
Open Universiteit
www.ou.nl

MASTER'S THESIS

Happy-flow verification of Cyber-Physical Systems

Ketelaar, J.

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 19. Nov. 2022

https://research.ou.nl/en/studentTheses/a24ae34d-3d15-4ea3-93ea-25c31e636eba

HAPPY-FLOW VERIFICATION OF
CYBER-PHYSICAL SYSTEMS

by

Jildert Ketelaar, MSc

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University of the Netherlands, Faculty of Science
Master’s Programme in Software Engineering

to be defended publicly on Friday March 25, 2022 at 11:00 AM.

Student number:
Course code: IM9906
Thesis committee: Dr. Stefano Schivo (chairman/supervisor), Open University

Dr. Freek Verbeek (secondary supervisor), Open University
Dr. Jacques Verriet, ESI (TNO)

CONTENTS

Summary iv

1 Introduction 1
1.1 Conquer the state space explosion . 1
1.2 System under test: High speed Die Attach machine. 2
1.3 Goal of the research . 2
1.4 Research context. 3
1.5 Structure of the report . 4

2 Background 5
2.1 Formal verification . 5

2.1.1 Formal specification . 5
2.1.2 Formal modelling . 6
2.1.3 Model checking . 7

2.2 Uppaal. 7
2.2.1 Concepts & Syntax . 8
2.2.2 Model verification . 9

2.3 Source code to model translation. 9
2.4 Model Driven Engineering . 11

3 Related Work 12
3.1 Model checking of source code . 12
3.2 Program Slicing . 14
3.3 Research contribution . 14

4 Method 15
4.1 Research questions . 15
4.2 Research method . 16

5 What to verify on the ‘Happy Flow’? 17
5.1 Definition of happy flow . 17
5.2 Properties of interest . 17

5.2.1 Deadlock & Livelock . 17
5.2.2 Reachability properties . 18
5.2.3 Safety properties . 18
5.2.4 Liveness properties . 19
5.2.5 Sequence validation . 19
5.2.6 Cycle time analysis . 19

6 ‘Happy Flow’ extraction 20
6.1 Determine the happy flow . 20
6.2 Instrumentation . 21
6.3 Executing the happy flow . 22

i

6.4 Processing coverage data. 22
6.4.1 Gcov . 22
6.4.2 Gcovr and Cobertura . 23

6.5 Ada Metamodel . 24
6.6 Generate the intermediate representation . 26

6.6.1 Package body . 26
6.6.2 Subprocedure body. 27
6.6.3 Expression Function . 28
6.6.4 Task Body. 29
6.6.5 Accept statement . 30
6.6.6 Select statement. 31
6.6.7 Call expression . 31
6.6.8 If statement . 32
6.6.9 Identifier type . 34
6.6.10 Case statement . 34
6.6.11 Loop statements . 34
6.6.12 Return and Delay statements . 34

6.7 Resulting model . 35

7 Formal model generation 37
7.1 Transformation concept . 37

7.1.1 Model-to-Model transformation . 37
7.1.2 Model-to-Text transformation . 39

7.2 Linking calls and implementations. 39
7.2.1 Subprocedure calls . 39
7.2.2 Accepts, Events and Mutex linking. 40

7.3 Transformation step-by-step . 41
7.3.1 Subprocedure transformation . 41
7.3.2 Task transformation . 41
7.3.3 Statement transformation . 41

7.4 The full Uppaal model . 46

8 Formal verification 49
8.1 Deadlock . 49
8.2 Reachability analysis . 49
8.3 Liveness analysis . 50

9 Discussion 51
9.1 Validation . 51
9.2 Results . 55
9.3 Strengths & Limitations . 55

10 Conclusions & Future work 57
10.1 Summary . 57
10.2 Recommendations . 58
10.3 Future work. 59

ii

11 Reflection 61

Bibliography i

A Ada intermediate model iv

iii

SUMMARY

Cyber-Physical Systems (CPSs) are systems where physical components are controlled by
computational components, e.g. computers or micro-processors. Since the early days of
the introduction of computers, cyber-physical systems are increasingly around in our day-
to-day life and getting more and more complex.

In order to make sure that these systems always do what they are intended to do, val-
idating the software running on these systems is of paramount importance, as very high
costs or even human lives can be at stake.

A promising technique to test software is formal verification. Formal verification aims
at proving properties on the code such that it is guaranteed that a property holds on the
system, in contrast to other testing methods where no guarantees can be given.

One of the main disadvantages of formal verification is the so-called state space ex-
plosion. This means that the number of possible system states reaches huge numbers,
especially for concurrent systems where parallel processes interact with each other.

In order to limit the state space size and thus potentially enable formal verification on
CPSs, we abstract parts of the original source code away. Our approach is to automatically
extract the happy-flow code of our CPS and apply verification on this part of the code only.
Our main research question is stated as: To what extent is it possible to prove formal prop-
erties on the ‘happy flow’ code of a real-time, concurrent cyber-physical system with a high
ratio of repetitive tasks?.

During our research a method is developed to automatically extract the happy-flow
code by using code coverage tooling. The CPS is executed in a nominal way and by check-
ing how many times each line of code is executed it is found what code is initialization or
error handling code, and what code is part of the happy flow.

We designed a tool which translates the happy-flow code into an intermediate repre-
sentation, or model, of the source code. By means of model-driven engineering, a model-
to-model transformation has been created which subsequently transforms the model of
the source into an Uppaal model.

Uppaal is a model checker which can be used to check properties on a formal model.
Using the method and tooling developed during our research, a working Uppaal model of
our cyber-physical system can automatically be generated. This makes the modelling pro-
cess quick and removes the risk of human mistakes compared to creating a model manu-
ally.

Some simple properties have successfully been verified on the model, proving that the
model mimics the behaviour of the CPS. However, verifying more complex properties still
run into the state explosion problem. It is expected that improvements on our work can
lead to a better approximation of the source code, which will result in a smaller state space,
thus enabling the verification of more complex properties.

iv

1
INTRODUCTION

Cyber-Physical Systems (CPSs) are systems where physical components are controlled by
computational components, e.g. computers or micro-processors ([National Science Foun-
dation, 2021]). Since the early days of the introduction of computers in the second half of
the 20th century, cyber-physical systems are increasingly around in our day to day life and
getting more and more complex.

In order to make sure that these systems always do what they are intended to do, vali-
dating the software running on these systems is of paramount importance. As can be imag-
ined, very high costs are at risk when for example a robot cell destroys a valuable workpiece,
or even human lives are at stake when looking at computer controlled aerospace systems.

Therefore, in parallel to the rise of software development tools, also a wide range of
software testing methods was, and still is being, developed, think of unit testing, system
testing, black-box testing, white-box testing, static testing, dynamic testing, etc.

One of the approaches which has been around for quite some time but which is still
not mainstream in the software industry is testing by means of formal verification [Bjesse,
2005][Wayne, 2019]. A major benefit of this approach is that it can be automated, but the
main reason not being used widely is that it does not scale well for larger or complex sys-
tems.

The research carried out in this thesis aims at finding a method to create a formal model
of complex CPSs with a high ratio of repetitive and concurrent tasks, while limiting the
model size by only looking at the ‘happy flow’ of the CPS, ultimately to lower the threshold
for industry to use formal verification. Therefore our main research question is defined as:

To what extent is it possible to prove formal properties on the ‘happy flow’ code
of a real-time, concurrent cyber-physical system with a high ratio of repetitive
tasks?

1.1. CONQUER THE STATE SPACE EXPLOSION
A good introduction to model checking, past developments and the limitations due to the
state space explosion is given by Clarke et al. [2012]. As indicated by the authors, a main
limitation of formal verification is the tremendous number of states a software program
can be in, especially for concurrent systems where different processes run in parallel and
interact with each other. Even for an average sized concurrent program, the state space
easily grows to numbers where formal verification is not possible anymore.

1

In order to conquer the state space explosion it can either be tried to design faster verifi-
cation methods and tools, but it can also be tried to limit the number of states in the model.
A lot of research has been conducted on the former option, which resulted for example in
tools using symbolic verification methods instead of explicit methods.

In order to reduce the number of states in the model, different options have been used
in the past, like removing unused variables or data, limit the possible values of variables,
techniques like partial order reduction and symmetry reduction, or abstract away parts of
the system behaviour.

Our research focuses on the latter option, i.e. abstract away parts of the system be-
haviour. By means of filtering the happy-flow code from the full code base, the non-happy
flow is abstracted away and the number of states in the model is reduced.

The ‘happy flow’ is defined here as the nominal machine cycle without interference
from the outside world. For the kind of machines with a high ratio of repetitive tasks tar-
geted in this research, it is expected that less than 20% of the source code is used for the
happy flow. Therefore a significant state space reduction can be achieved.

1.2. SYSTEM UNDER TEST: HIGH SPEED DIE ATTACH MACHINE
The research described in this document will be carried out in the context of the software
development for a high speed die attach machine: Itec’s Adat3-XF1, shown in Figure 1.1.
This Cyber-Physical System is used for the production of semiconductor chips, and picks
dies (bare chips) from a wafer and places the dies on a substrate.

The heart of the machine is the transfer mill which is a rotating device with multiple
pick & place heads. On the backside of the wafer there is a needle which pushes a single die
on the wafer a little bit up. A pick & place head picks the die from the wafer and places it
on a substrate a few cycles later. The wafer is held in place by a wafertable which indexes
the wafer in x and y direction. Furthermore multiple cameras are present in the machine
inspecting a product before, between and after it has been picked and placed.

The machine is controlled by a single computer running software written in the pro-
gramming language Ada. The software contains many real-time parallel processes, e.g.
picking, transferring, inspecting, and placing a die, with real-time being in the order of
microseconds. A full machine cycle takes around 75 milliseconds, and within each cycle
many synchronisations between the different processes occur.

Due to the critical production process, formal verification of the software would add
a lot of value to guarantee the correct working of the machine. However, because of the
complexity of the software and the number of concurrent processes, it is assumed that a
direct translation from the source code to a formal model will result in way too many states
for formal verification to be possible. Therefore some attempt should be made to reduce
the number of states.

1.3. GOAL OF THE RESEARCH
The goal of this research is to come up with a method which makes it possible to apply for-
mal verification on the code of a complex cyber-physical system with a high ratio of repet-
itive tasks, without running into the state space limits of the available verification tools. In
order to do so, a compromise is needed to limit the number of states which in this research

1https://www.itecequipment.com/products

2

https://www.itecequipment.com/products

Figure 1.1: Left: Itec’s Adat3-XF Die Attacher; Right: The application of the machine, pick chips from a wafer
and place them e.g. in tape or on a leadframe.

will be done by only looking at the source code of the nominal machine cycle or ‘happy
flow’ of the machine.

As stated, filtering the source code is a compromise because not all system behaviour is
present anymore. Therefore the model becomes an under-approximation of the complete
system. As a result when a formal property holds on the model, it cannot be guaranteed
that this property also holds for the complete system. However, guarantees can be made
the other way around, when a formal property does not hold on the model, it is guaranteed
that the property will also not hold for the complete system.

For the developed method to be usable in an industrial environment, the tooling should
do as much as possible in an automatic fashion such that no in depth knowledge of formal
verification and model checking is required.

1.4. RESEARCH CONTEXT
This research is conducted as a graduation project for the master Software Engineering of
the Open University. As the context for this project it is chosen to use the working environ-
ment of the author, i.e. the Adat3-XF machine of Itec such that a close relation between the
research and the industry is established. At the same time ESI (TNO) carries out a project
at Itec aiming at modelling the machine cycle of the Adat and improving the software and
software development methods, in parallel to our research. The methods developed during
our research can help to bridge ESI’s efforts in modelling the machine cycle with foreseen
improvements on the source code of the machine.

3

1.5. STRUCTURE OF THE REPORT
This thesis is structured as follows: Chapter 2 gives some background information on dif-
ferent subjects used throughout the research. Chapter 3 presents an overview of research
related to our research and the contribution of our research. The main research question is
divided into different sub questions which are given in Chapter 4, along with the research
method per sub question. Chapters 5, 6, 7 and 8 describe the performed research per sub
question. Chapter 9 discusses the validation and results of our research and summarizes
the strengths and limitations of the work. The final conclusions and recommendations are
given in Chapter 10. Finally Chapter 11 gives a personal reflection on the research and the
process.

4

2
BACKGROUND

This chapter introduces different concepts and tools which are used throughout our re-
search. If the reader is already knowledgeable on these subjects, the specific section can be
skipped.

2.1. FORMAL VERIFICATION
Formal verification is about trying to mathematically prove specifications or properties on
a given system [Bjesse, 2005][Clarke et al., 2012]. This is done by finding a formal proof on
a mathematical model of this system. Typically the abstract mathematical models are con-
structed by means of finite state machines which unambiguously describe the behaviour
of the system.

In order to prove properties on a system three steps need to be taken: (1) formally spec-
ifying properties of the system, (2) creating a formal model of the system, and (3) assessing
whether the formal model behaves as described by the formal specification, also called
verification or model checking [Clarke and Emerson, 1982]. The three steps are further
described below.

2.1.1. FORMAL SPECIFICATION
Step one in the process of formal verification is specifying formal properties which describe
the intended behaviour of the system. In order to reason about a formal model, some form
of logic is required. When also the order of events should be considered, which is typically
the case for Cyber Physical Systems, temporal logic gives the tools required.

Several kinds of temporal logics have been developed over the years, of which the most
important ones are Linear Temporal Logic (LTL) [Pnueli, 1977] and Computation Tree Logic
(CTL) [Clarke and Emerson, 1982]. Later, [Clarke et al., 1986] defined CTL* which is a su-
perset of both LTL and CTL, combining linear and branching temporal logic.

CTL* formulas have both a path quantifier and a temporal operator. Two path quanti-
fiers are used, specifying either all computation paths A or at least one path E. The temporal
operator describes properties which hold along the path as specified by the path quantifier.
CTL* has 5 of these temporal operators

X p in the next state, p holds

F p eventually p holds

5

G p p holds Globally

p U q eventually q holds, and until then p holds

p R q p releases q, or q always holds

Now formal specifications can be given like AG(p) meaning p holds in all states of all ex-
ecution paths. Combinations of CTL* operators are also possible, one of the most common
combination is AG(p => AF(q)) which denotes the so called liveness property. This property
evaluates to: for all execution paths, whenever p holds, then eventually q holds.

By means of CTL* the following formula could for example be defined:

AGEF (p) (2.1)

This formula means: for all states of all execution paths it is true that there is an execu-
tion path where eventually p holds.

2.1.2. FORMAL MODELLING
Software programs are typically described by a model where each position in the program
is described by a state. The program can go from one state to another in response to certain
inputs. When the set of states of the program is finite, such a model is called a finite state
machine or automaton [Rabin and Scott, 1959].

One way to describe finite automata is by means of Labelled Transition Systems [Burkart
et al., 2001]. These systems have a finite set of states and between the states, transitions are
given which define how the system can go from one state to another. Each transition is la-
belled by a proposition which should hold in order to take the transition. Figure 2.1 shows
such a finite automaton of three states and proposition p and q .

s0 s1
p

s2

p,q

p

p,q

Figure 2.1: Finite automaton or Labelled Transition System

Assume Formula 2.1 is rewritten to AGEF (s2), meaning that from all states of all execu-
tion paths eventually state s2 can be reached. When this formula is applied to the automa-
ton of Figure 2.1 it is found that the formula holds on this state machine because from each
state it is possible to reach the state s2. Note that the formula AGEF (s0) does not hold on
this system because from state s1 and s2 it is not possible to reach state s0.

Timed Automata In order to reason about asynchronous timed systems, it is required
to add a notion of time to the models of these systems. For this purpose [Alur and Dill,
1994] introduced the concept of Timed Automata. Timed automata are finite automata
extended with a finite set of clocks representing continuous time. Clocks are declared by
clock variables which are read-only except for resetting to zero. The value of the clock is the
time since the last reset of the clock. Note that in timed automata, the state of the system
is resembled by the ‘location’ of each automaton in the system and the value of all clocks
in the system. Therefore in timed automata, instead of ‘state’, the term ‘location’ is used to
denote a node in the automaton.

6

Now transitions between locations can have clock guards which define at which value
of the clock the transition is valid. Besides transitions, locations can contain constraints
about clocks as well; called an invariant. The invariant defines for what values of a clock it
is allowed to be in that location. Furthermore a clock can be reset on a transition. If with the
next time value it is not allowed to be in a certain location, a transition to another location
has to be made, when this is not possible a deadlock situation is reached. It is assumed that
transitions are instantaneous, hence time only progresses in locations, it is furthermore
assumed that all clocks run at the same rate.

To be able to model concurrent processes, different timed automata can synchronize
with each other on actions. For this purpose, transitions can be labelled with actions. When
two automata have a transition with the same action, the automata need to wait to make
the transition until both automata can take the transition at exactly the same time.

s0

x ≤3
s1

x=3
x:=0

b

a
t0 t1b

a

Figure 2.2: Two timed automata which synchronize on an a and b action

Figure 2.2 shows two timed automata with a clock x. They both start in their initial
location, with clock variable x = 0. As soon as x reaches the value of 3, the left automaton
is not allowed to stay in s0 any longer and needs to take the transition to s1. This transition
was also not allowed to be taken earlier due to the clock guard x = 3. Furthermore the clock
variable x is reset to 0 during the transition. Because the two automata synchronize on a, as
soon as the left automaton goes from the left to the right location, the right automaton does
the same. Note that the automata are allowed to stay infinitely long in s1 and t1 respectively,
but as soon as one of the automata takes the transition back, the other one will do the same
due to the synchronization on b.

2.1.3. MODEL CHECKING
By having a formal specification language and a formal modelling method it is possible to
verify whether the model satisfies the formal specification. Hence the question is, does
model M satisfy formula f , or: M |= f .

Different algorithms have been developed to perform this step, both in an explicit and a
symbolic manner. But as in both cases the verification is a matter of running the algorithm,
a lot of tooling is developed to perform this step automatically. Well known tools are e.g.
SPIN1 ([Holzmann, 1991]), NuSMV2 ([Cimatti et al., 2002]) and UPPAAL3 ([Behrmann et al.,
2006]). Uppaal is specifically designed to verify Timed Automata and features an easy-to-
use interface to construct and check models.

2.2. UPPAAL
For the research given in this thesis it will appear that Uppaal fulfills the requirements we
have for a model checking tool. This section describes some more background on Uppaal

1http://spinroot.com
2https://nusmv.fbk.eu/
3https://uppaal.org/

7

http://spinroot.com
https://nusmv.fbk.eu/
https://uppaal.org/

and the way to use it, in order to better understand the rest of this research.
Uppaal is specifically designed to model and verify Timed Automata. Figure 2.3 shows

the left automaton of Figure 2.2, using Uppaal notation.

Figure 2.3: An example showing the left automaton of Figure 2.2 in Uppaal

2.2.1. CONCEPTS & SYNTAX
This section gives a quick introduction to the concepts and syntax of Uppaal.

TEMPLATES

A system as defined in Uppaal is composed of a network of timed automata (NTA), with all
automata running in parallel. An automaton in Uppaal can be instantiated multiple times
with different parameters when desired, therefore an automaton definition in Uppaal is
referred to as a Template.

A template is composed of locations shown as nodes, and edges representing the tran-
sitions between the locations.

LOCATIONS

Figure 2.2 shows two nodes which are locations s0 and s1 of the automaton. An important
property which can be given to a location is the invariant; an expression which should
always hold in order for the system to be allowed to be in that state. Note that invariants
are optional, in Figure 2.2 s0 has invariant x<=3 while s1 has no invariant.

One of the locations in an automaton should be marked as the initial state. In Uppaal
this is visualized by the double circle. Referring again to Figure 2.2, location s0 is the initial
state of this template.

Lastly there are two more optional properties for a location, being Urgent and Committed,
note that a location can either be urgent or committed, not both. An urgent location repre-
sents a state of the system in which it is not allowed for time to pass. Before time is allowed
to pass again, one of the outgoing transitions should be taken. Because of this, the state
space of the model is largely reduced.

Committed locations go one step further compared to urgent locations and do not allow
other processes to perform any (non-committed) transitions before an outgoing transition
of the committed location is taken.

EDGES

Edges represent directed transitions from one location to another. Like locations, edges can
be given different optional parameters to control the behaviour of the edge. These options
are explained below.

8

Synchronization Edges can be given a synchronization label. This label identifies a syn-
chronization channel which is used to synchronize processes with each other. A synchro-
nization label can either be of the form e? or e! where the question mark defines the
receiving end of the channel and the exclamation mark the sending end of the channel.
It is like a rendezvous between two concurrent processes. Both transitions will always be
taken at the same time. Note that there may be multiple receivers, but only one receiver
actually synchronizes.

A special form of synchronization is the use of a broadcast channel. In that case there
can be multiple receiving edges. Note that for broadcast channels the sender can always
‘fire’ while only the receivers which have enabled edges synchronize with the sender.

Guards Guards define when an edge is enabled or not i.e., when an edge can be taken or
not. Often this involves clock variables which indicate at what value of the clock a transition
can be taken or not. But guard expressions are not limited to contain clock variables.

Updates Update expressions are used to assign values to variables to moment the edge is
taken. These variables can again be clock variables or other system variables.

2.2.2. MODEL VERIFICATION
In Section 2.1.1 we discussed temporal logics LTL, CTL and CTL*. Uppaal uses a subset of
CTL to define properties on the model, or queries as they are called in Uppaal. The main
properties which can be checked by Uppaal are:

Reachability properties These properties specify whether a state where property p holds,
can be reached. In Uppaal this is written as E<>p.

Safety properties Safety properties specify a property which should always hold. This is
either given by A[]p saying that p should hold in all states on all paths; or by E[]p
which defines that p should hold in all states of a certain path.

Liveness properties These properties specify that some property p will eventually hold.
This can either be written as A<>p, which means that for all paths p should hold even-
tually, or by p –-> q defining that when p holds, then eventually q will hold.

Note that in Uppaal the property p can also represent a location in one of the automata,
or templates. This makes it for example easy to write a query which checks on the model
whether a certain location is reachable, i.e.: E<> template_name.location_name.

2.3. SOURCE CODE TO MODEL TRANSLATION
In order to apply model checking techniques to a code base, the code needs to be trans-
lated to a formal model, e.g. a finite state machine. As most of the time no straightforward
translation of language constructs is possible, a mapping from one to the other is required.

In general translating the source code to a model is done in two steps. One, retrieving
the semantics of the code in a form which can be easily parsed and traversed, and two,
mapping the source code constructs to the available constructs in the modelling language.

Step one is often done by parsing the code, convert it to an Abstract Syntax Tree (AST)
and from the AST, create a Control Flow Graph (CFG). An AST is, as the name implies, an

9

abstract representation of the syntax described in a tree. Each node in this tree maps to
a construct in the source code, and any non-informative information like semicolons and
parentheses are left out. Figure 2.4 show a simplified AST of the code from Listing 2.1.

i f x == y
z := x ;

e lse
z := y + 2 ;

Listing 2.1: Code for simple AST

if

compare if-body else-body

x y assign

z x

assign

z +

y 2

Figure 2.4: Simplified AST of the code from Listing 2.1

Because an AST provides an unambiguous mathematical representation of the source
code, it can be used to create other representations like a Control Flow Graph. A CFG is a
directed graph where each node represents a statement, and the edges represent the con-
trol flow. Figure 2.5 shows a simplified CFG for the AST of Figure 2.4 and the code from
listing 2.1.

if x == y

z := x z := y + 2

true false

Figure 2.5: Simplified CFG of the code from Listing 2.1

The second step of the source code to model translation is mapping the code constructs
to the available constructs in the modelling language. The possible approaches for this
step heavily depend on the modelling language, but information from both the AST and
CFG can be used to perform this translation. Often no one-to-one translation is available,
therefore it is important to take the goal of the model into account to give directions on
how to do certain translations.

In case of a direct translation, the model will mimic the CFG to a high extent, but in case
of a less direct translation, the model abstracts away from the CFG. The further the model
abstracts away from the CFG, the more important it is to validate whether the model is still
a truthful abstraction of the software program in order to be usable for formal verification.

Both the AST and CFG concept will be used in this research as tools to end up with a
formal model of the code.

10

Figure 2.6: The concept of model transformation based on metamodels; from [Schivo et al., 2017]

2.4. MODEL DRIVEN ENGINEERING
Models are an abstraction of a system, giving a simplified description, or showing a part of
the complete system. Different models can highlight different parts of a system, or different
levels of details. Often these kind of models are used for documentation purposes and
knowledge purposes. Model driven engineering is an approach where models are not just
used for documentation, but also for the creation of new (software) artefacts [Rodrigues da
Silva, 2015].

In order to perform engineering on models, some formalism is required describing how
a model should look like, e.g. what parts can it contain, how are relations between parts
described, etc. This is what is typically called a meta model, a description of the syntax of
the eventual model.

Once a meta model is available, all kind of new possibilities arise like the automatic
transformation of models from one domain to the other. An example of this is shown in
Figure 2.6. Here both models on the left and right side have their own meta model, describ-
ing the respective model syntaxes. Now a transformation definition is given which defines
how artefacts from the input meta model should be mapped or transformed to artefacts
of the output meta model. Using this transformation definition, tooling can be used to
automatically create an output model from an input model.

Different tooling is available supporting the Model Based Engineering approach. A
common and widely used framework for this is the Eclipse Modelling Framework (EMF)4.
In EMF, meta models are defined in so called Ecore files which can be registered inside the
framework. An actual model can then be assigned to a meta model, making it an instance
of the meta model. This allows Eclipse for example to check whether the model instance
correctly adheres to the syntax described in the Ecore file.

Where EMF is build directly on top of Java, the Epsilon framework5 builds on top of
EMF. The Epsilon framework provides an even more user friendly approach to define meta
models in its Emfatic notation. Furthermore Epsilon includes notations to write transfor-
mations between meta models: the Epsilon Transformation Language (ETL).

ETL allows to write rules which define how an element type of the source (meta) model
should be translated to one or more elements of the output (meta) model. EMF follows an
object oriented flow in which rules can be defined abstract, and rules can extend on other
rules.

4https://www.eclipse.org/modeling/emf/
5https://www.eclipse.org/epsilon/

11

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/epsilon/

3
RELATED WORK

This section describes previous research which is related, or has overlap with our research.
A division is made between model checking source code (Section 3.1) and program slicing
(Section 3.2). Section 3.3 discusses the contribution of our research with respect to the
discussed related work.

3.1. MODEL CHECKING OF SOURCE CODE
Back in 1999 [Burns and Wellings, 1999] wrote about using model checking in order to ver-
ify concurrent Ada programs. For this they use the UPPAAL model checker which had just
been released at that time. The authors explain some aspects of the Ada language which
enables powerful concurrent programming, e.g. Tasking and Protected Types. They pro-
pose to use Finite State Models (FSM) to verify programs build upon these concurrent Ada
aspects. It is noted that model checking can never give a 100% guarantee as there is al-
ways an informal relation between the source code and the model, and also between the
source code and the compiled machine code. The authors state that model checking can
be a good method to verify rather complicated concurrent programs, especially with more
mature tools becoming available.

In contrast to the previous work, the research described in the remainder of this section
apply automatic model extraction from source code.

[Bowman et al., 1999] present and compare three approaches to extract models from
Java code. These approaches are parsing source code, disassembling byte code, and pro-
filing where a model is built by monitoring run-time behaviour. Parsing source code, gives
the most accurate model, but is the most complex and slowest of the three options. For
the purpose of static analysis the disassembler will be sufficient and is simpler and faster.
When information is to be found in the model which is only available from execution of the
code, the profiler option works best.

[Corbett et al., 2000] designed a tool called Bandera which extracts and creates models
from Java source code for different existing model checkers, e.g. Spin and SMV. In order
to reduce the state space, the authors apply slicing to remove parts of the code which are
not relevant for checking a given property. Furthermore the tool supports user controlled
abstraction of variable values in order to reduce the state space as well.

The slicing is based on a slicing criterion. From the property to be verified it is found
what variables and procedures have influence on this property and from there on all irrele-

12

vant parts are removed from the program. The slicing approach used is based on [Horwitz
et al., 1988] and further described in [Hatcliff et al., 1999a].

[Holzmann and Smith, 2002] show a technique to derive models from ANSI-C source
code for the SPIN model checker (also developed by Holzmann). This technique is specifi-
cally targeted at distributed and concurrent systems.

In order to reduce the state space, the authors use a map that defines which type of
statements are relevant for the current property to be verified and which types are not. Ac-
cording to the authors the number of unique statement types for a given application is in
the order of a few hundred, which is accepted to be crafted manually, especially compared
to manually crafting a full model. This map is also used to map certain statements or vari-
ables to a default value (e.g. true or skip) which further limits the state space.

[Silva et al., 2011] and [Faria et al., 2012] both present a tool to construct models from
Ada code. [Silva et al., 2011] developed a tool which is capable of automatically extracting
UPPAAL models from Ada code. The developed tool is aimed at translating Ada code which
complies to the Ravenscar profile [Burns et al., 2003]. This is a subset of Ada tasking, espe-
cially targeted to safety-critical hard real-time systems. The tool furthermore uses the Ada
Semantic Interface Specification (ASIS) [Bladen et al., 1991] to retrieve the semantics from
the Ada source code. Annotations on timing requirements are added in the code. These
annotations give an upper bound to timing constraints of functions.

Based on the ASIS representation of the source code, a control flow graph (CFG) is cre-
ated for each Ada construct and each CFG is eventually translated into an Uppaal template.
This template contains the timed automata of the specific Ada construct. Each node in the
CFG is therefore mapped to an Uppaal state, and each edge to a transition.

The clocks in the Uppaal templates are also generated from the source code. This is both
done based on code constructs like delay until and variables of type Ada.RealTime.Clock(),
but also by means of code annotations. For example the delay until construct gives a lower
bound on a clock constraint, but there is no language construct which gives rise to an upper
bound. Therefore the authors introduce a deadline annotation which results in an upper
bound for a clock in the Uppaal template.

[Faria et al., 2012] present an approach to extract models from Ada code for the pur-
pose of model checking. The research has a special focus on modelling concurrent pro-
grams. In this context a tool called ATOS (Ada TO SPIN) has been developed which gener-
ates PROMELA models from Ada code to serve as an input to the model checker SPIN.

The ATOS tool is capable of translating a subset of the Ada language. Again the Ada
Semantic Interface is used to extract information from the source code. The tool is also able
to automatically infer formal properties from annotations in the code, inspired by SPARK1

annotations. The annotations can either represent a general assert statement, or pre- and
post-conditions for functions, procedures and task entries.

[Yildiz et al., 2017] present a technique to derive Uppaal models from Java byte-code.
Their approach is based on the Model-Driven Engineering (MDE) technique as presented
by [Schivo et al., 2017]. This framework is a general approach to transform domain specific
models to UPPAAL, and also to transform UPPAAL results back to a domain specific rep-
resentation. [Yildiz et al., 2017] construct a Control Flow Graph (CFG) from the Java byte-
code, which is enriched with loop information, timing information and recursion handling
to support the transformation to a timed automata. The enriched CFG forms the domain

1https://www.adacore.com/about-spark

13

https://www.adacore.com/about-spark

specific model which is fed into the model transformation framework, resulting in an UP-
PAAL model.

3.2. PROGRAM SLICING
Program Slicing was first introduced by [Weiser, 1984]. The idea of program slicing is to
reduce a program such that it only contains those statements which have influence on the
values of a certain variable or point of interest. One of the goals of the author for program
slicing is to make it easier to debug code when it is known which variable or at which point
in the code something goes wrong.

In the following years, many researchers adapted and used the idea of program slicing
in different directions and for different purposes. [Silva, 2012] presents an overview of these
directions, with one of the directions also being for the purpose of model checking, i.e.
[Hatcliff et al., 1999b]. In the latter work the authors apply an adapted form of slicing in
order to reduce the source code such that it becomes less costly to apply model checking
on this code. They adapted the slicing criterion such that all information required to prove
a certain LTL formula is in the slice, and nothing more than that.

[Korel and Laski, 1988] introduce the concept of Dynamic Slicing. This is a program slice
which corresponds to a specific execution of the program for a certain input value, in con-
trast to standard slicing where all possible input values are considered, hence a dynamic
slice is much smaller than a static one. [Korel and Laski, 1988] state in their definition that
the path of a slice should be identical to the path in the full program. Hence, the slice has
the same execution sequence as the full program, which is called a path-aware slice. The
purpose of this work is to ease program debugging, as often it is known for which input
value a certain bug is present so only this execution needs to be analysed.

[Agrawal and Horgan, 1990] also introduce the concept of Dynamic Slicing, but in con-
trast to [Korel and Laski, 1988], they do not require that the path of the slice should be equal
to the path of the full program. This even further reduces the size of the slice compared to
the previous approaches.

3.3. RESEARCH CONTRIBUTION
Existing research for translating Ada code into formal models as mentioned in the previ-
ous section all use a subset of the Ada language, i.e. the Ravenscar profile, or the Spark
subset. Our research aims at translating the complete Ada language. The existing research
furthermore uses the Ada Semantic Interface Specification (ASIS) to ‘process’ Ada code, this
interface has been replaced by the LibAdaLang2 which we will therefore use in our research.

Eventually the contribution of our research is to combine a form of dynamic program
slicing (code filtering) with the concept of model checking. The dynamic slicing will be
used as a means of source code reduction in order to conquer the state explosion problem
such that model checking becomes a realistic option for complex CPS control software.

2https://github.com/AdaCore/libadalang

14

https://github.com/AdaCore/libadalang

4
METHOD

This chapter describes the research method of this thesis in more detail. First the main
research question and sub-questions are given and then the research method per question
is described.

4.1. RESEARCH QUESTIONS
As given in the introduction of this thesis, the main research question of this project is:

To what extent is it possible to prove formal properties on the ‘happy flow’ code
of a real-time, concurrent cyber-physical system with a high ratio of repetitive
tasks?

Due to the problem of state explosion, it is generally considered impossible to translate
a full code base of a cyber-physical system, featuring real-time and concurrent aspects, to a
formal model. Therefore the goal of this research is to only try to model the ‘nominal’ ma-
chine cycle, or ‘happy flow’, and to prove formal specifications on this part only. As manual
extraction of the happy flow from the code base is not only a lot of work, but also error
prone, run-time information is used to filter the happy flow code from the full program
code.

In order to validate the research results, the research is focused on an existing machine
control system written in the programming language Ada.

The research has been divided over four research questions, listed below:

RQ-1 Having only a model of the ‘happy flow’ code of a CPS, what properties of the system
can be verified and can reveal interesting information for domain experts?

RQ-2 How can the code of the machine’s ‘happy flow’ be extracted automatically, using
run-time information?

RQ-3 How to automatically translate a partial program written in Ada, as found by answer-
ing RQ-2, into a formal model that allows the properties found by answering RQ-1 to
be verified?

RQ-4 What results can be found from verifying the properties defined by answering RQ-1
on the model, found from answering RQ-3?

15

4.2. RESEARCH METHOD
Per sub-question different approaches are taken to find an answer to the questions. For
each sub-question the research method is discussed here.

Method RQ-1 The main goal of the complete research is to be able to verify formal prop-
erties on a partial program. However, because of having a partial program, the prop-
erties to be checked should be well chosen in order to be meaningful for the full pro-
gram. Deductive reasoning is used to find an answer to this question. The results are
given in Chapter 5.

Method RQ-2 In order to answer this question, tooling is designed and built to perform
the code extraction automatically. The code is instrumented such that the execu-
tion count of each statement can be recorded. After running the machine for a small
amount of time in a ‘happy flow’ mode, it is found which code is used for the happy
flow and which code is not. Based on this information, our tool generates an interme-
diate representation of the happy flow code in an XML based format, ready for further
processing. The research to answer this research question is described in Chapter 6.

Method RQ-3 This question concerns the generation of a formal model from the interme-
diate code representation which was the result of RQ-2. As a first step, it has been
defined what the formal model should look like, e.g. which artefacts of the system
should be present in the model such that the properties found by answering RQ-1
can be verified. The next step is to translate the code to a formal model. For this
step tooling is again designed which performs a model to model conversion from the
intermediate Ada representation to an Uppaal model.

In order to be useful for the future and to be less error prone, the model generation is
done in a fully automatic fashion. Chapter 7 describes the research done to answer
this question.

Method RQ-4 After the formal model generation, the model can be used to verify the prop-
erties as defined by answering RQ-1. This reveals information of the system which
was not known before. During this phase, first the defined properties haven been
formalised to temporal logic in the Uppaal query language. These queries are veri-
fied on the formal model. The result of this research question is described in Chapter
8.

16

5
WHAT TO VERIFY ON THE ‘HAPPY FLOW ’?

The first research question, RQ-1, of this research is stated as:

Having only a model of the ‘happy flow’ code of a CPS, what properties of the sys-
tem can be verified and can reveal interesting information for domain experts?

In this chapter will try to give an answer to this question.

5.1. DEFINITION OF HAPPY FLOW
In order to answer RQ-1, it is required to further specify ‘happy flow’. For this research, the
happy-flow code is defined to be the CPS’s source code which is actually executed when the
machine performs its nominal machine cycle without any interruptions. Any source code
not executed during the happy flow will not be part of the happy-flow model and therefore
any formal property tested on the model will not consider this code.

In the case of our CPS under test, the Adat3-XF Die Attacher, the happy-flow cycle is the
nominal pick & place sequence without e.g. a run out of materials, operator interventions
or motion errors.

5.2. PROPERTIES OF INTEREST
This section elaborates on system properties which can be verified on a model of the source
code given the fact that only the happy flow, as defined in Section 5.1, is available.

5.2.1. DEADLOCK & LIVELOCK
In general, interesting properties of concurrent systems are deadlock and livelock situa-
tions. Hence a state of the system where two or more processes wait for each other forever.

It is noted that a specific happy flow execution will itself not contain a deadlock situa-
tion (otherwise it would not be a happy flow), but the code extracted from the happy flow
potentially can contain deadlocks.

Therefore deadlock and livelock situations are interesting properties to verify on a happy-
flow model.

17

5.2.2. REACHABILITY PROPERTIES
Just checking whether a certain state in the model, i.e. a certain statement in the code, is
reachable is not very meaningful for the happy flow. Due to the nature of the happy flow,
only source code which is actually executed is part of the model, hence any state should
also be reachable in the model.

For model validation this is however a useful property in order to check whether cer-
tain states are reachable as expected. Furthermore reachability analysis is in general faster
then analysis of safety properties because a single trace satisfying the property is enough
to prove the property, i.e. there is no need to search the complete state space.

As our CPS has concurrent tasks, it is interesting to check whether indeed all (main)
tasks of the machine cycle get their start signal. This is a good indicator that the start-up
behaviour of the machine is correctly captured in the model.

5.2.3. SAFETY PROPERTIES
Safety properties indicate that "something bad will never happen". Hence, this is a prop-
erty which should hold in all states of the model. Because our CPS performs multiple com-
plex moves where a wrong move can potentially damage products or the machine itself,
different safety properties can be thought of related to the physical state of the machine.

Examples could be:

1. The wafertable is not allowed to move when the needle is up in order to not damage
the wafer.

2. The transfer mill should not rotate when the pick & place heads are still in an outward
position in order to not damage the heads.

3. The wafertable is not allowed to move when a pick & place head is close to the wafer
in order to prevent damaged dies.

Situations like example 1 and 2 have a high observability as the machine would no
longer function properly when this property is violated. For example when the wafer foil is
damaged or the heads are damaged no pick & place is possible anymore. Therefore these
situations will not be part of the happy flow and it is not meaningful to test the correspond-
ing safety properties.

Situations like example 3 however, can be more subtle and might actually happen un-
noticed. These situations are possibly part of the captured happy-flow execution and there-
fore very interesting to test on our model.

All three examples define properties related to the physical state of the machine. There-
fore, somehow one or multiple states in the model should represent this physical state.
Note that in this research we automatically capture the control flow from the source code.
Hence knowledge on the physical state of the machine is not directly available and needs to
be added to the model for example by adding it as code annotations and extracting it with
the happy flow, or by adding it after model extraction.

The latter will not be part of this research, hence it will not be possible to verify safety
properties on the model which consider a physical state of the machine. This is left as
future work.

18

5.2.4. LIVENESS PROPERTIES
A liveness property means "something (good) will eventually happen", or when p holds,
then eventually q will hold. The model we will eventually have is that of the happy flow of
a repetitive machine cycle. Therefore it is tempting to think that liveness in general will be
satisfied, but is this really the case?

We have modelled the source code corresponding to the happy flow of the CPS, but
this one execution we used to capture the happy flow is not necessarily the only execution
flow through the captured code. Therefore liveness properties can actually reveal potential
issues in our source code, and therefore are an important category of properties to take into
account.

Examples of liveness properties for our CPS are:

1. Is it always possible to pick up a next product?

2. When a pick & place head goes into an unsafe (outward) position, will it always return
to its safe position again?

In the context of a repetitive machine cycle there is also another category of liveness
properties. That is: is it always possible to return to a defined state in the cycle? This is a
property which can be checked for each parallel task in the model and gives a good indica-
tion of the absence of deadlock.

5.2.5. SEQUENCE VALIDATION
A different category of domain properties are certain sequence of actions, e.g. is Task A
always executed before Task B? Typically this concerns a sequence within one cycle of the
machine, because in the example Task A will probably be again executed in the next cycle.
Hence to verify these kind of properties, the model needs to have some notice about the
separation of cycles.

Examples of interesting sequences in our CPS are:

1. Is the pick & place head in position before the needle pushes a die towards the head?

2. Are all inspections of a product OK before the product is placed?

A caveat for example 2) is that it should somehow be possible to identify a unique prod-
uct. This is because the inspection of a certain product and the placement of that same
product is spread over multiple cycles. It should be noted however that adding unique
identifiers will significantly increase the state space of the model.

5.2.6. CYCLE TIME ANALYSIS
An important aspect of our CPS, and production machines in general, is machine speed.
For a machine conducting a repetitive task the machine speed is determined by the time
required for one cycle.

In this research it is decided not to add the dimension of time to the model for the sake
of simplicity. With the choice for Uppaal it is however possible to extend the model in future
with timing information of the happy flow.

If the execution time of functions will be retrieved from the code, it becomes possible to
perform statistical analysis on the cycle time of the machine. Furthermore one can conduct
a critical path analysis of the different parallel tasks.

19

6
‘HAPPY FLOW ’ EXTRACTION

This chapter is about research question 2, or how to retrieve the code which is used for the
happy flow of a Cyber-Physical System. RQ-2 is stated as:

How can the code of the machine’s ‘happy flow’ be extracted automatically, using
run-time information?

The first part of the happy flow extraction is done by means of existing profiling and
coverage tools. These tools instrument the source code and record the execution count of
each line of source code while the program is running.

In case of a CPS with a repetitive task, code executed at each repetition is executed many
times where initialization code and error handling is executed much fewer times. Therefore
it is possible to use coverage data to give an indication about which code belongs to the
normal machine operation, i.e., happy flow, and which code belongs to the non-happy flow
code.

The second part of the extraction concerns the generation of a representation of the
source code which only contains the happy flow. Tooling is designed and created to per-
form this part automatically.

Figure 6.1 shows the different steps taken to come from source code to the interme-
diate representation. This chapter explains the details of the top part of the figure. The
bottom part of the figure is explained in the next chapter. The repository of our happy flow
extraction tooling is available on GitHub1.

6.1. DETERMINE THE HAPPY FLOW
As discussed in the introduction of this section, we look at the execution count of the source
code to find the happy flow. When the execution count is above a certain threshold we
consider it happy flow. Code which is executed below the threshold is considered to be
part of the initialization code or to the non-happy flow like error handling.

For the system under test, the Adat3-XF, the threshold is put at a number equal to the
amount of pick & place heads. This is because initialization code is typically executed for
each pick & place head. All code executed more times than the amount of heads is thus
considered part of the normal production flow, or ‘happy flow’.

1https://github.com/jildert17/happyflow-extractor

20

https://github.com/jildert17/happyflow-extractor

Figure 6.1: Schematic overview of the tool-chain to come from source code to a formal model; The top part is
described in this capter, the bottom part in the next chapter.

6.2. INSTRUMENTATION
As a first step the source code needs to be instrumented in order to retrieve the execution
count of each line. Because we want to minimize the state space, we choose not to take the
full source code of the CPS into account. Support packages related to e.g. the user interface,
system libraries and motion planning libraries, do not change often and are therefore less
likely to contain issues. Therefore these parts are left out. Later it can be chosen to include
more source code if it appears that our tooling works on the smaller code base. This is left
as future work.

Initially a relatively new tool called GNATcoverage2 was tried to find the coverage in-
formation of the source code. It appeared however that this tool only indicates whether a
line is executed or not, while it cannot tell how many times a line is executed. Therefore we
were forced to use older tooling called gcov3. gcov is the default coverage tool shipped with
the GNU Compiler Collection (GCC) and therefore already available in the research setup.
Our supplier of the Ada compiler, AdaCore, did however indicate that it will drop support
for gcov in the near future in favor of GNATcoverage.

For both GNATcoverage and gcov instrumentation is done on object level which is in-
serted during compile time. Therefore the source code itself is kept untouched.

In order to enable gcov instrumentation on an Ada project, recompilation is required
using compiler switches -fprofile-arcs and -ftest-coverage and linker switch
-fprofile-arcs.

During compile time for each object file a ‘*.gcno’ file is created containing information
to later reconstruct blocks and link them to line numbers.
2https://www.adacore.com/gnatcoverage
3https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

21

https://www.adacore.com/gnatcoverage
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

6.3. EXECUTING THE HAPPY FLOW
Once the source code is compiled including instrumentation, the software is ready to con-
trol the Cyber-Physical System and record coverage information. For this a (simulation)
of the Adat3-XF machine is started and the nominal machine cycle is executed for a cer-
tain amount of time. For the experiment described in this thesis the nominal cycle of the
CPS is executed for 30 seconds. The specific machine configuration used has a speed of
around 600 units per minutes, hence when running the machine for 30 seconds, an execu-
tion count of 300 is expected for code that is called once per cycle.

The gcov coverage information is written to disk the moment the program receives the
shutdown command; i.e., C-exit(). For each source file a separate file is saved with the
‘*.gcda’ extension, containing the count data for the source code. It is important to note
that this is cumulative data; i.e., when the program is run again, the coverage data is added
to the data of the previous run.

6.4. PROCESSING COVERAGE DATA
Once the coverage data has been gathered and stored in the *.gcda files, gcov can be in-
voked to generate human-readable coverage reports, see Section 6.4.1. However, in this
project we want the coverage data to be processed further, hence human-readable formats
are less suitable. For that purpose the gcov output is translated to a machine-readable for-
mat which is described in Section 6.4.2.

6.4.1. GCOV
When gcov is invoked on the code, it scans for the *.gcno and *.gcda files and by using the
original source code it generates a report for each original source file. Listing 6.1 shows a
snippet of the gcov output of one of our source files.

The leftmost column indicates the coverage count of the specific line, e.g. 288 times
for line 81, which corresponds to the expected 300 times as discussed above. A dash in
the same column indicates that no coverage data is available for that line; lines marked by
have not been executed.

Lines for which no coverage data is available can for example be lines which belong to
a previous line which is the case for line 82 and 83 in listing 6.1, both lines belong to line
81. Other examples are blank lines, or lines which only contain a keyword and cases where
lines are removed during compiler optimizations.

−: 80: overriding
288: 81: procedure Task_Entry (Mp : access Attach_Process ;

−: 82: E : Entry_Type ;
−: 83: Col let : Integer) i s
−: 84: begin

288: 85: case E i s
288: 86: when S t a r t => Mp. Process_Task . S t a r t (Col let = 1) ;

−: 87: when others => null ;
−: 88: end case ;

288: 89: end Task_Entry ;
−: 90:

#####: 91: overriding procedure Task_Wait (Att : access Attach_Process ;
−: 92: Result : out Boolean ;
−: 93: Skip_Status : out Integer) i s

22

−: 94: pragma Unreferenced (Att) ;
−: 95: begin

#####: 96: Result := True ;
#####: 97: Skip_Status := Success ;
#####: 98: end Task_Wait ;

Listing 6.1: gcov report snippet

6.4.2. GCOVR AND COBERTURA
The gcov output as shown in listing 6.1 is easily readable by humans but not very suitable
for further processing. For this purpose gcovr4 is used. This is a Python tool which calls
gcov and is able to translate the gcov output to different formats. One of these formats is
the widely used XML-based Cobertura format5.

Listing 6.2 shows the gcovr output in Cobertura format of the same source lines as
shown in listing 6.1. One Cobertura file is generated containing the coverage information
for all source files. This format is suitable for further processing, especially because of the
availability of different Cobertura format parsers.

< l i n e number="81" h i t s ="288" branch=" true " condition −coverage="50% (1/2) ">
<conditions>
<condition number="0" type="jump" coverage="50%" />
</ conditions>

</ l i n e >
< l i n e number="85" h i t s ="288" branch=" true " condition −coverage="50% (2/4) ">

<conditions>
<condition number="0" type="jump" coverage="50%" />
</ conditions>

</ l i n e >
< l i n e number="86" h i t s ="288" branch=" true " condition −coverage="50% (1/2) ">

<conditions>
<condition number="0" type="jump" coverage="50%" />
</ conditions>

</ l i n e >
< l i n e number="89" h i t s ="288" branch=" f a l s e " />
< l i n e number="91" h i t s ="0" branch=" true " condition −coverage="0% (0/2) ">

<conditions>
<condition number="0" type="jump" coverage="0%" />
</ conditions>

</ l i n e >
< l i n e number="96" h i t s ="0" branch=" f a l s e " />
< l i n e number="97" h i t s ="0" branch=" f a l s e " />
< l i n e number="98" h i t s ="0" branch=" f a l s e " />

Listing 6.2: gcovr XML output snippet corresponding to listing 6.1

Using pycobertura6 we developed a Python program which parses the Cobertura cov-
erage data as shown in Listing 6.2. This program receives two parameters: the first one
being the path to the Cobertura file, and the second one being a number indicating the
execution-count-threshold for the happy flow. All line execution counts above this thresh-
old are considered part of the happy flow, and all line frequencies equal or below this num-

4https://gcovr.com/
5https://github.com/cobertura/cobertura
6https://pypi.org/project/pycobertura/

23

https://gcovr.com/
https://github.com/cobertura/cobertura
https://pypi.org/project/pycobertura/

ber are deliberately considered not being part of the happy flow. Note that there are also
lines for which no coverage data is available.

The program returns a text file in JSON format which contains per source file a list of
line numbers above the threshold and a list of line numbers equal or below the threshold.
An example of this is shown in Listing 6.3.

{ " n r _ o f _ f i l e s " : 2 , " line_nr_data " : [{ " filename " : " C: /SVN/Trunk_Clean/ source / Applic /

Adat/ adat_thetaz −mill −attach_pos . adb" , " below_thres " : [40 , 43 , 91, 96, 97, 98 , 115 ,

119 , 120 , 122 , 124 , 149 , 154 , 158 , 159 , 161 , 162 , 163 , 164 , 165 , 166 , 168 , . . .] ,

" above_thres " : [64 , 81, 85, 86, 89 , 100 , 102 , 129 , 132 , 135 , 139 , 144 , 145 , 156 ,

253 , 256 , 258 , 260 , 263 , 268 , 271 , 275 , . . .] }] }

Listing 6.3: Parsed Cobertura output in JSON format. The marked numbers correspond to the line numbers
of the GCOV output in listing 6.1

The Python script saves the JSON text file to the C:/temp folder as a means of cache. By
giving a ‘-f’ flag to our Coverage_Filter (described below in Section 6.6.), regeneration of
the JSON file is forced, otherwise the cache file is used if available.

6.5. ADA METAMODEL
The goal of this project is to end up with a formal model of the happy flow of our CPS and
be able to verify properties on the model by a model checker. From the different model
checkers listed in Section 2.1.3 it is chosen to use Uppaal [Behrmann et al., 2006] for this
research.

The main reason for this choice is that Uppaal supports timed automata, although
adding a notion of time to our models is considered as a next step and not part of the cur-
rent research.

The second reason to choose for Uppaal is the availability of an Uppaal meta model and
a corresponding model to text transformation in the Eclipse EMF framework, presented by
[Schivo et al., 2017]. Refer to Section 2.4 for an introduction to EMF.

This framework is widely used to do model to model conversions, e.g. by [Yildiz et al.,
2017] to translate Java byte code into Uppaal models. The latter work is taken as a starting
point to do our Ada to Uppaal conversion.

The decision to use EMF leads to the need for some intermediate representation of the
Ada code which complies to the EMF/Epsilon modelling syntax. For this purpose a meta-
model of the Ada code is designed. The metamodel provides the syntax to construct the
intermediate Ada representation or model. Next to that, the metamodel is also used to
define the model-to-model transformation which is described in Chapter 7.

The full metamodel is shown in Figure 6.2, using standard UML class diagram nota-
tion. The main hierarchy of the model is that of a single Project class at top level which
has leaves of type Package_body. A Package_body then contains Subprocedures and/or
Tasks which both are the main containers of the abstract type Statement.

There are a few other relations in the model which are required to capture more subtle
and infrequently used features of the Ada language.

On the left and the right hand side of the figure different kinds of statements are shown,
reflecting most of the common statement types of the Ada language. Besides the com-
mon Ada constructs, also statements related to custom-defined concepts are added. These
concepts are Events and Mutexes. These concepts have their own types in our metamodel

24

Figure 6.2: Diagram of the Ada metamodel in EMF/Epsilon

25

because they play an important role in our inter-process communication and will therefore
impact our Uppaal model of the CPS.

The event construct is a kind of global signal which has three functions associated to it:
SetEvent, ResetEvent and WaitForEvent. By means of this concept concurrent tasks can
synchronize with each other.

Mutexes are widely used in computer science to lock certain resources in order to pre-
vent race conditions in concurrent systems. The custom-defined mutexes in our CPS has
two related functions, LockMutex and UnlockMutex. Also this concept will get its own rep-
resentation in the Uppaal model and therefore has its own statement types in the meta-
model.

All statement types inherit from the abstract Statement type. Note that statements can
again contain statements, such that a tree of statements is supported.

In order to support grouping of child statements, a Statement_List type is added. This
is for example used to be able to distinguish between the condition statements and else
statements of an if statement.

6.6. GENERATE THE INTERMEDIATE REPRESENTATION
Now that it is known from the coverage data which lines we need to keep and which lines
should be removed, and we have an EMF metamodel, we are able to filter the happy flow
from the original source code and translate it to the metamodel syntax.

For this step we designed a custom tool called the ‘Coverage_Filter’ which reads the
JSON file with coverage data and retrieves the AST of the source code. It then translates
the happy flow code into an intermediate Ada model. This model is written in XML and
complies to the metamodel from Section 6.5.

The tool is, like the CPS source code, written in Ada. To retrieve the AST from each
source code file, the LibAdaLang7 libraries are used. Once the AST is available, the tree
is traversed by means of a recursive function. Each node matching a language construct
which needs to translated is processed as described below.

6.6.1. PACKAGE BODY
For the AST nodes of type Ada_Package_Body it is not checked whether it is in the happy
flow or not as these nodes are not executed and no coverage data is available.

These nodes are translated to an XML node with name package_body and attributes
location and name.

Table 6.1 shows an example of the translation of the Package body source code via the
AST to the intermediate Ada model.

7https://github.com/AdaCore/libadalang

26

https://github.com/AdaCore/libadalang

1 : 31: package body Adat_ThetaZ . Mil l . Pickup_Pos i s

PackageBody[31 :1 −1983 :33]
| f_package_name:
| DefiningName[31 :14 −31 :41]
| | f_name:
| | DottedName[31 :14 −31 :41]
| | | f _ p r e f i x :
| | | DottedName[31 :14 −31 :30]
| | | | f _ p r e f i x :
| | | | Id [31 :14 −31 :25] : Adat_ThetaZ
| | | | f _ s u f f i x :
| | | | Id [31 :26 −31 :30] : Mil l
| | | f _ s u f f i x :
| | | Id [31 :31 −31 :41] : Pickup_Pos
| f _ a s p e c t s : <null>
| f _ d e c l s :
| DeclarativePart [31 :44 −1973 : 1]
| | . . .

<package_body location=" adat_thetaz −mill −
pickup_pos . adb:31:1: " name="
Adat_ThetaZ . Mil l . Pickup_Pos">

Table 6.1: Package Body translation; Top: Source code, annotated with coverage information; Bottom-Left:
AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

6.6.2. SUBPROCEDURE BODY
AST nodes of type Ada_Subp_Body represent the bodies of all procedures and functions in
the source code. First the line number of a subprocedure is checked against the coverage
information: only if the execution count is above the threshold, the node is processed, oth-
erwise it is skipped. An exception is made for the subprocedure named ‘Adat_Dietransfer-
A3’ as this procedure is only executed once, but does contain the main loop of the machine
cycle.

A general point of concern when automatically extracting the happy flow is that
the starting point of the cycle often gets ‘lost’. Typically the machine cycle is trig-
gered by some start procedure which is only executed once. Therefore it always
falls below the happy-flow threshold, despite that it belongs to the happy flow.
Manual action is required to make sure that this starting point ends up in the for-
mal model.

When a subprocedure body node is to be kept, it is translated into an XML node with a
name and a location. Furthermore the location in the source code where this subprocedure
is declared is added as an attribute called decl_location. This is important to later on link
a call statement to the implementation of the procedure.

Note that subprocedures which have no separate declaration do not have the
decl_location attribute and are linked by the location of the body itself (as defined by
the location attribute).

Special attention is needed for subprocedure bodies which override a parent imple-
mentation. For these bodies we do not need the local declaration location, but the location
where the parent implementation is declared. This is because during compile time it is not
known which implementation corresponds to a certain call statement, hence the parent
declaration is needed to link call statements to subprocedure implementations.

27

Table 6.2 shows the translation of a subprocedure via the AST into the intermediate Ada
representation.

309: 81: overriding procedure Task_Entry (Pick : access Pickup_Process ;
−: 82: E : Entry_Type ;
−: 83: Col let : Integer) i s

SubpBody[81 :4 −91 :19]
| f _ o v e r r i d i n g :
| OverridingOverriding [81 :4 −81 :14]
| f_subp_spec:
| SubpSpec[81 :15 −83 :54]
| | f_subp_kind:
| | SubpKindProcedure [81 :15 −81 :24]
| | f_subp_name:
| | DefiningName[81 :25 −81 :35]
| | | f_name:
| | | Id [81 :25 −81 :35] : Task_Entry
| | f_subp_params:
| | . . .

<subprocedure decl_location=" adat_thetaz −mil l .
a d s : 2 7 5 : 4 : " location=" adat_thetaz −mill −
pickup_pos . adb:81:4: " name=" Task_Entry ">

Table 6.2: Subprocedure Body translation; Top: Source code, annotated with coverage information; Bottom-
Left: AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

6.6.3. EXPRESSION FUNCTION
A special form of a subprocedure is the expression function. This is a single-line definition
of a subprocedure. Other than that, the behaviour is the same compared to the Subproce-
dure translation.

Because the Expression Function is a subtype of the Subprocedure type, the XML tag
name of an expression function is again subprocedure, like the normal subprocedures.
In order to indicate the subtype to the EMF framework, an xsi:type attribute with value
"Expr_Function" is added to the XML node. Table 6.3 shows this translation.

28

548: 64: function Bulk_Taping return Boolean i s (Config . General . Ds_Bulk /=
None) ;

ExprFunction [64 :4 −64 :76]
| f _ o v e r r i d i n g :
| OverridingUnspecified [62 :80 −62 :80]
| f_subp_spec:
| SubpSpec[64 :4 −64 :39]
| | f_subp_kind:
| | SubpKindFunction [64 :4 −64 :12]
| | f_subp_name:
| | DefiningName[64 :13 −64 :24]
| | | f_name:
| | | Id [64 :13 −64 :24] : Bulk_Taping
| | f_subp_params: <null>
| | f_subp_returns:
| | SubtypeIndication [64 :32 −64 :39]
| | | f_has_not_null :
| | | NotNullAbsent [64 :31 −64 :31]
| | | f_name:
| | | Id [64 :32 −64 :39] : Boolean
| | | f _ c o n s t r a i n t : <null>
| f _ e x p r :
| . . .

<subprocedure location=" adat_thetaz −mill −
attach_pos . adb:64:4: " name="Bulk_Taping"
x s i : t y p e =" Expr_function " />

Table 6.3: Expression Function translation; Top: Source code, annotated with coverage information; Bottom-
Left: AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

6.6.4. TASK BODY
The Ada_Task_Body type nodes represent the bodies of the Ada Tasks defined in the source
code. Tasks are executed in a separate thread and are the main method in Ada to realize
concurrent behaviour.

Because task bodies are initialized once and keep ’running’ after that, they have an ex-
ecution count of 1. This means that we cannot decide whether a task is part of the happy
flow or not, hence all tasks are added to the intermediate representation. However, to pre-
vent non-relevant tasks to be present in our eventual model, we omit all source files which
does has not have any lines above the execution count threshold.

Table 6.4 shows the translation of a task body via the AST to the Ada model.

29

1 : 612: task body Pickup_Task i s

TaskBody[612 :4 −1415 :20]
| f_name:
| DefiningName[612 :14 −612 :25]
| | f_name:
| | Id [612 :14 −612 :25] : Pickup_Task
| f _ a s p e c t s : <null>
| f _ d e c l s :
| DeclarativePart [612 :28 −1364 : 4]
| | . . .

<task location=" adat_thetaz −mill −
pickup_pos . adb:612:4: " name="
Pickup_Task">

Table 6.4: Task Body translation; Top: Source code, annotated with coverage information; Bottom-Left: AST
as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

6.6.5. ACCEPT STATEMENT
The Ada_Accept_Stmt type nodes and Ada_Accept_Stmt_With_Stmts type nodes define
rendezvous points of Ada tasks. When an accept statement has sub-statements, the caller
is blocked while the statements are executed. If there are no sub-statements in the accept
statement, the caller continues execution immediately after the rendezvous has occurred.

During the research it appeared that gcov gives no coverage information on statements
in task bodies. Therefore only statements which explicitly have execution count equal or
below the threshold are removed. Hence, statements with no coverage information are
kept.

As with subprocedures (Section 6.6.2), the location where the accept statement is de-
clared is added as a decl_location attribute. This information is later used to link accept
statements calls to the corresponding accept bodies.

Table 6.5 shows the translation of an accept statement with statements via the AST to
the Ada model. Note that the statements contained in the accept statement are not shown
here and will be added as child elements in the Ada model.

−: 1367: accept S t a r t do

AcceptStmtWithStmts [1367 :13 −1376 :23]
| f_name:
| Id [1367 :20 −1367 :25] : S t a r t
| f_entry_index_expr: <null>
| f_params:
| EntryCompletionFormalParams[1367 :25 −1367 :25]
| | f_params: <null>
| f _ s t m t s :
| HandledStmts[1367 :28 −1376 :13]
| | . . .

<statement decl_location=" adat_thetaz −mill
−pickup_pos . a d s : 3 4 : 7 : " location="
adat_thetaz −mill −pickup_pos .
adb:1367:13: " name=" S t a r t " x s i : t y p e ="
Accept">

Table 6.5: Accept statement translation; Top: Source code, annotated with coverage information; Bottom-
Left: AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

30

6.6.6. SELECT STATEMENT
The select statement is tightly coupled to the accept statement. By means of a select state-
ment it is possible to have a task accept multiple synchronization calls, i.e., it is open for
calls to any of its accept statements. This is modelled by a select element having zero or
more ‘Guards’ with each guard containing an Accept statement. Furthermore Accept state-
ments can have an else and an abort element, see Section 9.7 of the Ada reference manual
for more information.8

6.6.7. CALL EXPRESSION
Due to the internals of the Libadalang AST and the corresponding API, it was found that
Call Statements could be best identified by parsing all identifiers in the source code and
checking whether these identifiers refer to a subprocedure. This is described in Section
6.6.9. Though, to capture the special Event and Mutex statements as described in Section
6.5, the Call_Expression node type is parsed in order to translate these concepts to the
Ada metamodel.

Table 6.6 shows the translation from a SetEvent statement in the source code, through
the AST into the intermediate representation. Again also a decl_location attribute is
added in order to link the SetEvent, ResetEvent and WaitForEvent procedures later on.

Table 6.7 shows the same translation for the Lock_Mutex statement. Also for the mu-
texes the decl_location attribute is added in order to link the corresponding Lock and
Unlock calls.

280: 335: SetEvent (Xy_Permitted) ;

CallStmt [335 :7 −335 :31]
| f _ c a l l :
| CallExpr [335 :7 −335 :30]
| | f_name:
| | Id [335 :7 −335 :15] : SetEvent
| | f _ s u f f i x :
| | AssocList [335 :17 −335 :29]
| | | ParamAssoc[335 :17 −335 :29]
| | | | f_desi gnator : <null>
| | | | f _ r _ e x p r :
| | | | Id [335 :17 −335 :29] : Xy_Permitted

<statement decl_location="adat_ramdata .
a d s : 2 0 : 4 : " location=" adat_thetaz −mill
−pickup_pos . adb:335:7: " name="
Xy_Permitted " x s i : t y p e =" SetEvent " />

Table 6.6: SetEvent statement translation; Top: Source code, annotated with coverage information; Bottom-
Left: AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

8https://docs.adacore.com/live/wave/arm12/html/arm12/arm12-9-7.html

31

https://docs.adacore.com/live/wave/arm12/html/arm12/arm12-9-7.html

283: 471: Lock_Mutex (Xy . Lock) ;

CallStmt [471 :7 −471 :28]
| f _ c a l l :
| CallExpr [471 :7 −471 :27]
| | f_name:
| | Id [471 :7 −471 :17] : Lock_Mutex
| | f _ s u f f i x :
| | AssocList [471 :19 −471 :26]
| | | ParamAssoc[471 :19 −471 :26]
| | | | f_de si gnator : <null>
| | | | f _ r _ e x p r :
| | | | DottedName[471 :19 −471 :26]
| | | | | f _ p r e f i x :
| | | | | Id [471 :19 −471 :21] : Xy
| | | | | f _ s u f f i x :
| | | | | Id [471 :22 −471 :26] : Lock

<statement decl_location="
adat_wafertable_xy . ads:368:10: "
location=" adat_wafertable_xy .
adb:471:7: " name="Lock" x s i : t y p e ="
LockMutex" />

Table 6.7: LockMutex statement translation; Top: Source code, annotated with coverage information;
Bottom-Left: AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the meta-
model.

6.6.8. IF STATEMENT
An if statement contains multiple groups of child statements. The condition part and then
part are always present. Furthermore there can be zero or more elsif parts, and lastly there
can be a possible else part.

Once an if statement is found during the AST traversal, an if element is added to the Ada
model including the location attribute. Then a condition element is added as a child to the
if element. All statements present in the condition part are again recursively parsed. The
same is done for the then part and the else part of the if statement.

Any present elsif statement is parsed separately, resulting in an elsif element below the
if element in the model. Note that an elsif statement, like an if statement, again has a con-
dition part and a then part.

Table 6.8 shows the translation of an if statement including an elsif and else part.

32

33 procedure If_Else_Sample_Function
34 i s
35 begin
36 i f If_Condition_Stmt = True then
37 I f_Cal ls tmt ;
38 e l s i f Elsif_Condition_Stmt then
39 E l s i f _ C a l l s t m t ;
40 else
41 Else_Callstmt ;
42 end i f ;
43 end If_Else_Sample_Function ;

IfStmt [36 :7 −42 :14]
| f_cond_expr:
| RelationOp [36 :10 −36 :34]
| | f _ l e f t :
| | Id [36 :10 −36 :27] : If_Condition_Stmt
| | f_op:
| | OpEq[36 :28 −36 :29]
| | f _ r i g h t :
| | Id [36 :30 −36 :34] : True
| f_then_stmts:
| StmtList [37 :10 −37 :22]
| | CallStmt [37 :10 −37 :22]
| | | f _ c a l l :
| | | Id [37 :10 −37 :21] : I f_Cal ls tmt
| f _ a l t e r n a t i v e s :
| E l s i f S t m t P a r t L i s t [38 :7 −39 :25]
| | E ls i fStmtPart [38 :7 −39 :25]
| | | f_cond_expr:
| | | Id [38 :13 −38 :33] : Elsif_Condition_Stmt
| | | f _ s t m t s :
| | | StmtList [39 :10 −39 :25]
| | | | CallStmt [39 :10 −39 :25]
| | | | | f _ c a l l :
| | | | | Id [39 :10 −39 :24] : E l s i f _ C a l l s t m t
| f _ e l s e _ s t m t s :
| StmtList [41 :10 −41 :24]
| | CallStmt [41 :10 −41 :24]
| | | f _ c a l l :
| | | Id [41 :10 −41 :23] : Else_Callstmt

<statement location=" if_else_sample . adb:36:7: "
x s i : t y p e =" I f ">

<conditions>
<statement location=" if_else_sample . adb:36:10: "

name=" If_Condition_Stmt " target_ locat ion="
if_else_sample . a d b : 3 : 4 : " x s i : t y p e ="
Call_statement " />

</ conditions>
<then>

<statement location=" if_else_sample . adb:37:10: "
name=" If_Cal ls tmt " target_ locat ion="

if_else_sample . adb:15:4: " x s i : t y p e ="
Call_statement " />

</then>
<statement location=" if_else_sample . adb:38:7: "

x s i : t y p e =" E l s i f ">
<conditions>

<statement location=" if_else_sample . adb:38:13:
" name=" Elsif_Condition_Stmt " target_locat ion="
if_else_sample . a d b : 9 : 4 : " x s i : t y p e ="
Call_statement " />

</ conditions>
<then>

<statement location=" if_else_sample . adb:39:10:
" name=" E l s i f _ C a l l s t m t " target_ locat ion="
if_else_sample . adb:27:4: " x s i : t y p e ="
Call_statement " />

</then>
</ statement>
<else >

<statement location=" if_else_sample . adb:41:10: "
name=" Else_Callstmt " target_ locat ion ="

if_else_sample . adb:21:4: " x s i : t y p e ="
Call_statement " />

</ else >
</ statement>

Table 6.8: If statement translation; Top: Source code, annotated with coverage information; Bottom-Left: AST
as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

33

6.6.9. IDENTIFIER TYPE
As discussed before, call statements are retrieved from the AST by parsing the
Ada_Identifier node type. Every identifier in the source code is checked whether it refers
a node of type Ada_Classic_Subp_Decl, Ada_Subp_Body,
Ada_Generic_Subp_Instantiation, Ada_Expr_Functionor Ada_Subp_Renaming_Decl.
In that case a Call_statement element is added to the Ada model and the location where
the identifier references to is added as a target_location attribute.

In Table 6.9 the identifier Task_Entry is checked for referring to one of the given node
types. This results in the Call_statement element shown at the bottom right of the table.

270: 1015: Task_Entry (Pick . Mil l . Proc (Pick . Connected_Inspect_P) . Itask ,
135: 1016: Prepare_TransInspect , Bh_AtTransInsp . Bh_Nr) ;

CallStmt [1015 :16 −1016 :72]
| f _ c a l l :
| CallExpr [1015 :16 −1016 :71]
| | f_name:
| | Id [1015 :16 −1015 :26] : Task_Entry
| | f _ s u f f i x :
| | AssocList [1015 :28 −1016 :70]
| | | ParamAssoc[1015 :28 −1015 :75]
| | | | f_de si gnator : <null>
| | | | f _ r _ e x p r :
| | | | DottedName[1015 :28 −1015 :75]
| | | | | . . .

<statement location=" adat_thetaz −mill −
pickup_pos . adb:1015:16: " name="
Task_Entry " target_ locat ion="
adat_thetaz −mil l . a d s : 2 7 5 : 4 : " x s i : t y p e
=" Call_statement " />

Table 6.9: Call statement translation; Top: Source code, annotated with coverage information; Bottom-Left:
AST as retrieved from LibAdaLang; Bottom-Right: translated XML code complying to the metamodel.

6.6.10. CASE STATEMENT
The case statement follows the same pattern as the if statement with a case_expr element
for all statements in the Case expression and separate child elements for each case alterna-
tive, denoted by a when element.

6.6.11. LOOP STATEMENTS
The Ada language supports three kinds of loop statements; the for loop, while loop, and a
loop statement without conditions. The loop statement without conditions is translated in
a single Loop element in the Ada model containing child elements representing the state-
ments within the loop.

The for and while loop both have two intermediate elements, i.e., a loop_expr element
containing all the statements of the loop condition, and a loop_stmts element which con-
tains all the statements of the loop body.

6.6.12. RETURN AND DELAY STATEMENTS
The Return and Delay node types have a 1-to-1 mapping to their corresponding Ada model
elements. Note that both these nodes can contain child statements, which are then added
as child elements to the parent return or delay element.

34

6.7. RESULTING MODEL
Applying the transformation explained in the previous sections, the source code’s happy
flow is translated in to one complete XML file representing the Ada model. Figure 6.3 shows
a graphical view on the model in the Eclipse Modelling Framework with important lan-
guage constructs like tasks, subprocedures, call statements, loops and if statements. At
the end of each line in the model, the node type and parent reference is shown between
brackets. The corresponding XML ‘source code’ of this model is given in Appendix A.

35

Figure 6.3: The source code’s happy flow shown in the Eclipse model viewer.

36

7
FORMAL MODEL GENERATION

This chapter describes the research done to answer RQ-3 which was stated as:

How to automatically translate a partial program written in Ada, as found by
answering RQ-2, into a formal model that allows the properties found by an-
swering RQ-1 to be verified?

Different steps have been taken to come from the intermediate Ada model as described
in the previous chapter, to a formal Uppaal model. This chapter describes these steps
and the resulting Uppaal models. At the core of the transformation the Eclipse Modelling
Framework (EMF) is used as described in Section 2.4.

Section 7.1 explains the main concept of the transformations done. Section 7.2 de-
scribes how the linking between call statements and their implementations is realised. Sec-
tion 7.3 then explains the transformation itself. Section 7.4 finally shows a glimpse of the
full generated Uppaal model of our CPS. The repository of our model-to-model transfor-
mation definition is available on GitHub1.

7.1. TRANSFORMATION CONCEPT
The complete transformation from the intermediate Ada model to a formal Uppaal model
is done in two steps. First the Ada model is transformed into an Uppaal model in EMF
‘syntax’, secondly this Uppaal-EMF model is transformed into a text format complying to
the Uppaal syntax such that Uppaal can open this file. The latter is denoted as the Model-
to-Text transformation.

7.1.1. MODEL-TO-MODEL TRANSFORMATION
As discussed in Section 2.4, a model based engineering approach was taken to transform
the Ada code to Uppaal ‘code’. As shown in Figure 2.6, for the transformation we need a
source metamodel, a target metamodel and a transformation definition.

The source metamodel is the metamodel of the Ada code as developed during this
project and presented in Section 6.5. The target metamodel is the metamodel of the Uppaal
language as presented by [Schivo et al., 2017], see Figure 7.2.

This section describes the designed transformation definition to have EMF transform
our Ada model to an Uppaal model.

1https://github.com/jildert17/ada-to-uppaal

37

https://github.com/jildert17/ada-to-uppaal

Figure 7.1: Model-2-model and model-2text transformation

Figure 7.2: Uppaal metamodel; from [Schivo et al., 2017]; Note: Edges can contain select, guard,
synchronize and update expressions (not shown in the figure)

38

Epsilon [Kolovos et al., 2008] is a family of languages specifically designed for model
based engineering, which works on top of EMF. For defining model to model transforma-
tions, Epsilon provides the Epsilon Transformation Language2 (ETL). In ETL, rules can be
defined which describe how a certain type of input class should be transformed to one or
more output classes.

The transformation definition is based on the transformation of [Yildiz et al., 2017] to
translate Java Bytecode into an Uppaal model.

ETL rules can optionally be labelled Greedy and Lazy. Non-labelled rules are automat-
ically applied to all classes which exactly match the given type. In contrast, when a rule
is labelled Greedy, that rule is also applied to classes which are child classes of the refer-
enced object. This is useful in our case where we want certain rules to apply to all objects
inheriting from the statement type. Where the previous rules are always executed, rules
labelled Lazy are only executed when specifically called. This feature is as well used in our
transformation and discussed below.

7.1.2. MODEL-TO-TEXT TRANSFORMATION
The model to text transformation concerns the translation of the Uppaal model in EMF
context to Uppaal source files. One of the main reasons for choosing the EMF framework
for our model transformations was that this model-to-text transformation for Uppaal is
already available from [Schivo et al., 2017].

This transformation, like the model to model transformation, uses an ETL file describ-
ing the translation from the Uppaal metamodel to the Uppaal source file definition. Uppaal
source files are again written in XML and follow a syntax as defined in an XML Schema Def-
inition (XSD). This XSD file serves as the metamodel for the Uppaal source file.

7.2. LINKING CALLS AND IMPLEMENTATIONS
Before the transformation itself is executed, some pre-processing needs to done in order to
prepare the correct linking between call statements and their corresponding implementa-
tions. This not only holds for regular subprocedure calls, but also for calls to Accept state-
ments, setting and resetting Events as well as locking and unlocking Mutexes.

7.2.1. SUBPROCEDURE CALLS
During the transformation of subprocedure calls, we need to check whether there is an im-
plementation available in the happy flow for the specific call. If there is no implementation,
no further action is required, but in case the implementation is available, the subprocedure
call and the implementation need to be linked. Important to notice is that due to inheri-
tance, there can be multiple implementations for one subprocedure call. Because statically
it cannot be determined which implementation is the right one, all implementations need
to be considered.

The common denominator between a subprocedure call and its implementation is the
unique location of the subprocedure definition, therefore this is used as the ‘connecting
dot’. In order to find the connecting dot at the transformation step, a hash map is created
during the pre-processing step. This map contains the subprocedure call statement as the
key, and a list of the possible implementations as its value. The list is created by iterating

2https://www.eclipse.org/epsilon/doc/etl/

39

https://www.eclipse.org/epsilon/doc/etl/

over all call statements in the happy flow which call a subprocedure. For each call state-
ment the declaration location is retrieved and checked against the declaration locations of
all subprocedure implementations, every match is added to the list of possible implemen-
tations.

A sample of this hash map is given in Listing 7.1.

Map {
Call_statement [location=case_sample . adb : 2 4 : 1 2 : , name=Case_Condition_Stmt ,

target_locat ion=case_sample . adb : 3 : 4 :]
−>Sequence { Subprocedure [name=Case_Condition_Stmt , location=case_sample . adb
: 3 : 4 : , decl_location=null ,] } ,

Call_statement [location=case_sample . adb : 2 6 : 3 2 : , name=Case_Stmt_2 ,
target_locat ion=case_sample . adb : 1 5 : 4 :]
−>Sequence { Subprocedure [name=Case_Stmt_2 , location=case_sample . adb : 1 5 : 4 : ,
decl_location=null ,] } }

Listing 7.1: An example of the subprocedure hashmap with the call statements as its key and a list of possible
implementations as the value

7.2.2. ACCEPTS, EVENTS AND MUTEX LINKING
Like for the subprocedure calls, hash maps are created as well for accept statements, setting
and resetting events and locking and unlocking mutexes. These maps are simpler than the
subprocedure maps because there are no multiple possible implementations.

The hash maps for these constructs all look the same with their unique declaration lo-
cation as the key and the corresponding object as its value.

Events The population of the events hash map is based on all SetEvent and ResetEvent
statements. Furthermore, for each event, an Uppaal template is created having a set and
an unset location, representing the two states of the event. The semantics of our event
concept allows an event to be always set or reset, even if it was already in the set or unset
state respectively. Furthermore a WaitForEvent can be called on an event which will be
blocking as long as the event is in the unset state, and gets unblocked as soon as the event
is in the set state.

To account for the semantics, three synchronization channels are created along with
the template. One channel for setting the event, one for resetting the event and one for
waiting on the event. An example of a generated event template with its channels is shown
in Figure 7.3.

It should be noted that we have chosen to make the set location the initial location. This
was needed in order to make the machine cycle actually ‘run’ while having a model of the
happy flow only because some events are only set during initialization.

Figure 7.3: A generated Event Template

40

Mutexes For mutexes we chose to only use the UnlockMutex statements to populate the
hash map. This is done so to guarantee that a mutex is always unlocked in the happy-flow
code. Assume two locking calls for the same mutex are present in the happy flow, but the
unlock call is not part of the happy flow (e.g. it is in one of the support packages), then the
happy-flow model will contain a deadlock while this is not the case in the real system.

For each unique mutex added to the hash map, a template is created containing an
unlocked and locked state with two edges going from one to the other. Both edges have a
synchronization channel in order to be able to put the mutex either in locked or in unlocked
state, see also Figure 7.4.

Figure 7.4: A generated Mutex Template

7.3. TRANSFORMATION STEP-BY-STEP
For readability, this section explains and shows the complete transformation (model-to-
model + model-to-text) in one go per Ada construct, hence the intermediate Uppaal-EMF
model instance is not shown.

7.3.1. SUBPROCEDURE TRANSFORMATION
As a first step in the transformation, a rule is defined which translates all Ada Subproce-
dures into Uppaal Templates. This rule calls a recursive function which transforms all
statements in the subprocedure to Uppaal states, these transformations are described in
Section 7.3.3. Furthermore the Uppaal templates are given synchronization points on the
entry and return edges such that these templates can be ‘called’ from other templates, just
like the original subprocedures. In order to create the required synchronization channels,
another rule is defined which translates all Subprocedures to two Uppaal Synchronization
channels, one for the call and one for the return.

7.3.2. TASK TRANSFORMATION
Tasks and Subprocedures are much alike. Both get translated into their own Uppaal tem-
plate. The main difference between the two is that a task does not have call and return
channels. No call is needed to start the task, the moment the model is ‘started’, all tasks are
started as well.

7.3.3. STATEMENT TRANSFORMATION
For each statement present in a subprocedure, a recursive function is called which handles
all elements derived from the abstract Statement node type. Due to the ‘recursiveness’,
also all nested statements get translated. This is the main part of the transformation and
effectively builds a Control Flow Graph from the intermediate Ada representation. Below it
is described in detail how each different statement sub type is translated.

41

CALL STATEMENT

Call statements are handled by the lazy defined rule ‘ada_CallStatement2uppaal_location’.
Because this rule is defined lazy, it is only executed when called from the recursive function.

This rule always creates a calling location and a returning location. Only when there is
an implementation for the specific called procedure, also a ‘waiting’ location is created. In
that case a call synchronization is added to the edge from the calling to the waiting state
and a return synchronization to the edge from waiting to returning.

package body Call_Stmt_Sample i s

function Callee return Boolean
i s
begin

return True ;
end Callee ;

procedure Cal ler
i s

Foo : Boolean ;
begin

Foo := Callee ;
end Cal ler ;

end Call_Stmt_Sample ;

Figure 7.5: Call Statement transformation; Left: Original source code, Top right: Uppaal Callee template;
Lower right: Uppaal Caller template

Important to note is that there can be multiple possible implementations, for exam-
ple when multiple child classes implement a function which is defined abstract in a parent
class. This means that statically it is not known which of the implementations should be
called by the call statement. Therefore it is possible that there are multiple waiting states
in the Uppaal model for one call statement. Uppaal will choose one of the possible imple-
mentations in a nondeterministic manner.

Figure 7.5 shows an example of a subprocedure calling another subprocedure. Both
subprocedures are translated to Uppaal templates which synchronize with each other by
means of a Call and a Return channel. Because the Callee function has no statements ex-
cept for return True a dummy location is added automatically.

IF AND ELSIF STATEMENT

An important aspect of the If and Elsif statement transformation is the deduction of the
correct control flow. Regardless of the branch chosen in the statement, first always the
conditions of the If statement will be executed. After this either the statements in the then-
part are executed, or the conditions of a possible Elsif statement, or the statements present
in a possible Else-part. Note that when an Elsif part and an Else part are present, first the
conditions of the Elsif are executed again before the statements in the Else are executed.

Figure 7.6 shows an Uppaal template of an If-Elsif-Else statement. Here the control flow
of the conditions and the different branches is visualized. Uppaal makes a nondeterminis-
tic choice for one of the possible branches, but note that of course only the branches part
of the happy flow are in the intermediate representation.

42

procedure If_Else_Sample_Function
i s
begin

i f If_Condition_Stmt = True then
If_Cal ls tmt ;

e l s i f Elsif_Condition_Stmt then
E l s i f _ C a l l s t m t ;

e lse
Else_Callstmt ;

end i f ;
end If_Else_Sample_Function ;

Figure 7.6: If-Elsif-Else statement transformation

43

CASE STATEMENTS

Case statements are modelled in the same way as If statements, first the case condition is
executed and then one of the possible branches can be chosen by Uppaal. Again only the
branches part of the happy flow are available.

EVENTS

As briefly introduced in Section 6.5 and Section 7.2.2, our event construct is a kind of global
signal having two possible states: Set and Unset. Related to this construct, there are three
functions which can be called on an event: SetEvent, ResetEvent and WaitForEvent. By
means of this concept concurrent tasks can synchronize with each other, e.g. task a waits
for signal s to be set by task b. The behaviour of these statements is rather straightforward
and is modelled in Uppaal by a separate template per event with two locations representing
the state of the event, either set or unset.

The Set statement is translated into two Uppaal locations with an edge in between con-
taining a send synchronization on the set channel. In the same fashion the Reset state-
ment is translated into two locations with a send synchronization on the reset channel.
Note that the event template can always receive a set or a reset synchronization, so the
former statements are never blocking.

The WaitForEvent statement is also translated into two locations connected by an
edge, but in this case it has a receive synchronization on the waitForEvent channel. Be-
cause the event template can only send this synchronization in the set state, the Wait-
ForEvent statement is blocked until the event is set. A piece of sample code translated
into an Event template and related call statements is shown in Figure 7.7.

Unlike most other locations in our Uppaal model, the first location of the WaitForEvent
statement is not labelled as Urgent because Uppaal should be able to wait in this location
until the moment the event is set. It should be noted here that for a model without time,
like our model, this has no influence, but in this way the model is at least already prepared
for this.

task body Simple_Task
i s

Dummy : Boolean ;
begin

accept Accept_1 ;
Dummy := WaitForEvent (

Sample_Event) ;
end Simple_Task ;

procedure Event_Sample_Function
i s
begin

ResetEvent (Sample_Event) ;
Simple_Task . Accept_1 ;
delay 1 . 0 ;
SetEvent (Sample_Event) ;

end Event_Sample_Function ;

Figure 7.7: SetEvent, ResetEvent, and WaitForEvent example; left the original code; right the generated
Uppaal models including the template representing the state of the event shown at the top.

MUTEXES

The second custom construct in the codebase as discussed earlier are mutexes. This con-
cept is modelled in Uppaal by a simple template with two locations representing a locked

44

state and an unlocked state. When a process wants to ‘grab’ a lock while the mutex-template
is already in the lock state, the calling process is blocked until the mutex is released and
transitioned to the unlock state.

The mutex concept as defined in our code base does not prevent task a to unlock a
mutex locked by task b. The Uppaal representation of the mutex mimics this behaviour.
Subsequently our mutex concept cannot lock an already locked mutex (this results in an
exception). In our model this behaviour is also covered but this will not result in an excep-
tion, instead it will block the ‘calling’ task until the mutex has been unlocked again.

As explained in Section 7.2.2, during the pre-processing step of the model transforma-
tion, a hash map is generated from all occurrences of MutexUnlock statements. This map
is used to determine whether the lock is in the happy flow at all and, if so, to find the correct
synchronization channel to either lock or unlock the mutex.

Figure 7.8 shows an example of a piece of Ada code translated into the corresponding
Uppaal mutex-template and call statements.

task body Task_Sample1
i s
begin

Lock_Mutex (My_Lock) ;
Unlock_Mutex (My_Lock) ;

end Task_Sample1 ;

Figure 7.8: Uppaal example showing a Mutex Template and the Lock and Unlock calls

LOOPS

Loop statements are transformed in a straightforward manner where first the loop condi-
tions are executed, and then the body of the loop. Finally from the last location two edges
are added, one to the first location of the loop and one to an exit location.

One exception is made for the loop statement without conditions. This kind of loop is
considered to run indefinitely and does not have an edge to the exit location.

In the current version of the tool, no information from the loop conditions is used to
determine the number of times a loop is executed. It can be imagined to use coverage
information to estimate this number. This is left as future work.

RENDEZVOUS STATEMENTS

Rendezvous statements follow the same approach as call statements. A calling and return-
ing location are added for each rendezvous, and when a corresponding accept statement
is available in the accepts hash map, a waiting location is added with the appropriate call
and return synchronization channels.

Figure 7.9 shows a simple subprocedure with one rendezvous statement synchronizing
with the Accept_1 entry point of a task.

45

procedure Task_Sample_Subp
i s
begin

Task_Sample_Body . Accept_1 ;
end Task_Sample_Subp ;

Figure 7.9: Subprocedure synchronizing with the Accept_1 entry point of the task shown in Figure 7.10; Left:
original Ada code; Right: the generated Uppaal template

ACCEPT STATEMENTS

Accept statements are translated into two locations, a magenta location with postfix ‘call-
ing’ and a dark blue location with postfix ‘returning’. Accept statements can be ‘called’
by rendezvous statements. Therefore a receiving synchronization channel is added on the
edge to the first location, and a sending synchronization on the edge to the second location.

Remember from Section 6.6.5 that accept statements can have child statements but not
necessarily. In the former case the caller blocks until all child statements have been exe-
cuted by the task. In the latter case the caller can immediately continue. This difference is
shown in Figure 7.10 where the first accept statement has a child statement and the second
accept statement does not.

SELECT STATEMENTS

Figure 7.10 furthermore shows a select statement which make it possible for callers to either
synchronize with Accept_1 or with Accept_2. The delay statement shown in the code
is translated into a location in the Uppaal model, however the effective delay is currently
not incorporated. Note that in this case the required delay of 10 seconds is obvious, but
typically an expression is given evaluating to some number which is much harder to find
statically.

7.4. THE FULL UPPAAL MODEL
At this point, all the parts needed to create a full Uppaal model from our CPS source code
are in place. The Cobertura file contains the coverage data for 562 source files, parsing
this file and generating the intermediate representation by our Coverage_Filter tool takes
around 1.5 minutes. The model to model transformation by Eclipse takes around 2.5 min-
utes and the model to text transformation takes 1 minute.

Figure 7.11 shows a screenshot of the resulting Uppaal model, furthermore some num-
bers on the size of the model are given in Table 7.1.

46

task body Task_Sample_Body
i s
begin

loop
s e l e c t

accept Accept_1 do
Accept_1_Callstmt ;

end Accept_1 ;
or

accept Accept_2 ;
Accept_2_Callstmt ;

or
delay 10;

end s e l e c t ;
end loop ;

end Task_Sample_Body ;

Figure 7.10: Task sample with infinite loop and accept statements

Uppaal model statistics

Number of task templates 38
Number of event templates 15
Number of mutex templates 14
Number of subprocedure templates 757
Total number of templates 824
Total number of locations 11817

Table 7.1: Some numbers of the generated Uppaal model

47

Figure 7.11: A screenshot of the resulting Uppaal model of the happy flow of our CPS.

48

8
FORMAL VERIFICATION

This chapter brings the work presented so far in practice. In other words, can we now use
the generated formal model? The related research question (RQ-4) is stated as:

What results can be found from verifying the properties defined by answering
RQ-1 on the model, found from answering RQ-3?

From Chapter 5 it is known that many interesting properties are related to a physical
state of the CPS. However, augmenting the model with physical state information has not
been part of this research as the main focus was on creating a method and corresponding
tooling to automatically generate a formal model from source code. Therefore only the
deadlock and reachability properties from RQ-1 are actually relevant to our model. This
chapter gives the results of these properties.

8.1. DEADLOCK
Uppaal supports a specific query to look for deadlock situations in the model. This query
is written as A[] not deadlock, i.e. for all states in all paths there is no deadlock.

As our model only models the happy flow of the CPS, absence of deadlock does not
guarantee that the complete system will contain no deadlock. The other way around how-
ever, when deadlock does exist in the happy-flow model, indicates that the complete sys-
tem will probably also contain a deadlock. It is mentioned ‘probably’ because our model
contains nondeterministic behaviour which can lead to deadlock situations not actually
being present in the real system.

In order to prove the absence of deadlock in our model, Uppaal has to look through
the complete state space which might be a challenge in terms of memory and computing
power. To prove that the property does not hold however only requires one ‘witness’, there-
fore this might be an easier task for Uppaal.

Executions for checking the deadlock property on the model resulted in swap file over-
flows after several hours without having found a deadlock situation in the model.

8.2. REACHABILITY ANALYSIS
As discussed in Chapter 5, reachability properties are not very interesting on a model of
the happy-flow code as it is expected that all states are reachable. For model validation

49

purposes it can however be very interesting to verify reachability properties on the model
in order to check whether our model actually does what we expect, and how much time is
needed to verify this.

To specify a reachability property, we use the logic operator EF(p), which defines the
property that a path through the model exist which eventually satisfies p. In Uppaal this is
written as E<> p, where p can be some kind of property, but can also just represent a certain
location in the model, which then translates to: It is possible to reach a certain location.

RESULTS
A couple of reachability properties checking whether the main tasks of the CPS reach the
state in which a start trigger was received, have been verified on the model. These proper-
ties can be verified by Uppaal in a matter of seconds using the ‘Random Depth First’ search
order.

It should be noted that sometimes executions of the same properties do not give an
answer within minutes. This behaviour could be related to both the random search order
as well as nondeterministic behaviour of the model. The results are summarized in Table
8.1. In Chapter 10 the results from RQ-4 are discussed further and different approaches to
improve the results are given as recommendations and future work.

8.3. LIVENESS ANALYSIS
In Chapter 5 we discussed two categories of liveness properties: one related to the physical
state of the machine and the other one related the liveness of the machine cycle, e.g. is it
always possible to return to a defined state in the cycle?

The first category cannot be checked on our current model, but we tried to verify a
property of the second category on the model. As a first step in this direction a simple
leads to property is defined from the start trigger location used in the previous section, to
its very next location. In Uppaal the leads to operator is written as –->, the complete query
is shown in Table 8.1.

We found that this seemingly straightforward property is not satisfied for our current
model. By again using the random depth first order, it takes between a few seconds and a
couple of minutes to find this not-satisfied result.

From the witness trace of Uppaal we found that this property is not satisfied because
the model can enter an infinite loop in one of the tasks, causing the other tasks to stall.
This is possible because we have no notion of time in our current model and Uppaal can
therefore decide to stay in one of these loops.

Property Execution time Satisfied?

E<> Adat$ThetaZ$Mill$Pickup$PosPickup_Task#612.
Accept_Start_1367_calling

∼2 sec. Yes

E<> Adat$ThetaZ$Mill$Attach$PosAttach_Task#472.
Accept_Start_1213_calling

∼2 sec. Yes

(..).Accept_Start_1367_calling –->
(..).l_SetTimeStamp_1368_4026_calling

∼2 sec. No

Table 8.1: Results of the reachability and liveness properties verified on our Uppaal model

50

9
DISCUSSION

In this chapter we will have a look at the validity of our research, the overall results, and the
strengths and limitations of the work.

9.1. VALIDATION
The validation of our method is divided over three steps. The first step validates whether
the coverage tooling indeed shows high execution numbers for the happy-flow code, and
low numbers for initialization and error handling code. Secondly the translation from the
source code to the intermediate Ada representation is validated. As a third step the model-
to-model transformation Uppaal is validated. Furthermore this section discusses both scal-
ability and generality in a validation context.

CODE COVERAGE VALIDATION
Below three code snippets are shown which represent three ‘coverage scenarios’ in our
code, i.e., initialization code, error handling code, and happy-flow code. A correct coverage
result for each of these scenarios is considered to be a valid prove that the coverage results
for the whole code base are correct.

Listing 9.1 shows two subprocedures from our code base which are reported to be ex-
ecuted once. This corresponds to our expectation as these Open() and Reset() functions
are only executed during initialization.

1 : 53: function Open return Die_Transfer_Root_Class i s
1 : 54: The_Dtrf : constant Die_Transfer_A3_Access := new Die_Transfer_A3 ;
−: 55: begin
1 : 56: . . .

1 : 965: function ThetaZ_Reset (Dtrf : access Die_Transfer_A3) return Boolean
−: 966: i s
−: 967: begin
1 : 968: . . .

Listing 9.1: Code snippets from the gcov tooling showing initialization code which have line execution counts
of 1

Listing 9.2 shows two subprocedures of which we know are executed each machine cy-
cle, this is correctly reflected by the line count of 281.

51

281: 985: function Send_Collet_Down return Boolean i s
−: 986: Result : Boolean ;
−: 987: begin

281: 988: . . .

281: 735: procedure Pickup_And_Inspect_The_Die i s
−: 736: begin

281: 737: . . .

Listing 9.2: Code snippets from the gcov tooling showing subprocedures which are executed each machine
cycle

Finally, Listing 9.3 shows a subprocedure which again is executed each machine cycle,
but it is shown that the exception handler is not executed (#####), resulting in this code be-
ing filtered out of the happy flow representation. This again corresponds to the expectation
that error code is not executed in a happy-flow execution of the CPS.

280: 838: function Wait_Pushup return Boolean
−: 839: i s
−: 840: begin

280: 841: Wait_Bh (Bh . Motor) ;
280: 842: SetTimeStamp (Td_Pu_Too_Soon , Edge_Yellow) ;

−: 843: return True ;
−: 844: exception

#####: 845: when E : others =>
#####: 846: Report_Motion_Exception (Bh . Motor , E) ;

−: 847: return False ;
−: 848: end Wait_Pushup ;

Listing 9.3: Code snippet from the gcov tooling showing a subprocedure which is executed each cycle, but the
exception handler is never executed

INTERMEDIATE REPRESENTATION VALIDATION
The second step validates the translation of the source code to the intermediate Ada repre-
sentation. This is done by carefully checking the translation of each Ada construct. Chapter
6 has already shown these translations per construct, like for call statements, if statements,
etc. The correct translation for each construct is considered as valid prove that the com-
plete translation is correct.

Besides the correct translation, it is also verified whether indeed only the happy-flow
parts are translated, such that the intermediate representation does not contain non-happy-
flow parts.

As an example, Listing 9.4 shows a subprocedure which is itself part of the happy flow
(line count of 351), but of which one if statement is not executed in the happy flow. Dur-
ing the translation from source code, via the AST, to the intermediate representation, this
if statement is omitted and therefore not part of the eventual model. Listing 9.5 shows
the intermediate Ada representation of the same subprocedure, not containing the first if
statement.

351: 2972: function Wait_T (Tz : access Transfer_Config) return Boolean
−: 2973: i s

351: 2974: Result : Boolean := True ;
−: 2975: begin

351: 2976: i f Tz .TM /= null then
#####: 2977: Result := (Wait_T (Tz .TM)) ;

52

−: 2978: end i f ;
351: 2979: i f Tz .AM /= null and then Result then
351: 2980: Result := Wait_T (Tz .AM) ;

−: 2981: end i f ;
351: 2982: i f Tz .PM /= null and then Result then
351: 2983: Result := Wait_T (Tz .PM) ;

−: 2984: end i f ;
351: 2985: return Result ;

−: 2986: end Wait_T ;

Listing 9.4: Code snippet from the gcov tooling showing a subprocedure with parts in the happy-flow and
parts in the non-happy-flow

<subprocedure decl_location=" adat_thetaz . a d s : 9 6 : 4 : " location=" adat_thetaz −mil l .
adb:2971:4: " name="Wait_T">

<statement location=" adat_thetaz −mil l . adb:2979:7: " x s i : t y p e =" I f ">
<then>

<statement location=" adat_thetaz −mil l . adb:2980:20: " name="Wait_T"
target_locat ion=" adat_thetaz −mil l . a d s : 8 5 0 : 4 : " x s i : t y p e =" Call_statement " />

</then>
</ statement>
<statement location=" adat_thetaz −mil l . adb:2982:7: " x s i : t y p e =" I f ">

<then>
<statement location=" adat_thetaz −mil l . adb:2983:20: " name="Wait_T"

target_locat ion=" adat_thetaz −mil l . a d s : 8 5 0 : 4 : " x s i : t y p e =" Call_statement " />
</then>

</ statement>
<statement location=" adat_thetaz −mil l . adb:2985:7: " x s i : t y p e ="Return" />

</subprocedure>

Listing 9.5: Intermediate Ada representation of the code shown in Listing 9.4; it can be observed that the
complete if statement from lines 2976 to 2978 is removed as it is not part of the happy-flow, while the rest of
the lines is correctly translated.

MODEL GENERATION VALIDATION
The resulting Uppaal model of our CPS as presented at the end of Chapter 7 is way too big to
verify whether the source code is correctly modelled. Therefore validation of the automatic
model generation is carried out by translating small pieces of Ada code containing a specific
language construct. This is done by carefully checking all the transformations which have
been presented in Section 7.3. Especially for constructs like If-Elsif-Else statements a lot
of care is taken in verifying the correct flow of the different statements contained in the
If-Elsif-Else branches.

Figure 9.1 repeats Figure 7.6 from Chapter 7, showing how a piece of sample code con-
taining an If-Elsif-Else construct is translated into an Uppaal template. The Uppaal tem-
plate shows the control flow through the statement, which correctly mimics the control
flow through the original source code. This check is done for each and every Ada construct
which is translated into the Uppaal model.

As a second model validation step, the model checker itself is used. Statements in the
code of which it is known are executed in the happy flow are translated into reachability
properties and checked on the model. This is shown by the reachability properties de-
scribed in Chapter 8.

53

procedure If_Else_Sample_Function
i s
begin

i f If_Condition_Stmt = True then
If_Cal ls tmt ;

e l s i f Elsif_Condition_Stmt then
E l s i f _ C a l l s t m t ;

e lse
Else_Callstmt ;

end i f ;
end If_Else_Sample_Function ;

Figure 9.1: If-Elsif-Else statement transformation

VALIDATING SCALABILITY
The goal of our research was to conquer the state space explosion which often limits the
scalability of formal verification techniques. We did this by means modelling only the
happy flow part of our CPS instead of the complete code base of the machine.

From Chapter 8 we learned that our model allows to verify some simple reachabil-
ity properties, but memory limits prevent more complex properties to be checked on the
model. More research is required in order to tell what category of properties are able to be
verified on the current model and what categories are not. For properties which are still not
able to run on the model it should be tried to limit the model size even further, for example
by reducing the modelled call depth.

54

VALIDATING GENERALITY
The tooling developed during this research is specifically written for the Ada programming
language, however, the method of finding the happy flow of a CPS and translate this code
via a model-to-model transformation into an Uppaal model is generally applicable to other
languages. Most languages will have tooling available to do code coverage analysis as well
as tooling to extract an abstract syntax tree from the code, hence an intermediate model
of the happy-flow code can be generated based on our designed method. From this point
it should be a relative easy step to adapt our model-to-model transformations for the new
language. Note however that custom concepts like our events and mutexes will require
adaptions to other languages.

9.2. RESULTS
Our research has resulted in a method and corresponding tooling to extract the happy-flow
code of a cyber-physical system and translate this code into a formal model in a highly
automatic fashion. By modelling only the happy flow, a huge part of the original code base
was sliced out, resulting in a smaller model than obtained otherwise.

By using a model-based engineering approach we designed a relatively light-weight
transformation definition to translate an intermediate representation of the code into an
Uppaal model. This transformation definition does contain aspects of the Ada program-
ming language but can be easily adapted for other programming languages.

Some simple reachability properties have successfully been verified on the formal model,
but a liveness property was not satisfied, mainly due to the lack of clocks in the model. Fur-
thermore some more complex properties and the ‘no deadlock’ property still run into the
problem of the state explosion. The current model is not suitable to verify domain-related
properties corresponding to a physical state of the machine as no direct relation between
the model and the state of the machine is present.

9.3. STRENGTHS & LIMITATIONS
This section summarizes the strengths and limitations of the work presented in this the-
sis. Options to reduce the limitations are given in the next chapter when discussing the
recommendations and future work.

STRENGTHS
• By using code coverage tooling, a method is found to automatically extract the happy-

flow code of a cyber-physical system.

• The Uppaal model representing the happy-flow code is generated in a fully automatic
fashion, minimizing the risk of human mistakes.

• The developed method can be applied to other programming languages, only small
changes to the tooling should be necessary to make it work for different languages.

LIMITATIONS
• As the model represents the happy flow, any property verified on the model does not

necessarily hold on a potential model of the complete code base. This is inherent to

55

the under-approximation as applied in this work.

Furthermore due to nondeterministic behaviour currently present in our model, the
model is also an over-approximation of the system. This can result in situations
where the model violates certain properties while the actual system will not violate
these properties.

• Although Uppaal is very suitable to add timing aspects to the formal model, this is
not yet included in our work. This is deliberately left as future work.

• Loop conditions present in the code are currently not considered during the transfor-
mation. Often loop conditions depend on run-time information which is not present
statically, but it can be imagined that coverage information is used to deduce the
number of times a loop is executed during the happy-flow execution. More specifi-
cally the number of times a loop is executed during the run should be divided by the
number of times the machine cycle is executed during the run.

Adding this information will reduce nondeterministic behaviour of the model and
therefore results in a better approximation of the real system. Also it prevents tasks
to stay in a loop forever, causing other tasks to stall.

• All templates in Uppaal, representing subprocedures and tasks from the source code,
are instantiated exactly once. This means that when two parallel tasks call the same
subprocedure at the same time, only one task will proceed and the other one has
to wait. As we currently do not consider time, this behaviour is not considered as a
problem. Although it can potentially cause a deadlock situation when the specific
sub-procedure needs the task which is actually blocked to respond.

• No direct relation between the state of the code and the physical state of the machine
is present. Therefore domain properties are not easily checked on our formal model.

• The designed tooling is capable of translating most common Ada constructs but some
more advanced constructs of the language are not covered yet and are left for future
work.

56

10
CONCLUSIONS & FUTURE WORK

The beginning of this chapter summarizes our research by answering our sub-questions
and the main research question. After the summary, recommendations on our work and
directions for future work are discussed. The recommendations are meant as improve-
ments where the future work section focuses on extensions on the current work.

10.1. SUMMARY
Our main research question was stated as:

To what extent is it possible to prove formal properties on the ‘happy flow’ code
of a real-time, concurrent cyber-physical system with a high ratio of repetitive
tasks?

In order to give an answer to the main research question, we will first answer the four
sub-questions.

Sub-question 1 Having only a model of the ‘happy flow’ code of a CPS, what properties of
the system can be verified and can reveal interesting information for domain experts?

We found that although a model of the happy flow does not represent the complete
source code, different categories of properties are still very useful to be verified on a
happy-flow model, e.g. safety and liveness properties. On the other hand we found
that many properties require some notion of the physical state of the machine. This
information is not present when a formal model is automatically generated from the
source code.

Sub-question 2 How can the code of the machine’s ‘happy flow’ be extracted automatically,
using run-time information?

A method and corresponding tooling has been developed to automatically extract the
happy-flow code by means of code coverage tooling. This is proven to be effective and
straightforward.

Sub-question 3 How to automatically translate a partial program written in Ada, as found
by answering RQ-2, into a formal model that allows the properties found by answering
RQ-1 to be verified?

57

Applying the model-driven engineering approach allowed us to write a model-to-
model transformation at a high abstraction level and to make use of existing work
for generating Uppaal models. Tooling to generate a working Uppaal model from the
filtered source code has been created.

Sub-question 4 What results can be found from verifying the properties defined by answer-
ing RQ-1 on the model, found from answering RQ-3?

So far we managed to verify a couple of simple reachability properties using the model.
The current work has not revealed new information from the code base.

Based on the answers to the four sub questions, our answer to the main research question
is: It is possible to some extent to prove formal properties on a model of the ‘happy flow’
of a cyber-physical system, but more work is required to apply the method in practical
situations.

10.2. RECOMMENDATIONS
From the limitations and the conclusions drawn from our research, different recommenda-
tions can be given to improve to designed method and tooling. This section focuses solely
on improvements where the next section on future work should be considered as exten-
sions to our method.

ANALYZE SCALABILITY
Our research was mainly focused on finding a method and creating a tool to generate a
formal model of the happy-flow code of a CPS. A formal model has indeed been generated,
but this model does not allow us to verify many different properties without running into
the memory limits of our computer. Therefore it is recommended to further analyze and
validate the scalability of the current tooling, i.e., which categories of properties can be
checked on the current model and which categories can not? When less source code would
be used as input will the model allow more complex properties to be checked? etc.

DEDUCT LOOP CONDITIONS
The loops in our model have no conditions, i.e., the decision to execute a loop another time
is nondeterministic. By means of carefully looking at the coverage information it should
be possible to automatically deduct the number of times a loop is executed per machine
cycle. This information can then be used to adapt the Uppaal model to be no longer non-
deterministic at this point. Making the model more deterministic will result in a better ap-
proximation of the system, but will also significantly reduce the state space and therefore
improve scalability.

MODEL TIME-OUTS AND DELAYS
In our Ada code it is possible to define how long a task is allowed to wait for an event to
be set and how long a task should wait before another task is able to synchronize. This
behaviour is not modelled in our Uppaal model. Although it is not expected that a happy-
flow execution contains time-outs, this information can be retrieved from the source code.
By adding clocks and clock guards to the specific Uppaal templates this behaviour can be
mimicked in the model.

58

NUMBER OF SUBPROCEDURE INSTANTIATIONS
At this moment all templates in our model have one instance while Uppaal allows tem-
plates to be instantiated more than once. Therefore two tasks calling the same subpro-
cedure (template) at the same time will cause one task to be blocked until the other task
is ready. In order to avoid increasing the model size unnecessarily, it is not a good idea
to just increase the number of instances. Therefore it is proposed to create some sort of
monitor which generates a warning when a sub-procedure is called more than once at the
same time. This can be used to incrementally increase the number of instantiations of the
template representing this sub-procedure, i.e. until no more warnings occur.

10.3. FUTURE WORK
During our research different directions for extensions arose. Below a non-exhaustive list
of possible extensions is given.

EXPLORE OTHER USE CASES
At this moment we only used the model to run properties on it to prove certain aspects
of the system. One can however also think of other use cases of a formal model of the
source code. It might for example be an option to generate a model twice, before and after
a refactoring action of the source code. Typically a refactoring should give no functional
changes, e.g. the interface of a component stays the same but the implementation changes.
When these interfaces are available as well in the formal model, model based testing can
be applied to verify that from the interface point of view the two implementations act the
same.

PHYSICAL STATE AUGMENTATION
It is already stated multiple times that a limitation of our generated model is that no phys-
ical state information of the CPS is available. Adding this kind of information will allow
many more interesting (formal) properties to be defined. This step is however consid-
ered to take a big effort because physical state information is not readily available. Op-
tions to add this information are for example to add it manually to the generated model,
or by adding annotations to the source code and take this into account during the model
transformation.

ADD TIMING INFORMATION
By adding a profiling step on top of the coverage tooling, it is possible to retrieve execu-
tion times for every function call. When this information is added to the Uppaal model
by means of clocks and clock guards, things like timing analysis and critical path analy-
sis become available. Two points of attention here are: 1) adding timing information to
the model will considerably increase the state space; and 2) it should be verified that the
profiler will not harm the real time behaviour of the system.

LOCAL VERIFICATION
In order to reduce the state space further and be able to verify more complex properties,
one can isolate specific parts of the model. In order to verify such an isolated part, a context
should however be available which can supply the required signals for the isolated part

59

to keep ‘running’. Such a context can be modelled using another automaton running in
parallel with the ‘part-under-test’. Creating this automaton does require system knowledge
on the expected signals. However, it may be possible to automatically derive the context by
looking at the interface of the isolated part.

OBSERVERS
Instead of writing complex queries in a temporal logic, one can also define observer au-
tomata which run in parallel with the model under test. The observer models a certain
desired behaviour or sequence of actions and listens to outputs of the main model. As long
as the expected signals are received from the main model, the observer proceeds, but when
an unexpected signal is received, the observer branches to an error state, indicating that the
main model does not comply to the desired behaviour.

60

11
REFLECTION

We made it! After 3,5 years of hard work I am proud to have finalized my Software Engineer-
ing masters. I am thankful to my employer to gave me the change to do this masters next
to my normal work. Many parts of the learned material was directly applicable to my day
to day job which is also a big compliment to the curriculum of the Software Engineering
master of the Open University.

But, I have to admit that the graduation project did take quite some discipline to make
it to the end while also having a job and raising our newborn son. My initial planning was
based on the same hours I spent during the courses of the masters, but it appeared that the
workload of the courses was not comparable to that of the graduation project. This mainly
accounts for the run out of 4 months on top of the initially planned 8 months.

Another reason for the run out were the struggles with the GNATCoverage tooling at
the start of the project. I first tried to make the open source version of GNATCoverage,
written for Linux, work on a Windows environment which didn’t worked out. A couple
of weeks later I received a trial license for the Windows version of the tool. After I finally
managed to instrument the code with this tooling and retrieved the coverage information,
it appeared that GNATCoverage does not reveal the line counts of the source code, but only
tells whether a line is executed or not. At that moment I stepped back to the older gcov tool,
which I considered to be deprecated, but giving me the coverage information I was looking
for right away. The bottom line here is that the next time I should not spend so much time
trying to get such a tool up and running, but should rather look for other directions.

On the result of the work it feels a little unsatisfying that I have not been able to really
prove some interesting properties on the formal model. It is good to mention though that
the fourth research question, which was about running properties on the generated model,
was only added to the research proposal in a final stage with a remark that this would be
a nice to have result when time allowed for it. The main focus of my research was on the
method and tool creation to generate a formal model of the happy-flow code of a cyber-
physical system.

I have learned a lot from this graduation project, both process wise and content wise.
Especially subjects like AST processing and model based engineering were new and inter-
esting topics to me which I believe will be very useful in my future career. I want to thank
my supervisors Dr. Jacques Verriet and Dr. Stefano Schivo for all the time and effort they
spent on guiding and supporting me through the process and giving me both constructive
and positive feedback on my work!

61

BIBLIOGRAPHY

H. Agrawal and J. R. Horgan. Dynamic Program Slicing. ACM SIGPLAN Notices, 25(6):246–
256, June 1990. ISSN 0362-1340. doi: 10.1145/93548.93576. 14

R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 126:
183–235, 1994. 6

G. Behrmann, A. David, K. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks.
Uppaal 4.0. In Third International Conference on the Quantitative Evaluation of Systems,
QEST 2006, pages 125–126, Jan. 2006. doi: 10.1109/QEST.2006.59. 7, 24

P. Bjesse. What is formal verification? ACM SIGDA Newsletter, 35(24):1–es, Dec. 2005. ISSN
0163-5743. doi: 10.1145/1113792.1113794. 1, 5

J. B. Bladen, D. Spenhoff, and S. J. Blake. Ada semantic interface specification (ASIS). In
Proceedings of the Conference on TRI-Ada ’91: Today’s Accomplishments; Tomorrow’s Ex-
pectations, TRI-Ada ’91, pages 6–15, New York, NY, USA, Dec. 1991. Association for Com-
puting Machinery. ISBN 978-0-89791-445-1. doi: 10.1145/126551.126552. 13

I. T. Bowman, M. W. Godfrey, and R. C. Holt. Extracting Source
Models from Java Programs: Parse, Disassemble, or Profile?
http://plg.math.uwaterloo.ca/~migod/papers/1999/paste99.pdf, Sept. 1999. 12

O. Burkart, D. Caucal, F. Moller, and B. Steffen. CHAPTER 9 - Verification on Infinite Struc-
tures. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
pages 545–623. Elsevier Science, Amsterdam, Jan. 2001. ISBN 978-0-444-82830-9. doi:
10.1016/B978-044482830-9/50027-8. 6

A. Burns and A. J. Wellings. How to verify concurrent Ada programs: The application of
model checking. In Proceedings of the Ninth International Workshop on Real-Time Ada,
IRTAW ’99, pages 78–83, New York, NY, USA, June 1999. Association for Computing Ma-
chinery. ISBN 978-1-58113-177-2. doi: 10.1145/329607.334743. 12

A. Burns, B. Dobbing, and T. Vardanega. Guide for the use of the Ada Ravenscar Profile in
high integrity systems. ACM SIGAda Ada Letters, XXIV, Apr. 2003. doi: 10.1145/997119.
997120. 13

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In Computer
Aided Verification, Lecture Notes in Computer Science, pages 359–364, Berlin, Heidel-
berg, 2002. Springer. ISBN 978-3-540-45657-5. doi: 10.1007/3-540-45657-0_29. 7

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. In Logics of Programs, Lecture Notes in Computer
Science, pages 52–71, Berlin, Heidelberg, 1982. Springer. ISBN 978-3-540-39047-3. doi:
10.1007/BFb0025774. 5

i

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Lan-
guages and Systems, 8(2):244–263, Apr. 1986. ISSN 0164-0925. doi: 10.1145/5397.5399.
5

E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model Checking and the State Ex-
plosion Problem. In B. Meyer and M. Nordio, editors, Tools for Practical Software Veri-
fication, volume 7682, pages 1–30. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
ISBN 978-3-642-35745-9 978-3-642-35746-6. doi: 10.1007/978-3-642-35746-6_1. 1, 5

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and Hongjun
Zheng. Bandera: Extracting finite-state models from Java source code. In Proceedings
of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millen-
nium, pages 439–448, June 2000. doi: 10.1145/337180.337625. 12

J. M. Faria, J. Martins, and J. S. Pinto. An Approach to Model Checking Ada Programs. In
Reliable Software Technologies – Ada-Europe 2012, volume 7308, pages 105–118. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-30597-9 978-3-642-30598-6.
doi: 10.1007/978-3-642-30598-6_8. 13

J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski, and H. Zheng. A Formal Study of Slicing for
Multi-threaded Programs with JVM Concurrency Primitives. In Static Analysis, volume
1694, pages 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999a. ISBN 978-3-540-
66459-8 978-3-540-48294-9. doi: 10.1007/3-540-48294-6_1. 13

J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing Software for Model Construction. In Higher-
Order and Symbolic Computation, pages 105–118, 1999b. 14

G. Holzmann and M. Smith. An automated verification method for distributed systems
software based on model extraction. IEEE Transactions on Software Engineering, 28(4):
364–377, Apr. 2002. ISSN 0098-5589. doi: 10.1109/TSE.2002.995426. 13

G. J. Holzmann. Design and validation of computer protocols. Prentice-Hall, 1991. 7

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. ACM
SIGPLAN Notices, 23(7):35–46, June 1988. ISSN 0362-1340. doi: 10.1145/960116.53994.
13

D. S. Kolovos, R. F. Paige, and F. A. C. Polack. The Epsilon Transformation Language. In
A. Vallecillo, J. Gray, and A. Pierantonio, editors, Theory and Practice of Model Trans-
formations, Lecture Notes in Computer Science, pages 46–60, Berlin, Heidelberg, 2008.
Springer. ISBN 978-3-540-69927-9. doi: 10.1007/978-3-540-69927-9_4. 39

B. Korel and J. Laski. Dynamic Program Slicing. Information Processing Letters, 29(3):9,
1988. 14

National Science Foundation. Cyber-Physical Systems (CPS).
https://www.nsf.gov/pubs/2021/nsf21551/nsf21551.htm, Jan. 2021. 1

A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pages 46–57, Oct. 1977. doi: 10.1109/SFCS.1977.32. 5

ii

M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM Journal of
Research and Development, 3(2):114–125, Apr. 1959. ISSN 0018-8646. doi: 10.1147/rd.32.
0114. 6

A. Rodrigues da Silva. Model-driven engineering: A survey supported by the unified con-
ceptual model. Computer Languages, Systems & Structures, 43:139–155, Oct. 2015. ISSN
1477-8424. doi: 10.1016/j.cl.2015.06.001. 11

S. Schivo, B. M. Yildiz, E. Ruijters, C. Gerking, R. Kumar, S. Dziwok, A. Rensink, and
M. Stoelinga. How to Efficiently Build a Front-End Tool for UPPAAL: A Model-Driven
Approach. In Dependable Software Engineering. Theories, Tools, and Applications, vol-
ume 10606, pages 319–336. Springer International Publishing, Cham, 2017. ISBN 978-3-
319-69482-5 978-3-319-69483-2. doi: 10.1007/978-3-319-69483-2_19. 11, 13, 24, 37, 38,
39

J. Silva. A vocabulary of program slicing-based techniques. ACM Computing Surveys, 44(3):
1–41, June 2012. ISSN 0360-0300, 1557-7341. doi: 10.1145/2187671.2187674. 14

N. Silva, N. Moreira, S. Melo de Sousa, and S. Broda. A Tool for Automatic Model Extraction
of Ada/SPARK Programs, 2011. 13

H. Wayne. Why Don’t People Use Formal Methods?
https://www.hillelwayne.com/post/why-dont-people-use-formal-methods/, Jan.
2019. 1

M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
July 1984. ISSN 1939-3520. doi: 10.1109/TSE.1984.5010248. 14

B. M. Yildiz, A. Rensink, C. Bockisch, and M. Aksit. A Model-Derivation Framework for
Software Analysis. Electronic Proceedings in Theoretical Computer Science, 244:217–229,
Mar. 2017. ISSN 2075-2180. doi: 10.4204/EPTCS.244.9. 13, 24, 39

iii

A
ADA INTERMEDIATE MODEL

<?xml version=" 1.0 " encoding=" utf −8" ?>
<Project name="Ada2Uppaal" xmi:version=" 2.0 " xmlns="adaModel" xmlns:xmi=" h t t p : //www.omg. org /XMI" xmlns:xsi

=" h t t p : //www.w3. org /2001/XMLSchema−instance ">
<package_body location=" if_else_sample . a db : 1 : 1 : " name=" If_Else_Sample ">

<subprocedure location=" if_else_sample . a db : 3 : 4 : " name=" If_Condition_Stmt ">
<statement location=" if_else_sample . a d b: 6 : 7 : " x s i : t y p e ="Return" />

</subprocedure>
<subprocedure location=" if_else_sample . a db : 9 : 4 : " name=" Elsif_Condition_Stmt ">

<statement location=" if_else_sample . adb:12:7: " x s i : t y p e ="Return" />
</subprocedure>
<subprocedure location=" if_else_sample . adb:15:4: " name=" If_Cal ls tmt " />
<subprocedure location=" if_else_sample . adb:21:4: " name=" Else_Callstmt " />
<subprocedure location=" if_else_sample . adb:27:4: " name=" E l s i f _ C a l l s t m t " />
<subprocedure location=" if_else_sample . adb:33:4: " name=" If_Else_Sample_Function ">

<statement location=" if_else_sample . adb:36:7: " x s i : t y p e =" I f ">
<conditions>

<statement location=" if_else_sample . adb:36:10: " name=" If_Condition_Stmt " target_ locat ion="
if_else_sample . a d b : 3 : 4 : " x s i : t y p e =" Call_statement " />

</ conditions>
<then>

<statement location=" if_else_sample . adb:37:10: " name=" If_Cal ls tmt " target_ locat ion="
if_else_sample . adb:15:4: " x s i : t y p e =" Call_statement " />

</then>
<statement location=" if_else_sample . adb:38:7: " x s i : t y p e =" E l s i f ">

<conditions>
<statement location=" if_else_sample . adb:38:13: " name=" Elsif_Condition_Stmt " target_ locat ion ="

if_else_sample . a d b : 9 : 4 : " x s i : t y p e =" Call_statement " />
</ conditions>
<then>

<statement location=" if_else_sample . adb:39:10: " name=" E l s i f _ C a l l s t m t " target_locat ion="
if_else_sample . adb:27:4: " x s i : t y p e =" Call_statement " />

</then>
</ statement>
<else >

<statement location=" if_else_sample . adb:41:10: " name=" Else_Callstmt " target_locat ion="
if_else_sample . adb:21:4: " x s i : t y p e =" Call_statement " />

</ else >
</ statement>

</subprocedure>
</package_body>
<package_body location="case_sample . a d b: 1 : 1 : " name="Case_Sample">

<subprocedure location="case_sample . a d b: 3 : 4 : " name="Case_Condition_Stmt">
<statement location="case_sample . a d b : 6 : 7 : " x s i : t y p e ="Return" />

</subprocedure>
<subprocedure location="case_sample . a d b: 9 : 4 : " name="Case_Stmt_1" />
<subprocedure location="case_sample . adb:15:4: " name="Case_Stmt_2" />
<subprocedure location="case_sample . adb:21:4: " name="Case_Sample_Procedure">

<statement location="case_sample . adb:24:7: " x s i : t y p e ="Case">
<case_expr>

iv

<statement location="case_sample . adb:24:12: " name="Case_Condition_Stmt" target_ locat ion="
case_sample . a d b: 3 : 4 : " x s i : t y p e =" Call_statement " />

</ case_expr>
<when location="case_sample . adb:25:14: ">

<statement location="case_sample . adb:25:27: " name="Case_Stmt_1" target_ locat ion ="case_sample .
a db : 9 : 4 : " x s i : t y p e =" Call_statement " />

</when>
<when location="case_sample . adb:26:18: ">

<statement location="case_sample . adb:26:32: " name="Case_Stmt_2" target_ locat ion ="case_sample .
adb:15:4: " x s i : t y p e =" Call_statement " />

</when>
</ statement>

</subprocedure>
</package_body>
<package_body location=" task_sample . a d b: 1 : 1 : " name="Task_Sample">

<subprocedure location=" task_sample . a d b: 8 : 4 : " name=" Accept_1_Callstmt " />
<subprocedure location=" task_sample . adb:14:4: " name=" Accept_2_Callstmt " />
<task location=" task_sample . adb:20:4: " name="Task_Sample_Body">

<statement location=" task_sample . adb:23:7: " x s i : t y p e ="Loop">
<statement location=" task_sample . adb:24:10: " x s i : t y p e =" Select ">

<statement location=" task_sample . adb:25:13: " x s i : t y p e ="Guard">
<statement decl_location=" task_sample . a db : 4 : 7 : " location=" task_sample . adb:25:13: " name="

Accept_1" x s i : t y p e ="Accept">
<statement location=" task_sample . adb:26:16: " name=" Accept_1_Callstmt " target_locat ion="

task_sample . a d b : 8 : 4 : " x s i : t y p e =" Call_statement " />
</ statement>

</ statement>
<statement location=" task_sample . adb:29:13: " x s i : t y p e ="Guard">

<statement decl_location=" task_sample . a db : 5 : 7 : " location=" task_sample . adb:29:13: " name="
Accept_2" x s i : t y p e ="Accept" />

<statement location=" task_sample . adb:30:13: " name=" Accept_2_Callstmt " target_locat ion="
task_sample . adb:14:4: " x s i : t y p e =" Call_statement " />

</ statement>
<statement location=" task_sample . adb:32:13: " x s i : t y p e ="Guard">

<statement location=" task_sample . adb:32:13: " x s i : t y p e ="Delay" />
</ statement>

</ statement>
</ statement>

</ task>
<subprocedure location=" task_sample . adb:37:4: " name="Task_Sample_Subp">

<statement location=" task_sample . adb:40:24: " name="Accept_1" target_ locat ion=" task_sample . ad b : 4 : 7 :
" x s i : t y p e ="Rendezvous" />

</subprocedure>
</package_body>
<package_body location="event_sample . a d b: 3 : 1 : " name="Event_Sample">

<statement location="event_sample . adb:5:28: " name=" Create_Event " target_ locat ion =" general_events .
a d s : 1 1 : 4 : " x s i : t y p e =" Call_statement " />

<task location="event_sample . adb:11:4: " name="Simple_Task">
<statement decl_location="event_sample . a db : 8 : 7 : " location="event_sample . adb:15:7: " name="Accept_1"
x s i : t y p e ="Accept" />
<statement decl_location="event_sample . a db : 5 : 4 : " location="event_sample . adb:16:16: " name="

Sample_Event" x s i : t y p e ="WaitForEvent" />
</ task>
<subprocedure location="event_sample . adb:19:4: " name="Event_Sample_Function">

<statement decl_location="event_sample . a db : 5 : 4 : " location="event_sample . adb:22:6: " name="
Sample_Event" x s i : t y p e =" ResetEvent " />

<statement location="event_sample . adb:23:18: " name="Accept_1" target_ locat ion="event_sample .
a db : 8 : 7 : " x s i : t y p e ="Rendezvous" />

<statement location="event_sample . adb:24:6: " x s i : t y p e ="Delay" />
<statement decl_location="event_sample . a db : 5 : 4 : " location="event_sample . adb:25:6: " name="

Sample_Event" x s i : t y p e =" SetEvent " />
</subprocedure>

</package_body>
<package_body location="mutex_sample . a d b: 3 : 1 : " name="Mutex_Sample">

<statement location="mutex_sample . adb:5:23: " name="Create_Mutex" target_ locat ion =" eln −mutexes .
a d s : 1 5 : 4 : " x s i : t y p e =" Call_statement " />

<task location="mutex_sample . adb:10:4: " name="Task_Sample1">
<statement decl_location="mutex_sample . a db : 5 : 4 : " location="mutex_sample . adb:13:7: " name="My_Lock"

x s i : t y p e ="LockMutex" />
<statement decl_location="mutex_sample . a db : 5 : 4 : " location="mutex_sample . adb:14:7: " name="My_Lock"

v

x s i : t y p e ="UnlockMutex" />
</ task>
<task location="mutex_sample . adb:17:4: " name="Task_Sample2">

<statement decl_location="mutex_sample . a db : 5 : 4 : " location="mutex_sample . adb:20:7: " name="My_Lock"
x s i : t y p e ="LockMutex" />

<statement decl_location="mutex_sample . a db : 5 : 4 : " location="mutex_sample . adb:21:7: " name="My_Lock"
x s i : t y p e ="UnlockMutex" />

</ task>
</package_body>
<package_body location=" call_stmt_sample . ad b : 1 : 1 : " name="Call_Stmt_Sample">

<subprocedure location=" call_stmt_sample . ad b : 3 : 4 : " name=" Callee ">
<statement location=" call_stmt_sample . a db : 6 : 7 : " x s i : t y p e ="Return" />

</subprocedure>
<subprocedure location=" call_stmt_sample . ad b : 9 : 4 : " name=" Cal ler ">

<statement location=" call_stmt_sample . adb:13:14: " name=" Callee " target_ locat ion =" call_stmt_sample .
a db : 3 : 4 : " x s i : t y p e =" Call_statement " />

</subprocedure>
</package_body>

</ Project>

Listing A.1: Intermediate representation of a sample program written in Ada containing the most frequent
language constructs

vi

	Summary
	Introduction
	Conquer the state space explosion
	System under test: High speed Die Attach machine
	Goal of the research
	Research context
	Structure of the report

	Background
	Formal verification
	Formal specification
	Formal modelling
	Model checking

	Uppaal
	Concepts & Syntax
	Model verification

	Source code to model translation
	Model Driven Engineering

	Related Work
	Model checking of source code
	Program Slicing
	Research contribution

	Method
	Research questions
	Research method

	What to verify on the `Happy Flow'?
	Definition of happy flow
	Properties of interest
	Deadlock & Livelock
	Reachability properties
	Safety properties
	Liveness properties
	Sequence validation
	Cycle time analysis

	`Happy Flow' extraction
	Determine the happy flow
	Instrumentation
	Executing the happy flow
	Processing coverage data
	Gcov
	Gcovr and Cobertura

	Ada Metamodel
	Generate the intermediate representation
	Package body
	Subprocedure body
	Expression Function
	Task Body
	Accept statement
	Select statement
	Call expression
	If statement
	Identifier type
	Case statement
	Loop statements
	Return and Delay statements

	Resulting model

	Formal model generation
	Transformation concept
	Model-to-Model transformation
	Model-to-Text transformation

	Linking calls and implementations
	Subprocedure calls
	Accepts, Events and Mutex linking

	Transformation step-by-step
	Subprocedure transformation
	Task transformation
	Statement transformation

	The full Uppaal model

	Formal verification
	Deadlock
	Reachability analysis
	Liveness analysis

	Discussion
	Validation
	Results
	Strengths & Limitations

	Conclusions & Future work
	Summary
	Recommendations
	Future work

	Reflection
	Bibliography
	Ada intermediate model

