
Open Universiteit
www.ou.nl

MASTER'S THESIS

Switch Statement Disassembly

de Bruijn, M

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 10. Dec. 2022

https://research.ou.nl/en/studentTheses/3749b680-c509-4f4e-ab77-d94f3763c2ec

SWITCH STATEMENT DISASSEMBLY

by

M.J. de Bruijn

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Management, Science and Technology
Master Software Engineering

to be defended publicly on Day Month DD, YYYY at HH:00 PM.

Student number:
Course code: IMA0002
Thesis committee: dr. Freek (F.) Verbeek (chairman), Open University

Prof. dr. Tanja (T.E.J.) Vos (supervisor), Open University

CONTENTS

1 Introduction 1

2 Background: Disassemblers and Decompilers 6

3 Switch statement disassembly 11
3.1 Switch statement assembly implementations . 11
3.2 Soundness and completeness of disassembly . 14
3.3 Switch statement disassembly . 15

3.3.1 Switch Statement Diagnostic Tests. 15
3.3.2 Compiler switch statement implementations 17

3.4 disassembly of diagnostic tests . 20
3.5 Switch statement real-life disassembly issues . 25

3.5.1 Secondary Jump tables. 25
3.5.2 lookup table entries treated as code . 26
3.5.3 Branching too complex . 27

4 Pointer recognition issues 29
4.1 Soundness and completeness of pointer recognition 30
4.2 Pointer recognition . 30

4.2.1 Diagnostic test. 30
4.2.2 Diagnostic test disassembly. 31

4.3 Pointer real-life recognition issues . 31

5 Related Work 36

6 Discussion and Conclusion 39
6.1 Summary of Results . 39
6.2 Discussion . 42
6.3 Conclusion . 43
6.4 Future work. 43

Bibliography i

i

1
INTRODUCTION

Decompilation is a process of translating an executable binary file into a high(er) level lan-
guage that, ideally, can be recompiled into an executable that preserves the semantics of
the original binary. So it is the opposite of a compilation. A compiler compiles an exe-
cutable file from a high(er) level source file. The decompilation process exists of multiple
steps that lift machine instructions into a higher language or abstraction level. Each step
recovers more information about the application so that eventually, a result in a higher
language is created. The decompilation process starts with disassembly, lifts the binary
into machine instructions, and is used for further processing. Unfortunately, even for the
slightly easier decompilable languages like Java, the decompilation process is still far from
perfect. Most decompilation tools produce a result containing both semantic and syntactic
errors Harrand et al. [2019].

The software tasks where decompilation can be used are binary patching, porting, anal-
ysis, and improvement Verbeek et al. [2020]. Decompilation can be used because, in gen-
eral, these tasks often assume that the source code is available. However, this is not always
available due to intellectual property (IP) constraints or other issues. The task of binary
patching is the process of repairing a known bug in the binary. Patching a binary without
source code can be very difficult and complex Wang et al. [2017]. Binary Porting is the pro-
cess of making a binary executable for a different processor architecture. The porting of
binaries can be an alternative for emulators, which can slow down the application signif-
icantly. Binary analysis is used for, for example, software security or validation of safety-
critical software. The low-level steps and interactions in binaries make analysis compli-
cated and time-consuming. Binary improvement can make an executable execute faster
due to better optimisation by a newer compiler version. When we recompile a binary with
a newer compiler version, it can gain performance profits like a shorter execution time. So
a perfect decompiler can make, in theory, all everyday software tasks possible even when
the source code is initially not available.

Unfortunately, such a perfect decompiler does not exist. In the case of x86-64 binaries,
disassembly is known as an undecidable problem. What causes this, for example, is the
possibility of mixing data and instructions in the executable section of the binary Wartell
et al. [2011]. This mixing of data and instructions is used for optimisation purposes, so
a processor needs to perform fewer instructions to load the data into his registers. Indi-
rect branching (computed jumps) and overlapping instructions can also cause improper

1

decompilation. Overlapping instructions is a technique that is frequently used by mal-
ware Meng and Miller [2016]. So the undecidability of some binary constructs in the x86-64
assembly can make those binaries hard to disassemble.

Disassembly is the first and an important step in the decompilation process. So the re-
sult of a decompiler depends heavily on the output of a disassembler. When a disassembler
produces incorrect results, the decompiler will also do. Mainly two types of static disassem-
bler algorithms exist, linear and recursive. The static recursive disassembly algorithm takes
the application’s control flow into account while disassembling. So it follows the code paths
throughout the application. The linear algorithm does not disassemble all instructions of
the binary consecutively. A decompiler will use the disassembly result and processes this
into a higher programming language such as c.

As frequently researched, all decompilers produce different results for the same in-
put Brumley et al. [2011] Brumley et al. [2013] Le et al. [2014] Meng and Miller [2016] An-
driesse et al. [2016]. Each decompiler handles binary constructs or binary patterns pro-
duced by the disassembler in its way. Almost all decompilation papers are about common
subjects like comparing a new decompiler or decompilation technique to existing decom-
pilers. Those significant differences in decompiler results teach us that disassembly and
decompilation are complex. Most tools perform well on some specific binary code, others
do not, and vice versa.

The difference in results can primarily be assigned to the handling of corner cases or
particular machine code constructs that exist in executable binaries Meng and Miller [2016] An-
driesse et al. [2016]. However, the current state-of-the-art cannot precisely identify and
handle all particular binary code constructs. Researchers who performed research on bi-
naries are divided on the difficulties experienced during disassembly, decompilation or lift-
ing. One other issue is that most studies on this topic only use a limited set of binaries and
disassemblers. Therefore most of these studies can only make a statement about a small
subset of binary executable binaries.

One of the things that are undecidable during disassembly is an indirect branch or in-
direct jump Verbeek et al. [2020] Andriesse et al. [2016]. For example, a programmer or
compiler introduces an indirect branch while introducing function pointers, or a com-
piler implementation of a high-level programming language statement such as a switch
statement. This indirect branching influences the control flow analysis of the disassem-
bler. The control flow analysis of the disassembler has to determine which basic blocks
the indirect branch can refer to. This process is challenging to figure out statically and can
be very error-prone. Thus without the proper decompiler heuristics and algorithms, it is
impossible to figure out the possible targets of the indirect branch.

A high-level programming statement frequently implemented by the compiler as an in-
direct branch is aswitch statement. However, there are several different implementations
a compiler can choose from. Some implementations use if-else constructs for a sequential
test or binary search. Other implementations are based on lookup tables containing ad-
dresses or address offsets used in jump constructions. This jump-table construction cre-
ates an indirect branch. Some compilers place the jump-table, which is an array of data,
in the executable section of the binary, which makes disassembly even more difficult An-
driesse et al. [2016]. Also, the detected size of this jump table is essential. Missing entries
can result in missing basic blocks. Extra entries can result in including not existing basic
blocks. So the switch statement implemented by the compiler as jump-table implementa-

2

tion can make basic block recovery more challenging.

Figure 1.1: Contribution of this thesis in the dotted box

Most studies related to disassembly focus mainly on Linux OS and Linux executables
and not so much on MS Windows. This while the Windows operating system is by far the
most used desktop OS 1. This lack of interest in Windows is probably because, for MS Win-
dows, there is officially no source code available. Also, there is a greater variety of available
compilers, which can produce different binaries and binary constructs.

In Figure 1.1 a schematic overview of the process used in this study is given. The con-
tribution of this study is pictured in this figure as a dotted box. This contribution is the
creation of diagnostic tests and verifying the switch statement disassembly results of sev-
eral different disassemblers. The relation between the (intermediate) results, pictured as
a solid box, is indicated as a one-to-many relation. The process starts with a diagnostic
test that contains a piece of source code that contains a switch statement. The source
code is fed to the mentioned compilers to create an executable binary containing a binary
switch statement implementation. Hereafter the binary is disassembled to x86-64 as-
sembly with the mentioned disassemblers. This resulting assembly code is used to verify
the performance of the used disassembler regarding switch statement disassembly. In the
last step, we will verify the assembly result for each possible combination of compiler and
disassembler.

Our study aims to improve the current knowledge of available state-of-the-art disas-
sembly tools regarding the decompilation of switch statements in Window executable bi-
naries. To get insight into the performance of the different state-of-the-art disassemblers,

1https://gs.statcounter.com/os-market-share/desktop/worldwide

3

we will compare and verify theswitch disassembly results. To verify the produced results,
we will introduce some definitions later on. To be more precise, we perform the following
actions consecutively. This study will:

• Define several switch statement diagnostic tests based on various source code and
compiler depended characteristics

• Analyse the switch statement implementations of the compiled diagnostic tests for
several compilers

• Verify the disassembly results of the compiled diagnostic tests of interest, disassem-
bled with several state-of-the-art disassemblers

• Check if the found disassembly results are representative for found switch state-
ment disassembly flaws in real-life MS Windows DLL binaries

Besides looking at the implementation of switch statements, we have also found an-
other common issue for several disassemblers and we will explain this in chapter 4.

The result of our study shows that not all disassemblers used in our comparison can
correctly disassemble all lookup table based switch statement implementations. Com-
pilers have several options to implement a switch statement based on a if-else state-
ment, a lookup table, or a combination of both. This results in different switch statement
implementations depending on compiler and source code characteristics. The most im-
portant characteristics that influence the chosen implementation are the compiler itself,
the used compiler optimisation setting, the number of case labels, and the used case value
set. Because most of the analysed disassemblers use a static recursive disassembly algo-
rithm, incompleteness of the produced switch statement disassembly result is the most
frequently found issue. This issue arises because not all jump tables were interpreted cor-
rectly, like missing jump table entries or the entire jump table. Only one of the analysed dis-
assemblers is a linear disassembler that produces unsound switch statement disassem-
bly results for MSVC compiled binaries. This result is because the MSVC compiler places
the jump tables between the instructions.

To the best of our knowledge, no other study has targeted the verification of various
implementations of switch statements and the disassembly results hereof before. Also,
the check on real-life Windows DLL executables gives us insight into the performance of
the decompilers for real-world cases. We focus, like mentioned before, on switch statement
implementations that use a jump-table implementation. So we will verify and compare the
recovery of jump-tables, instructions and basic blocks. So the results of this type of analysis
will give us more insight into the performance of disassemblers regarding the disassembly
of switch statements.

Studies that relate to our study that we have found target the comparison of disassem-
blers Gusarovs [2018], Hamilton and Danicic [2009] Liu and Wang [2020] Harrand et al.
[2019]. Our study differs from the mentioned studies because we focus on disassembly
only. Another point from which we will differ is that for our real-life examples we use MS
Windows DLL files, so we have no source code available. The studies mentioned as related
work all use different types of input. Some use specially crafted input applications, and
others use real-world, open-source applications. The handmade test cases contain com-
plex code constructs like a loop with different entry and exit points that are randomly in-
voked or other complex code constructs. For comparison of the decompilation results, two

4

of the mentioned studies use equivalence modulo inputs testing Le et al. [2014] which was
developed initially to validate compiler optimisations. One of the studies makes a manual
comparison of the decompilation result, and the other uses software quality metrics as a
comparison tool. The software metrics approach is a good method to measure the effec-
tiveness of decompilers and obfuscators Naeem et al. [2007]. What also stands out for these
studies is that most decompiler comparison studies target the Java programming language
and only one other study targets decompilers for x86-64binaries.

The scope of our study is limited toswitch statement validation and analysis. Also, we
will only focus on the disassembly of binaries. We have based this choice on the fact that it is
the first and most important input for the rest of the decompilation process. The targeted
processor architecture for this study is x86-64. The x86-64 processor architecture is the
most popular desktop and laptop PC architecture. The X86 architecture was introduced by
Intel in 1978 and currently exists of a complex instruction set (CISC) that consists of more
than 2000 different instructions.

The structure of the report is as follows. First, we focus on switch statement disassem-
bly and the found issues. Therefore, we look at the possible switch statement assembly
implementations, create diagnostic tests to test various switch implementations, validate
the produced disassembly result, and look at real-life found disassembly flaws. Second,
we will look at a different form of indirect branching issue related to pointer disassembly.
This issue we encountered during our real-life disassembly analysis. Third, we discuss the
studies that relate to this subject. Hereafter we give general information about disassembly
and decompilation and introduce existing disassemblers and decompilers. Last, we have a
discussion and conclusion about the study results.

5

2
BACKGROUND: DISASSEMBLERS AND

DECOMPILERS

Decompilation and disassembly are fields that are already studied for several decades, start-
ing somewhere in the ’60s. On the internet, there is a comprehensive overview of the history
of decompilers 1.

Figure 2.1: A general overview of disassembler and decompiler processing steps with their relations.

Decompilation and disassembly is a process that can be seen as a chain of linked smaller
processes, and each has different inputs and outputs. The difference between a disassem-
bler and a decompiler is that a disassembler converts the binary into human-readable ma-
chine instructions, and a decompiler converts the binary into a high(er) level programming
language. Disassembly is also an essential process step of the decompilation process. The
decompilation process exists of more steps than a disassembler and is more complex than
disassembly. Disassembly and most of the decompilation steps are still part of ongoing
academic research, so there is no general consensus about how they should be performed.
A general visual representation of the decompilation and disassembly steps is shown in
Figure 2.1. Not all decompilers perform necessarily the steps in the shown order or use all
processes and outputs.

Other essential steps of the decompiler process are the variable/type analysis, control-
flow recovery and the optimisation steps during the code generation. The steps are essen-
tial because these steps recover the variables, data types and high-level control structures.

1http://www.program-transformation.org/Transform/DeCompilation.html

6

In other words, decompilation recovers all kinds of information that is disregarded by the
compiler and is needed to process the binary into a high-level language.

Most decompilers produce results with understandability for the human reader in mind.
They produce results that are of a higher abstraction level and focus on a better readability
and code size than the binary input. This result is no longer sufficient for the emerging
automated software analysis, testing, and verification fields. We want the decompiler to
produce sound code and compilable code instead of readable code. This transformation
into sound code also applies to legacy software maintenance tasks where no source code
is available. Therefore the more recent studies target the soundness and recompilability of
the produced results Brumley et al. [2013]. One other recent study takes this even further.
They even provide a formal verification for the soundness of the produced results Verbeek
et al. [2020]. They do this for an x86-64 binaries subset, so this method has its limitations.

Tool x86-64 Input Output IL Types API

BAP ELF & PE - BIL dynamic or static X
FoxDec ELF C Abstract Code type punning
Ghidra ELF & PE C P-code static X
Phoenix ELF & PE C BIL dynamic or static X
Binary Ninja ELF & PE psuedo C BNIL static X
JEB ELF & PE C JEB IR static X
Objdump ELF & PE ASM - static

Table 2.1: Enummeration of x86-64 disassembler/decompilation tools.

Table 2.1 includes several recent disassemblers and decompilers. They are compared
to their type of input, output, Intermediate language (IL), type recovery system, supported
architectures, and availability of an API for user extensions. The mentioned tools are all
binary decompilers, so they process binary executable files into an output which often is C
code. The input indicates if the tool handles the following x86-64 binary files: Linux type
format (ELF) or the Windows type format (PE).

Almost all tools have a different intermediate language (IL) implemented. The trans-
lation of the binary into an intermediate language is called binary lifting. After lifting the
binary, it is processed to become the required output eventually. The abstraction level of
the IL lies between the assembly code and the output code (in a higher programming lan-
guage mainly) and differs for each implementation. So the level of abstraction must be
wisely chosen because of the loss of binary information. Some decompilation tools like
Binary Ninja have multiple ILs, which all have a different abstraction level 2. The use of an
IL makes it easier to expand the decompiler to different processor architectures. The IL is
more effective for further analysis and processing than assembly code. The input binary
code is disassembled and lifted into the IL and represents a control flow graph of the appli-
cation (CFG). This CFG exists of vertices representing instructions or code blocks, and the
edges represent the code paths throughout the application.

2https://docs.binary.Ninja/dev/bnil-llil.html

7

The recovery of data types is challenging because the compiler throws this high-level
type of information away. We have mainly two options to recover the variables and their
data types; the first and most frequently used for the previously mentioned decompilers is
type inference. The second option is type punning.

Type inference uses a type reconstruction algorithm that finds type constraints for each
instruction (the use of the variable) to deduce the data type of a variable Mycroft [1999].
This type of recovery algorithm can be used dynamically and statically. The dynamic ap-
proach uses the control flow while running the application. During the execution of the
application, it analyses the use of the variables. With this information, it tries to deduce
the data type. The static approach analyses the code and considers well-known function
signatures to infer the data types. Both type inference approaches have pitfalls, the dy-
namic approach has a lower program coverage, and the static approach can use inaccurate
heuristics. Both approaches for type inference can lead to wrong type assumptions.

Type punning is a method to assume a default data type and cast a variable to the appro-
priate data type for their use. Type punning is a far more easy approach than type inference.
This approach is much easier because typecasting on the spot needs fewer things to take
into account. Therefore this approach is more likely to result in correct and recompilable
code. So type punning delivers recompilable code more frequently with the downside of
being less human-readable. Also, type inference is not always possible due to undecidabil-
ity.

Binary Analysis Platform (BAP) is an open-source binary analysis and verification tool
from the Carnegie Mellon University Brumley et al. [2011]. The application and source code
is publicly available. BAP consists of a collection of tools for performing program analysis
and verification of binary code. BAP is developed and actively maintained and supported
by Carnegie Mellon University. The application itself is a further development of previously
developed academic tools for binary analysis. The architecture of BAP consists of a front-
end and a back-end. The front-end lifts the binary to an IL, and the back-end performs
analysis or program verification. As an intermediate language, BAP uses a self-defined lan-
guage called BAP Intermediate Language (BIL). The advantage of BIL is that it makes all
side effects of the assembly code explicit. These side effects arise in the binary code be-
cause some x86-64 instructions also depend on the processor status flags. BAP uses a lin-
ear sweep algorithm to process the x86-64 binary machine code. BAP uses a type recovery
system called TIE Lee et al. [2011]. This type of inference system can be used for both static
and dynamic type inference and analyses memory access to find the variable locations and
analyses their usage to determine their type. Each usage of a variable imposes some con-
straints on the variable’s data type. TIE is more accurate in finding data types than HexRays
and the other academic developed REWARDS dynamic type inference system. Because
BAP is an analysis tool, it produces no source code by itself; however, extensions through
an API can be created that can produce source code. BAP has a well-documented API which
makes it possible to create libraries, plugins and front-ends 3. The limitations of BAP are
that it cannot handle floating-point datatypes and it can not handle certain exotic x86-64
instructions Brumley et al. [2013].

FoxDec (Formal X86-64 Decompilation) is a sound and recompilable C Code decom-
piler Verbeek et al. [2020]. The most crucial difference between FoxDec and onther de-

3http://binaryanalysisplatform.github.io/bap/api/odoc/index.html

8

compilers is that the processing is formally verified for a subset of x86 binaries. This for-
mal verification is performed for three key stages of the decompilation process. Because
of this verification, the tool delivers sound and recompilable code. Sound in this context
means that the extracted C code behaves exactly the same as the original binary. FoxDec
has a special developed IL datatype called abstract code. This datatype can express control
flow, basic blocks, and branching decisions. The difference between the previously men-
tioned ILs and abstract code is that formal proof is provided for the soundness of the IL.
This decompiler is the only decompiler in this list that uses type punning as a type recov-
ery method. This approach is beneficial for the recompilability but makes the C code less
human-readable. FoxDec has, besides great benefits, some limitations in usability. Those
limitations are that human interaction is needed for function signatures, the inclusion of
header files and FoxDec can not deal with indirect branching.

Recently, the US National Security Agency (NSA) has released an opensource version
of their decompiler Ghidra 4. This decompiler targets the analysis of malicious code. This
decompiler does not necessarily produce sound and recompilable code. P-code is Ghidra’s
intermediate language. P-code is a simplified instruction set that is developed to make the
analysis of binary code easier 5. The IL is generic enough to be able to model the behaviour
of many different processors. Because of the design of this IL, Ghidra processes a machine
instruction into a sequence of multiple P-code instructions. As a type recovery method,
Ghidra uses a static type inference approach that uses a register-based data-flow analysis
Zhang et al.. Ghidra can easily be extended by making use of a well-documented API.

The Phoenix decompiler is, like BAP, developed by the Carnegie melon university and
also targets the soundness of the decompilation results Brumley et al. [2013]. Phoenix is
an extension of BAP with security analysis in mind. The difference between FoxDec and
Phoenix is that no definition for soundness is given. Verification of Phoenix is done by
decompiling a tools set, recompiling them and running a test suite. Hereafter the result is
compared with the de facto decompiler HexRays, which for the applied test cases, Phoenix
outperforms. Phoenix has the same limitations as BAP because of the shared modules.
Because Phoenix uses BAP, it also uses the same IL type recovery method (TIE), and it is
also extendable by creating plugins for BAP.

Binary Ninja 6 is a commercial reverse-engineering platform that is developed for bi-
nary analysis. It was developed by Vector 35, and its release was in 2016. So it is not that
long available for the public. Before its public release, it was an internal tool for a hacker
group that used it for CTF tournaments. Because it targets binary analysis, it will produce
various views of the binary, such as a control flow graph and several intermediate textual
representations. Binary Ninja uses several intermediate languages, each with a different
abstraction level. All can be easily viewed and analysed in the user interface. It uses a static
recursive disassembly algorithm. API and plugin options are available that make it possible
to create or extend functionalities, analysers, and other processing modules.

JEB is created and maintained by Pnfsoftware and supports a variety of processor archi-
tectures. Pnfsoftware was founded in 2013. JEB is a commercial reverse engineering tool
known for android decompilation. It supports dynamic and static analysis for multiple ar-
chitectures and executable formats, including x86-64 PE and ELF binaries. For disassembly,

4https://github.com/NationalSecurityAgency/ghidra
5https://ghidra.re/courses/languages/html/pcoderef.html
6https://binary.ninja/

9

it uses a static recursive algorithm. JEB also supports a well-documented API, plugins and
extensions.

Objdump is part of the open-source GNU Binutils collection. This collection contains
a collection of binary tools for Linux. Objdump is the only tool in this list that does not
provide an API and uses a linear disassembly algorithm. Objdump uses the Binary File
Descriptor library for low-level file information and the opcodes library for disassembly.
The tool can disassemble both PE and ELF files compiled for the x86-64 architecture.

10

3
SWITCH STATEMENT DISASSEMBLY

A switch statement provides a multi-way branch in the higher-level programming lan-
guages such as C/C++ and Java. This statement is used to manipulate the control flow
in an application. A switch statement is a flexible way to execute different code blocks
depending on an expression. This statement can be seen as multiple if statements or a
goto statement. Depending on the value of the switch expression, the program jumps
to a symbolic label. So with the switch statement, the application can take one of the
multiple branches depending on the switch expression value.

This chapter will first discuss typical compilerswitch statement implementations and
how compilers implement these at the machine code level. Hereafter we introduce the
definitions that we will use to verify the switch statement implementations. Third, we will
verify how compilers implement switch statements by analysing diagnostic tests. We will
also use these tests to compare the disassembly results of multiple disassembly tools. At
last, some real-life switch statement errors are discussed.

3.1. SWITCH STATEMENT ASSEMBLY IMPLEMENTATIONS
A compiler has several options to implement aswitch statement in assembly Sayle [2008].
The most common are; the unconditional branch, sequential tests, jump table, binary
search, and index mapping.

A compiler will use the unconditional branch only when the default label statement is
given or when the default label statement is the only one left. This branch will result in a
JMP instruction to the default label instruction(s).

Sequential test is the most universal implementation. Each case label statement is
translated into an individual if-else statement. The application sequentially checks all if-
else statements until the case value is found.

A switch statement can also be implemented as an indirect jump. An indirect jump
is a jump whose target address is computed at run-time. This type of implementation uses
the switch value to index an array of addresses or address offsets, and it uses the address to
jump to directly. The offset will be used in a calculation that results in the desired address.
To reduce the size of the array, normalisation of the switch value need to be performed. The
normalisation will let the range of switch values begin at zero for the first case.

11

When the values of case label statements are more sparse, a solution based on the bi-
nary search algorithm is chosen. This balanced search tree starts with a check on the me-
dian value of the case label statements. Hereafter the lower or higher branch is chosen. The
implementation of this algorithm will reduce the search time to O(log n) instead of O(n).

Some compilers like MS Visual Studio also use a method that is called index mapping.
This method is also a table based technique like jump tables with broader applicability.
The difference is that this method uses two arrays (tables) instead of one. The extra lookup
table is used to find the address index. The advantage of this approach is that it forms the
address table into a dense zero-based indexed array. Another advantage is that the range
of the first table (the address index table) is known, so a range check on the address table
itself can be omitted.

Figure 3.1: Switch statement implementation characteristics.

A compiler’s approach to implementing a case statement depends on several character-
istics. These characteristics are source code and compiler dependent. So which switch
statement implementation a compiler chooses depends on the switch statement source
code and compiler characteristics and settings, such as the optimisation settings. It is
even possible that a compiler chooses a hybrid variant and divides a switch statement
into multiple switch implementations mentioned above. For example, when two spaced
ranges of case label expressions are used.

In Figure 3.1 is given a schematic overview of creating a switch statement implemen-
tation in the executable binary. This picture represents both the characteristics and the
compilation process and their relation. For the process and each of the characteristics, an
explanation is given below. The most frequent used switch statement are given in the
executable binary representation.

This process is the general process of compiling a binary. First, a piece of source code
is created which contains the source code representation of a switch statement imple-
mentation. The source code is used as an input for a compiler which will, during compile
time, compile the source code into an executable binary. The result of this process is an
executable binary that will contain a binary implementation of the in source code given
switch statement.

12

The most influential source code characteristic for creating a switch statement im-
plementation is the number of case labels and the case value set. The number of values
and their interval is relevant for the case value set. Other less influential source code char-
acteristics are if a default case label or a case fall-through is being used. A case fall-through
is created when no break statement is applied for one or more case labels. This will result
in the execution of different case labels until a break statement is found.

The optimisation setting is a user parameter and instructs the compiler to make choices
that optimise the resulting binary. For a compiler, relevant characteristics are the com-
piler itself, the optimisation settings and the switch statement implementation condi-
tions. The implementation a compiler chooses is dependent on the predefined or known
switch statement implementations by the compiler and the related implementation con-
ditions. The optimisation setting will finally optimise the chosen implementation in the
manner desired by the user. So if a user wants a faster execution time, the user can instruct
the compiler to make choices that favour speed.

For example, when only a few case expressions are provided, most compilers will be
inclined to implement the switch statement as a sequential test. Thus a list of if state-
ments. When more case label expressions are given, and their values are dense, a compiler
will choose the lookup table variant. When the values of the case statements are more
sparse, a compiler prefers to implement a binary search. Other source code characteristics
that will influence the implementation are when a default case label or case fall-through is
applied.

As an example a simpleswitch statement is given in Listing 3.1. It consists of aswitch
statement and as case blocks some assignments. The following switch statement source
code characteristics can be found:

• Case value set {0, 1, 2, 3}
• Number of case labels: 5
• A default case label
• A case fall-trough from case label value 2 to case label value 3 (no break statement

applies)

The decision a compiler makes regarding which type of switch implementation de-
pends on the compiler characteristics. These characteristics relate to the compiler, switch
statement implementation conditions, and optimisation setting. Those conditions will
guide the compiler in choosing an implementation. For example, a condition, or a thresh-
old, is the number of case labels. So when only a few case values are used, less than this
threshold, a compiler uses a sequential test. The compiler optimisation setting also in-
fluences those conditions and guidance. So an optimisation level favour speed (-O2) will
result in faster implementation, like index mapping, and an optimisation setting -Os will
result in an implementation that requires less code size.

Another compiler dependent characteristic is the location of the placing of the jump
table itself. When the visual studio compiler decides to use a jump table, the values of the
jump table are placed right after the end of the function. This placing is in contrast to GCC,
Clang and other C compilers, which place the jump table into the read-only data section
Andriesse et al. [2016]. This mixing of data and instructions will make an executable harder

13

switch (input) {
case 0:

output = "Case 0";
break;

case 1:
output = "Case 1";
break;

case 2:
output = "Case 2";

case 3:
output = "Case 3";
break;

default:
printf("Err. Invalid input!\n");
exit(1);

}

Listing 3.1: A simple switch statement example.

to decompile, resulting in data being treated as code and thus missing basic blocks.

3.2. SOUNDNESS AND COMPLETENESS OF DISASSEMBLY
We will only look at switch statements based on table-based solutions such as jump ta-
bles and index mapping to verify the decompilation process of case statement disassem-
bly. We base this decision on the fact that other case statement implementations, such as
a sequential test and the binary search, will result in if-else statements that are easier to
decompile because these constructs are more straightforward and more prevalent in the
code.

First, we will introduce the definition reachable. In our context, an instruction address
is reachable, if and only if, a control flow path exists from the entry point of the executable
binary to that instruction address. A basic block is reachable if and only if its first instruc-
tion is reachable. These control flow paths can be determined for both static and dynamic
analysis. Static analysis in this context means that the analysis takes place without running
the examined binary. The dynamic analysis takes place while running this binary. We will
only focus on static control flow paths during our analysis of the binaries. So we will only
analyse the control flow paths that we will find by means of static analysis.

The resulting disassembled switch statements and the found control flow paths we
are going to analyse these on both soundness and completeness.

Definition 3.2.1 (soundness). For the switch statement analysis, we define soundness as
follows: If the disassembler produces a case basic block, then this case basic block is also
reachable in the executable binary.

Definition 3.2.2 (completeness). The definition we use for completeness is as follows: If a
case basic block is reachable in the executable binary, then this case basic block is produced
by the disassembler.

In Listing 3.2 an example hereof is given. So let rax be a value between 0 and 3. The

14

disassembler is sound if it produces instruction i_0 till i_3. If the disassembler produces in-
struction i_4, the result is unsound because this instruction is unreachable in the input bi-
nary. So in the case ofswitch statement disassembly, the result of a disassembler could be
bound to table size and table values. A disassembler is complete if it produces instructions
i_0 till i_4. The result is incomplete when a disassembler misses one of the instructions i_0
. . . i_3.

So the result of a linear sweep disassembly algorithm is often complete, it does not miss
any instructions, but unsound, it produces unreachable instructions. The result of a re-
cursive disassembly algorithm is often sound, it produces only reachable instructions, but
incomplete, it does not disassemble all instructions because of indirections in the binary.

mov rax, {0,1,2,3}
jmp a + 8*rax

a+0:
i_0

a+8:
i_1

a+16:
i_2

a+24:
i_3

a+32:
i_4

Listing 3.2: switch statement pseudo assembly

Note that we have left out the case label conditions in the provided definitions for
soundness and completeness. This is because we consider static reachability only. We
chose this because it creates a more generic definition but is still specific enough to per-
form our research. So, despite having left out the case label conditions, our definitions will
give us enough information and insight to understand the switch statement disassembly
ability of the to be tested disassemblers.

3.3. SWITCH STATEMENT DISASSEMBLY
In this section, we will analyse how some compilers implement switch statements and
how disassemblers can disassemble those switch statements. First, we will create some
switch statement diagnostic tests. Herefore we have defined characteristics of interest and
translated them into a diagnostic test, see Figure 3.1. Second, we have compiled the diag-
nostic tests with several compilers and compiler settings and analysed the switch state-
ment implementations. At last, we disassembled the diagnostic tests with several disas-
sembly tools and verified the produced results.

3.3.1. SWITCH STATEMENT DIAGNOSTIC TESTS
We have developed several diagnostic tests for the switch statement disassembler anal-
ysis. An overview of the diagnostic tests and their characteristics can be found in Table
3.1. In this table, we have summarised the characteristics of each of the created diagnostic
tests. Each diagnostic test has a reference label which will be used throughout the rest of
this chapter.

15

D
ia

gn
o

st
ic

Te
st

va
lu

e
se

t

N
o.

ca
se

la
b

el
s

d
ef

au
lt

la
b

el

en
cl

o
se

d
if

st
at

em
en

t

n
es

te
d

sw
it

ch
st

at
em

en
t

en
u

m
ca

se
co

n
st

an
ts

ca
se

fa
ll-

th
ro

u
gh

fu
n

ct
io

n
p

o
in

te
rs

n
es

te
d

lo
o

p

C1 Consecutive 3 X
C2 Consecutive 10 X
C3 Consecutive 10 X X X X X X
C4 Consecutive 100 X
R1 Ranged 3 X
R2 Ranged 10 X
R3 Ranged 10 X X X X X X
R4 Ranged 100 X
S1 Sparse 3 X
S2 Sparse 10 X
S3 Sparse 10 X X X X X X
S4 Sparse 100 X

Table 3.1: Switch table diagnostic tests.

As can be seen in this table, there are mainly three types of diagnostic tests; each type
has a different switch value range and interval. The ranges of diagnostic test values we clas-
sify as consecutive, ranged and sparse. The values used for the tests are all natural numbers
including zero. Examples of the case values sets are:

• Consecutive = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Ranged = {0, 1, 2, 3, 4, 500, 501, 502, 503, 504}
• Sparse = {3, 6, 7, 10, 13, 16, 19, 22, 25, 29}

The minimal diagnostic tests provides a minimal code example of aswitch statement.
The tests are C1, C2, R1, R2, S1, and S2. Depending on the switch value, it sets a string value
that is printed on the screen right after the switch statement. The switch value is a parsed
command-line value string to an integer. With these diagnostic tests, we want to test if a
disassembler can disassemble all data and instructions related to switch statement.

The core of the extensive diagnostic test is a switch statement with ten case values.
The extensive test are C3, R3, and S3. In this type of diagnostic test the switch statement
is dressed with more code constructs in and around the switch statement to make the
disassembly process more complex. We have chosen to use code constructs that you will
encounter also in real-life switch statements. These code constructs are, for example, an
enum for case label values, function pointers, nested switch statements and if state-
ments , case fall-through and loops. With this diagnostic test, we want to test the influence
of these different code constructs on the disassembler and detect the switch statement
and the extra code constructs.

16

For each value set, we have also created an extra long diagnostic test. The references for
these tests are C4, R4, and S4. The structure of these tests is the same switch statement
construction as for the minimal diagnostic tests. However, for this diagnostic test type, we
have extended the switch statement up to one hundred case labels and a default case.

3.3.2. COMPILER SWITCH STATEMENT IMPLEMENTATIONS
To analyse what type of diagnostic test is of interest for our test, we will first analyse the
type of switch statement code construct a compiler creates. This analysis is performed
for several switch statement diagnostic tests. Each compiler uses different heuristics re-
garding translating the high-level programming language into machine instructions. So
using different compilers for the same input, the machine instruction output would not be
alike, although the software functionality is.

The compilers we will use for our comparison are the GNU Compiler Collection (GCC),
Microsoft Visual C++ Compiler (MSVC) and Clang. GCC 1 is one of the most popular com-
pilers for compiling C code. GCC is an open-source compiler and can compile many dif-
ferent higher-level programming languages. This compiler is maintained by GNU and is
part of the GNU programming tool-set for the Linux kernel. These tools are also available
for the Windows OS with the Cygwin tool-set. MSVC is the Microsoft C compiler provided
with Microsoft Visual Studio and is the compiler used by MS to compile DLL files and other
kernel-related modules. Clang is a compiler for C, C++, Objective C and Objective C++
programming languages and acts as a drop-in replacement for GCC. Clang is open-source
and based on the LLVM2 Compiler infrastructure project and supports several architec-
tures. LLVM provides a language-independent intermediate representation and optimisa-
tions and is used by multiple compilers.

The used versions of each decompiler are:

• GCC, Version 10.2.0
• MSVC, Version MS Visual C++ 2019 - 00435-60000-00000-AA67
• Clang, Version 10.0.0

The diagnostic tests we will use are the ones that are mentioned in Table 3.1. We com-
pile each diagnostic test with several optimisation settings and analyse the impact of the
switch implementation on the produced output. The optimisation settings we will use
for our analysis are: -Od/-O0 (optimisations disabled) -Os (favour application size) and
-O2 (favour application speed).

For each diagnostic test and compiler setting, we have analysed the implementedswitch
statement approach of the compiler. The result of this compiler test is noted in Table 3.2.
The rows of this table represent the diagnostic tests, and the columns represent the com-
piler and the compiler settings.

As can be seen in the results (Table 3.2), the compilers create different types of switch
statement solutions depending on diagnostic test and compiler settings. For the diagnostic
tests with 3 case labels, mostly a sequential test implementation for switch statements is
chosen. An exception hereof is diagnostic test C1 compiled with Clang, and Clang chooses
to implement a lookup table for the optimisations -Os and -O2. A table-based lookup

1https://gcc.gnu.org/
2https://llvm.org/

17

Diag. GCC MSVC Clang
Test -Od -Os -O2 -Od -Os -O2 -Od -Os -O2
C1 1 1 1 1 1 1 1 2 2
C2 2 2 2 2 3 2 2 2 2
C3 2 2 2 2 3 2 2 2 2
C4 2 2 2 2 3 2 2 2 2
R1 3 1 1 1 1 1 1 1 1
R2 5(2,2) 5(2,2) 5(2,2) 1 1 1 1 5(2,2) 5(2,2)
R3 5(2,1) 5(2,1) 5(2,1) 1 1 1 1 5(2,1) 5(2,1)
R4 5(2,2, 5(2,2, 5(2,2, 5(2,2, 5(3,2, 5(2,2, 1 5(2,2, 5(2,2,

2,2) 2,2) 2,2) 2,2) 2,2) 2,2) 2,2) 2,2)
S1 1 1 1 1 1 1 1 1 1
S2 2 2 2 2 3 2 2 2 2
S3 2 2 2 4 3 4 2 5(2,1) 2
S4 2 3 2 5(4,4) 3 5(4,4) 2 3 2

Table 3.2: Switch table implementations per compiler.

1 = sequential test
2 = lookup table
3 = binary search
4 = Index mapping
5 = hybrid switch (made up of ..)

variant is mostly chosen for diagnostic tests with more case labels.

For the consecutive diagnostic tests with a higher switch count (>3), the lookup table is
the most prevalent used solution by all three compilers. Only MSVC chooses for the op-
timisation -Os to implement a binary search construction instead of a lookup table based
solution. Clang takes the optimisation of the diagnostic test C2 and C4 for optimisation
settings -Os and -Od even further than MSVC and GCC. It creates a lookup table for the
strings, passed to the print function as a pointer.

The ranged diagnostic tests show a more distinct result between the three compilers
for the diagnostic tests with a higher case label count. GCC and Clang cut the switch
statement in half and treat them separately by doing a range check for the upper and lower
value range prior to the switch statement. The diagnostic test R2 is divided into two
lookup table-based solutions. The diagnostic test R3 is divided into a lookup table solu-
tion for the lower range and a sequential test for the upper range. They probably choose
a sequential test for the upper range instead of a lookup table due to the fall-through of
case labels 5, 6 and 7. This fall-through results in three basic blocks for the upper range
and, like the other switch statements with a lower case label (or code block) count, this
will result in a sequential test. One exception is the ranged diagnostic tests compiled with
Clang and no optimisation; these are implemented as a sequential test. This choice is made
most probably for the sake of simplicity. MSVC implements all ranged diagnostic tests as
two sequential tests for the different range values and a range check before. However, the
ranges for ranged tests R2, and R3 of the MSVC implementation are not precisely divided

18

into the higher and lower range like GCC. For example, the value of case 5 (value 500) is also
included in the lower range.

For the implementation of the extra-long, ranged diagnostic test R4, containing a switch
statement with 100 case labels, it is noticeable that in almost all cases, the same kind of hy-
brid solution was chosen. The only exception is the test compiled with Clang -Od. All
switch statements are divided into four segregated sub-switch statements with extra range
checks for each sub-switch for this hybrid implementation. The case label values are all
equally divided into 25 case values. For the sub switch statements, GCC and Clang pro-
duce, in all cases, a lookup table. MSVC produces as an exception for the optimisation
setting -Os one binary search for the lowest range of 25 case values. So the choice for this
hybrid implementation is independent of the compiler and optimisation setting. one mi-
nor difference in implementation is that MSVC for the optimisation setting -O2, for three
of lower the sub switch statements, chooses to implement one separate case label as an
if statement. The case label value chosen for this if statement the highest value of the
sub switch statement.

The sparse diagnostic tests show us also some diversity between the three compilers.
GCC chooses to implement a lookup table for the large and extended version indepen-
dent of the compiler optimisation setting. MSVC shows a more diverse switch statement
solution among the cases and optimisation setting. This compiler prefers a lookup table
solution for S2 and an index mapping for S3 diagnostic test. Like the consecutive diag-
nostic tests, MSVC chooses to implement the switch statement as a binary search for
the favour size optimisation setting (-Os). Clang’s implementation of the switch state-
ment is almost entirely similar to GCC. One exception is S3 and optimisation -Os, this
switch statement is implemented as a hybrid switch statement just like R3. The com-
piler’s choice for implementing the extra-large sparse diagnostic test S4 does not differ a
lot mutually and from the preceding tests. The difference that can be noted is that MSVC
creates a hybrid of an index mapping implementation for the optimisation -Od and -O2.

So MSVC uses a greater variety of switch statement implementations than GCC and
Clang. This compiler is also the only compiler that uses an index mapping implementa-
tion for our diagnostic tests. The optimisation setting has a greater impact on the chosen
implementation strategy than the other compilers. The optimisation setting -Oswill more
frequently result in a sequential test or binary search type solution. This solution is, for our
tests, less space-consuming than a lookup table based solution. For the other optimisation
settings (-Od -O2), a lookup table based solution is chosen.

GCC chose most often for a hybridswitch solution in comparison with the other com-
pilers. It has implemented most of the ranged diagnostic tests as a hybrid switch state-
ment with equally divided ranges. GCC’s switch statement solution differs only in minor
details for the different optimisation settings. This is in contrast, as mentioned before, to
MSVC. GCC is more likely to choose a lookup table as the preferred solution for large or
extended diagnostic tests and a sequential test for the lower basic block counts.

In general, Clang switch statement implementations look a lot like GCC. However, for
some optimisation settings, a different solution is chosen. Nevertheless, the set of imple-
mentations from which is chosen is equivalent.

19

3.4. DISASSEMBLY OF DIAGNOSTIC TESTS
We will analyse the disassembly results for the diagnostic tests that use a lookup table or
index mapping as switch statement implementation. The used switch statement imple-
mentations can be found in Table 3.1. This comparison is performed for several disassem-
blers/decompilers. The disassembly result we will verify on soundness and completeness
as defined in Section 3.2. As input for the disassembler, we will use the compiled diagnostic
tests from Section 3.3.2.

For the diagnostic test analysis we will use the following four disassemblers:

1. Ghidra, Version 10.1 PUBLIC
2. JEB, Version JEB 4.14.0.202203082008
3. Binary Ninja, Version 2.2.2487 demo
4. Objdump, Version 2.34

This selection is an arbitrary selection of state-of-the-art disassembly and decompilers.
All tools have different disassembly and decompilation processes, intermediate Languages,
and different decompilation algorithms. Ghidra Rohleder [2019], and Binary Ninja are rel-
atively new and not that long available to the public. Ghidra is open-source and made
available by the National Security Agency (NSA)3. Binary Ninja4 was developed by hacker
group Vector 35 and is based on their decompilation tooling used for CTFs tournaments.
JEB5 is created and maintained by Pnfsoftware and supports a variety of processor archi-
tectures. Pnfsoftware was founded in 2013. Ghidra is open-source in contrast to Binary
Ninja and JEB, both commercial applications. However, Binary Ninja and JEB both have
a freeware/community version available with limitations. The last disassembly tool in this
list is Objdump 6. Objdump is part of the open-source GNU Binutils collection. This collec-
tion contains a collection of binary tools. Objdump uses the Binary File Descriptor library
for low-level file information and the opcodes library for disassembly. All four tools have in
common that they support the decompilation of x86-64 Windows PE and the Unix/Linux
ELF binaries. These tools are well known and frequently used in the industry. With this
selection, we have a diverse group of suitable and state-of-the-art disassembly and decom-
pilation tools.

The results of our switch statement disassembly survey is noted in Table 3.3 and Ta-
ble 3.4. These tables show the disassembly results of each decompiler against each combi-
nation of the diagnostic test, compiler, and compiler optimisation setting. The superscripts
are a cross-reference with the text explaining the verification issue. The disassembly result
is, as mentioned before, verified according to our verification definition given in Section
3.2. So, to gather these results, we have examined and verified 256 diagnostic test decom-
pilation results.

One of the first things that can be noticed in the table is that objdump is the only tool
that produces only unsound results for all MSVC compiled binaries1. Thus objdump cre-
ates bogus instructions in his switch statement disassembly results. The used disassem-

3https://ghidra-sre.org/
4https://binary.ninja/
5https://www.pnfsoftware.com/jeb/
6https://www.gnu.org/software/binutils/

20

Diag.
Test Compiler Optimisation Ghidra Binary Ninja JEB Objdump

C2 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

MSVC -Od S/C S/C S/C US1

-O2 S/C IC3 S/C US
Clang -Od S/C S/C S/C S/C

-Os S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

C3 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

MSVC -Od S/C S/C S/C US1

-O2 S/C IC3 S/C US
Clang -Od S/C S/C S/C S/C

-Os S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

C4 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

MSVC -Od S/C S/C S/C US1

-O2 S/C IC3 S/C US
Clang -Od S/C S/C S/C S/C

-Os S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

R2 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

Clang -Os S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

R3 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

Clang -Os S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

R4 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

MSVC -Od S/C S/C S/C US1

-Os S/C S/C S/C US
-O2 S/C S/C IC5 US

Clang -OS S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

Table 3.3: Diagnostic test disassembly results of the disassembly tools 1/2.

S/C = sound and complete
US = unsound
IC = incomplete 21

Diag.
Test Compiler Optimisation Ghidra Binary Ninja JEB Objdump

S2 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

MSVC -Od S/C S/C S/C US1

-O2 S/C S/C S/C US
Clang -Od S/C S/C S/C S/C

-Os S/C S/C IC S/C
-O2 S/C S/C IC S/C

S3 GCC -Od IC2 S/C IC2 S/C
-Os IC S/C IC S/C
-O2 IC S/C IC S/C

MSVC -Od S/C IC6 S/C US1

-O2 S/C IC S/C US
Clang -Od S/C S/C S/C S/C

-Os S/C S/C IC4 S/C
-O2 S/C S/C IC S/C

S4 GCC -Od IC2 S/C IC2 S/C
-O2 IC S/C IC S/C

MSVC -Od S/C IC3 S/C US1

-O2 S/C IC IC5 US
Clang -Od S/C S/C S/C S/C

-O2 S/C S/C IC4 S/C

Table 3.4: Diagnostic test disassembly results of the disassembly tools 2/2.

S/C = sound and complete
US = unsound
IC = incomplete

22

bly algorithm causes this. For objdump, this is a linear disassembly algorithm. The main
characteristic of this algorithm is that it will parse all bytes consecutively, and the prob-
lem herein is that not all bytes are instructions. MSVC’s jump tables, which are placed in
the text section, are interpreted as instructions, not as data. Therefore this results in un-
sound instructions. All other disassembly tools used in this section are recursive. Recursive
disassembly/decompilation algorithms do take the control flow into account. So when an
x86-64 machine instruction or data is created, it is because there exists a static path that
leads to that particular piece of code or data. So a tool with a linear disassembly algorithm
will more often produce unsound results than a tool with a recursive algorithm.

Another thing that catches the eye is that both Ghidra and JEB are not able to correctly
disassemble any diagnostic test compiled with GCC2. All GCC results for those two men-
tioned disassemblers were incomplete. Despite the fact of GCC’s frequent use in real-life.
However, there is a distinction between the produced results and the point from which
the disassembly fails. Ghidra finds it hard to determine GCC jump-table implementation
correctly for each diagnostic test. So the disassembly stops at the JMP instruction of the
switch statement. So all code blocks that relate to the switch statement are left out, i.e.,
the result is incomplete. The same counts for the tests that GCC compiles with no opti-
misation setting -Od, JEB also find it hard to determine the jump-table. Of the diagnostic
tests that are compiled with the optimisation settings -Os and -O2, JEB has not been able
to disassemble the main function at all. JEB interpreted the main function as data and did
not recover the jump-table in the rdata section.

Ghidra did produce sound and complete switch statement disassembly results for
all of the other diagnostic tests compiled with MSVC and Clang. Ghidra could correctly
identify the lookup tables and disassemble the case code blocks.

Binary Ninja did disassemble most binaries except some compiled with MSVC3. The
binaries resulting in incomplete disassembly were the diagnostic tests C2, C3, C4, S3, and
S4. For the diagnostic tests C2 and C3 compiled with optimisation setting -O2, Binary
Ninja has not been able to determine the jump-table and did not disassemble the case
code blocks coming after the JMP instruction. See Listing 3.3, after the JMP instruction at
address1400010a9 only byte values are given, until a code block that is reachable without
the jump table. The jump table is located at address 140001164 till address 14000118C

For the diagnostic test S3, where MSVC created an index-mapping implementation
for the switch statement, the problems were related to the secondary index table6. For
compilation, without optimisation setting -Od the secondary table was not of the correct
length. For optimisation setting -O2, the secondary index table was skipped. Moreover,
these missing indexes or tables led to incomplete results.

The disassembly tool JEB was unable to disassemble most of the diagnostic tests used
for our switch statement disassembly verification. As mentioned before, it could not cor-
rectly disassemble any of the GCC diagnostic tests. This behaviour also applied to most
of the diagnostic tests compiled with Clang4. JEB was only able to correctly disassemble
the tests compiled with no optimisation setting -Od. For the binaries compiled with op-
timisation other than disabled, JEB could not decompile the main function. This issue
with Clang binaries also applies to the binaries compiled with GCC with the same com-
piler optimisation settings. What also is remarkable about the other disassemblers is that
JEB could not deal with -O2 optimised MSVC binaries with a hybrid switch statement
implementation5. For this particular diagnostic tests, R4 and S4, it could only resolve the

23

140001098 488d1561efffff lea rdx, [rel __dos_header]
14000109f 8b8c9a64110000 mov ecx, dword [rdx+rbx*4+0x1164]
1400010a6 4803ca add rcx, rdx
1400010a9 ffe1 jmp rcx

1400010ab 48 8d 15 c6 11 00 00 33 c9 eb 7c 48 8d 15 c3 11 00 00 b9 01 00
1400010c0 00 00 eb 6e 48 8d 15 bd 11 00 00 b9 02 00 00 00 eb 60 48 8d 15

b7 11 00 00 b9 03 00 00 00 eb 52
...
140001120 08 00 00 00 eb 0c 48 8d 15 93 11 00 00 b9 09 00 00 00 44 8b c1

48 8d 0d a4 11 00 00 e8 cf fe ff
140001140 ff 33 c0 48 83 c4 20 5b c3

140001149 488d0d78110000 lea rcx, [rel data_1400022c8]
140001150 e8bbfeffff call sub_140001010
140001155 b901000000 mov ecx, 0x1
14000115a ff15980f0000 call qword [rel exit@IAT]
{ Does not return }

140001160 cc 0f 1f 00 ab 10 00 00 b6 10 00 00 c4 10 00 00 d2 10 00 00 e0
10 00 00 ee 10 00 00 fc 10 00 00

140001180 0a 11 00 00 18 11 00 00 26 11 00 00 cc cc cc cc cc cc cc cc cc
cc 66 66 0f 1f 84 00 00 00 00 00

Listing 3.3: Binary Ninja misses the lookup table (start address:140001164) and thus the switch statement
code blocks (address: 1400010ab-140001148).

first switch statement, the subsequent switch statements are skipped.

Based on the results in Table 3.3, it is clear that each disassembler has it is strengths and
weaknesses for this comparison. For example, Binary Ninja is better at decompiling GCC
and Clang binaries. Ghidra is more proficient at the disassembly of Clang and MSVC com-
piled binaries, and JEB’s strength is more in the disassembly of MSVC binaries. Objdump
is less suitable for disassembling MSVC binaries due to the mixing of data and instructions
in the next section because of its used disassembly algorithm.

The analysis in this section only focuses on disassembly. However, during the analysis
also some decompilation errors are found. Notable errors are the use of inline strings, the
processing of a exit statement and the incorrect decompilation of some of the switch
statements were not correct decompiled.

An inline string is used when the string literal is directly applied as an operand of assem-
bly instruction. This instead of a pointer to the string in the data section. The compilers
frequently use the inline string when optimisation is applied during compilation, with the
required condition that a string is short enough to be fitted into the operand. For a com-
piler to make use of an inline string, the string must be short enough to be fitted in an
operand. This implementation makes it a lot harder for a disassembler to correctly identify
the correct data type. As a consequence the decompiler cannot identify function signatures
correctly for string related functions.

We found that some decompilers find non returning statements hard to analyse during

24

our analysis. The exit statement is an example of a non-returning function. The exit state-
ment is applied in the diagnostic tests C3, R3, and S3. Both Ghidra and Binary Ninja have
frequently skipped the exit statement in their decompilation results.

The decompilation flaws we have encountered during our analysis are missing break
statements for each case, missing the switch statement at all (while it is correctly disas-
sembled), and wrong case label values.

3.5. SWITCH STATEMENT REAL-LIFE DISASSEMBLY ISSUES
For this section, we will analyse if used disassemblers also encounter switch statement
disassembly errors while disassembling real-life binaries. The tools used for this analysis
are the same disassembly tools as used for the previous test. The decompilation results of
the binaries will be checked on the prevalence of lookup tables and the related instructions
analysed. This section will discuss our findings on some of the most distinctive disassembly
errors.

The real-life binaries we will use are MS Windows DLL binaries. We focus on the DLL
files supplied as standard with Windows and compiled with Visual Studios MSVC com-
piler. We prefer these binaries because they are common, and MSVC’s preference for mix-
ing of data and instructions and the use of index mapping as an implementation method
forswitch statements. The three MS Windows DLL executable binaries used for this anal-
ysis are:

• ucrtbase.dll: The universal c/c++ run-time library
• kernel32.dll: Win32 base APIs, such as memory management, thread creation
• crypt32.dll: Crypto API, Certificate and Cryptographic Messaging functions

As mentioned before, not all disassembly tools can find jump tables at all. For example,
Objdump. Objdump is a simple linear disassembler that interprets everything in the text
section as an instruction. No distinction is made between data or instructions. BAP is a
more sophisticated disassembler that uses the control flow of an application to separate
data and instructions. So in the disassembly result, the table data is not translated into
bogus instructions as Objdump does. The downside is that no instructions are available for
the jump table’s address. So the instructions were the lookup table references to are not in
the decompiled result.

The disassembly tools we will be using for this analysis are Ghidra, JEB, and Binary
Ninja. All these tools can disassemble jump table based switch statements and MSVC com-
piled binaries, as we have shown in Section 3.4. We have found three different types of
issues during the analysis of the decompilation results that we will be covering in this sec-
tion. For each of the found issues, we will give one example. The found decompilation
issues we have enumerated in Table 3.5. The column isolatable indicates if a diagnostic
test is available that gives the same disassembly issue, i.e. we can isolate the disassembly
error with a small example.

3.5.1. SECONDARY JUMP TABLES
During our switch statement analysis based on lookup tables of kernel32, we found that
Binary Ninja produces different results for the secondary lookup tables as Ghidra and JEB.
The heuristic that Binary Ninja uses for analysing secondary lookup tables is deficient. This

25

Soundness / Disassembler Isolatable Real-life examples
Completeness

Too few entries IC Binary Ninja Yes kernel32.dll
secondary lookup table (0x6b86ba19)
Entries treated as code US/IC Binary Ninja Yes kernel32.dll

(0x6b811a25)
Too complex branching IC Ghidra No ucrtbase.dll

Table 3.5: Found issues during our real-life switch statement disassembly analysis.

US = unsound
IC = incomplete

6b86ba19 uint8_t lookup_table_6b86ba19[0x9] =
6b86ba19 {
6b86ba19 [0x0] = 0x00
6b86ba1a [0x1] = 0x01
6b86ba1b [0x2] = 0x02
6b86ba1c [0x3] = 0x03
6b86ba1d [0x4] = 0x03
6b86ba1e [0x5] = 0x03
6b86ba1f [0x6] = 0x03
6b86ba20 [0x7] = 0x03
6b86ba21 [0x8] = 0x03
6b86ba22 }

6b86ba22 03 03 03 03 03 03
6b86ba28 03 03 04 01 01 05 05 01
6b86ba30 06 03 06 02 07 08 01 01
6b86ba38 01 00 ..

Listing 3.4: Binary ninja disassembled secondary jump table. The secondary lookup table is too short

deficiency results in secondary jump tables not being of the correct length. This result
can be isolated with the diagnostic test S4 compiled with MSVC and optimisation setting
-Od or -O2. This imperfection can cause completeness errors. This impacts completeness
because binary values are missing in the result.

This deficiency is presented in Listing 3.4 created with Binary Ninja. The byte values
placed right after the lookup table (addresses 0x6b86ba22 up to 0x6b86ba40) are not in-
cluded in this table. They should also be part of the lookup table. The lookup table shown
in the listing is the secondary lookup table or index table of a switch statement imple-
mented as an index mapping. The size of this index lookup table should be 33 instead of
9.

3.5.2. LOOKUP TABLE ENTRIES TREATED AS CODE

This error is partly related to the previously presented error, secondary jump tables 3.5.1.
This is because the disassembled jump table is also of the incorrect length. Only this time,
the jump table entries are disassembled as instructions. The erroneous behaviour is related

26

6b811a20 uint8_t lookup_table_6b811a20[0x5] =
6b811a20 {
6b811a20 [0x0] = 0x00
6b811a21 [0x1] = 0x01
6b811a22 [0x2] = 0x04
6b811a23 [0x3] = 0x04
6b811a24 [0x4] = 0x04
6b811a25 }

int32_t __convention("regparm") sub_6b811a25(int32_t arg1) __noreturn
6b811a25 arg1.b = arg1.b + 2
6b811a27 arg1.b = arg1.b + 3
6b811a29 *nullptr
6b811a2b *nullptr
6b811a2d breakpoint

6b811a2e cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc

Listing 3.5: Binary Ninja disassembled jump tables. Data is interpreted as instruction.

to the index mapping switch statement implementation. So the issue can be isolated
with diagnostic test S4 compiled with MSVC. This behaviour affects both soundness and
completeness of the result. Soundness because there are instructions in the result that are
not present in the binary, and completeness because the jump table entries are lost.

In Listing 3.5 a disassembly result can be seen where the data that should be part of the
lookup table is interpreted as code. The address range of the original table is 6b811a20 to
6b811a2e so the size of the lookup table should be 14. In this disassembly result the size
of the table is 5 and the rest of the table indices is interpreted as bogus code, start address
6b811a25 to 6b811a2e. Binary Ninja even creates an extra function sub_6b811a25
at address 6b811a25.

3.5.3. BRANCHING TOO COMPLEX

Disassembly of switch statements gets, in some cases, too complex for Ghidra’s disas-
sembly analysis. In such cases, Ghidra comes with a warning in the decompilation result.
This warning is as follows:
/* WARNING: Could not recover jump table at 0x1006a383. Too many
branches */
This error results the indirect jump being treated as a function call instead of a switch
statement. Because Ghidra also uses a recursive control flow analysis, it follows the appli-
cation control flow, resulting in undecompiled bytes and thus instructions. This is because
the possible control flow of the switch statement is not followed. Also, the switch state-
ment itself is being omitted by Ghidra. This results in the incompleteness of the produced
result.

As an example see Listing 3.6 and Listing 3.7 which are extracted from Ghidra’s disas-
sembly result of the binary ucrtbase.dll. Like the previous real-life errors, it is again an index
mapping switch statement implementation that causes a disassembly error. In Listing 3.6
can be seen that both lookup tables, the jump table and the index table, are not identi-
fied as such by the disassembler. The jump table starts at address 1006ae9f and ends at

27

PTR_DAT_1006ae9f XREF[1]:FUN_10069bdb:1006a383(R)
1006ae9f c4 a3 06 10 addr DAT_1006a3c4 = 89h
1006aea3 be ?? BEh
1006aea4 a3 ?? A3h
1006aea5 06 ?? 06h
1006aea6 10 ?? 10h

DAT_1006aea7 XREF[1]: FUN_10069bdb:1006a37c(R)
1006aea7 00 ?? 00h
1006aea8 01 ?? 01h
1006aea9 01 ?? 01h
1006aeaa 00 ?? 00h
1006aeab 01 ?? 01h
1006aeac 00 ?? 00h
1006aead 00 ?? 00h
1006aeae 01 ?? 01h

Listing 3.6: Ghidra analysis fails to detect lookup tables.

DAT_1006a3be
XREF

[1]: 1006aeaf(*)
1006a3be 83 ?? 83h
1006a3bf 4d ?? 4Dh M
1006a3c0 f0 ?? F0h
1006a3c1 ff ?? FFh
1006a3c2 eb ?? EBh
1006a3c3 03 ?? 03h

DAT_1006a3c4
XREF

[1]: 1006ae9f(*)
1006a3c4 89 ?? 89h
1006a3c5 75 ?? 75h u
1006a3c6 f0 ?? F0h

Listing 3.7: Ghidra fails to disassemble into instructions due to incorrect jump-table.

address 1006aea3. The start address of the index table can be found directly below the
jump table at start address 1006aea7. Thus the jump table contains two addresses which
both reference a different basic block. The two addresses that the jump table contains, or
should contain, are address 1006a3c4 and address 1006a3be. Both addresses and the
basic blocks can be found in Listing 3.7. As can be seen in this listing is that Ghidra labels
both addresses as data instead of instructions and does not disassemble the bytes.

The failure of detecting the lookup tables and thus producing a switch statement will
result in basic block being referenced to (address 0x1006a3be and 0x1006a3c4) is not
correctly detected as instructions and being treated as data. See Listing 3.7.

28

4
POINTER RECOGNITION ISSUES

A pointer holds a pointer value that is an address to another piece of memory. The mem-
ory where it references can be instructions or data. So pointers are memory locations
(’variables’) that hold the address value of a code block (e.g. function), data or another
pointer(pointer to a pointer). A pointer can also be used in arithmetic operations like in-
crementing or decrementing. These operations are used, for example, to manipulate the
index of an array. Because a pointer address is a value, the disassembler handles it as data.

In an x86-64 binary, the location of the pointer variable, i.e. memory location of the
pointer value, can be included in the text section or one of the data sections. The pointer
value can be defined as a variable or as a constant. When a pointer value is declared as
a constant, it will be included in the text or one of the read-only data sections. As men-
tioned before, it is allowed in the x86-64 architecture to mix data and instructions in the
executable section. If the pointer value is a variable, the pointer value can be included in a
writable data section only. Such as the writable data section (global variables), the stack or
the heap. So a pointer value can be included in almost all data or text related segments of
the application, depending on the needed characteristics.

As mentioned earlier, a pointer holds a value that addresses another piece of memory.
It can be located in almost all data sections or the binary’s text section. This pointer value
is actually often an immediate address value. These pointers can also occur as a jump ta-
ble, pointer to pointer, or a data structure containing a pointer. One of the challenges a
disassembler faces is that it has to determine if raw, immediate constants actually consti-
tute pointers. If it wrongly decides that a certain constant is a pointer, this may lead to
unsoundness because the disassemblers result can include an unreachable address. If the
disassembler wrongly decides that a certain constant is not a pointer, this may lead to in-
completeness because the disassembler can miss a reachable address in the result. Thus
for a disassembler to correctly disassemble all instructions, it also has to analyse the related
data bytes correctly to determine if it contains a possible address.

This section will first introduce the definition of soundness and completeness using the
pointer recognition analysis. Second, we create a diagnostic test and analyse one particular
case of a failed disassembly. Third, we will discuss one real-life issue found during the
disassembly analysis of crypt32.dll.

29

4.1. SOUNDNESS AND COMPLETENESS OF POINTER RECOGNITION

The heuristics a disassembler uses to determine how to interpret data for the indirect con-
trol flow are disassembler depended. The result of this determination and thus the used
heuristics influence both the soundness and completeness of the produced result. The
analysis is complete when an immediate value is a pointer, it is recognised as such, and
disassembly considers the address pointed to as reachable. The analysis is sound if an im-
mediate value is recognised as a pointer, then it is a pointer. The analysis is unsound if an
immediate value is recognised as a pointer wrongly, and thus the disassembly considers
an unreachable address as reachable. so the raw data analysis of possible pointers used in
indirect control flow analysis affects both the result’s soundness and completeness.

We will try to explain soundness and completeness making use of Listing 4.1. The ex-
ample consists of two functions, a function main and a function foo placed in the text
section of the binary. The main function contains a jump instruction at address 0x4050.
The address where is jumped to is assigned to register ax prior to the jmp instruction. The
data section contains a pointer value to the function foo at address 0x9000 and a value
at the address 0x9002 that is not a pointer value but data.

Assume that register ax used in the indirect jmp instruction is calculated before the
jump. The only valid value ofax is the address0x5000using the pointer at address0x9000.
The address value 0x9002 contains not a pointer value

The disassembly result is complete if it contains the function foo. The result is incom-
plete if it is missing the function foo. So the result is complete if all reachable functions are
in the result.

The disassembly result is sound if it only contains the function foo. The disassembly
result is unsound if it contains a function at address 0x6000. So the result is sound if only
reachable instructions are in the result.

4.2. POINTER RECOGNITION

In this section, we will create a small diagnostic test to analyse the recognition of pointer
structures. First, we will create and explain a diagnostic test. Second, we will perform an
analysis of an incorrect disassembly result.

4.2.1. DIAGNOSTIC TEST

To analyse pointer structure recognition, we will first craft a small diagnostic test. A pseudo-
code example of this diagnostic test is placed in Listing 4.2. This piece of source code con-
tains an array of pointers named pointer_values. Each index of the array contains a
struct with two pointers, a pointer to a string and one to a function. The pointer val-
ues are assigned consecutively. For each index, first, a string pointer to pointer is created.
Second, a function is assigned. A schematic overview of the pointers is given in Figure 4.1.
The pointer_values array is iterated over in the main function and for each index the
contained string value is compared to the input string. When an input string matches, the
function related to this input is executed by calling the function pointer in the array.

30

.text
main

0x4000 push rbp
...

0x4050 jmp word ptr [ax]
...

0x4100 return

foo
0x5000 push rbp

...
0x5100 return

0x6000 ..

.data

0x9000 0x5000 ; Is a pointer value.
0x9002 0x6000 ; Is data, not a pointer value.

Listing 4.1: Example of a pointer value in a data section

4.2.2. DIAGNOSTIC TEST DISASSEMBLY

To perform the analysis, we have compiled the diagnostic test with MSVC and optimisation
setting -O2. In this diagnostic test, we have disassembled with the same disassemblers as
used for the switch statement disassembly analysis. So we have analysed the results of
the following disassemblers, Ghidra, JEB, and Binary Ninja.

We will discuss one of the failed diagnostic test disassembly results. The disassembler
that produced the issue is the disassembly tool JEB. When JEB disassembles the diagnostic
test, it produces an incomplete disassembly result. So the result lacks completeness con-
cerning the input binary. Listing 4.3 shows us the missing detected pointer values of the
array pointer_values. Only the first pointer value is found at address 400022E8, the
pointer values hereafter are displayed as raw byte values. As a result of this interpreta-
tion error only function_A is found at address 140001070 in Listing 4.4. The other
functions, following right after function_A, are not identified. The start addresses of the
skipped functions are forfunction_B at140001090 and for function_C at1400010B0.
As a result, the raw byte values are shown in the listing instead of instructions for these par-
ticular functions.

4.3. POINTER REAL-LIFE RECOGNITION ISSUES
In this section, we discuss in detail one example that explains the error found in the de-
compilation result. When pointers are not recognised correctly by the decompiler, as men-
tioned before, mainly two issues can arise. First, the pointer value itself and the function it
references are left out in the result. Second, a value is incorrectly interpreted as a pointer,
and a non-existing function is added to the produced disassembly result. Beyond this, in
some cases, when the pointer address is placed in the text section of the binary, the pointer
value itself can be interpreted as one or multiple instructions. This interpretation error also
leads to soundness and completeness issues. Completeness because the basic block where

31

Figure 4.1: schematic view of the pointer to pointer array

the pointer is referencing is left out in the result, and soundness because not existing in-
structions are added to the disassembly result. As a result, this can lead to the desynchro-
nisation of the disassembler. The desynchronisation happens when a byte of an existing
instruction is taken by the preceding (not existing) instruction, which can lead to another
wrongly disassembled instruction because of the wrong start address being used, and so
on. As a result, will desynchronisation lead to soundness issues. So a not correctly identi-
fied pointer address can cause havoc on the disassembly results.

An example of an incorrectly recognised pointer is found in Ghidra’s disassembly result
of the crypt32 DLL. Ghidra indicates pointers with by the assembly addr operator in the
disassembly result. This can be seen in the first two rows of the following crypt32.dll List-
ing 4.5, Address 5cf016f8, and 5cf016fc. Several pointers coming directly hereafter,
at start address 5cf01700 up to address 5cf01700, are incorrectly interpreted as code
instead of data e.g pointer values. So the instructions shown in this disassembly result are
bogus instructions.

In the found example, the pointers are placed in the text section of the binary. The
decompiler interprets them as code instead of pointer values. When we take a look at the
relocation section, we can verify that they are indeed pointer addresses, Listing 4.6 and
not code like in Ghidra’s result. The relocation table contains all addresses that will be
updated when the binary needs to be loaded at a different relative virtual address (RVA)
than compiled. The data structure contains pointers to pointers that point to strings and
functions. These strings and functions are related to cryptographic processing. The pointer
structure we show is probably part of a data structure that contains a list of strings with a
corresponding function for processing.

32

string_A = "A"
string_B = "B"
...

pointer_string_A = &string_A
pointer_string_B = &string_B
...

pointer_values[] = {
{

.pointer_function = function_A,

.pointer_string = &pointer_string_A
},
{

.pointer_function = function_A,

.pointer_string = &pointer_string_A
},

...
}

void function_A() {
print("Function A ")

}
void function_B() {

print("Function B ")
}
...

void main(input) {

for (int index = 0; index < values.size; index++) {
if (equal(values[index].pointer_string,input)) {

values[index].pointer_function();
}

}
return

}

Listing 4.2: Pseudo code example of the pointer diagnostic test

33

.rdata:1400022E8 gvar_1400022E8 dq 140004070h
; xref: sub_140001130+40h (data-adv)

.rdata:1400022F0 db 90h, 10h, 0, ’@’, 1, 0, 0, 0, "‘@", 0, ’@’, 1, 0,
0, 0

.rdata:140002300 db B0h, 10h, 0, ’@’, 1, 0, 0, 0, "8@", 0, ’@’, 1, 0,
0, 0

.rdata:140002310 db D0h, 10h, 0, ’@’, 1, 0, 0, 0, "X@", 0, ’@’, 1, 0,
0, 0

.rdata:140002320 db F0h, 10h, 0, ’@’, 1, 0, 0, 0, "H@", 0, ’@’, 1, 0,
0, 0

.rdata:140002330 db 10h, 11h, 0, ’@’, 1, 0, 0, 0, "x@", 0, ’@’, 1, 0,
0, 0

Listing 4.3: JEB disassembly result of disassembled diagnostic test pointers. The pointer_values array is not
disassembled correctly.

=====================================
; ROUTINE: function_A

.text:140001070 function_A proc

.text:140001070

.text:140001070 mov r9, qword ptr ds:[r8]

.text:140001073 mov r8d, edx

.text:140001076 mov edx, ecx

.text:140001078 lea rcx, qword ptr ds:[aFunction_A] ;a pointer to
the Function_A string

.text:14000107F jmp printf

.text:14000107F

.text:14000107F functionA endp

.text:140001084 db CCh, CCh, CCh, CCh, CCh, CCh, ...

.text:140001090 db ’M’, 8Bh, 8, ’D’, 8Bh, C2h, 8Bh, ...

.text:1400010A0 db ’l’, FFh, FFh, FFh, CCh, CCh, CCh, ...

.text:1400010B0 db ’M’, 8Bh, 8, ’D’, 8Bh, C2h, 8Bh, ...

.text:1400010C0 db ’L’, FFh, FFh, FFh, CCh, CCh, CCh, ...

...

Listing 4.4: JEB disassembled pointers of test code. Some functions are missing

34

; Correcly idenitfied pointer values:
5cf016f8 ec cd f0 5c addr DAT_5cf0cdec = 31h
5cf016fc 30 82 f8 5c addr FUN_5cf88230

;Incorrecly identified pointer values:
5cf01700 d4 cd AAM 0xcd
5cf01702 f0 LOCK
5cf01703 5c POP ESP
5cf01704 20 85 f8 5c c8 AND byte ptr [EBP + 0

xcdc85cf8]=>DAT_cdceb9f0,AL
cd

....

5cf0171b 5c POP ESP
5cf0171c 00 f2 ADD DL,DH
5cf0171e f8 CLC
5cf0171f 5c POP ESP

LAB_5cf01720 XREF[1]: FUN_5cf43490:5cf434eb(*)
5cf01720 01 00 ADD dword ptr [EAX],EAX
5cf01722 00 00 ADD byte ptr [EAX],AL
5cf01724 e0 0f LOOPNZ LAB_5cf01735
5cf01726 f4 HLT
5cf01727 5c ?? 5Ch \

LAB_5cf01728 XREF[1]: 5cf0174c(j)
5cf01728 02 00 ADD AL,byte ptr [EAX]
5cf0172a 00 00 ADD byte ptr [EAX],AL
5cf0172c 10 a1 f8 5c 03 ADC byte ptr [ECX + 0

x35cf8],AH
00

Listing 4.5: Ghidra disassembled pointers. Some pointers are interpret as instructions

5cf01700 0x3 d4 cd f0 5c
5cf01704 0x3 20 85 f8 5c
5cf01708 0x3 c8 cd f0 5c
5cf0170c 0x3 a0 ef f8 5c
5cf01710 0x3 bc cd f0 5c
5cf01714 0x3 50 f0 f8 5c
5cf01718 0x3 ac cd f0 5c
5cf0171c 0x3 00 f2 f8 5c
5cf01724 0x3 e0 0f f4 5c
5cf0172c 0x3 10 a1 f8 5c

Listing 4.6: Binary ninja disassembled jump tables. Data is interpret as instructions

35

5
RELATED WORK

Paper Language Method Manual Analysis

An Analysis on Java
Programming Language
Decompiler Capabilities

Testcase source code
comparison

Java X

An Evaluation of Current Java
Bytecode Decompilers

Source code comparison
based on software and
quality metics

Java

How Far We Have Come:
Testing Decompilation
Correctness of C Decompilers

Equivalence Modulo
Inputs (EMI) Testing

C

The Strenghs and Behavioural
Quirks of Java Bytcode
decompilers

Equivalence Modulo
Inputs (EMI) TestingJava

This study
Diagnostic Test source
code comparisonC X

Table 5.1: Enummeration of studies that compare decompilers.

Several recent studies were conducted that target comparison of decompilers that we
could also use to compare disassemblers. Table 5.1 enumerates four of those studies. In
the first column, the title of the papers is displayed. In the second column, the targeted
programming language of the decompiler is shown. The used methods for analysing and
comparing the decompiler outputs are stated in the third column. The last column indi-
cates if the used analysis method is based on a manual comparison of the produced result
with the input source code. The study is checked with a ’X’ if a manual comparison method
is used.

As stated in Table 5.1, most studies target the comparison of Java decompilers. This is
most likely because of the popularity of the language among programmers. For almost 15

36

years, Java is already in the top 2 of the Tiobe index for most used programming languages
1. Also, the decompilation of Java byte code is less complex than the decompilation of x86-
64 binaries. For example, the Java bytecode exists with fewer instructions, around 200 2

vs around 2000 for the x86-64 assembly language 3. Also, the bytecode file has a different
structure, making the decompilation process more convenient.

Each study compares the decompilers based on different inputs and capability aspects.
The study of Gusarvos Gusarovs [2018] tests the decompiler with one test case on complex
branching, a function with no return type, and some new Java capabilities that were intro-
duced in the lasted Java release at the time of writing. The complex loop consists of a loop
with different entry points randomly invoked by using labels and different exit points us-
ing break statements. The study of Hamilton et al. uses different test cases Hamilton and
Danicic [2009]. Those test cases vary from a simple program such as the Fibonacci algo-
rithm, typecasting and more complex test cases such as optimised bytecode and a small
game application. The tested capabilities are typecasting decomposition, an inner class,
type inference, try-finally blocks, control flow, exceptions, optimised bytecode, and vari-
able reuse. Liu et al. test the different decompilers using multiple C applications generated
with Csmith Liu and Wang [2020]. Csmith is a compiler test tool that randomly generates C
applications 4. The decompilation results are used to find decompilation failures, recom-
pilation failures and decompilation defects. So this study does not target specific decom-
pilation capabilities but tries to find the weak spots of the tested decompilers. The study of
Harrand et al. defines three quality indicators for the decompilation process Harrand et al.
[2019]. According to the study, those quality indicators are syntactic correctness, syntac-
tic distortion and semantic equivalence. The testing of those quality aspects is based on
several real-world open-source software projects Hamilton and Danicic [2009].

All studies use test cases with available source code to compare with the decompilers re-
sults. Three of the studies we looked at use special for the study crafted test cases Gusarovs
[2018]Hamilton and Danicic [2009] Liu and Wang [2020]. One of these studies uses ran-
domly generated C applications. Only one study uses real-world open-source applications
Harrand et al. [2019]. So each study uses a different approach on how the decompilers are
tested and mutually compared.

To compare the decompilation tool’s capabilities, we have to compare the decompila-
tion results. Half of the studies use the Equivalence Modulo Inputs (EMI) method Le et al.
[2014]. EMI is initially developed for the validation of compiler optimisations. This method
aims to check if decompiled code behaves the same as the original. This is performed by
comparing the inputs and the behaviour of an original program to a recompiled program.
This does, however, mean that the result must be recompilable. One study uses one small
test case and analyses the result by hand Gusarovs [2018]. Hamilton et al. use software
metrics and the semantics and the syntax quality of the produced result as a comparison.
The quality scale ranges from 0 to 9 and ranges from a correct decompilation result to fail,
no compilation result at all. According to Naeem et al. Naeem et al. [2007] software metrics
like code size, conditional complexity, abrupt control flow and the use of local variables are
a good representation of the effectiveness of decompilation results.

1https://www.tiobe.com/tiobe-index/
2https://docs.oracle.com/Javase/specs/jvms/se10/html/jvms-6.html
3https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
4https://embed.cs.utah.edu/csmith/

37

The herein mentioned studies show us that the results between the tested decompilers,
even for a small test case, can differ a lot. Two of these studies evaluate only semantics
and compilability Liu and Wang [2020] Gusarovs [2018] Harrand et al. [2019] and one eval-
uates semantics, compilability and syntax constructions Hamilton and Danicic [2009]. The
results for all studies range from cases that produce correct functioning compilable code
to incorrect uncompilable code. However, mostly, they produce uncompilable code which
needs human interaction to make it compilable. The studies that use more real-world ex-
amples show that no decompiler passes all tests, even for the less complex decompilation
of Java bytecode Hamilton and Danicic [2009] Harrand et al. [2019].

Liu et al. take the analysis of the decompilation results even further and tries to find the
root causes of the found errors Liu and Wang [2020]. They classify three types of decompi-
lation errors: Decompilation failures (decoding bug), recompilation failures (errors while
recompiling), and decompilation defects (semantics is broken in the decompiled result).
The analyses of recompilation failures show two key reasons. The first reason is erroneous
variable recovery, and the second reason is undefined symbols. Typical decompilation de-
fect issues are found due to: no foolproof type recovery, variable recovery, control flow re-
covery (caused by wrong type recovery and optimisation bugs), and optimisations to make
the decompilation code more readable.

38

6
DISCUSSION AND CONCLUSION

In this section, we will discuss and conclude our study. To do this, we will first summarise
our results. Second, we will discuss the study. We give our study’s scope, limitations, as-
sumptions, and weaknesses during this discussion. Third, we will conclude our study. Last,
we will talk about possible development ideas in future work.

6.1. SUMMARY OF RESULTS
During our switch statement analysis, we have performed several steps to perform our
analysis process. First, we created diagnostic tests and compiled these with the mentioned
compilers. The result of these steps is a binary implementation of the switch statement as
included in the diagnostic test source code. Hereafter we analysed and checked the com-
piler type of switch statement assembly implementations. This assembly implementa-
tion results from the source code and compiler characteristics together. The last step was
to check if several disassemblers were able to disassemble the various lookup table based
switch statement assembly implementations. At last, we have analysed and verified some
real-life issues regarding the disassembly of switch statements. In this section, we will
summarise our study results.

The characteristics that influence the assembly implementation of a switch state-
ment by the compiler are source code and compiler dependent. The essential source code
characteristics are the case value set and the number of case labels. The compiler char-
acteristics that influence the created assembly implementation are the compiler itself, the
used optimisation setting and the switch statement implementation conditions.

We have crafted several diagnostic tests and varied with the earlier characteristics to
perform this analysis. For the source code, we have varied the number of case labels, the
value set and applied some other code constructs in and around the switch statement.
We used several compilers and varied the optimisation settings to compile the diagnostic
tests.

The used compilers choose for the diagnostic test with a low case label count, in gen-
eral, a sequential test implementation. For the diagnostic tests with a consecutive or a
sparse value set with a case label count greater than three, mostly a lookup table or index
mapping variant is chosen. Some compilers choose for the favour size (-Os) optimisation

39

Figure 6.1: Schematic overview of the Switch statement verification process results.

40

a sequential test because this solution is less memory consuming. For the ranged diagnos-
tic test with a greater switch count, the compilers generally chose to implement a hybrid
switch solution. The used sub-implementations for the hybrid variants are mostly based
on the lookup table variants.

Among the used compilers is MSVC, the compiler that uses the most variety of imple-
mentations between the compiler optimisation settings. It is also the only compiler that
creates the index mapping variant. There are only a few differences between the chosen
solution between GCC and Clang. For GCC and Clang, the compiler optimisation settings
have less influence on the binary implementation than MSVC. GCC and Clang used optimi-
sation settings only to influence the implementation details such as instruction sequence,
if-else statement sequence or the location of the lookup table.

Figure 6.1 gives an overview of the study results. In this figure, all paths throughout
the process (Figure 2.1) are drawn, resulting in an unsound or incomplete disassembly re-
sult. The path starts with the created diagnostic test with a different implementation of the
defined source code characteristics. The diagnostic test was compiled with the given com-
piler and optimisation setting. The assembly switch statement implementation of the
produced executable binary is checked on implementation type. Last, the binary was dis-
assembled, and the disassembly result was verified on correctness. Thus this path consists
of the combination of the diagnostic test, the used compiler and optimisation, the resulting
switch statement and the failed disassembler with result classification.

Not one analysed disassembler has been able to disassemble all switch statement
diagnostic tests correctly. For each disassembler, there was another type of failure. Thus
there was not one particular item of the diagnostic test that was hard to disassemble.

Ghidra had a hard time disassembling all GCC diagnostic test binaries. It could not
correctly determine the jump table and produced an incomplete result. As a result the
switch statement basic blocks were left out.

Binary Ninja fails for some of the MSVC binaries to recognise the jump table at all
and produces, in those cases, an incomplete result, omitting the switch statement ba-
sic blocks. For the MSVC index mapping solution, Binary Ninja used an incorrect heuristic
resulting in an incorrect table length. As a consequence, it has left out entries from the ta-
ble. For MSVC binaries that implemented an index mapping solution and compiled with
the optimisation -O2 the secondary table was left out of the result.

JEB has not been able to disassemble most of our diagnostic tests. Most binaries com-
piled with GCC and Clang were incomplete. It was caused by not being able to interpret the
jump table or not being able to disassemble the whole function containing the switch
statement at all. For MSVC binaries with a hybrid switch statement implementation, JEB
skipped the switch statement following the first switch statement, producing an incom-
plete result.

Objdump uses, in contrast to the other disassemblers, a static linear disassembly algo-
rithm. Due to the jump table’s location in the MSVC binaries, the table is also disassembled
into instructions. Consequently, the result of Objdump for all MSVC binaries was unsound.

We have also verified what kind of failures we have encountered in real-life MS Windows
DLL executable binaries. Part of this analysis was if we could link a real-life issue to an issue
found during the diagnostic test analysis. During the real-life analysis, we have found three

41

types of issues. The issues that we have found were:

• Too few entries secondary lookup table,
• Lookup table entries treated as code, and
• Too complex branching

The first issue is related to the secondary lookup table of the index mapping implemen-
tation. The size of the secondary table is always the same as the lookup table. This heuristic
is incorrect because the secondary table only contains indexes of the lookup table, so the
table’s sizes are not related. In this case, Binary Ninja does not correctly identify the size of
the secondary lookup table and, thus, produces an incomplete result with missing entries.

For the second issue, lookup table entries treated as code is related to the previous issue.
In this case, the disassembler interprets the skipped lookup table entries as code. Thus
Binary Ninja produces an unsound and incomplete result.

The third issue is related to Ghidra. For some cases, Ghidra has not been able to cor-
rectly identify the possible code paths related to the JMP statement and places a too com-
plex branching warning in the result. This issue is possibly due to an incorrect lookup table
determination. The lookup table itself is left out in the results, and the first entry is inter-
preted as a data pointer. Thus the disassembly result is incomplete.

For the first two issues, we could isolate the cause of the issue with one or more of the
diagnostic tests. They were both related to the disassembly result of Binary Ninja. We have
not encountered the third issue during our diagnostic test analysis. So we only encountered
this issue during the real-life analysis.

During this study, we have also examined some pointer recognition errors. Due to this
interpretation error, the disassembly result can contain completeness and soundness is-
sues. Completeness issues arise due to skipped basic blocks or functions because the dis-
assembler misses the pointer address and, therefore, the reference. The soundness issues
were found when the address value itself was not recognised as such, and the bytes were
disassembled as bogus instructions.

6.2. DISCUSSION
In this section, we will discuss our study. First, we will say something about the scope of
our study. Second, we will focus on our study’s limitations, assumptions, and weaknesses,
and third, we will mention other disassembly correctness issues. Last, we will discuss how
we can improve our analysis.

The scope of our study is switch statement assembly implementations concerning
x86-64 executable binaries compiled in the PE format suitable for MS windows. For the
switch statements, in particular, we have limited our study to the reachability of the lookup
table basedswitch statement assembly implementations. For real-life examples, we have
only looked at MSVC compiled x86-64 DLL executable binaries supplied with MS Windows.

One limitation is that despite a large amount of disassembled binaries, we only have
tried a limited number of source code characteristic variations. Also, we have analysed the
disassembly results of a relatively small amount of disassemblers and compilers. Another
limitation of our study is that we use static disassembly results for our analysis. So it is pos-
sible that the used disassembly results do not reflect the run-time behaviour of the binary
due to side effects and other not obvious possible code paths.

42

An assumption we have made is that if a switch statement basic block was reachable,
the prior switch conditions were also met—preceding conditions such as switch value and
corresponding case value and range check.

A weakness of our study is that the disassembly results are manually checked with the
corresponding diagnostic test source code. So a manual translation is done between the
disassembly results and the higher language input. A manual analysis of assembly code can
be complicated and prone to errors due to the complexity of the x86-64 assembly language.

Other issues that can target the correctness of disassembly results are the recognition
of pointers, overlapping instructions or data in the text section. A pointer can point to
data, functions or a basic block. When pointers are not recognised correctly, this can lead
to correctness issues in the disassembly result. So a misinterpreted data pointer can result
in invalid instructions. When a pointer to a function or basic block is misinterpreted, this
can lead to missing instructions. When a binary uses overlapping instructions, this will also
result in correctness issues due to missing instructions. Overlapping instructions are used
for obfuscation or to jump over instruction prefixes. This also means that the disassembly
result will be incomplete. As already shown during our study, data in the text section,
which MSVC is notorious for, can lead to incorrectness of the result.

The manual approach of the diagnostic test disassembly analysis is very labour inten-
sive and error-prone. To simplify and (partially)automate this manual analysis, some other
alternatives mentioned in the related work section can be used. One example is making use
of Equivalence Modulo Inputs (EMI) Testing. EMI is developed to validate compiler opti-
misations and check if the optimised code behaves the same as the original. In our case, it
can check if the disassembled code behaves the same as the source binary.

6.3. CONCLUSION
During our diagnostic test disassembly analysis, we found that each disassembler has its
strengths and weaknesses regardingswitch statement disassembly. So they produce vary-
ing disassembly results for each of the used compilers. The results depend on the used dis-
assembly algorithm and the used heuristics. We have found both incomplete and unsound
results. Because most of our disassemblers use a static recursive algorithm, the most found
issue is related to incompleteness or the result, thus missing assembly instructions in the
produced result. The most difficult for a disassembler is correctly identifying and inter-
preting the lookup table. The disassembly errors we found regarding a switch statement
lookup table implementation are the disassembler is unable to identify the lookup table at
all, or the disassembler is unable to determine the correct size of the lookup table.

6.4. FUTURE WORK
Future research could examine the verification of decompilation switch statement re-
sults. This decompilation process is even more complex than the disassembly steps anal-
ysed during this study. Extending this study with the process of lifting the disassembly
result into the decompilation will give insight into how well the state-of-the-art decom-
pilation algorithms can handle switch statements. Also, the higher level decompilation
result can be used for analysis, validation or improvement of executable binaries.

Another item that can be studied for future research is the decompilation of the calling

43

convention used by MSVC. There are in total four different calling conventions with dif-
ferent passing of parameters and stack cleanup rules. This in contrast to most other com-
pilers. It would be interesting to see if decompilers can correctly handle all MSVC calling
conventions.

44

BIBLIOGRAPHY

Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert Bos. An in-
depth analysis of disassembly on full-scale x86/x64 binaries. In 25th {USENIX} Security
Symposium ({USENIX} Security 16), pages 583–600, 2016. 2, 13

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. Bap: A binary
analysis platform. In International Conference on Computer Aided Verification, pages
463–469. Springer, 2011. 2, 8

David Brumley, JongHyup Lee, Edward J Schwartz, and Maverick Woo. Native x86 decom-
pilation using semantics-preserving structural analysis and iterative control-flow struc-
turing. In 22nd {USENIX} Security Symposium ({USENIX} Security 13), pages 353–368,
2013. 2, 7, 8, 9

Konstantins Gusarovs. An analysis on java programming language decompiler capabilities.
Applied Computer Systems, 23(2):109–117, 2018. 4, 37, 38

James Hamilton and Sebastian Danicic. An evaluation of current java bytecode decompil-
ers. In 2009 Ninth IEEE International Working Conference on Source Code Analysis and
Manipulation, pages 129–136. IEEE, 2009. 4, 37, 38

Nicolas Harrand, César Soto-Valero, Martin Monperrus, and Benoit Baudry. The strengths
and behavioral quirks of java bytecode decompilers. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 92–102. IEEE, 2019.
1, 4, 37, 38

Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo
inputs. ACM SIGPLAN Notices, 49(6):216–226, 2014. 2, 5, 37

JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse engineer-
ing of types in binary programs. 2011. 8

Zhibo Liu and Shuai Wang. How far we have come: testing decompilation correctness of
c decompilers. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 475–487, 2020. 4, 37, 38

Xiaozhu Meng and Barton P Miller. Binary code is not easy. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, pages 24–35, 2016. 2

Alan Mycroft. Type-based decompilation (or program reconstruction via type reconstruc-
tion). In European Symposium on Programming, pages 208–223. Springer, 1999. 8

Nomair A Naeem, Michael Batchelder, and Laurie Hendren. Metrics for measuring the
effectiveness of decompilers and obfuscators. In 15th IEEE International Conference on
Program Comprehension (ICPC’07), pages 253–258. IEEE, 2007. 5, 37

i

Roman Rohleder. Hands-on ghidra-a tutorial about the software reverse engineering
framework. In Proceedings of the 3rd ACM Workshop on Software Protection, pages 77–78,
2019. 20

Roger Anthony Sayle. A superoptimizer analysis of multiway branch code generation. In
Proceedings of the GCC Developers Summit, pages 1–16. Citeseer, 2008. 11

Freek Verbeek, Pierre Olivier, and Binoy Ravindran. Sound c code decompilation for a sub-
set of x86-64 binaries. In International Conference on Software Engineering and Formal
Methods, pages 247–264. Springer, 2020. 1, 2, 7, 8

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen, Paul
Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making reassembly great
again. In NDSS, 2017. 1

Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and Bhavani Thurais-
ingham. Differentiating code from data in x86 binaries. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 522–536. Springer, 2011.
1

Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi Kwon, Yousra
Aafer, and Xiangyu Zhang. Osprey: Recovery of variable and data structure via proba-
bilistic analysis for stripped binary. 9

ii

	Introduction
	Background: Disassemblers and Decompilers
	Switch statement disassembly
	Switch statement assembly implementations
	Soundness and completeness of disassembly
	Switch statement disassembly
	Switch Statement Diagnostic Tests
	Compiler switch statement implementations

	disassembly of diagnostic tests
	Switch statement real-life disassembly issues
	Secondary Jump tables
	lookup table entries treated as code
	Branching too complex

	Pointer recognition issues
	Soundness and completeness of pointer recognition
	Pointer recognition
	Diagnostic test
	Diagnostic test disassembly

	Pointer real-life recognition issues

	Related Work
	Discussion and Conclusion
	Summary of Results
	Discussion
	Conclusion
	Future work

	Bibliography

