Group, 2018).

In this work we conform to ArchiMate terminology. Table 1 lists the ArchiMate terms that are used

most often in this work.

Table 1. ArchiMate terms used most often in this work. From ArchiMate 3.1 Specification, by The Open Group, 2019.

Term Definition

Architecture view A representation of a system from the perspective of a related set of concerns.

Architecture
viewpoint

A specification of the conventions for a particular kind of architecture view.

Aspect Classification of elements based on layer-independent characteristics related to the concerns of
different stakeholders. Used for positioning elements in the ArchiMate metamodel.

Concept Either an element, a relationship, or a relationship connector.

Element Basic unit in the ArchiMate metamodel. Used to define and describe the constituent parts of
Enterprise Architectures and their unique set of characteristics.

Layer An abstraction of the ArchiMate framework at which an enterprise can be modelled.

Model A collection of concepts in the context of the ArchiMate language structure.

Relationship A connection between a source and target concept. Classified as structural, dependency, dynamic,
or other.

Note that the concept and its specializations are defined ambiguously: they can be part of a model or

the ArchiMate metamodel. To distinguish between the two, we will use concept type to refer to a

member of the metamodel and concept instance to refer to a member of a particular model. We will

abbreviate this to concept if the meaning can be derived from the context.

2

In general, an element belongs to a certain cell of the ArchiMate framework; for example, a cell of

intersection of business and passive structure, or application and behaviour, see Figure 1.

Relationships can occur in any cell and between cells since they are ‘overloaded’: their exact

meanings depend on the elements they connect.

Figure 1. ArchiMate full framework. From ArchiMate 3.1 Specification, by The Open Group, 2019.

1.3. Problem statement
We investigate the sources of inconsistencies in ArchiMate. To illustrate this, we create a collection

of ArchiMate views in Archi (Beauvoir, Sarrodie, & The Open Group, 2021), based on a case called

‘Preparation of a document by several participants’ (Roubtsova, Interactive Modeling and Simulation

in Business System Design, 2016) with the following description:

Let us consider a system that controls a preparation of a document (a proposal a paper or a

report) by several participants. One of the participants usually plays the coordinator role.

The coordinator is responsible for submitting the document. There is a deadline for the

document submission. The coordinator creates the parts of the document and chooses

participants. Each part is assigned to a participant. A part has its own deadline before the

deadline of the document and should be submitted by the participant, so that the

coordinator has the time to combine parts and submit the document. If a participant misses

the deadline of his part, the coordinator sends a reminder to the delaying participant. The

coordinator can change the deadline or assign the part to another participant. Only the

coordinator can cancel the preparation of the document. (pp. 117-118)

The goal model of the case is shown in Figure 2.

3

Figure 2. Goals and requirements for the case Preparation of a document by several participants. From Interactive
Modeling and Simulation in Business System Design, by E. Roubtsova, 2016, Springer International Publishing.

Figure 3 shows the goal model translated to ArchiMate following the example in Figure 2. In a later

section we will discuss the correct use of elements and relationships in ArchiMate. The focus point

for now is consistency between views.

4

Figure 3. A goal realization view

Figure 4 shows the same goal view but expanded to include the structural view on the left, which in

turn is expanded into a behavioural view on the right.

Figure 4. A goal view expanded with structural and behavioural elements

5

As one can see, such a complete overview is hard to read, even with few elements. We therefore

need to split them up into multiple views, as shown in Figure 5.

Figure 5. A goal, structural and behavioural view, side by side

But by splitting up the views we have created a new problem: we cannot readily see how these

views are related, which makes it difficult to check their consistency. Using Figure 5 as our source of

inspiration, we can identify several sources of inconsistency:

• In the structural view the synonym Supervisor has been used instead of Coordinator.

• The structural view contains a relation to Document labelled cancels, but this activity is not

modelled in the behavioural view.

• The behavioural view contains the element Sign document, which cannot be justified by the

requirements in the goal model.

• In the structural view, Part deadline has been misspelled as Part daedline.

• The behavioural view contains the structural element Signature which cannot be found in

the structural view.

To support consistency checking, the ArchiMate metamodel is based on an abstract syntax

(Lankhorst, Proper, & Jonkers, 2009): the same element can appear on multiple views, but there is

only one instance of it in the model. This allows modelling tools to perform consistency checks

between views. For example, they can check if every element in one view is also present in another

view.

In addition, ArchiMate specifies relationships that may exist between the different cells of its

framework. For example, relations can be made between elements belonging to the business layer

and those belonging to the application layer of the framework. This allows an analyst or tool to

check, for example, if every application component supports at least one business process.

Although ArchiMate has some properties designed to support consistency checking, the standard

does not provide any guidelines to ensure consistency. It does not give directions on how to build

consistent views or on what kind of consistency rules to use. Also, ArchiMate does not have a

language in which to express consistency rules. To illustrate this point, Babkin and Ponomarev (2017)

had to transform their ArchiMate model to the language of the MIT Alloy Analyzer system before

they could verify the model, using their own consistency rules.

6

There are other multi-view modelling approaches that do offer rules or guidelines to deal with

consistency.

A first example is the 4+1 architectural view model (Kruchten, 1995). This model identifies five views

and describes the relations between those views. Each view can have its own modelling language

and style. To support consistency, related semantic points between the views are identified. In 4+1,

a special place is reserved for the view that contains the scenarios which are ‘in some sense an

abstraction of the most important requirements’ (Kruchten, 1995). The scenarios view is used to

drive and validate the other views. Perhaps we could use the motivation elements in ArchiMate in a

similar manner.

Figure 6. The "4+1" model. From Architectural blueprints—the “4+ 1” view model of software architecture, by P. Kruchten,
1995, IEEE software, 12(6).

A second example is the 4EM (For Enterprise Modelling) method (Sandkuhl, Stirna, Persson, &

Wißotzki, 2014). This method defines sub-models and the allowed relations between them, see

Figure 7. It also gives guidelines to integrate these sub-models, for example: ‘Every process must be

related to at least one ARM role, which is responsible for or performs that process.’ We should be

able to reuse these guidelines in ArchiMate. In general, Sandkuhl et al. (2014) state that ‘models

should complement each other’ and that ‘inter-model links should establish a clear line of

reasoning’. The goal model in 4EM has a similar function as the scenarios view in 4+1 as it ‘describes

essentially the reason, or motivation, for components in the other sub-models’ (Sandkuhl, Stirna,

Persson, & Wißotzki, 2014).

7

Figure 7. Sub-models of the 4EM approach and their relationships. From Enterprise modeling, by K. Sandkuhl, J. Stirna, A.
Persson and M. Wißotzki, 2014, Springer.

A third example is the ExtREME (EXecuTable Requirements Management and Evolution) method

(Roubtsova, Interactive Modeling and Simulation in Business System Design, 2016). This method

defines two models: a goal model and a protocol model. The protocol model contains both

structural and behavioural elements. Managing consistency between the two models is part of the

core of this method. This is done by first refining the goal model to requirements such that they only

contain countable or comparable nouns (the concepts). The protocol model is ‘generated’ from the

requirements by transforming nouns into concepts and verbs into events, assisted by human

interpretation of the natural language in which the requirements are expressed. Figure 8 shows an

example of a protocol model that realizes the goal model in Figure 2. It seems that this method of

goal refinement and relating requirements to other parts of the architecture should be applicable in

ArchiMate models.

8

Figure 8. An ExtREME protocol model. From Interactive Modeling and Simulation in Business System Design, by E.
Roubtsova, 2016, Springer International Publishing.

1.4. Research objective and questions
When creating a multi-view model in ArchiMate, we want all views of the model to be consistent.

Our goal is to formulate a method that ensures consistency between views.

Consistency is always in reference to something. In the case of an ArchiMate model, what should be

the reference point for consistency? In 4+1, 4EM and ExtREME the reference point is the view that

contains the goals. This would also make sense for ArchiMate models because enterprise

architecture is supposed to facilitate decision making. Although the motivation extension in

ArchiMate was missing in its initial version (Cardoso, Almeida, & Guizzardi, 2010), after its addition

Cardoso et al. (2010) regard the extension to be more ‘sophisticated’ in comparison to other

enterprise modelling approaches. Positioning the goal view at the centre of an ArchiMate model

would help explain the ‘why’ of an architecture, its contribution to the goals of an organization. In

the words of the ArchiMate specification (The Open Group, 2019): ‘The purpose of the motivation

elements is to model the motivation behind the core elements in an Enterprise Architecture.’

9

If we choose the goal view as our reference point for consistency, we may turn to the modelling

approaches that have inspired the motivation extension in ArchiMate and see if they contain

guidelines to ensure consistency between views.

Combining all the above leads to the following research questions:

How can we define goal-oriented multi-view consistency as a set of concrete rules and

guidelines for ArchiMate models?

What could be a method for use in Archi that produces goal-oriented ArchiMate models

with multi-view consistency?

1.5. Motivation/relevance
ArchiMate is an enterprise architecture modelling language. Many different definitions of enterprise

architecture (EA) exist, most of them founded in theory. Kotusev (2019) formulates an evidence-

based definition of EA:

EA is a collection of special documents (EA artifacts) describing various aspects of an

organization from an integrated business and IT perspective intended to bridge the

communication gap between business and IT stakeholders, facilitate information systems

planning and thereby improve business and IT alignment.

A way to bridge the communication gap is to use multiple perspectives, each tailored to a particular

group of stakeholders. KAOS, a multi-view modelling approach, states this explicitly (Respect-IT,

2007):

Many companies have noticed that users and IT analysts most often do not understand each

other very well. KAOS provides the right connection between the two worlds: users quickly

feel confident with goal and responsibility models; analysts like the object and operation

models. (p. 9)

To bridge the gap using a multi-view strategy, it is essential that the different views are consistent.

Without multi-view consistency the proverbial bridge cannot exist. Consistency in this context means

that there are rules for the unique transformation of elements found in one set of views, with its

own semantics, into elements of another set of views, having different semantics.

10

2. Theoretical framework

2.1. Research approach
Before we can formulate a method for goal-oriented multi-view consistency in ArchiMate we first

need to answer three questions, as formulated in Table 2. This table also contains the search queries

for each question.

The rest of the research approach described here resembles the approach described by Webster &

Watson (2002). If a search query results in many hits, we will briefly scan the title and abstract for

relevance. For the relevant articles found, we will go backward to see which earlier articles they cite

that may be relevant to our research. Next, we will do a forward search using the Web of Science to

identify articles that cite the ones already identified. We know that our backward and forward

searches are complete when no new concepts are found.

Table 2. Literature search queries

Question Query Comment

How does ArchiMate work? Query 1:

• Keywords: ArchiMate

• Databases: ACM Digital Library,
IEEE Digital Library, Electronic
Journals Service (EBSCO),
SpringerLink

• Author: Lankhorst

Marc Lankhorst was a key developer of
ArchiMate. Articles by other authors will
be identified during the backward and
forward search.

Which approaches have
inspired ArchiMate’s
motivation extension and how
do they work?

Query 2:

• Keywords: ArchiMate AND
GORE

• Databases: ACM Digital Library,
IEEE Digital Library, Electronic
Journals Service (EBSCO),
SpringerLink

GORE is an acronym for goal-oriented
requirements engineering.

How do the identified
approaches ensure multi-view
consistency?

Query 3:

• Backward search through the
literature identified in the other
queries

2.2. Implementation
Table 3 lists the literature search results for each query identified in Table 2.

Table 3. Literature search results

Query Hits Relevant hits + backward +
forward

Literature used Total
used

1 6 3 + 2 + 0 • (Lankhorst, Proper, & Jonkers, 2009)

(The Open Group, 2019)

2

2 28 3 + 4 + 0 • (Engelsman, Quartel, Jonkers, & van Sinderen,
2011)

• (Respect-IT, 2007)

• (The Object Management Group, 2015)

(Yu & Mylopoulos, 1994)

4

3 2 2 + 0 + 2 • (Dijkman, Quartel, & Van Sinderen, 2006)

(Nuseibeh, Kramer, & Finkelstein, 1994)

2

11

2.3. Results and discussion of the literature review
In section 1.2-1.4 the ArchiMate language has been described and the need for goal-orientated

modelling has been identified.

The key concepts of GORE (goal-oriented requirements engineering), such as goal and requirement,

were not part of the initial version of ArchiMate, but have been added later as part of its motivation

extension. The precursor to this extension of ArchiMate is ARMOR (Engelsman, Quartel, Jonkers, &

van Sinderen, 2011). The metamodel in Figure 9 shows how ARMOR extends the ArchiMate

metamodel. Concepts that belong to the ArchiMate metamodel have no fill colour. An open arrow

denotes a specialization relationship.

Figure 9. ARMOR metamodel. From Extending enterprise architecture modelling with business goals and requirements, by
W. Engelsman, D. Quartel, H. Jonkers & M. van Sinderen, 2011.

12

ARMOR has been inspired by BMM (Business Motivation Model) (The Object Management Group,

2015), i* (Yu & Mylopoulos, 1994) and KAOS (Respect-IT, 2007). Among these approaches only KAOS

contains multi-view consistency rules and guidelines.

KAOS is a method for requirements engineering that originated from a cooperation between two

universities in 1990. It is a multi-view modelling approach. Figure 10 shows the KAOS metamodel,

with four different types of interrelated viewpoints. Although KAOS is a GORE method, it includes

notions beyond the scope of goal modelling, such as ‘objects’ and ‘operations’. This makes KAOS a

suitable candidate for our purpose, namely to find a method for creating consistent goal-oriented

multi-view models in ArchiMate.

Figure 10. KAOS metamodel. From A KAOS Tutorial, V1.0, by Respect-IT, 2017.

KAOS and ArchiMate use slightly different terms and definitions to denote models, views, and

viewpoints. In KAOS the word model can refer to both an abstract model (independent from

representation in diagrams and documents) and a set of interrelated diagrams (such as ‘the goal

model’). In ArchiMate the word model is only used to refer to an abstract model. The notion of a set

of interrelated diagrams in KAOS can be compared to a set of views in ArchiMate that share the

same viewpoint. For ArchiMate terms and their definitions, see Table 1 in section 1.2.

ARMOR does not provide a method for multi-view consistency but references an existing framework

with partly the same authors (Dijkman, Quartel, & Van Sinderen, 2006). The authors distinguish

between three levels of expressiveness of viewpoint relations and three levels of conceptual

support, see Figure 11. Because concepts in ArchiMate cannot be generalized, only specialized, there

is no room for improvement on the conceptual support axis. As can be seen in Figure 11, ArchiMate

supports relations between viewpoints, but does not offer consistency rules or guidelines. A

guideline is defined informally, without automated support, while a rule is defined formally and can

be automated.

The goal of our research is to identify a set of consistency rules and guidelines and a method for

producing ArchiMate models that conform to those rules and guidelines.

13

Figure 11. Existing frameworks and their support for consistency checks. From Consistency in multi-viewpoint architectural
design of enterprise information systems, by by R.M. Dijkman, D.A.C Quartel & M.J. van Sinderen, 2006.

14

3. Method
The overall research objective is to formulate a goal-oriented method for ArchiMate that ensures

multi-view consistency. To validate this method, we need to define consistency as a concrete set of

rules and guidelines. Therefore, we have defined three objectives:

1. Formulate multi-view consistency requirements as a set of concrete rules and guidelines

2. Formulate a method for creating consistent multi-view models

3. Validate the method by modelling a case and checking the model against the consistency

requirements

3.1. Conceptual design
For the first two objectives, we used an explorative approach because we wanted to discover which

ideas identified in the relevant literature would be suited to be incorporated into our consistency

requirements and method, without having a preconceived notion about those ideas.

For the third objective, we used a case study to test whether the formulated method would produce

a consistent model for that case.

3.2. Technical design
To achieve the first two objectives, we performed an in-depth reading of the literature on

ArchiMate, ARMOR, KAOS and ExtREME, identified in the Theoretical framework. We translated the

KAOS metamodel to ArchiMate to use KAOS’s key ideas and completeness criteria for the

formulation of our consistency requirements and method. We enriched the requirements and

method with ideas from ExtREME.

To achieve the third objective, we selected a case that is suitable for testing the method. In

particular, the case needed to have the following properties (see section 4.1):

• Has three different goal refinement patterns: OR refinement, AND refinement, and

milestone refinement

• Has only achieve goals

• Does not have contradicting goals

We selected the insurance case from Roubtsova (2016, pp. 50-58) because its goal model has

already been validated by a protocol model, ensuring us that it does not contain contradicting goals.

Using this case, we created a model in ArchiMate, following our own method to the letter. To

validate the model, and thereby the method, we counted the number of consistency requirement

violations.

3.3. Data analysis
• Data for the first objective is analysed by reading the mentioned literature and translating

each KAOS concept to ArchiMate.

• Data for the second objective is analysed by iteratively formulating a method, constructing

ad-hoc models based on that method and validating their conformity to the consistency

requirements, until the method reliably produces models that conform to all consistency

requirements.

15

• Data for the third objective is analysed by constructing an ArchiMate model based on the

selected case, following our own method to the letter, and then validating that model

against the consistency requirements, by counting the number of requirement violations.

The internal ArchiMate model of the case study and all views have been collected in the

Archi tool and are available to inspection.

3.4. Reflection w.r.t. validity, reliability, and ethical aspects
For the first two objectives, KAOS needed to be translated to ArchiMate. Since the translation

depends on subjective interpretation, we included the argumentation for the translation of each

concept in an appendix. This allows the reader to check our translation. To improve the internal

validity of the translation, we consulted ARMOR, a KAOS-based predecessor of the motivation

extension of ArchiMate.

To improve the reliability and internal validity of the third objective we used two types of

triangulation: researcher triangulation and methodological triangulation through the adoption of

different complementary methods (Quintão, Andrade, & Almeida, 2020). We used researcher

triangulation by having two researchers create their own views, derived from the same goal view.

We used methodological triangulation by performing both a manual and a tool-based generation of

elements from the goal view (Roubtsova & Severin, 2022).

The research result can be argued to be externally valid, but only within certain boundaries. Since

our method was not developed for the selected case in particular, we expect that it can be

generalized to similar cases. Those cases must have non-contradicting goals with only the goal

refinement patterns mentioned. Most of the steps in our method are repeatable. Therefore, if the

method is applied to a goal view, it should create predictable outcomes (object and lifecycle views),

with only small variations.

16

4. Formulating a method for multi-view consistency in ArchiMate

4.1. Identifying consistency requirements
To transpose KAOS’s viewpoints (or ‘models’) and viewpoint relationships to ArchiMate, we first

translate between their metamodels. We look to ARMOR for inspiration. KAOS’s metamodel is

shown in Figure 10. Figure 12 shows a literal translation to ArchiMate, with a layout that resembles

that of KAOS.

Figure 12. Literal translation of the KAOS metamodel (left) to ArchiMate (right)

What is not obvious from the translation in Figure 12 is that a KAOS agent is translated to both an

active and a passive structure element in ArchiMate. This is done because in KAOS an agent

specializes an object. Thus, an agent can be the input or output of an operation. This is not the case

in ArchiMate: an access relationship cannot target an active structure element. Therefore, when we

consider the active part of an agent, we will translate to an active structure element. If we consider

the passive part of an agent, we will translate to a passive structure element. See Figure 13.

Figure 13. Translation of a KAOS agent (left) to both an ArchiMate business actor and business object (right)

A pattern emerges from the metamodel in Figure 12, which lends credence to our translation of the

KAOS metamodel to ArchiMate:

• The upper left elements (the goal model in KAOS) all belong to the motivation extension in

ArchiMate.

• The upper right elements (the responsibility model in KAOS) are all active structure elements

in ArchiMate: things that display actual behaviour.

• The lower left elements (the object model in KAOS) are all passive structure elements in

ArchiMate: things on which behaviour is performed.

• The lower right elements (the operation model in KAOS) all belong to the behaviour aspect

of ArchiMate.

The translation of each concept in the KAOS metamodel to ArchiMate is listed side by side in Table 4.

The motivation for each translation is provided in Appendix 2.

17

Table 4. Translation between KAOS and ArchiMate concepts

KAOS Definition (Respect-IT, 2007) ArchiMate Definition (The Open Group,
2019)

Agent Active Object* (=processor) performing
operations* to achieve goals*. Agents can be
the software being considered as a whole or
parts of it. Agents can also come from the
environment* of the software being studied;
human agents are in the environment*.

Agent of the
software being
studied: Application
Component and
Business Object

Agent in the
environment:
Business Actor and
Business Object

An application component
represents an encapsulation
of application functionality
aligned to implementation
structure, which is modular
and replaceable.

A business actor represents a
business entity that is capable
of performing behavior.

A business object represents a
concept used within a
particular business domain.

Assignment Not defined in the glossary. Agents in the
environment are assigned to expectations.

Influence
relationship

The influence relationship
represents that an element
affects the implementation or
achievement of some
motivation element.

Association Object*, the definition of which relies on
other objects linked by the association.

Association
relationship

An association relationship
represents an unspecified
relationship, or one that is not
represented by another
ArchiMate relationship.

Attribute Not defined in the glossary. Entities may have
attributes whose values define a set of states
the entity can transition to.

Business Object
(which is composed
by another business
object)

See above.

Cause Not defined in the glossary. A relationship
between an event and an operation.

Triggering
relationship

The triggering relationship
represents a temporal or
causal relationship between
elements.

Concern Not defined in the glossary. Concerns
relationship is used to link a requirement to
the objects that are needed for it to be
satisfied.

Influence
relationship

See above.

Conflict Goals* are conflicting if under some
boundary condition the goals cannot be
achieved altogether.

Influence
relationship

See above.

Domain
property

Descriptive assertion about objects* in the
environment* of the software. It may be a
domain invariant or a hypothesis. A domain
invariant is a property known to hold in every
state of some domain object, e.g., a physical
law, regulation, … A hypothesis is a property
about some domain object supposed to hold.

Constraint A constraint represents a
factor that limits the
realization of goals.

Entity Autonomous object*, that is, the definition of
which does not rely on other objects.

Business Object See above.

Event Instantaneous object* (that is, an object alive
in one state only) which triggers operations*
performed by agents*.

Business Event A business event represents
an organizational state
change.

Expectation Goal* assigned to an agent* in the
environment*.

Constraint See above.

Input/output Not defined in the glossary. Access relationship The access relationship
represents the ability of
behavior and active structure

18

elements to observe or act
upon passive structure
elements.

Goal Prescriptive assertion capturing some
objective to be met by cooperation of
agents*; it prescribes a set of desired
behaviours. Requirements* and
expectations* are goals.

Goal A goal represents a high-level
statement of intent, direction,
or desired end state for an
organization and its
stakeholders.

Object Thing of interest in the composite system*
being modelled whose instances can be
distinctly identified and may evolve from
state to state. Agents, events, entities and
associations are objects.

Structure element Not formally defined. Any
core element that is not a
behavior element.

Obstacle Condition (other than a goal) whose
satisfaction may prevent some goal(s)* from
being achieved; it defines a set of undesired
behaviours.

Assessment An assessment represents the
result of an analysis of the
state of affairs of the
enterprise with respect to
some driver.

Operation Specifies state transitions of objects* that are
input and/or output of the operation.
Operations are performed by agents*.

Process A process represents a
sequence of behaviors that
achieves a specific result.

Refinement Relationship linking a goal* to other goals
that are called its subgoals. Each subgoal
contributes to the satisfaction of the goal* it
refines. The conjunction of all the subgoals
must be a sufficient condition entailing the
goal* they refine.

Realization
relationship

The realization relationship
represents that an entity plays
a critical role in the creation,
achievement, sustenance, or
operation of a more abstract
entity.

Requirement Goal* assigned to an agent* of the software
being studied.

Requirement A requirement represents a
statement of need defining a
property that applies to a
specific system as described
by the architecture.

Responsibility Relationship between an agent* and a
requirement*. Holds when an agent* is
assigned the responsibility of achieving the
linked requirement*.

Realization
relationship

See above.

Note that the resulting metamodel in Figure 12 is not compliant with ArchiMate since the standard

does not permit realization relationships between goals and between requirements. We are of the

opinion that in a next version of the standard, ArchiMate should allow realization relationships

between these elements for the following reasons:

• Other relationships cannot express refinement alternatives as shown in Figure 14. It is

possible to mimic the graphical presentation in ArchiMate using, for example, influence

relationships and and-junctions, but the semantics would not express refinement

alternatives. For that we need the relationship to imply KAOS’s ‘sufficient condition’ (see

Table 4, refinement), which is included in ArchiMate’s description of the realization

relationship: ‘The interpretation of a realization relationship is that the whole or part of the

source element realizes the whole of the target element’ (The Open Group, 2019).

• The specification explains that the ‘realization relationship indicates that more abstract

entities (“what” or “logical”) are realized by means of more tangible entities (“how” or

“physical”)’ (The Open Group, 2019). The standard allows this relationship between

application components because it recognizes that one can distinguish between more

19

abstract (or ‘logical’) and more tangible (or ‘physical’) application components. In our

opinion the same reasoning applies to goals and goal-related elements.

Figure 14. Goal refinement alternatives, from A KAOS Tutorial, V1.0, by Respect-IT, 2007.

Table 5 lists the changes that would need to be made to the specification. In this table each letter

denotes a certain type of relationship: specialization, composition, aggregation, realization,

influence, and association. The changes to the table are displayed as bold and underlined.

Table 5. Suggested modifications to ArchiMate's relationship table

from →

↓ to

Goal Outcome Principle Requirement Constraint

Goal scg r n o r n o r n o r n o r n o

Outcome n o scg r n o r n o r n o r n o

Principle n o n o scg r n o r n o r n o

Requirement n o n o n o scg r n o scg r n o

Constraint n o n o n o scg r n o scg r n o

See Appendix 1 for the changes we made to Archi to allow for these extra relationships.

Literal translations often do not sound right to a native speaker, in this case to a ‘speaker’ of

ArchiMate. We therefore adapt the literal translation of the KAOS metamodel to a more natural

version, using native ArchiMate terms such as business object and application component instead of

entity and agent. The result is shown in Figure 15.

20

Figure 15. A more ArchiMate-native version of the KAOS metamodel

Note that we have also made a few substantive changes to the metamodel:

• We have dropped the operation. The reason for this is that we are not interested in

modelling the inner workings of the application component. We therefore only model

events that are external to the application component and that have meaning from a

business perspective.

• We aggregate business events into groupings (object lifecycles), to resemble ExtREME: ‘Each

business concept has its own life cycle: it is created, goes through decisions and specific

states and may be deleted’ (Roubtsova, Interactive Modeling and Simulation in Business

System Design, 2016).

• We do not relate application components to business events since these relationships should

be derived via the requirements.

• We have dropped the agent in the environment. Adding external actors to the goal model as

independent elements decreases the readability of the goal view. The external actors can

simply be mentioned in the descriptions of expectations.

• The greyed-out relationships do not appear in the model. Instead, the analyst uses

numberings and a visual layout on his private view to express these relationships, which will

be demonstrated when we model the insurance case.

Table 6 lists the KAOS key ideas and completeness criteria, which are candidates for reuse in

ArchiMate.

21

Table 6. Our ArchiMate viewpoints mapped to KAOS key ideas and completeness criteria

Viewpoint KAOS key idea (Respect-IT,
2007)

KAOS completeness criterion (Respect-IT, 2007)

Goal viewpoint Key idea 1: First build a
requirements model

Key idea 2: Justify your
requirements by linking them
to higher-level goals

Completeness criterion 1: A goal model is said to be complete
with respect to the refinement relationship ‘if and only if’ every
leaf goal is either an expectation, a domain property (DomProp) or
a requirement.

Completeness criterion 2: A goal model is complete with respect
to the responsibility relationship ‘if and only if’ every requirement
is placed under the responsibility of one and only one agent (either
explicitly or implicitly if the requirement refines another one which
has been placed under the responsibility of some agent).

Responsibility
viewpoint

Key idea 4: Build a
responsibility model

Object
viewpoint

Key idea 5: Build a consistent
and complete glossary of all
the problem-related terms you
use to write the requirements

Object lifecycle
viewpoint

Key idea 6: Describe how the
agents need to behave in
order to satisfy the
requirements, they are
responsible for

Completeness criterion 3: To be complete, a process diagram
must specify

(i) the agents who perform the operations

(ii) the input and output data for each operation.

Completeness criterion 4: To be complete, a process diagram
must specify when operations are to be executed.

Completeness criterion 5: All operations are to be justified by the
existence of some requirements (through the use of
operationalization links).

KAOS states that ‘refinement is no longer necessary as soon as a goal has been placed under the

responsibility of a single agent’ (Respect-IT, 2007). This single-agent criterion is what distinguishes a

goal from a requirement in KAOS. However, such a requirement can be formulated in a way that is

still too vague for automation by software, and for consistency with other views. We therefore

combine KAOS’s single-agent criterion with ExtREME’s countability criterion: ‘If the refinement of a

goal is finished, then the leaves of the goal refinement tree represent requirements and they are

expressed using the countable and (or) comparable concepts and rely on business domain

knowledge’ (Roubtsova, Interactive Modeling and Simulation in Business System Design, 2016). In

our method, both criteria must be met. ExtREME’s countability criterion enables us to derive

business objects, and their lifecycles, from requirements.

In our opinion, the greatest challenge in keeping views consistent lies between three viewpoints: the

goal, object, and object lifecycle viewpoint, because the semantics of other viewpoints also includes

goal, object and object lifecycle but for different objects. We have therefore selected a case with

only one application component, so that we can ignore the responsibility viewpoint. This case also

has no obstructions, expectations, or domain properties, since there is no need for a complex goal

model to demonstrate the challenges associated with multi-view consistency. KAOS distinguishes

between achieve, maintain, cease, and avoid goals. We only use achieve goals. KAOS distinguishes

between different types of goal refinement, such as milestone-driven and case-driven (Respect-IT,

2007). Inspired by KAOS, we distinguish between three patterns of goal refinement: OR refinement,

AND refinement, and milestone refinement. These patterns are displayed in Figure 16, using classical

operators to express temporal logic: ◊ (eventually) and □ (always in the future). Note that there is a

difference between OR refinement and refinement alternatives. The latter would be expressed using

multiple junctions (see Figure 29).

22

Figure 16. Three goal refinement patterns

Using these viewpoints and goal refinement patterns as our basis, we can now define viewpoint

relationships, defined as a set of rules and guidelines. Rules are formally defined and can be

automated. We distinguish between the following viewpoint relationships (see Figure 17):

1. Between goal and responsibility viewpoint

2. Between goal and object viewpoint

3. Between object and object lifecycle viewpoint

4. Between goal and object lifecycle viewpoint

Figure 17. The viewpoints of our method and their relationships

The goal view is the reference view with respect to consistency. It contains a finite set of

requirements 𝑟 ∈ 𝑅. The names of these requirements are descriptions in natural language of

desired states. From these descriptions, we can derive state information (hold by objects) and state

changes (events). While analysing requirements we must consider (or ‘undo’) some properties of

natural language, such as phrase-level contractions, in which one or more whole words within a

phrase are omitted because they have the same form and meaning as another part.

Let 𝑅 be a set of requirements, ordered by their goal refinement tree. Each requirement 𝑟 ∈ 𝑅 is a

relation (𝐺, 𝑁, 𝑉), where 𝐺 ⊂ 𝑁 × 𝑉 is a subset of all possible combinations of normalized noun

phrases 𝑁 and verb phrases 𝑉 that occur in the requirement’s description. We say that 𝑅(𝑛, 𝑣) if

(𝑛, 𝑣) ∈ 𝐺. For example, 𝑅('Customer','is registered').

23

A noun or verb phrase is normalized by transforming it to singular form, deleting adjectives,

substituting synonyms, etcetera. For example, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒('Registered customers') = 'Customer'

or 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒('a client') = 'Customer'.

The first requirement in the refinement tree that is related to a certain normalized noun phrase 𝑛 ∈

𝑁 is considered to contain an associated creation verb (e.g., ‘created’, ‘registered’, etcetera), even if

not explicitly mentioned by the requirement’s description.

Viewpoint relationship 1 is defined by the following rules:

1.1: Each top-level requirement is realized by exactly one application component. A

requirement is top-level if it does not refine another requirement.

Viewpoint relationship 2 is defined by the following rules and guidelines:

2.1: There is an object 𝑜 ∈ 𝑂 for each normalized noun phrase 𝑛 ∈ 𝑁.

2.2: Two objects 𝑜1, 𝑜2 ∈ 𝑂 have a relationship if their corresponding noun phrases 𝑛1, 𝑛2 ∈

𝑁 are related to the same verb phrase 𝑣 ∈ 𝑉. Thus 𝑅(𝑛1, 𝑣) ∧ 𝑅(𝑛2, 𝑣) ⊢ 𝑅(𝑜1, 𝑜2).

2.3: Noun phrases are not only connected by verb phrases, but they can also be connected

by prepositions. In such cases, the two objects 𝑜1, 𝑜2 ∈ 𝑂 in question also have a

relationship.

2.4: The object view contains specialization relationships for keywords such as ‘each’ and

‘one of’.

2.5: The object view may contain extra objects and relationships, except extra autonomous

objects. An object is considered autonomous if it does not compose another object. It is left

up to the analyst to decide whether a specialized object must be regarded as autonomous

(and thus must have an associated lifecycle, see rule 3.1).

Viewpoint relationship 3 is defined by the following rules:

3.1: The object lifecycle view contains a grouping for each autonomous object in the object

view.

3.2: Each grouping is named after its autonomous object and follows this pattern: ‘The

lifecycle of a(n) <object name>’.

3.3: An event can be expressed as a set of tuples {(𝑜1, 𝑣), (𝑜2, 𝑣), … |𝑜1, 𝑜2, … ∈ 𝑂 ∧ 𝑣 ∈ 𝑉}.

An event is aggregated by a grouping if and only if one of the event’s objects 𝑜1, 𝑜2, … ∈ 𝑂 is

equal to that grouping’s related object or one of its components (or specializations).

Viewpoint relationship 4 is defined by the following rules and guidelines:

4.1: The object lifecycle view contains an event for each verb phrase 𝑣 ∈ 𝑉 .

4.2: Each event’s name contains the identification of the related requirement 𝑟 ∈ 𝑅, the

verb phrase 𝑣 ∈ 𝑉 and all related noun phrases 𝑛1, 𝑛2, … ∈ 𝑁.

24

4.3: There are cycles and splits for plurals and keywords such as ‘each’ and ‘one of’.

4.4: Events that are aggregated by the same grouping have the same ordering as their

corresponding requirements in the goal refinement tree.

4.5: Adjacent events are connected via an or-junction if they are aggregated by the same

grouping and if the shortest path between their corresponding requirements contains an OR

refinement.

4.6: Adjacent events are connected via an and-junction if they are aggregated by the same

grouping and if the shortest path between their corresponding requirements contains an

AND refinement.

4.7: Adjacent events are connected by a triggering relationship if they are aggregated by the

same grouping and if the shortest path between their corresponding requirements contains

a milestone refinement.

4.8: The object lifecycle view may contain extra relationships and junctions, but not extra

events, other than those defined by another rule or guideline.

4.2. Formulating a method for multi-view consistency
The following method should produce a set of views in Archi that are compliant with the consistency

requirements defined in section 4.1. We assume that there is only one view for each viewpoint.

1. Creating the goal view

a. Create a new view in Archi.

b. Add elements and relationships until the view meets the following completeness

criteria:

i. Every leaf is either an expectation, a domain property, or a requirement

(Respect-IT, 2007).

ii. Every requirement is expressed using countable and/or comparable nouns

(Roubtsova, Interactive Modeling and Simulation in Business System Design,

2016).

c. Number each element.

d. Perform a validation of the model in Archi and delete all unused elements and

relationships from the abstract model.

2. Performing a lexical analysis of the goal view

a. Create a new view in Archi. This view is only intended for the analyst, as a helper

view to create object and object lifecycle views that are consistent with the goal

view.

b. Add all leaf requirements from the abstract model to this view and place them one

below the other, in the same order as they appear in the goal view.

c. Create a visual group next to each leaf requirement, to group all objects and events

to be identified in the next step.

d. Identify objects, events and relationships using the lexical analysis guidelines listed

below. While doing so, aggregate events into groupings representing object

lifecycles, where each grouping has an access relationship to one and one

autonomous object only. An autonomous object is an object with an independent

25

lifecycle, meaning it is not a component (or specialization) of another object. To

make the identification of creation events easier, grey out duplicate objects that

have been identified in a previous requirement. Apply the following lexical analysis

guidelines and document their use in a note, one next to each visual grouping:

i. Create an object for each normalized noun phrase.

ii. Create an event and/or object relationship for each verb phrase and

preposition. Reuse the numbering of requirements for events.

iii. Transform plurals and keywords such as 'each', 'one of', etc. into object

specializations and event cycles and splits.

iv. Have events access (via their groupings) all the objects they mention. If they

mention non-autonomous objects, have them access the autonomous

objects they are related to by a specialization or composition relationship. If

an event accesses multiple autonomous objects, duplicate that event on the

view, so it can be aggregated into multiple groupings.

v. Add creation events for autonomous objects.

vi. Add objects, events, and relationships for other reasons, such as domain

knowledge, symmetry, parent goals, etc.

e. Validate the model in Archi and delete all unused elements and relationships from

the abstract model.

3. Creating the object view

a. Create a new view in Archi.

b. Select all business objects from the model tree, put them on the view and rearrange

them.

c. Optional: add relationships and non-autonomous objects. If the need arises to add

autonomous objects, return to step 1 to refine the goal view.

d. Validate the model in Archi and delete all unused elements and relationships from

the abstract model.

4. Creating the object lifecycle view

a. Create a new view in Archi.

b. In the lexical analysis view one instance of a grouping in the abstract model can

occur multiple times in the view. For each set of identical groupings:

i. Copy the set of identical groupings from the lexical analysis view, preserving

their order.

ii. Place all events that belong to the same set of identical groupings in one

visual instance of that grouping and remove the other, identical groupings

from the view.

c. Within each grouping, add triggering relationships, such that there exists a path

from the first event(s) to the last event(s). Use junctions if necessary.

i. Add or-junctions in case of OR goal refinement.

ii. Add and-junctions in case of AND goal refinement.

d. Optional: add cycles. If the need arises to add events, return to step 1 to refine the

goal view.

The method prescribes requirements and events to share their numberings. This serves two

purposes: to allow stakeholders to check the derivation of events from requirements and to assist in

the identifying duplicate instances of the same event in a view. These duplicate instances are used

for the parallel composition of object lifecycles, meaning that an event can only fire if it can fire in all

other lifecycles.

26

4.3. Testing our method on a case
We have selected an insurance case from Roubtsova (2016, pp. 50-58) to test our method for

creating consistent goal-oriented multi-view models in ArchiMate:

The main goal of any insurance business is to sell the insurance products. An insurance

product covers possible costs of a product user in possible predefined situations. A health

insurance covers the costs of medical procedures needed in case of health problems.

An application for insurance business should support the composition of a product based on

the covered medical procedures. The composition is usually done by the insurance company.

An instance of an insurance product is called a policy. The system should support an act of

buying of a policy by a customer (a person). After that, the customer becomes a policy-

holder or a client.

When a client undergoes a medical treatment, he/she pays for this treatment. In order to

compensate the costs of the treatment, the client submits claims to the insurance company.

Therefore, another goal of the insurance business is handling the claims submitted by

clients. The handling should comply the rules fixed as a law by the government. The rules are

assigned to medical procedures composed in the insurance product.

Figure 18 shows the goal model, refinement to requirements, belonging to the case description.

Figure 18. A goal model of the insurance case. From Interactive Modeling and Simulation in Business System Design, by E.
Roubtsova, 2016, Springer International Publishing.

27

This goal model is already of high quality because it has been validated using an ExtREME protocol

model, which is executable. We have therefore translated this model to ArchiMate with almost no

changes, see Figure 19. This figure shows the three types of goal refinement patterns described

earlier: OR refinement, AND refinement, and Milestone refinement. The goal view is complete with

respect to the completeness criteria mentioned in step 1.b of the method.

Figure 19. The goal view of the insurance case

The next step in our method is to perform a lexical analysis of the goal view. Figure 20 shows part of

the initial setup of the lexical analysis view, resulting from executing steps 2.a, 2.b and 2.c.

28

Figure 20. Initial setup of the lexical analysis view

The result of step 2.d is shown in Figure 21. A business object nested inside another object denotes a

specialization relationship. Notice how:

• Events inherit their numbering from requirements. This allows stakeholders to easily

recognize the consistency between the object lifecycle view and the goal view. This is not

possible for business objects, because they are identified in multiple requirements.

• All autonomous objects have access relationships.

• Identical groupings appear multiple times in the view if they access multiple autonomous

objects, see for example the grouping named 1. The lifecycle of a medical procedure, which

appears twice. Events in these identical groupings will be connected in the object lifecycle

view, following the goal refinement patterns.

• Duplicate instances of the same business object are greyed out. Each autonomous business

object that is not greyed out has a creation event next to it.

29

Figure 21. The complete lexical analysis view of the insurance case

30

In step 3 we create the object view. Figure 22 shows the process of creation: we select all business

objects from the abstract model, place them on the view an rearrange them. The resulting view on

the right is already an almost complete object view, which is purely the result of our lexical analysis

in the previous step.

Figure 22. Construction of the object view of the insurance case

Figure 23 shows the final object view, in which only one (non-autonomous) object and one

relationship have been added (green) in addition to those already identified during lexical analysis.

Figure 23. The final object view of the insurance case

In step 4 we construct the object lifecycle view. Figure 24 shows how this view is constructed. The

upper part shows the identical groupings that have been copied over from the lexical analysis view.

31

The bottom part shows how identical groupings are deduplicated and how events are linked with

triggering relationships (red).

Figure 24. Construction of the object lifecycle view of the insurance case, showing the lifecycles of only two objects

Figure 25 shows the completed object lifecycle view. Triggering relationships are coloured red if they

have been added based on goal refinement patterns. Additional events and relationships are

coloured green. Note how events 2.3.1 and 3.3.2 are connected using two junctions. This

corresponds to the refinement patterns that we encounter when traversing through the goal view,

taking the shortest path from requirement 2.3.1 to requirement 3.3.2. The first junction between

the two events is an and-join, which corresponds to the upward traversal through AND1. The second

junction between the two events is an or-split, which corresponds to a downward traversal through

OR1.

32

Figure 25. The completed object lifecycle view of the insurance case

Events are composed using CSP parallel composition: an event can fire in one lifecycle if it can fire in

all lifecycles using this event. For example, a policy can only be bought (event 2.2 in lifecycle 6) after

the customer is registered (event 2.1 in lifecycle 5) and the product is published (green event in

lifecycle 4). Thus, the lifecycles of Product, Customer, and Policy are synchronised by the event 2.2: A

policy of a product is bought by a customer.

The green event (A product is published) is not derived from the goal view. This event has been

added by the analyst to prevent customers from buying incomplete products. At this point we are

violating consistency requirement 4.8. Step 4.d tells us to refine the goal model to restore

consistency. Figure 26 shows the updated refinement of goal 1, to which requirement 1.5 has been

added.

33

Figure 26. An updated version of the goal view

To determine the effectiveness of our method, the consistency between the goal, object and object

lifecycle view has been checked by counting the number of violations of the consistency guidelines.

We found that none of the consistency guidelines were violated. However, counting violations

depends partly on the subjective interpretation of goal descriptions. Therefore, we also looked at

the object and object lifecycle views of a second researcher who used the same method. The

produced models turned out to be very similar, but we also discovered some differences. For

example, one researcher identified Registered Customer as an object rather than just Customer.

Another example is that one researcher generalized the No-Limit Schema and Max-Coverage Schema

to Schema, while the other did not, which also led to differences in the object lifecycle views. For

example, the generic object Schema reduces the number of lifecycles. We regard such differences as

trivial and valid variants of perspective, within the latitude allowed by our guidelines.

34

5. Discussion, conclusions and recommendations

5.1. Discussion – reflection
Our method for consistent modelling combines key ideas and completeness criteria from KAOS with

ideas from ExtREME on how to create protocol models from goal models, using lexical analysis and

parallel composition of events. The result is a method that very much resembles KAOS but with an

important addition: our method ensures consistency in a way that is not present in KAOS. A KAOS

Tutorial (2007) notes:

Many companies have noticed that users and IT analysts most often do not understand each

other very well. KAOS provides the right connection between the two worlds: users quickly

feel confident with goal and responsibility models; analysts like the object and operation

models. (p. 9)

However, the tutorial gives the modeler quite some freedom in creating the operation model,

merely requiring the modeler to ‘justify’ each operation by linking it to a requirement.

Our method restricts the ways in which a modeler can justify the existence of elements. This

restriction should increase consistency, ensuring that users and IT analysts, when looking at their

preferred views, are looking at different sides of the same proverbial medal. They recognise and use

the same nouns in requirements and business objects, they use the same verbs in requirements and

events, etcetera. Since we reuse the numbering of requirements in event names, the stakeholders

can more easily verify the consistency between views.

I was lucky that my supervisor independently modelled the same case using roughly the same

method but manually. This allowed me to compare the models. The differences between our models

turned out to be remarkably small, which increases the reliability of the method. Still, the method

has been applied to only one case, which is also a relatively simple one. Generalization to other

cases should be possible, but only if those cases share the same characteristics: having only non-

conflicting goals, with only the three refinement patterns mentioned.

While comparing ArchiMate to KAOS we accidentally discovered that ArchiMate lacks the goal

refinement relationship. We therefore deviated from the ArchiMate standard and specified why and

how it should be changed.

5.2. Conclusions
One of the essential requirements for the design of ArchiMate is that ‘it must be possible to perform

consistency checking of architectures’ (Lankhorst, Proper, & Jonkers, 2009). Although ArchiMate

supports consistency checking, it does not provide guidelines to create consistent multi-view

models. Other modelling approaches that do provide such guidelines typically regard the goal view

as the reference view for consistency. The goal view in ArchiMate can be modelled with elements

from the motivation extension. This extension was inspired by several methods, of which KAOS is the

only multi-view method. We therefore selected KAOS as our source of inspiration. We also took

inspiration from ExtREME because multi-view consistency is part of the core of this approach.

Inspired by KAOS and ExtREME, we formulated consistency requirements and a method to produce

consistent models in ArchiMate. We tested this method on an insurance case and found that the

resulting model complies with the consistency requirements.

35

5.3. Recommendations for practice
Practitioners of ArchiMate can use our method as inspiration on how to create consistent goal-

oriented models, and as a steppingstone to learn about goal-oriented requirements engineering

(GORE) in general. Practitioners of KAOS can use our translation of its metamodel to translate their

models to ArchiMate, for example to integrate them with existing ArchiMate models in the

enterprise.

The authors of ArchiMate can use our research as justification to change the standard to allow for

realization relationships between goals and between requirements.

5.4. Recommendations for further research
The method could be refined to apply to more complex cases. For example, we restricted ourselves

to only achieve goals, while there are also maintain, cease, and avoid goals in KAOS. We also

restricted ourselves to three goal refinement patterns.

We have restricted ourselves to the business layer of ArchiMate. The method could be extended to

include goals of implementation and their transformation to implementation views (in the

application and technology layer of ArchiMate).

Many requirements for consistency formulated in this work can be formalised in future work and

used for automated consistency checks, which demands add-ins to the ArchiMate supported tools.

36

References

Babkin, E. A., & Ponomarev, N. O. (2017). Analysis of the consistency of enterprise architecture

models using formal verification methods. Business Informatics, (3), 30-40.

Beauvoir, P., Sarrodie, J.-B., & The Open Group. (2021). Archi User Guide, Version 4.9.1.

Cardoso, E., Almeida, J., & Guizzardi, R. (2010). On the support for the goal domain in enterprise

modelling approaches. 14th IEEE International Enterprise Distributed Object Computing

Conference Workshops, 335-344.

Dijkman, R., Quartel, D., & Van Sinderen, M. (2006). Consistency in multi-viewpoint architectural

design of enterprise information systems. BETA publicatie : working papers; Vol. 188.

Engelsman, W., Quartel, D., Jonkers, H., & van Sinderen, M. (2011). Extending enterprise

architecture modelling with business goals and requirements. Enterprise information

systems, 5(1), 9-36.

Kotusev, S. (2019). Enterprise architecture and enterprise architecture artifacts: Questioning the old

concept in light of new findings. Journal of Information technology 34(2), 102-128.

Kruchten, P. (1995). Architectural blueprints—the “4+ 1” view model of software architecture. IEEE

software, 12(6).

Lankhorst, M., Proper, H., & Jonkers, H. (2009). The architecture of the archimate language.

Enterprise, business-process and information systems modeling, 367-380.

Nuseibeh, B., Kramer, J., & Finkelstein, A. (1994). A framework for expressing the relationships

between multiple views in requirements specification. IEEE Transactions on software

engineering, 20(10), 760-773.

Quartel, D., Engelsman, W., Jonkers, H., & Van Sinderen, M. (2009). A goal-oriented requirements

modelling language for enterprise architecture. IEEE International Enterprise Distributed

Object Computing Conference, 3-13.

Quintão, C., Andrade, P., & Almeida, F. (2020). How to Improve the Validity and Reliability of a Case

Study Approach? Journal of Interdisciplinary Studies in Education, 9(2), 264-275.

Respect-IT. (2007). A KAOS Tutorial, V1.0.

Roubtsova, E. (2016). Interactive Modeling and Simulation in Business System Design. Springer

International Publishing.

Roubtsova, E., & Severin, S. (2022). Semantic Relations of Sub-Models in an Enterprise Model.

Accepted for BMSD 2022, the 12th International Symposium on Business Modeling and

Software Design.

Sandkuhl, K., Stirna, J., Persson, A., & Wißotzki, M. (2014). Enterprise modeling. Heidelberg: Springer.

37

The Object Management Group. (2015). Business Motivation Model, Version 1.3.

https://www.omg.org/spec/BMM.

The Open Group. (2013). ArchiMate® 2.1 Specification.

The Open Group. (2018). the TOGAF® Standard, Version 9.2.

The Open Group. (2019). ArchiMate® 3.1 Specification. Van Haren Publishing.

Webster, J., & Watson, R. (2002). Analyzing the past to prepare for the future: Writing a literature

review. MIS quarterly, xiii-xxiii.

Yu, E. S., & Mylopoulos, J. (1994). Understanding" why" in software process modelling, analysis, and

design. Proceedings of 16th international conference on software engineering, 159-168.

38

Appendix 1: Customized relationships table in Archi

Figure 27. An edited version of the relationships table in Archi that allows realization relationships between instances of
goal modelling elements of the same type

Table 7. Changes to Archi’s relationships.xml file to allow realization relationships between instances of goal modelling
elements of the same type

Line

Original version Edited version

1

2

1434

1457

1483

1497

2149

2183

2186

2212

2669

2711

2732

2864

2909

<?xml version="1.0" encoding="UTF-8"?>

<relationships version="3.1">

 …

 <source concept="Constraint">

 …

 <target concept="Constraint" relations="cgnos" />

 …

 <target concept="Requirement" relations="cgnos" />

 …

 </source>

 …

 <source concept="Goal">

 …

 <target concept="Goal" relations="cgnos" />

 …

 <target concept="Junction" relations="no" />

 …

 </source>

 …

 <source concept="Outcome">

 …

 <target concept="Outcome" relations="cgnos" />

 …

 </source>

 …

 <source concept="Principle">

 …

 <target concept="Principle" relations="cgnos" />

 …

<?xml version="1.0" encoding="UTF-8"?>

<relationships version="3.1">

 …

 <source concept="Constraint">

 …

 <target concept="Constraint" relations="cgnors" />

 …

 <target concept="Requirement" relations="cgnors" />

 …

 </source>

 …

 <source concept="Goal">

 …

 <target concept="Goal" relations="cgnors" />

 …

 <target concept="Junction" relations="nor" />

 …

 </source>

 …

 <source concept="Outcome">

 …

 <target concept="Outcome" relations="cgnors" />

 …

 </source>

 …

 <source concept="Principle">

 …

 <target concept="Principle" relations="cgnors" />

 …

39

2927

3124

3147

3173

3187

4034

 </source>

 …

 <source concept="Requirement">

 …

 <target concept="Constraint" relations="cgnos" />

 …

 <target concept="Requirement" relations="cgnos" />

 …

 </source>

 …

</relationships>

 </source>

 …

 <source concept="Requirement">

 …

 <target concept="Constraint" relations="cgnors" />

 …

 <target concept="Requirement" relations="cgnors" />

 …

 </source>

 …

</relationships>

40

Appendix 2: Translation of each KAOS concept to ArchiMate

Goal – A goal in KAOS is defined as a ‘prescriptive assertion capturing some objective to be met by

cooperation of agents; it prescribes a set of desired behaviours’ (Respect-IT, 2007). The most

obvious ArchiMate concept to choose would be that of a goal, which is however defined slightly

differently as a ‘high-level statement of intent, direction, or desired end state for an organization

and its stakeholders’ (The Open Group, 2019).

Obstacle – An obstacle in KAOS is defined as a ‘condition (other than a goal) whose satisfaction may

prevent some goal(s) from being achieved; it defines a set of undesired behaviours’ (Respect-IT,

2007). The authors of ARMOR write (Engelsman, Quartel, Jonkers, & van Sinderen, 2011):

The obstruction of goals by obstacles are not modelled as part of a goal model in ARMOR. An

obstacle is considered the result of the assessment of some stakeholder concern, like the

assessment of an influencer as a threat or weakness in the BMM. The modelling of

assessments should however be supported by ARMOR – not as part of the goal domain – but

as part of the stakeholders domain.

An assessment in ArchiMate is defined as representing ‘the result of an analysis of the state of affairs

of the enterprise with respect to some driver’ (The Open Group, 2019). The definition seems to have

little in common with that of an obstacle in KAOS. However, the description following the definition

makes the similarities clearer: ‘An assessment may reveal strengths, weaknesses, opportunities, or

threats for some area of interest. These need to be addressed by adjusting existing goals or setting

new ones, which may trigger changes to the Enterprise Architecture’ (The Open Group, 2019).

Requirement – A requirement in KAOS is defined as a ‘goal assigned to an agent of the software

being studied’ (Respect-IT, 2007). Again, there is an obvious choice to make, namely for that of

ArchiMate’s requirement concept, which is defined as a ‘statement of need defining a property that

applies to a specific system as described by the architecture’ (The Open Group, 2019). Like a goal, a

requirement in KAOS can be refined, be obstructed by obstacles, and resolve obstacles.

Expectation – An expectation in KAOS is defined as a ‘goal assigned to an agent in the environment’

(Respect-IT, 2007). In ARMOR the ‘concept of expectation is not supported explicitly, but can be

modelled as a special type of requirement, i.e., one that can be assigned to an environment actor’

(Quartel, Engelsman, Jonkers, & Van Sinderen, 2009). We would rather not use the requirement

element in ArchiMate since an expectation does not represent a ‘statement of need defining a

property that applies to a specific system as described by the architecture’ (The Open Group, 2019).

Luckily, ArchiMate contains a specialization of the requirement element, namely the constraint

element, which is defined as a ‘factor that limits the realization of goals’ (The Open Group, 2019). An

expectation is a kind of constraint because it prescribes an assumption that must be made by the

system designers about the behaviour of an agent in the environment. The expectation thereby

limits the ways in which goals can be realized.

Domain property – A domain property in KAOS is defined as follows:

Descriptive assertion about objects in the environment of the software. It may be a domain

invariant or a hypothesis. A domain invariant is a property known to hold in every state of

41

some domain object, e.g., a physical law, regulation, … A hypothesis is a property about

some domain object supposed to hold. (Respect-IT, 2007)

D. Quartel et al. write (Quartel, Engelsman, Jonkers, & Van Sinderen, 2009):

The refinement of some goal may be based on certain assumptions about (elements in) the

problem domain. i* and KAOS introduce the notions of assumption, belief and domain

property for this purpose. Since it is considered useful to make such assumptions explicit,

ARMOR supports the general notion of ‘assumption’.

In ARMOR an assumption is represented as an attribute of the goal concept. However, ArchiMate’s

default notation does not support attributes.

The notions of expectation and domain property have similar definitions in KAOS. A domain property

is defined as a ‘descriptive assertion about objects in the environment …’ (Respect-IT, 2007). In KAOS

agents are (active) objects. An expectation is defined as a ‘goal assigned to an agent in the

environment’ (Respect-IT, 2007).

Because an expectation could be said to be a special kind of domain property, we choose to

translate the domain property the same as the expectation, namely as a constraint in ArchiMate. In

this sense, a domain property is an assumption that the system designers must make about objects

in the environment, again limiting the ways in which goals can be realized (see the definition of

constraint in ArchiMate).

Agent – An agent in KAOS is defined as follows (Respect-IT, 2007):

Active object (=processor) performing operations to achieve goals. Agents can be the

software being considered as a whole or parts of it. Agents can also come from the

environment of the software being studied; human agents are in the environment.

This definition distinguishes between internal and external agents, and assumes that we are

designing software. Therefore, we should use an internal active structure element from ArchiMate’s

application layer to represent an internal agent. The obvious element for this purpose is an

application component, which is defined as an ‘encapsulation of application functionality aligned to

implementation structure, which is modular and replaceable’ (The Open Group, 2019). The external

agent can be an internal active structure element from any of the ArchiMate layers, including a

business actor, application component and device. An internal active structure element is defined as

‘an entity that is capable of performing behavior’. In KAOS an agent is a specialization of an object

and can be the input or output of an operation. This is not possible in ArchiMate. Therefore, an

agent is also translated to a passive structure element in ArchiMate, whenever we need to consider

its passive side.

Operation – An operation in KAOS is defined as something that ‘specifies state transitions of objects

that are input and/or output of the operation’ (Respect-IT, 2007). Since these operations are

performed by internal agents, we must use an appropriate element from the application layer,

which in this case is the application process, defined as a ‘sequence of application behaviors that

achieves a specific result’ (The Open Group, 2019).

42

Event – An event in KAOS is defined as an ‘instantaneous object (that is, an object alive in one state

only) which triggers operations performed by agents’ (Respect-IT, 2007). Note that the word ‘object’

in KAOS does not imply passivity (as it does in ArchiMate), since agents are defined as ‘active

objects’. The KAOS Tutorial (Respect-IT, 2007) further specifies: ‘Events can be external or produced

by operations.’ We therefore choose to translate this concept to the abstract ArchiMate concept of

event, which can be a business event, application event, a technology event, or an implementation

event. An event is defined as representing ‘a state change’ (The Open Group, 2019). The

specification further explains that events can trigger behaviour, which nicely mirrors the triggering of

operations by events in KAOS.

Entity – An entity in KAOS is defined as an ‘autonomous object, that is, the definition of which does

not rely on other objects’ (Respect-IT, 2007). Entities are passive objects in KAOS. This corresponds

to the notion of a passive structure element in ArchiMate, which is defined as ‘an element on which

behavior is performed’ (The Open Group, 2019). A passive structure element is an abstract element

in ArchiMate and can be a business object, contract, representation, data object, artifact, or material

element.

Attribute – ArchiMate is not meant to be used for detailed information modelling. It has therefore

no in-built support for attributes. Attributes are important in KAOS because their values define the

states the entity can transition to. We can choose to represent an attribute as a passive structure

element with a composition relation to its parent. We choose the composition relation because it

expresses an existence dependency: the attribute cannot exist without its parent.

Refinement – A refinement in KAOS is defined as follows:

Relationship linking a goal to other goals that are called its subgoals. Each subgoal

contributes to the satisfaction of the goal it refines. The conjunction of all the subgoals must

be a sufficient condition entailing the goal they refine. (Respect-IT, 2007)

In ARMOR the realization relationship is used to represent refinement. This relationship type

expresses the sufficient condition in KAOS nicely since ‘the interpretation of a realization

relationship is that the whole or part of the source element realizes the whole of the target element’

(The Open Group, 2019). However, the authors of ArchiMate have decided not to permit realization

relationships between goals. They write that the ‘refinement of goals into sub-goals is modelled

using the aggregation relationship’ and that ‘to refine requirements into more detailed requirements

… the aggregation relationship is used’ (The Open Group, 2019). Version 2.1 of the ArchiMate

specification (The Open Group, ArchiMate® 2.1 Specification, 2013) provides an example of goal

refinement using the aggregation relationship, see Figure 28.

43

Figure 28. An example of goal refinement using aggregation. From ArchiMate 2.1 Specification, by The Open Group, 2013.

We have several reasons not to use the aggregation relationship to express goal refinement.

1) The aggregation relationship does not express the ‘sufficient condition’ in KAOS’s definition

of refinement.

2) The aggregation relationship cannot be used to express refinement alternatives as shown in

Figure 29.

3) The aggregation relationship cannot be used to link between a mixed collection of

motivation elements of different types as shown in Figure 30.

Figure 29. Goal refinement alternatives, from A KAOS Tutorial, V1.0, by Respect-IT, 2007.

44

Figure 30. A generic goal refinement pattern, from A KAOS Tutorial, V1.0, by Respect-IT, 2007.

The only relationships in ArchiMate that are allowed between motivation elements and that can be

routed through junctions, are the influence and association relationships. Since in general a stronger

relationship is preferred over a weaker one, we choose the influence relationship over association.

Unfortunately, in contrast to the realization relationship, the influence relationship cannot be used

to express sufficient condition in KAOS.

The interpretation of a realization relationship is that the whole or part of the source

element realizes the whole of the target element (see also Section 5.1.5). This means that if,

for example, two internal behavior elements have a realization relationship to the same

service, either of them can realize the complete service. If both internal behavior elements

are needed to realize, the grouping element or an and junction (see Section 5.5.1) can be

used. For weaker types of positive, neutral, or negative contribution to the realization of a

motivation element, the influence relationship (see Section 5.2.3) should be used. (The Open

Group, 2019)

This means that if we were to depict goal refinement using the influence relationship, as we have

done in Figure 31, we are expressing that goals B and C can only influence goal A in conjunction, but

not separately. While what we intend to express is that goals B and C in conjunction sufficiently

realize goal A, whether or not they individually influence goal A.

Figure 31. Goal refinement using influence relationships

Since none of the existing relationships in ArchiMate can be used to express goal refinement in a

satisfactory manner, we must customize the language by creating a specialization of the influence

relationship, which we shall name refinement, with the following definition: The refinement

relationship represents that an entity completely satisfies the element it refines. Table 8 lists the

permitted relations of this kind.

45

Table 8. Allowed refinement relationships

from →

↓ to

Goal Outcome Principle Requirement Constraint

Goal refinement refinement refinement refinement refinement

Outcome refinement refinement refinement refinement

Principle refinement refinement refinement

Requirement refinement refinement

Constraint refinement refinement

Notice however that, for example, between a requirement and a goal element, both a realization

and a refinement relationship is now possible, with virtually no difference in semantics.

In my opinion, with this customization we have ‘hacked’ the ArchiMate language by introducing a

relationship that is virtually identical to the already existing realization relationship, with the only

difference that it allows relations between instances of goal modelling elements of the same type.

I am therefore of the opinion that ArchiMate should allow realization relationships between

instances of goal modelling elements of the same type.

Note that we have chosen to translate a KAOS obstacle to an ArchiMate assessment and that

ArchiMate does not allow realization relationships in combination with an assessment element.

Luckily, we have little use for that relationship here since it is not necessary to express the ‘sufficient

condition’ when refining obstacles. ‘Obstacles can be refined the same way we do with goals, but

while goals are generally ‘AND-refined’, obstacles are most often ‘OR-refined’ (Respect-IT, 2007).

Conflict – A conflict in KAOS is defined as follows: ‘Goals are conflicting if under some boundary

condition the goals cannot be achieved altogether’ (Respect-IT, 2007). For this purpose, we can use

the negative influence relation in ArchiMate. The influence relation is defined as representing ‘that

an element affects the implementation or achievement of some motivation element’ (The Open

Group, 2019). A negative influence relationship represents the fact that ‘an element negatively

influences – i.e., prevents or counteracts – such achievement’.

Obstruct – An obstacle is related to the goal it obstructs. In ArchiMate we can reuse the negative

influence relation to represent obstruction.

Resolve – An obstacle can be related to a goal that resolves the obstacle. Again, we can use the

negative influence relation from ArchiMate to represent that a goal or requirement prevents or

counteracts the achievement of the obstacle.

Responsibility – A responsibility relationship in KAOS is defined as follows:

Relationship between an agent and a requirement. Holds when an agent is assigned the

responsibility of achieving the linked requirement. (Respect-IT, 2007)

Elsewhere, A KAOS Tutorial specifies (Respect-IT, 2007): ‘Assignment is used when several agents

may be made responsible for some requirement or expectation, whereas responsibility is used when

there’s only one agent who is responsible for it’ (p. 8). In ArchiMate we can use the influence

relationship to express assignment, and the realization relationship to express responsibility. The

realization relationship expresses full responsibility because the ‘interpretation of a realization

46

relationship is that the whole or part of the source element realizes the whole of the target element’

(The Open Group, 2019). The influence relationship expresses a weaker type of contribution to a

motivation element.

ArchiMate also contains an assignment relationship to express responsibility, but this relationship is

not allowed in combination with a motivation element.

Perform – An agent is linked to an operation with a performs-relation. The default relationship in

ArchiMate to express this link is the assignment relationship, defined as the ‘allocation of

responsibility, performance of behavior, storage, or execution’ (The Open Group, 2019). However, if

the agent and operation belong to different layers, we can use the serving relationship.

Cause – An event is linked to an operation with a cause-relation to express that an event can start

(or stop) an operation. The obvious choice is to use the triggering relationship in ArchiMate, which is

defined as a ‘temporal or causal relationship between elements’ (The Open Group, 2019).

Operationalization – An operationalization relation in KAOS is defined as follows:

Relationship linking a requirement to operations. Holds when each execution of the

operations (possibly constrained to that intent) will entail the requirement. Makes the

connection between expected properties (goals) and behaviours (operations). (Respect-IT,

2007)

The authors of ARMOR write: ‘The realization relation of ArchiMate is used to represent refinement

and to link a requirement to design artefacts, such as the services and processes that implement the

requirement’ (Quartel, Engelsman, Jonkers, & Van Sinderen, 2009). The interpretation of this

relationship is that it realizes the whole of the target element. If we were to link both a service and a

process to a requirement using a realization relationship, this would express that we can do without

one or the other, since both completely realize the requirement. This is often not the case. We could

solve this by using an and junction to express that both elements are needed to realize the

requirement. But this is not practical, especially when the services and processes are modelled in

different views. In KAOS there is also no need to express ‘complete operationalization’ in this way.

We therefore opt for the weaker relationship, namely influence.

Input/output – An input/output relation in KAOS represents that an object is the input or output of

an operation. The strongest relation between a behaviour element and a passive structure element

is the access relationship, defined as representing ‘the ability of behavior and active structure

elements to observe or act upon passive structure elements’ (The Open Group, 2019). The

specification further explains that ‘at the metamodel level, the direction of the relationship is always

from an active structure element or a behavior element to a passive structure element, although the

notation may point in the other direction to denote “read” access, and in both directions to denote

read-write access’. We will use this notation to represent input and output.

Since events are defined as objects in KAOS, they too can be the output of an operation. In

ArchiMate we have the triggering relationship for this.

Relations between entities – The notation in the object model in KAOS complies with UML class

diagrams. ArchiMate too has relations that are based on UML. Therefore, we can quite easily choose

47

to represent the KAOS aggregation relation as an ArchiMate aggregation relation. The same applies

to specialization and association.

Concern – A concern relation in KAOS is described as a relation that is ‘used to link a requirement to

the objects that are needed for it to be satisfied’ (Respect-IT, 2007). The strongest possible relation

in ArchiMate between a business object and a goal or requirement is realization. This relationship is

too strong since the mere existence of the business object does not guarantee the satisfaction of the

requirement or goal. We therefore opt for the weaker version, namely the influence relationship.

See also our considerations above, for the translation of operationalization.

