
Open Universiteit
www.ou.nl

MASTER'S THESIS

Determining paths to injection vulnerabilities in PHP-code

Using Symbolic Execution

Dohmen, G.

Award date:
2022

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 23. Jan. 2023

https://research.ou.nl/en/studentTheses/62c1ed06-b042-4880-8360-6cefda428add

Determining paths to injection
vulnerabilities in PHP-code
Using Symbolic Execution

G. M. L. Dohmen

St
ud

en
t:

D
at

e:
Ju

ne
 2

6,
 2

02
2

DETERMINING PATHS TO INJECTION
VULNERABILITIES IN PHP-CODE

USING SYMBOLIC EXECUTION

by

G. M. L. Dohmen

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Science
Master Software Engineering

to be defended publicly on July 1, 2022 at 09:00 AM.

Student number:
Course code: IM9006
Thesis committee: Dr. Ir. H.P.E. Vranken (chairman), Open University

Prof. Dr. E.J. Vos (supervisor), Open University

For Monique, Emma & Marijn

i

ACKNOWLEDGEMENT

Working on a master’s thesis is quite a job, and much more work when the ideas and possi-
bilities seem to expand endlessly. This thesis presents the result of a limited, but extensive
search.
My thanks go in the first place to my family: Monique, Emma and Marijn. In the begin-
ning, they were not aware of the consequences of studying alongside a job, but fortunately,
despite the strain, they were in many ways an incentive to keep on going with this study.
Getting this opportunity, alongside family life and work, is not something that everyone
can do or take for granted.
I would also like to thank my supervisor, dr. Ir. Harald Vranken, for his patience and valu-
able feedback. At the crucial moment, he gave me the push (and the opportunity) I needed
to reach the finish line.
Finally, I would like to thank François Molin. During our studies, we were on the same
wavelength, which led to many inspiring conversations.

ii

SUMMARY

Vulnerabilities in software are common and increasingly maliciously exploited by hackers.
In addition to dynamic testing of (compiled) code, static analysis of source code is an im-
portant aspect of improving software quality. Without running the program, we want to be
able to measure the quality of the code. One of the quality factors of computer software is
how the program will behave on a given input.

In this research, we sought a method to efficiently find a path that leads to a vulnerabil-
ity. To do this we first need to find a potential path; a sequence of statements that goes from
the entry point where the data is entered, to the exit point where a vulnerability can be trig-
gered. Next we must determine which input causes the path to be executed. To determine
that input, we use symbolic execution to find solutions.

When we execute a program symbolically, we do not use concrete input values, but
leave them open. By expressing the program code as best we can in logical equations of
these symbolic inputs, we can try to determine from the solutions of these logical equations
which inputs will lead the hacker to vulnerabilities in the code.

In the study, we looked at a number of aspects in light of this context. How can we
transform source code into a form in which we can find paths? How can we find these code
paths in this search structure? How can we convert the code for these paths into a form that
can be executed symbolically, and what limitations and solutions do we encounter when
using this logical equation to determine the largest possible input that triggers these paths?
Finally, we looked specifically at what language constructs a software tool must master in
order to symbolically execute as many samples as possible from a commonly used test set.

For finding paths, we examined the extent to which PHP code is convertible to control
flow graphs. For these CFGs, we designed an algorithm to search for paths between two
nodes. We can control the search process because more precise targets can be specified.

The next aspect was the question of how to translate the PHP code of a code path into
logical equations that allow it to be executed symbolically. A first problem here was that
the dynamically typed language PHP, must be translated into the statically typed language
SMTLIB. To this end, we proposed a type inference algorithm.

Of the huge number of functions that exist in PHP, only a very small number can be
translated one-to-one into SMTLIB. This means that in many cases it is not possible to
use symbolic execution to compute appropriate input values for a found. However, for
functions that work with arrays, creative solutions appear to be possible.

If we apply the proposed methodology to PHP code, it appears that Z3 sometimes pro-
poses a model as a solution that has little value. This happens, for example, when working
with symbolic strings. Although Z3 can work with regular expressions, reasoning with sym-
bolic regular expressions in Z3 does not succeed at all.

Using the Samate test set, we determined which language construct we must be able to
translate to SMTLIB in order to fully execute a sample from the test set symbolically. This
could point a direction in which further research could be conducted.

iii

CONTENTS

List of Figures vii

List of Tables ix

Acronyms x

1 Introduction 1
1.1 Thesis Outline . 4

2 Preliminaries 5
2.1 Determining input values that trigger paths to injection vulnerabilities in

PHP-code using Symbolic Execution. 5
2.2 The PHP programming language . 5
2.3 Vulnerabilities . 10
2.4 Static Software analysis. 12
2.5 Paths in software. 15
2.6 Triggering paths . 18
2.7 Symbolic Execution . 20
2.8 Static Single Assignment (SSA) . 24

2.8.1 branches . 24
2.8.2 loops . 26

2.9 SMT solvers. 27

3 Research Design 29
3.1 Research questions . 29
3.2 Research method . 30
3.3 selection of frameworks and software tools. 31

3.3.1 Analysis of existing tools for creating AST’s. 32
3.3.2 Choosing appropriate programming languages 33
3.3.3 Choosing an appropriate SMT solver . 34

3.4 Testing. 37
3.5 Data description . 37

3.5.1 Test files with isolated PHP code . 37
3.5.2 PHP Vulnerabitity test suite . 37

4 Finding Paths 39
4.1 RQ1: How can we find paths in PHP-code efficiently? 39
4.2 Create AST’s from PHP-files . 39
4.3 More about ASTs. 43
4.4 Create a searchable data structure from an ast-file 45

4.4.1 Algorithm B . 46
4.4.2 Statements . 47
4.4.3 Assignments . 47

iv

4.4.4 The WHILE statement . 48
4.4.5 The IF statement . 50
4.4.6 Switch . 53
4.4.7 Functions. 54
4.4.8 Functions calling functions . 57
4.4.9 Functions Variables. 58
4.4.10 Array’s . 59
4.4.11 Graphs resulting from algorithm B. 62

4.5 Construction of paths. 63

5 Evaluating PHP code by Symbolic Execution 68
5.1 RQ2: Up to what extent can PHP-code be evaluated using Symbolic Execu-

tion? . 68
5.2 Variables in SMTLIB . 68
5.3 Conditions and assignments in SMTLIB . 72
5.4 Array’s . 73

5.4.1 Single variables . 73
5.4.2 Using SMTLIB’s array’s . 75

5.5 Functions . 78
5.5.1 User defined functions functions . 78
5.5.2 Function return values . 79
5.5.3 String functions . 79
5.5.4 array functions . 81

5.6 Type inference . 84

6 Solving Path Conditions 89
6.1 Draw up path conditions. 89
6.2 Solving constraints with Z3 . 90
6.3 SAMATE . 91

6.3.1 The size and complexity of the dataset . 91
6.3.2 Usability . 92
6.3.3 Code coverage . 94

6.4 Specific code fragments . 98
6.4.1 Regular expressions. 99
6.4.2 String functions . 100
6.4.3 Numeric strings . 100

7 Conclusion 102
7.1 Discussion . 102

7.1.1 RQ1: How can we find paths in PHP-code efficiently? 102
7.1.2 RQ2: Up to what extent can PHP-code be evaluated using Symbolic

Execution? . 103
7.1.3 RQ3: Up to what extent can path conditions be solved? 103

7.2 Research contribution . 103
7.3 Limitations and future work . 104
7.4 Related work . 105

7.4.1 Finding paths in a graph . 105
7.4.2 Symbolic Execution. 105

v

7.4.3 Tools resulting from previous research . 106
7.4.4 Research related to SMT solvers . 107

A Example of PHP code vulnerable to injection 108

B Example of how a SAMATE PHP file translates into SMTLIB 109

C Comparison of PHPAST and PHPLY 110

D Operators for types in SMTLIB 113

E Utilities 116
E.1 SAMATE line number inserter. 116
E.2 SAMATE CWE selector . 116
E.3 Remove special characters from file name . 117
E.4 Batch file creator. 118
E.5 Testing tool for graph unit . 118
E.6 Tool for extracting AST functions . 119
E.7 Testing tool for type inference unit . 119
E.8 Testing tool for testing AST functions . 120

vi

LIST OF FIGURES

2.1 Traditional use of PHP on a web server . 6
2.2 Tiobe index, April 2022 . 6
2.3 Overview of a Stored XSS injection attack [54] 11
2.4 Overview of an SQL injection attack [47] . 12
2.5 AST of the FOR-statement for(i=0; i<4; i++) . 13
2.6 Example program with control flow graph . 14
2.7 Structure of a PHP program . 17
2.8 Structure of a PHP program with classes . 17
2.9 Example of a PHP program and the accompanying CFG [35] 18
2.10 Overview of variable collections used in path code. The intersection of the

sets R and V can be empty. 19
2.11 Symbolic execution tree . 22
2.12 Example of the use of the φ function in a basic block after a branch. 25
2.13 Example of the use of the φ function in while loop, which contains a branch . 27

3.1 Global overview of the stages of our research . 31
3.2 Design matrix for the tool . 32
3.3 Initial design of the tool (PC: Path Conditions, SC: Security Conditions) 35
3.4 Final (adapted) design of the tool . 36

4.1 Excerpt from an AST file showing function declarations and function calls . . 43
4.2 Example of function declarations and function calls in an AST 44
4.3 The red nodes form a subtree . 44
4.4 ASTs with multiple function calls . 44
4.5 The yellow node is the lowest common ancestor (LCA) of the red and blue node. 46
4.6 In an AST the LCA is a AST_STMTLIST node . 46
4.7 A single assignment in a CFG for a single expression simple block 47
4.8 In our algorithm assignments in a CFG are a series of nodes for partial calcu-

lations . 48
4.9 The arrows after a WHILE statement are labelled with the conditions. 48
4.10 The conditions of a WHILE statement are represented by extra nodes before

the statement in the loop and after the WHILE 49
4.11 Nodes in a CFG resulting from an IF statement 50
4.12 Conditions for branches of a conditional statement in a CFG are inserted as

extra nodes before the statements. 52
4.13 CFG of a Switch statement with all branches closed with a BREAK 53
4.14 CFG of Switch statements with 1 or 2 omitted BREAK statements. 53
4.15 A node with a function call, calling the function f(a,b) with the arguments x

and y. 56

vii

4.16 Example of a CFG where the function call is replaced by a parameter substi-
tution and the CFG of the function. 57

4.17 Example of a CFG constructed with algorithm B 62
4.18 On the left: a small CFG to illustrate the search algorithm. On the right: the

resulting search tree. 65

5.1 Symbolic execution tree with SSA . 71
5.2 adapted PHP type tree . 84

E.1 Utility for preparing a subset of the SAMATE dataset 117
E.2 Utility for removing special characters from filenames 117
E.3 Utility for creating a batch file that produces all AST files 118
E.4 Unit test for the Graph unit . 118
E.5 Tool for extracting AST nodes from AST files . 119
E.6 Unit test for the type inference unit . 119
E.7 Tool for testing various AST functions . 120

viii

LIST OF TABLES

2.1 Type juggling of strings and booleans to an integer or float 8
2.2 Type juggling of integers, floats and booleans to strings 8
2.3 Values that Type juggling converts to the boolean value false 8
2.4 Definitions of important points in the path of an injection vulnerability 15
2.5 fuzzing versus symbolic execution . 23
2.6 standard code of a basic block converted to SSA form 24
2.7 standard code of a branch converted to SSA form 25
2.8 standard code of a while loop converted to SSA form 26

3.1 Characteristics of modern SMT solvers . 35
3.2 Number of safe and unsafe samples for all CWE categories present in the SA-

MATE testset. 38

5.1 Comparison of PHP and SMTLIB Types . 69
5.2 Map PHP types to SMTLIB types . 69
5.3 Example of a translation of PHP code including a function to SMTLIB 88

6.1 Examples of how line 6 sanitizes the input . 92

B.1 Example of a translation of PHP to SMTLIB . 109

C.1 List of AST nodes for PHPAST and PHPLY . 111
C.2 List of AST nodes for PHPAST and PHPLY . 112

ix

ACRONYMS

AST Abstract Syntax Tree
BFS Breadth First Search
CFG Context Free Grammar
CFG Control Flow Graph
CG Call Graph
DAG Directed Acyclic Graph
DFS Depth First Search
ICFG Interprocedural Control Flow Graph
PDG Program Dependency Graph
SA Symbolic Algebra
SAT Boolean Satisfiability Problem
SSA Simple Static Assignment
SCC Strongly Connected Component
SE Symbolic Execution
SMT Satisfiability Modulo Theory

x

1
INTRODUCTION

We expect that software works exactly as advertised. Especially now that software has
gained a crucial, omnipresent and often invisible role in society, expectations increase that
software performs reliably. A crashing program cannot only cause economical damage.
People can be endangered - for example, when a storm surge barrier happens to be unreli-
able [34]. Researchers, but also the man on the street and politicians, have become aware
that it is questionable whether all software can meet these high expectations.

Software engineers aim to deliver software with high quality. To achieve this quality,
metrics are used to measure to what extent the software meets the quality requirements.
Although there is no consensus on what an exact definition of software testing is, it is a
point of view to see testing as the art of measuring the quality of software, according to
these metrics. The outcome is not only a judgment according to some scale, but also a
pointer to imperfections. Possibly with a remedy to improve the software [38].

There are many causes why software is not as perfect as we hoped [42]. Moreover, these
imperfections are usually not noticeable, but surface under very specific conditions, which
are difficult to find [39].

The eye of the master is still important in finding these errors. However, software engi-
neers are increasingly supported by software tools. The human being can be relieved, be-
cause the search for errors can be automated. These tools are tireless and accurate. More-
over, they can not only search for known error sources, but also detect previously unknown
error sources, for example by using artificial intelligence [19]. An increasingly important
source of errors has to do with the security of the software. Secure software means that
confidentiality, integrity and availability are guaranteed. To do this automatically, it is im-
portant that these conditions are translated into verifiable requirements [2].

The security of software can be compromised by its use in ways that were not intended.
An unknowing user may have more use or access rights, which can inadvertently cause this
user to cause damage. Software may also be vulnerable to abuse by malicious users.

It is known which concrete vulnerabilities have been reported1. These alerts help the
developers of the relevant software package to keep their software as secure as possible.

1https://cve.mitre.org/cve/

1

https://cve.mitre.org/cve/

In addition, vulnerabilities have been found that have not yet been made public by the re-
searchers. Malicious hackers keep this knowledge secret in order to exploit the vulnerabili-
ties. Ethical hackers usually agree with the developers that they will not make the discovery
public until the vulnerability has been addressed.

We also know which categories of vulnerabilities are frequently found2. This list can
make developers aware of the fact that vulnerabilities are a common problem. But it does
not prevent known vulnerabilities ending up in the software-to-be. It certainly doesn’t pro-
vide developers with tools to prevent security flaws in software.

At the top of the OWASP list are the injection vulnerabilities. SQL injection is an example
of this category. Injection vulnerabilities have in common that data is entered into the
application, after which the data runs through a path through the software to a point where
the data triggers a malicious action. In the case of SQL injection, a malicious SQL query is
constructed from the input. Cross Site Scripting (XSS) is also in the OWASP top 10 as a
separate category. Because here data entered elsewhere in the code triggers a vulnerability,
this is de facto an injection vulnerability as well. With XSS, the data ends up in the output
for another client. In the case of a Stored XSS, the data is stored in a database. Whenever
data from the database reaches a user, the user is vulnerable because code is executed in
addition to the static data the user expects. This code could, for example, send data, retrieve
new code and so on.

Not all input triggers a vulnerability. Three conditions must be met for a vulnerability to
be exploited. Firstly, it must be possible to enter user data into the software. Next, the code
must follow a code path from the point where the data enters the program flow to the point
where the vulnerability can be exploited. This is only possible if the input ensures that
the conditions of control statements are such that the path to the vulnerability is followed.
Finally, the value of variables and parameters at the endpoint must be such that the vulner-
ability is actually activated. In principle, a software engineer could manually analyze the
software to determine the conditions under which a certain path can be traversed. How-
ever, the number of paths can be very large and certain paths can only be traversed with
very specific input. A tool could help software engineers to check under which conditions
a path can be executed.

Our research focuses on software written in the programming language PHP, as this is a
widely used 3 language for developing server-side software. In addition, our research is in
line with previous research by, among others, Beisicht [6], which also focused on PHP code.

In our research we want to find out which approach can be used to activate the code
paths leading to a vulnerability. To do this, we first need to find these paths, but we also
need to find out with which input the program actually executes such a path.

In previous research, different ways of finding the right input were considered. One
way is fuzzing [22]. An automated tool chooses input, hoping that this input leads to a
place where the input triggers a software error or a vulnerability. The input can be random,
or deliberately invalid, malformed or otherwise unexpected. Our research focuses on Sym-
bolic Execution. A method that has been under research for some time [29]. The hope is
that the input that triggers the vulnerability can be calculated, rather than having to guess
at it.
2https://owasp.org/www-project-top-ten/
3https://www.tiobe.com/tiobe-index/

2

https://owasp.org/www-project-top-ten/
https://www.tiobe.com/tiobe-index/

Therefore, the research question of our research is as follows:

Research Question: How can we generate input that triggers paths on which injected data
can be propagated in PHP-code using symbolic execution?

3

1.1. THESIS OUTLINE
In chapter 2 we look at the background of the research. The design of the research is ex-
plained in chapter 3. The outcomes of the research per research question are presented
in chapters 4, 5 and 6. The results of the research per research question are discussed in
chapter 7, next to a description of the research contribution, limitation of the research and
recommendations for future work.

4

2
PRELIMINARIES

2.1. DETERMINING INPUT VALUES THAT TRIGGER PATHS TO IN-
JECTION VULNERABILITIES IN PHP-CODE USING SYMBOLIC

EXECUTION
In this chapter, we provide background information. In section 2.2, we introduce the PHP
programming language. In section 2.3, we discuss software vulnerabilities in general. In
particular, we look at Injection vulnerabilities, which are the reason for this research. In
section 2.4, we explain what static software analysis entails. In Section 2.5 we introduce the
principle of a path through software. In Section 2.6 we look at the conditions that determine
whether a path can actually be followed. In Section 2.7 we look at what Symbolic Execution
(SE) is and how we can use the mathematical conditions that SE entails to determine under
what conditions a path is passable. We will use Single Static Assignment (SSA) later in our
research. We explain what SSA is about in section 2.8. Finally, in Section 2.9, we touch
upon how specific computer software, SMT solvers, can be used to solve the mathematical
conditions that SE entails.

2.2. THE PHP PROGRAMMING LANGUAGE
PHP is a scripting language that was initially developed for web servers. The PHP code is
called through web pages. The code is interpreted by the parser and can output (part of)
an HTTP response in the form of a web page, or another file type, such as an image. PHP
scripts can connect to databases to retrieve or store data from databases using SQL queries
(See figure 2.1). An example of (unsafe) PHP code is shown in Listing 2.1.

1 $username = $_POST[’ user_input ’] ;
2 mysql_query ("INSERT INTO ‘ table ‘ (‘ username ‘) VALUES (’ $username ’) ") ;

Listing 2.1: Example of PHP code that allows SQL injection, because the input has not been sanitised

The first version of PHP saw the light of day in 1994. It was not until twenty years later, in
2014, that a more formal specification for PHP was proposed. A recent specification of the
PHP syntax in EBNF form can be found here:

https://github.com/php/php-src/blob/master/Zend/zend_language_parser.y

5

https://github.com/php/php-src/blob/master/Zend/zend_language_parser.y

Figure 2.1: Traditional use of PHP on a web server

The history page of this web page shows the changes up to October 2000. Sometimes a
commit shows which language construct was tinkered with, but usually there is no infor-
mation about the PHP version in which the changes were introduced.

PHP can also be run from the command line to run scripts on a (local) computer. Fur-
thermore, there are nowadays compilers that compile PHP code into executable code, e.g.
PeachPie 1. PHP is being actively developed and currently (April 2022) ranks tenth on the
Tiobe-Index of most-used programming languages (See figure 2.2).

Figure 2.2: Tiobe index, April 2022

PHP has a number of special language features. The online documentation explains
these features, but often incompletely. Changes in the latest versions of PHP (approxi-
mately from version 7.0) are more clearly documented by explaining the changes from the
previous version .

1https://www.peachpie.io/

6

Dynamic Typing. In PHP, variables do not have a fixed type, as is the case in Java, for
example. Successive assignments can change the value and thus the type of a variable.
Listing 2.2 provides a simple example of this.

1 $x =1;
2 echo $x ; / / i n t e g e r type
3 $x=" hel lo " ;
4 echo $x ; / / s t r i n g type

Listing 2.2: The type of the variable $x changes from integer to string

Which type a variable has at a certain point (and moment) may depend on the input. To
determine that type, a procedure called type inference is needed to determine the type of
an expression. An algorithm for type inference was first developed for functional languages.
Robinson gave an algorithm for unifying logical expressions [43], which was later further
developed by Hindley [26] and Milner [37] so that it could be used to determine the type of
expressions. The Hindley Milner algorithm sometimes does not give an exact type, but it
always gives a superset of the type.

If we look at the function maximum in listing 2.3, there are several possibilities for the
type of variables $a and $b. The inequality operator > and the assignment operator = are
defined for various types. For example, the function can be used to determine the maxi-
mum of two integers, but also for two strings (lexicographic ordering).

1 function maximum($a , $b) {
2 i f ($a>$b) {
3 $max=$a ;
4 } else {
5 $max=$b ;
6 }
7 return $max ;
8 }
9

10 echo (maximum(" hello " , "world") . " \n") ;
11 echo (maximum(3 , 7)) ;

Listing 2.3: The function maximum will work for different types (numberType and StringType, in this case)

7

Type Juggling2. If an operand is not of the correct type, PHP tries to cast the type auto-
matically. When PHP expects two numeric operands a string or boolean will be converted
to an integer or float.

expression interpreted as outcome

1+’2’ 1+2 3
1+’2.3’ 1+2.3 3.3
1+’2.3e4’ 1+2300 2301
1+’2text’ 1+2 3
1+’2.3text’ 1+2.3 3.3
1+’text2’ 1+0 1

1+true 1+1 2
1+false 1+0 1

Table 2.1: Type juggling of strings and booleans to an integer or float

When concatenating, PHP expects two string values. Therefore PHP will try to cast in-
tegers, floats and boolean values to strings.

expression interpreted as outcome

’text’.1 ’text’.’1’ ’text1’
’text’.1.23 ’text’.’1.23’ ’text1.23’
’text’.true ’text’.’1’ ’text1’
’text’.false ’text’.” ’text’

Table 2.2: Type juggling of integers, floats and booleans to strings

When PHP expects a Boolean value (for instance in a Boolean expression of an IF state-
ment), it will treat all values in table 2.3 as false. All other values are treated as true.

value type treated as

false boolean false
0 integer false
0.0 float false
’0’ string false
” string false
array[] string false
null string false

Table 2.3: Values that Type juggling converts to the boolean value false

2https://www.php.net/manual/en/language.types.type-juggling.php

8

Arrays3. In PHP, arrays are an ordered map that associates a key of type integer or string
with a value. If the key is not of type integer or string, type juggling is used to make an
integer of the key [20].

1 $x = array ("key1"=> "a" , 3.14 => "b") ;

Listing 2.4: type juggling in an array

A second special feature is that a value can be assigned to an array without using an
index. The highest integer index+1 is then automatically used. In the example in listing 2.5,
the array is filled in line 1. The highest integer index is 3, because the decimal value 3.14
is converted to the integer 3 via type juggling. The first ’free’ integer index in line 2 is then
index 4.

1 $x = array ("key1"=> "a" , 3.14 => "b") ;
2 $x [] = "c" ;
3 echo $x [4] ; / / the character " c " i s shown

Listing 2.5: When assigning a value to an array without using an index, the index is automatically choosen

Aliasing and references4. The same variable can be accessed by another variable via
assignment by reference. Aliasing makes static software analysis hard, because the order in
which assignments are made matters.

1 $x = 0 ;
2 $y = &$x ; / / $y i s an a l i a s f o r $x
3 $y= " hel lo " ; / / assigning a value to $y , changes the value of $x
4 echo $x ; / / the t e x t " hel lo " i s shown

Listing 2.6: creating an alias for a variable

Variables can be used to name a variable. In listing 2.7 the value of variable $x is used in
line 3 by putting an extra $ in front of the variable $x.

1 $x = "a" ;
2 $a = " hello " ;
3 echo $$x ; / / the value " hel lo " i s shown

Listing 2.7: variable variables

3https://www.php.net/manual/en/language.types.array.php
4https://www.php.net/manual/en/language.variables.variable.php

9

2.3. VULNERABILITIES
Software can be vulnerable to malicious attacks, allowing the attacker to use the software
in an unintended way. The consequence of the attack may be that the software becomes
unavailable for use (Denial of Service). This may be caused by the software going into a
perpetual loop, or by using so many resources (such as memory or external storage) that
the software effectively stops working. This type of attack is used by script kiddies, but also
for political or ideological reasons. Professional attackers are often after data (e.g. email
addresses) or credentials, which can then be used in later attacks. It is then not in the
attacker’s interest that the system is brought down. On the contrary, it is important that
the attackers can go about their business unnoticed. This type of attack is complex and
sometimes only noticed after months or years 5.

1 / / i f an attacker can s e t the variable $attack equal to 1
2 $attack = $_POST(" attack ") ;
3 $ p l a y l i s t =array () ;
4 $x=random_int (0 , 9) ;
5
6 / / the attacker can prevent the termination of the WHILE loop
7 while ($x not in p l a y l i s t) | | ($attack ==1)
8 {
9 array_push (p l a y l i s t , $x) ;

10 $x=random_int (0 , 9) ;
11 }
12 / / never reached when $attack==1

Listing 2.8: The variable $Attack can prevent that the loop will terminate

If an attacker exploits software, he must ensure that the program is executed in an un-
intended way. It may be that the program performs (a series of) actions that should not
be possible. For example, authentication may be bypassed. An important feature of these
attacks is that the attacker’s input causes the software to perform the malicious actions.
There is a path through the code between the point where the input (data) enters the code
and a point further down the code where the data triggers the vulnerability. In listing 2.8
we see a program whose WHILE loop will never end if the variable $attack gets the value 1.

The types of vulnerability are divided into categories by Mitre 6 7, called Common Weak-
ness Enumerations (CWEs). The impetus for our research lies in CWEs occurring in the
SAMATE test suite, which are related to injection and cross-site sccription vulnerabilities:

• CWE 78 : OS Command Injection8

• CWE 79 : Cross-site Scripting9

• CWE 89 : SQL Injection10

5https://tweakers.net/nieuws/162686/ransomware-infecteerde-ook-back-upserver-van-universiteit-
maastricht.html

6https://www.mitre.org/
7https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
8https://cwe.mitre.org/data/definitions/78.html
9https://cwe.mitre.org/data/definitions/79.html
10https://cwe.mitre.org/data/definitions/89.html

10

• CWE 90 : LDAP Injection11

• CWE 91 : XML Injection12

• CWE 95 : File Injection13

• CWE 98 : PHP Remote File Inclusion14

In a Cross Site Scripting attack, the attacker manages to get code into the program’s
data stream. This could be done by entering JavaScript code in an input field instead of
normal data. These input is then processed as data elsewhere in the code, but can perform
an action at a place where the program expects to process passive data.

For example, the input is displayed on another web page. If the input was JavaScript
code, that code is executed by the web browser. The injected XSS code can also stored,
for example in a database. The injected code can then be executed again each time the
program expects to request data. This is shown schematically in figure 2.3.

Figure 2.3: Overview of a Stored XSS injection attack [54]

With an SQL Injection vulnerability, the input is not or only partially sanitised, allowing
an attacker to falsify SQL queries. For example, instead of just text (like a booktitle or a
person’s name), the attacker can add code to the input so that the query does not have the
expected effect. For example, the query may retrieve not one but all lines from a database.
This is illustrated in figure 2.4

11https://cwe.mitre.org/data/definitions/90.html
12https://cwe.mitre.org/data/definitions/91.html
13https://cwe.mitre.org/data/definitions/95.html
14https://cwe.mitre.org/data/definitions/98.html

11

Figure 2.4: Overview of an SQL injection attack [47]

2.4. STATIC SOFTWARE ANALYSIS
If we want to find vulnerabilities in software, we can analyse the source code. We can man-
ually read through the code and look for characteristic aspects of a piece of code. We can
look at what conditions appear in the code, what function calls are present and how condi-
tions affect the code flow. For large software projects, this method is not realistic because
of the size and complexity. Software engineers therefore benefit from a software tool that
performs this analysis. To do this, the tool must be able to read the code in a way that is
usable by an automatic analyser. In the subsequent part of this section, we will look at ways
in which the code can be presented in such a way that it is usable by automatic analysers.

ABSTRACT SYNTAX TREE
When an interpreter or compiler [1] reads source code, the lexer first determines the to-
kens. These are the smallest meaningful units within the Context Free Grammar (CFG) of
that language. Examples of tokens in PHP are keywords (such as FOR, IF,...), identifiers of
variables, literals, commas as separators and semicolons as terminals of a statement.

The parser creates an Abstract Syntax Tree (AST) from these tokens. In an AST, certain
elements of the grammar can be omitted, because the structure of the syntax tree shows
the relationship between the tokens. For example, an AST does not contain separators and
terminal symbols such as commas and semicolons. As an example, all elements of the AST
representing the statement for(i=0; i<4; i++) are shown in figure 2.5.

In an interpreter, the AST is used to execute the code. However, an AST can also be the
starting point for forming a graph of the code.

CALL GRAPH
Informally, a Call Graph (CG) [23] represents which function is called by other functions in
the code. Formally, a CG can be defined as follows (first we give the definitions for a Simple
Graph and a Directed Graph).

Definition 2.4.1 (Simple Graph). A simple graph is an ordered pair G = (V ,E). With V being
a set of vertices and E being a set of unordered pairs of distinct elements of V .

Definition 2.4.2 (Directed Graph). A directed graph G(V , A) consists of the set V of the

12

Figure 2.5: AST of the FOR-statement for(i=0; i<4; i++)

vertices vi and the set A of the arrows (vi , v j), where the ordered pair (vi , v j) is the arrow
from vertex vi to vertex v j .

Definition 2.4.3 (Head, tail). Each arrow a ∈ A in a directed graph has a head h(a) ∈ V
and a tail t (a) ∈ V . Thus each arrow leads from h(a) to t (a). The set of incoming arrows
for a vertex v ∈ V is defined as i n(v) = a ∈ A : t (a) = v . Likewise the set of outgoing arrows
out (v) = i n(v) = a ∈ A : h(a) = v .

Definition 2.4.4 (Neighbour). In a directed graph G a vertex v j is a neighbour of vertex vi

if the arrow (vi , v j) is element of A.

Definition 2.4.5 (Path). A path in the directed graph G(V , A) is an ordered n-tuple (v0, v1, ..., vn)
where for each pair of consecutive vertices in the path the ordered pair (vi , vi+1) occurs in
the set A (vi+1 is a neighbour of vi). An empty path is the 0-tuple (). A path with exactly one
vertex (vi) has no arrow. A path can contain cycles, i.e. a vertex occurs more than once in
such a path.

Definition 2.4.6 (Call Graph). A call graph is a static representation of the dynamic invo-
cation relationships between procedures, function or methods (hereinafter referred to as
function for short) in a program. A node in the call graph represents a function, and an
edge p → q exists if function p can invoke function q . If a function p calls the function q
more than once, we nevertheless represent it with a separate edge.

CONTROL FLOW GRAPH
A control flow graph (CFG [28]) is a directed graph in which all code of a procedure is in-
cluded [35]. Burgstaller [9] list three forms to represent a CFG. For our research, we adapted
the variant shown in figure 2.6:

• Nodes represent a basic block, a sequence of statements with one entry point (the
first statement in the block) and one exit point (the last statement in the block).

13

• Basic blocks are connected by one or more arrows.

• Edges (arrows) are labeled with the condition that determines whether this transition
may be taken.

Often, there are two special blocks: the entry block, through which control enters the flow
graph, and the exit block, through which all control leaves [55]. Because nodes A of state-
ments with i n(A) = 1∧out (A) = 1 are merged into a simple blocks, each arrow A → B has
the property that i n(A) > 1∨ i n(B) > 1 [50].

integer : : u , i , j ;
read (u , i , j) ; −− node 1
i f u<10 then −− node 1

repeat
i f i < j then −− node 2

i := i +1; −− node 3
else

i := i +3; −− node 4
end i f

until i >100; −− node 5
end i f

Figure 2.6: Example program with control flow graph

INTERPROCEDURAL CONTROL FLOW GRAPH
Control Flow Graphs only show the structure of a single function or procedure. To show the
structure of a complete program, the subgraphs of the individual CFGs can be combined
into an Interprocedural Control Flow Graph (ICFG)[16]. Each function call is replaced by
an arrow to the subgraph of that function. Outgoing arrows from the subgraph are then
reconnected to the graph that contained the function call.

14

2.5. PATHS IN SOFTWARE
Injection vulnerabilities are characterised by data (or code) entering the program code at
a certain point. At a second point, the data leaves the program, triggering the vulnerabil-
ity. Between these two points, the data travels a path through the program code. The short
PHP-program in listing 2.9 illustrates these concepts. Although the data enters the pro-
gram in line 2, it helps to take the beginning of the path at line 1. Since we know then that
max_count = 100, we can better reason under what conditions line 4 is reached. It may
also be the case that the end point of the path is not an exit point. When analysing a DoS
vulnerability, the first line after a WHILE loop could be chosen as the exit point. This is then
the first point in the code that is not reached when the program enters an eternal loop.

1 $max_count=100; / / s t a r t point
2 $count=$_POST("count") ; / / entry point
3 i f ($count>$max_count) {
4 echo "$count exceeds the max. count ($max_count") ; / / e x i t point
5 } ;

Listing 2.9: PHP code illustrating characteristic points in a code path (start point, entry point and exit point)

Characteristic
point

definition

Starting point point in the code that acts as the starting point of a path.
Entry point Point in a path where external data enters the path. This is not neces-

sarily the first line. A path may have multiple entry points.
Endpoint Point in the code that acts as the endpoint of a path. An endpoint

may be an exit point. A SQL injection has a path that leads to a point
where a SQL query is executed. This is an example of an exit point.
Other vulnerabilities, like DoS attack, do have points in code where
the malicious input triggers a vulnerability, but without data leaving
the program flow. Such a point is an endpoint.

Exit point Point in the code where data leaves the program. For instance when
it is passed as a parameter to an external function.

Table 2.4: Definitions of important points in the path of an injection vulnerability

15

PATHS IN PHP
In PHP we can identify specific cases where data can enter or leave the code. Examples of
such cases are:

• Superglobals15: $GLOBALS, $_SERVER, $_GET, $_POST, $_FILES, $_COOKIE,
$_SESSION, $_REQUEST, $_ENV

• Other predefined variables: $php_errormsg, $HTTP_POST_RAW_DATA, $http_response_header,
$argc, $argv

• Code injection by manipulating include/readfile/requireonce

• Return values of functions 16, like fgets, readfile, file_getcontents), shell_execute

At the end of the path, data could leave the code in specific places. Examples of such exit
points in PHP code are:

• Executing a (No-)SQL query using the query command

• Manipulating XML or XPATH commands

• LDAP

• Producing output to a web page using ECHO

• Writing data to a file or stream

• Executing a shell command (shell_exec)

Larger PHP programs are divided into separate files (modules). Functions and objects
can be grouped logically in this way. In PHP there is no standard name for code within a
module that is not in a function or object. By analogy with C, we call this code main. When
starting a script with the main code, functions can be called from this code. In this way, a
path is created in which the code flow moves from one module to another. For example,
the exit point may be in another module than the entry point (see Figure 2.7). It is possible
in PHP to declare inner functions and closures.

If classes are used, a constructor is called when an object is created. This is comparable
to a function call. The difference is that in the case of inheritance the constructor of the
parent must also be executed. A method call of an object is also similar to a function call.
But here too inheritance may occur. Figure 2.8 shows an example of a path that spans
several modules in this way.

15https://www.php.net/manual/en/reserved.variables.php
16https://www.php.net/manual/en/ref.filesystem.php

16

https://www.php.net/manual/en/reserved.variables.php
https://www.php.net/manual/en/ref.filesystem.php

Figure 2.7: Structure of a PHP program

Figure 2.8: Structure of a PHP program with classes

17

2.6. TRIGGERING PATHS
Paths are only traversed under specific conditions. These conditions are determined by the
conditions in the control flow statements (IF, WHILE, DO WHILE, SWITCH, FOR, FORE-
ACH) in the path. The set of conditions that determine whether a path can be run through
are called path conditions. In the example of listing 2.10, the ELSE branch of the program
is chosen if the condition C is not true. Examples for the condition C in this situation are
Tr ue or x! = 2.

1 $x =2;
2 i f (C) {
3 / / the condition C i s True
4 . . .
5 } else {
6 / / the negation of the condition C i s True
7 . . .
8 }

Listing 2.10: The condition C determines which path will be chosen

In Figure 2.9 we can determine whether the program can reach line 6 (echo $x+$y;)
because after substituting x = 20, y = 40 in x < 20&&y > 60 the condition evaluates False.
We conclude that line 6 is not reachable. The same procedure for line 8 (echo $x-$y;) leads
to the conclusion that the negation of x < 20&&y > 60 evaluates to True.

Figure 2.9: Example of a PHP program and the accompanying CFG [35]

A program uses variables. The set of all variables used within a certain context (a mod-
ule or a whole program) is called P. Some of these variables are used to determine the value
of expressions of path conditions. These are not only the variables that actually appear in
the expression, but also the variables whose value has been previously assigned to them.
The values of these variables determine whether a point in the code can be reached. We
call this set R. The values of a third set of variables V are used at the point in the code where
the vulnerability is triggered. For example, the value of these variables ensures that a loop
never ends, or the value is used in output. The sets R and V are a subset of P: R ⊂ P , V ⊂ P .
The intersection R ∩V can be non-empty.

At line 7 in listing 2.11 the sets P, R and V are:

18

Figure 2.10: Overview of variable collections used in path code. The intersection of the sets R and V can be
empty.

• P= {$a, $b, $c, $username}

• R = {$a, $b, $c}

• V = {$username}

1 $a=$_POST("a") ;
2 $b=$_POST("b") ;
3 $username=$_POST("username") ;
4 $c=$a+$b ;
5 i f ($c==3)
6 {
7 echo ($username) ;
8 } ;

Listing 2.11: example to illustrate the meaning of the variabel set P,R and V.

19

2.7. SYMBOLIC EXECUTION
When a program is executed by a computer, the variables are assigned concrete values. The
value can be a constant or it can come from some form of input. This can be input from a
human user from an input field, or it can be input from some other external source. With
concrete execution, a single path in the program is examined depending on the specific
input values. The concrete input values unambiguously determine the value of expressions
in control structures and thus establish which path will be chosen.

In the mid-1970s , symbolic execution was introduced by several authors (e.g. King
[29]) as a new static software analysis technique. Symbolic, in contrast to concrete execu-
tion, does not assume specific input value values, but abstract values for the input. King
describes how conditions of linear equations in a program can be solved using Gauss elim-
ination. The solution describes the condition under which a branch is chosen. In symbolic
execution, the symbolic input values do not define an execution path, but instead leave
open the possibility of analysing which input is needed for each path.

If we want to know whether a program is vulnerable to Injection vulnerabilities, we must
in fact find out for which input a path is triggered, which activates the vulnerability. We
need to know which input triggers the path. It is not feasible to try this for all possible input
values. Even for a simple program, the collection of all possible input values is already so
large that it is impossible to analyse them all.

For example, in the example program in 2.12, we can quickly see that line 4 can be
reached if $x=2 and $y=1. From there, line 7 can be reached if the condition of the IF state-
ment in line 5 is also met.

1 $x=$_POST["x"]) ;
2 $y=$_POST["y"]) ;
3 i f ($x+2*$y==4)
4 {
5 i f (2* $x−$y==0)
6 {
7 echo (’ v a l id values ’) ;
8 }
9 }

Listing 2.12: Example of two nested IF-statements

The number of possible values for x and y is already large even in this simple program.
Mathematically, the number of possibilities is infinite, but we can determine for which val-
ues of $x and $y line 7 is achieved, by solving the following system of linear equations.{

x + 2y = 4
2x − y = 0

The mathematical solution to this system is x = 4
5 and y = 8

5 .
If we restrict x and y to n-bit integers, there are 22n combinations possible. Firstly, this

number is not infinite, but still a large number to check all possibilities one by one. Sec-
ondly, we run into a limitation of the method. The fractions x = 4

5 and y = 8
5 cannot be

represented as a binary number with a finite bit row in the data types that software tools,
such as Z3, use to solve this type of condition. Thus, although there is an exact mathemati-
cal solution, this is not the solution that determines the conditions under which the system

20

is solvable if we represent binary numbers with a finite bit row (for example, a byte, integer
or word).

Symbolic execution requires keeping track of the following two elements for each path.
First, a first-order Boolean formula [27] that defines for each path the conditions under
which that path can be executed. Secondly, a collection of variables and their symbolic
values.

1 function conditionalswap(&$x , &$y) {
2 i f ($x>$y) {
3 $x=$x+$y ;
4 $y=$x−$y ;
5 $x=$x−$y ;
6 }
7 assert ($x<=$y) ;
8 }

Listing 2.13: Example of a PHP program that swaps the values of the variables $x and $y if $x>$y.

In listing 2.13 we see a program in PHP that swaps the value of variables $x and $y when
$x>$y. There are two code paths:

• if $x<=$y lines 1 → 2 → 7 are executed.

• if $x>$y lines 1 → 2 → 3 → 4 → 5 → 7 are executed.

After executing the function, the condition $x<=$y must always hold. We can check for
concrete values of $x and $y for which this is correct (take for example $x=7 and $y=1), but
in general we want to know for all possible values of $x and $y that the function swaps the
values of the variables $x and $y if necessary. We can do that by taking the symbolic values
A and B for the function parameters $x and $y.

$x → A
$y → B

The expression $x>$y in line 2 has the symbolic value A>B. If A>B is not true, lines 3, 4 and
5 are skipped. In other words, this path is only executed if ¬(A > B). Since in this case no
more statements are executed after the IF statement, after going through this path it is still
true that ¬(A > B) ≡ A <= B .

If A>B holds in line 2, lines 3, 4 and 5 are executed.

after line 3: $x=$x+$y; $x → A+B
after line 4: $y=$x-$y; $y → (A+B)-B = A
after line 5: $x=$x-$y; $x → (A+B)-A = B

These lines effectively swap the values of the variables $x and $y, so after line 5 the
condition $x<=$y does apply. So in both cases ($x <= $y ∧$x > $y) the function ends with
$x < $y : the condition ($x<$y) is met in all cases. We can see from this example that the
conditions along a path define the logical formula that determines the conditions under

21

which that path is run. The assignments along a path determine the (symbolic) values of
the variables.

The program that executes the symbolic execution is called a symbolic execution en-
gine. When executing a statement, the symbolic execution engine keeps track of a state
(stmt, σ, π) [5] [27]. These three elements stand for:

• stmt is the next statement in the path.

• The symbolic store σ is the collection of variables with their (symbolic) value.

• path conditions π is the logical formula that determines under what conditions the
current point in the path can be reached (the collection of conditions that were true).
At the start of the program we take π= tr ue as the initial path condition.

The statement stmt determines how the current condition changes. With an assign-
ment x = e, the symbolic store σ is modified so that the value of the variable x becomes
equal to the value of the expression e that follows from the current values in σ. If the state-
ment is an IF statement IF(e), the value of the boolean expression e determines which path
will be traversed. If e==true, the THEN path is executed. Therefore, we add the condition e
to the path condition π of the THEN-path. The new path conditions will then be π∧ e. To
the ELSE path we add the condition ¬e. The path condition of the ELSE path then becomes
π∧¬e.

The Symbolic Execution Tree in figure 2.11 shows the state after each statement.

Figure 2.11: Symbolic execution tree

If we want to use symbolic execution when analysing source code, we run into a number
of bottlenecks [5].

22

• State explosion. A concrete path through a program is called a path. For each choice,
there are (at least) two paths to choose from. For n consecutive choices between m
possibilities, the number of paths is mn . The number of paths thus increases expo-
nentially. Symbolic Execution may be an approach that does not consider one single
concrete path, but (in theory) all paths simultaneously. Actually evaluating all paths
quickly becomes impossible due to the large number of possibilities.

• Memory. To simple variables we can assign a symbolic value. It gets more compli-
cated with pointers (not present in PHP), arrays or objects.

• The environment. When executing a program, we soon come into contact with the
environment of the program [11]. The environment can consist of external files (that
the program creates or edits), the execution of system libraries, but also functions in
the programming language itself that need to be evaluated.

• Evaluation path constraints. To what extent can we resolve conditions? For exam-
ple, we might be able to solve some conditions manually, but to what extent is an
automated tool able to do so?

Fuzzing [22] and symbolic execution are in a sense dual test methods.

fuzzing symbolic execution

The test method selects inputs from a set of
all possible input values (for the variables
that input directly into).

The test method selects paths from the set
of all possible paths through the program
(for the paths between entry point and exit
point).

Selection of all possible sets of input values
(limited by type). Each set activates a single
path (sometimes no full path is triggered).

Selection from the set of all possible paths
(limited by search depth or another (ran-
dom) criterion). If a path is traversable,
there is a set of concrete input values that
we can fill in for all (symbolic) variables
that appear in the path conditions for this
path, so that all conditions are true.

Table 2.5: fuzzing versus symbolic execution

23

2.8. STATIC SINGLE ASSIGNMENT (SSA)
Static Single Assignment is a notation form devised to simplify and improve compiler opti-
misations[1]. SSA means that each variable is assigned a value only once. This can be done
in a simple way by replacing a variable x with xi , where i is a counter that keeps track of
which version of the variable it is. In standard code, the assignment x = y does not mean
that we can replace all instances of x by y , because the value of x may be unequal to y
at some other point in the code due to other assignments. If in SSA form the assignment
xi = yi occurs, we can replace all instances of xi by yi . We thus save the variable xi .

If the code has no branches or loops, a basic block, the conversion of code to the SSA
variant is straightforward. Each assignment introduces a new version of the variable. The
counter becomes 1 in the case of a new variable. In the case of a new assignment to an
existing variable, the counter is incremented.

standard code SSA form

x = 1 x1 = 1
y = 2 y1 = 2
x = x + y x2 = x1 + y1

y = x ∗x y2 = x2 ∗x2

Table 2.6: standard code of a basic block converted to SSA form

2.8.1. BRANCHES
After branching, we need to know which version of the variables to work with. To do this,
we introduce the φ-function (See figure 2.12). The φ-function is inserted at the beginning
of a basic block with more than one incoming arrow. If several versions of a variable are
received, the φ-function determines which version should be used. Which version that is,
depends on the actual path that was taken.

24

The code in table 2.7 is visualised as a CFG with statements in SSA form in figure 2.12.

standard code SSA form

x=6; x1=6;
if odd(x) { if odd(x1) {

x = 3∗x +1; x2 = 3∗x1 +1;
} else { } else {

x = x/2 x3 = x1/2;
} }
print(x); print(φ(x2, x3);

Table 2.7: standard code of a branch converted to SSA form

Figure 2.12: Example of the use of the φ function in a basic block after a branch.

25

2.8.2. LOOPS
A similar analysis applies to a loop. We illustrate this using a while loop. The while state-
ment becomes a block with two incoming arrows: one from the previous block and one
two from the block in the while loop. A φ function is used to determine which version of a
variable is needed. The example code in table 2.8 is visualised in figure 2.13.

standard code SSA form

x=6 x1=6
label1: x2 =φ(x1, x5)

while x>1 if x2 > 1
{ {

print(x) print(x2)
if odd(x) if odd(x2)
{ {

x = 3∗x +1 x3 = 3∗x2 +1
} else { } else {

x = x/2 x4 = x2/2
}

x5 =φ(x3, x4)
} goto label1

} }
print(x) print(x2)

Table 2.8: standard code of a while loop converted to SSA form

There are several known algorithms for converting code to SSA form. A first algorithm
comes from Appel [3], which was later improved significantly (Ayock et al. [4], Cooper et al.
[13], Braun et al. [7]).

26

Figure 2.13: Example of the use of the φ function in while loop, which contains a branch

2.9. SMT SOLVERS
We have seen in the previous subsections that the solutions of the path condition are the
conditions that determine whether a path is traversable. But how do we determine these
solutions?

In King’s original article, conditions of linear formulas are solved using Gauss elimina-
tion. With this method, only solutions to problems that can be formulated as a system of
linear equations can be calculated. A more general approach has been developed starting
from the problem of finding solutions to Boolean formulas (the Boolean satisfiability prob-
lem, abbreviated as SAT). This generalization is known as the satisfiability modulo theories
problem (abbreviated as SMT). In addition to Boolean formulas, more complex conditions
involving real numbers, integers, and/or various data structures such as lists, arrays, bit
vectors, and strings can be used. The programs that can solve these mathematical prob-
lems are called SMT solvers.

examples
The formula x1 ∧ x2 becomes true only for x1 = Tr ue, x2 = Tr ue. The formula x1 ∨ x2

can be made true in three ways, for example by taking x1 = Tr ue, x2 = F al se. Both
these logical formulas are therefore satisfiable.
The formula x1 ∧¬x1 is unsatisfiable, because it can not be made true by choosing a
value for x1 in any way.

Despite the fact that Cook [12] proved that the SAT problem is NP-complete, there is a
highly efficient algorithm for propositional formulas in conjunctive normal form. The DPLL
algorithm uses backtracking to find assignments satisfying the conditions in the search
space [15], [14]. Over the years, research has shown that efficient improvements in the
algorithm and its implementation are possible [40].

The main reason that SMT solvers with the DPLL algorithm are useful for solving path
constraints is that they support extensions, called Theories. There are Theories for Linear

27

Algebra, Non-Linear Algebra, Real numbers, Strings and Arrays [31].
Each extension maps the problem to a CNF-SAT problem. If this formula is feasible, the

specific algorithm for the theory examines whether the extension is also feasible. If so, the
problem is sat.

Because SMT solvers can determine solutions for conditions in more situations (the-
ories), there are, at least in theory, more opportunities to solve path constraints. To what
extent this is actually possible is the subject of our research.

SMT solvers can be addressed in two ways: via an API or via a standardised language
(SMTLIB 17). The advantage of SMTLIB is that scripts in this language are understood by
many SMT solvers. This makes it possible to exchange SMT solvers. Furthermore, the
SMTLIB language is human readable, which makes it easy to check or modify the input
for the SMT solver.

17https://smtlib.cs.uiowa.edu/language.shtml

28

3
RESEARCH DESIGN

3.1. RESEARCH QUESTIONS
In this chapter, we explain the method by which we intend to find an answer to the research
questions we formulated in response to the main question.

The main question of our research is: "How to determine input values that trigger paths
to injection vulnerabilities in PHP-code using Symbolic Execution?". To answer this main
question, we have divided it into three research questions.

• RQ1: How can we find paths in PHP-code efficiently?

• RQ2: Up to what extent can PHP-code be evaluated using Symbolic Execution?

• RQ3: Up to what extent can path conditions be solved by an SMT solver?

Our research is connected with previous research in several aspects. For the search of
a path between two nodes in a graph, several algorithms are known [44]. The limits of
the use of symbolic execution have been studied previously by previous research does not
specifically mention to what extent the use of a certain SMT solver is a limitation for solving
path conditions for programs written in PHP.

In particular, our research is consistent with previous research done at the Open Uni-
versity Netherlands. Beisicht [6] investigated how Injection Attacks can be mitigated by us-
ing Secure Multi Execution [17]. Kronjee [32] studied the extent to which dataflow analysis
and machine learning can detect vulnerabilities in PHP programs. Elema [19] investigated
whether Deep Learning on graph representations can detect vulnerabilities.

29

3.2. RESEARCH METHOD
In this section, we describe the research method we will use for each research question. All
digital artifacts resulting from the research can be found on github 1. In addition smaller
tools were used, for example, for the preparation of the datasets. Also for all these tools the
code and the instructions for use can be found on github.

RQ1: HOW CAN WE FIND PATHS IN PHP-CODE EFFICIENTLY?
The source code of a PHP program consists of text. The structure of this program code
can be determined in an automatic way with a parser. The output is an abstract syntax
tree (AST). With the help of this AST we can determine the structure of the program. The
program structure includes variables, expressions, statements and functions. Conditional
statements are of particular importance because they determine the paths along which
the program can be run. CFGs are a common way to represent the paths in a program as
a graph. In a CFG (graph) we can search for paths between two nodes, by looking for a
connection through intermediate nodes. There are standard algorithms known that can be
used to search a simple paths between two nodes (Breath First Search, Depth First Search
[44]). For our purpose, these algorithms are not suitable, because we want to have influence
on certain properties of the paths. For example, we want to be able to control how often a
cycles a path, because a code path that triggers a vulnerability is not necessarily the shortest
path. We can summarize the sub-steps as follows:

• How can we obtain an AST of a PHP program? Furthermore, we investigate which
software we can use for software development.

• From an AST (a tree structure), we want to describe how it can be incorporated into
a CFG. We choose a CFG because it is a suitable structure for searching paths.

• We want to cover as much of the language elements of PHP as possible. Therefore,
we will build a test set that allows us to use language elements isolated or combined
to create ASTs.

• Finally, we want to determine how we can efficiently search paths in a CFG?

RQ2: UP TO WHAT EXTENT CAN PHP-CODE BE EVALUATED USING SYMBOLIC

EXECUTION?
The result of RQ1 is that we have a method by which paths can be searched. RQ2 aims
to determine to what extent the statements in a path can be executed by an SMT solver.
We will go through the following sub-steps for this purpose. First determine which SMT
solvers qualify. We will make a choice based on criteria. Next we will study how to con-
vert statements from a PHP program to conditions for an SMT solver. In doing so, we will
determine what possibilities and limitations we encounter. PHP is a dynamically typed lan-
guage. Therefore, the type of a variable is not fixed in advance and can change with each
use. SMT solvers, on the other hand, expect the variables used in conditions to be of a pre-
declared type. We must therefore examine to what extent it is possible to correctly declare
the type when translating PHP statements into conditions for an SMT solver.

1https://github.com/rdohmen/pvpc

30

RQ3: UP TO WHAT EXTENT CAN PATH CONDITIONS BE SOLVED BY AN SMT
SOLVER?
For RQ3, we want to determine the extent to which the method/tool that follows from RQ1
and RQ2 is actually applicable to PHP code containing injection vulnerabilities. In doing
so, we want to make use of the SAMATE dataset. To our best knowledge, there is no other
comparable test set available. The Samate dataset consists of a large number of code frag-
ments of which we want to determine the extent to which they can be executed according
to our method with symbolic execution, with the goal of finding input that triggers paths
to a vulnerability. To do this, we will analyze for each sample which language constructs a
tool must master in order to execute this sample symbolically.

OVERVIEW
The different sub-steps of the research are visually represented in figure 3.1.

Figure 3.1: Global overview of the stages of our research

The research consists of three phases. In the preparation phase, we analyze existing
software frameworks and software tools that may be useful in conducting the research.
The results of the preparation phase can be found in Section 3.3. In the second phase, we
develop a methodology and software tool with which we aim to answer the three research
questions on practical aspects. The results of this can be found in sections 4, 5 and 6. In the
final phase, we validate the results of the research.

3.3. SELECTION OF FRAMEWORKS AND SOFTWARE TOOLS
In this section, we describe analyses we conducted for choosing software tools suitable for
the study. For the software, we looked at the steps that hneed to be performed. For each

31

step, we looked at the existing frameworks or components that can be used in a step. Of the
possible solutions, we argued which is the most appropriate.

• Step 1: Obtain the AST from PHP source code. A larger project consists of several PHP
files. In this case, an AST must be created for each PHP file.

• Step 2: Convert the ASTs to a structure in which code paths can be searched.

• Step 3: Search for code paths between an entry and exit point. Collect path conditions
accordingly.

• Step 4: Translate the path conditions into the SMTLIB language.

• Step 5: Using an SMT solver, determine if the path condition is satisfiable. If so, try to
obtain a model (a solution).

For each step, we looked at the possibilities of realising this sub-step. The selection
process can be visualised as a matrix. The steps are listed horizontally. Possible choices for
each step are shown vertically. A chosen option can be indicated by colouring the circles
for the chosen option (Figure 3.2).

Figure 3.2: Design matrix for the tool

Apart from the implementation choices of the tool, there is also the question of which
PHP version the tool will support. There are minor differences in syntax between different
versions of PHP. Moreover, there are differences in statement execution between different
versions, even if the exact same code is used 2. We could have chosen to make the operation
of the tool depend on a PHP version number in the relevant places, but we did not dare to
include this complicating factor for time reasons.

3.3.1. ANALYSIS OF EXISTING TOOLS FOR CREATING AST’S

We compared a number of existing components to assess their applicability to the study.

• PHPLY 3 was used in scientific research before [32].

• Phpscan 4 has not been developed for several years and will therefore not be a future-
proof choice.

2https://www.php.net/manual/en/language.operators.comparison.php
3https://github.com/viraptor/phply
4https://github.com/bartvanarnhem/phpscan

32

• Php-ast 5, further development of php-parser 6. Php-ast is being actively developed
by a developer who is also involved in the development of the PHP interpreter. The
module uses the internal AST introduced earlier in PHP7.

• Phpast 7, tool of the same name that has not yet been developed very far.

• Peachpie 8 was previously used in research by [6]. Possible disadvantage could be
that we make the tool too dependent on too many external tools.

• Rascal is a meta-programming language that, among other things, has the ability to
analyse PHP code [25]. Although Rascal is being developed reasonably actively 9, the
software is not as stable as other development environments.

• CHEF’s [8] approach of adapting the interpreter to enable Symbolic Execution may be
extended to include the possibility of using the AST in the interpreter to achieve other
steps in the tool’s process. The disadvantage of this approach is that modifications
are bound to a certain version of the interpreter.

Another consideration is to write your own PHP parser. We looked at the possibilities of
building a parser with ANTLR 10 or Lex/Yacc 11. For Antler, there is a PHP grammar, which
makes it possible to generate a parser quickly. We succeeded in doing so, but due to the
limited time available, it was not considered worthwhile to build on this. With Yacc/Lex,
it was not possible to generate a basic parser within a reasonable time. It was also ques-
tionable whether the grammars that can be found in various places would be useful. Based
on these considerations, we looked further into PHPLY and PHP-AST. Both proved to have
good support for the various AST nodes needed to analyse language structures in PHP. An
overview of the similarities and differences can be found in the table in Appendix A.

The decisive reason for choosing PHP-ast was that the generated AST files are easy to
interpret. In addition, the developer is also one of the developers of PHP, which gives con-
fidence in good support.

3.3.2. CHOOSING APPROPRIATE PROGRAMMING LANGUAGES
These steps involve the choice of a programming language. The main consideration is
whether it is possible to program the required algorithms. Kronjee [32] has done this be-
fore in Python. PHP would fit well with the choice of PHP-AST (steps 1 to 4 can then be
programmed in PHP) or PHPLY (the same steps can then be programmed in Python). The
main reason for not using these languages is that the programming language Lazarus12

(Object Pascal) is a more familiar language to us.
For the actual development we used the following tools.

• PHP, version 7.4.13 13 There is no reason to believe that a more recent version of 7.4.x

5https://github.com/nikic/php-ast
6https://github.com/nikic/PHP-Parser
7https://github.com/flaviovs/phpast
8https://www.peachpie.io/
9https://update.rascal-mpl.org/
10https://www.antlr.org/
11http://dinosaur.compilertools.net/
12https://www.lazarus-ide.org/index.php?page=downloads
13https://windows.php.net/download/

33

would not work. Version 8 does have changes that affect how the tool works. The
same is true for older versions (<7.4.x).

• Lazarus 2.0.6, FPC 3.0.4 14

• Python 3.8.2 15

3.3.3. CHOOSING AN APPROPRIATE SMT SOLVER
In the last step, the path conditions must be solved by an SMT solver. Two factors must be
taken into account here. The choice of a SMT solver and the link between the SMT solver
and our tool. The latter factor depends on the programming language. We have not found
an API coupling between PHP and a modern SMT solver. For Python, several sources to
SMT solvers can be found 16 17. For Lazarus, no coupling existed, but there is a coupling
with Delphi (Z34Delphi 18), which might be usable in Lazarus too.

Over time, many different SMT solvers have been developed. To determine which SMT
solver is suitable for our research, we looked at a number of aspects. If we want to make
the choice somewhat future-proof, we could look at whether the solver is still being ac-
tively developed. The solver should not only determine whether the problem is satisfiable
(sat), but the solver should also be able to provide a model, because we are looking for con-
crete examples of input that can trigger a path. Thus, we not only want to know whether
the conditions for a path are satisfiable, but also (at least) get an example of such an in-
put. Furthermore, the solver must be able to solve problems within a number of theories.
Simple conditions like x < 0 are covered by linear algebra.

This kind of condition could be solved, as in King’s original article, with Gauss elim-
ination, i.e. without a SMT solver. However, one of the extensions that are included in
modern SMT solvers is the Theory of Linear Algebra. Thus, with an SMT solver we can
use propositional conditions, but also linear conditions. The same is true for non-linear
problems. Although it is known that SMT solvers within this Theory are incomplete. As a
consequence, SMT solvers for trivial problems sometimes not only do not give a solution,
but judge the problem is unsatisfiable. An example is shown in Listing 3.119.

1 (declare −const x Real)
2 (declare −const y Real)
3 (declare −const z Real)
4 (assert (= (* x x) (+ x 2 . 0)))
5 (assert (= (* x y) x))
6 (assert (= (* (− y 1 . 0) z) 1 . 0))
7 (check−sat)

Listing 3.1: trivial nonlinear problem rated as unsat by Z3 (the solution is x=0, y=2, z=1/2)

In terms of data types, integers are a reasonable first entry, but in a computer, inte-
ger numbers are modelled as bit vectors with a certain length. In addition, data of type

14https://www.lazarus-ide.org/index.php?page=downloads
15https://www.python.org/downloads/release/python-382/
16https://pypi.org/project/PySMT/
17https://github.com/Z3Prover/z3
18https://github.com/Pigrecos/Z34Delphi
19https://rise4fun.com/Z3/tutorial/guide

34

string occurs frequently in injection vulnerabilities, for example, when data is entered via
a $_POST command. Therefore, it is important that the SMT solver can operate with string
conditions. Therefore, we prefer a SMT solver that can evaluate conditions with bit vectors
and strings. If we want to keep the software independent from a certain SMT solver, so
that it can be exchanged for another solver in the future, we would preferably like to use
the SMTLIB language. The final wish is that the solver can be addressed via an API from a
modern programming language.

last update unsat model LIA NLIA A(X) BV Real String SMTLIB API

CVC420 may 2021 No Yes Yes Yes Yes Yes Yes Yes Yes C++
Hampi unknown No No No No No No No Yes No Java

MathSAT21 april 2021 Yes Yes Yes No Yes Yes Yes No Yes C

VeriT22 october 2016 No Yes Yes No No No Yes No Yes C

Yices23 april 2020 No Yes Yes No Yes Yes Yes No Yes C

Z324 june 2021 Yes Yes Yes Yes Yes Yes Yes Yes Yes C, C++, .NET, Java, OCamL, Python

Table 3.1: Characteristics of modern SMT solvers

Our conclusion based on the Master thesis of Andres Höfler 25 and our own research is
shown in Table 3.1. In summary, the following two possibilities seemed the most obvious,
looking at all factors.

• option 1: Writing the whole tool in Python, using PHPLY for the AST, and Z3 as SMT
solver.

• option 2: For step 1, use PHPAST. Writing steps 2 to 5 in Lazarus, assuming that the
Delphi link to Z3 is convertible to Lazarus.

For the first option, it speaks for itself that the whole tool can be written in one language us-
ing existing components that work reliable. The programming in Python is however mod-
erate compared to other languages. For the second tool, the information present in the AST
is excellent. The experience in programming in Lazarus is greater than with other program-
ming languages, which gives more confidence of success.

In the end, there was no deciding factor, so option 2 was chosen more or less at random
(See figure 3.3).

Figure 3.3: Initial design of the tool (PC: Path Conditions, SC: Security Conditions)

Because at the end it turned out that the link with the SMT solver did not work properly
from Lazarus, we finally had to choose for a link from Python. This made it impossible to

25https://spreadsheets.ist.tugraz.at/wp-content/uploads/sites/3/2015/06/DS_Hoefler.pdf

35

write a monolithic tool (without starting from scratch again). This led to the design in figure
3.4.

Figure 3.4: Final (adapted) design of the tool

36

3.4. TESTING
We tried to ensure code quality by writing unit tests for some components of the main tool
to test the operation of the isolated component. The source code for this can be found on
the aforementioned github page.

3.5. DATA DESCRIPTION

3.5.1. TEST FILES WITH ISOLATED PHP CODE
To test language elements of PHP in isolation or combined, we created a test set with a
series of PHP files. Because we also wanted to test larger projects that consist of more than
one source code file, we have created small test projects in a similar way 26.

3.5.2. PHP VULNERABITITY TEST SUITE

For the study, we make use of the PHP Vulnerability Test Suite 27 by Bertrand C. Stivalet and
Aurelien Delaitre which can be found on the NIST website 28. This dataset provides thou-
sands of PHP code snippets for various CWEs that have been classified as safe or unsafe
(see table 3.2).

The source code of the files shows whether a sample is classified as (un)safe. In listing
3.2, an example can be seen of one of the files29.

1 <?php
2 / *
3 Safe sample
4 input : backticks interpretation , reading the f i l e / tmp / tainted . t x t
5 SANITIZE : use in_array to check i f $tainted i s in the white l i s t
6 construction : i n t e r p r e t a t i o n with simple quote
7 * /

Listing 3.2: Example of a marking of the sample type

For unsafe samples, the xml file manifest-103-RAjiQO.xml contains the line number
where the vulnerability can be found. We have written a tool that splits the files up accord-
ing to CWE and adds the line number where the vulnerability manifests itself to the relevant
PHP file, so that this information can be read immediately in the PHP file.

26https://github.com/rdohmen/php-test-set
27https://samate.nist.gov/SARD/view.php?tsID=103
28https://www.nist.gov/
29CWE_98__backticks__whitelist_using_array__require_file_name-interpretation_simple_quote.php

37

CWE number Number of safe samples Number of unsafe samples

078 1872 624
079 5728 4352
089 8640 913
090 1728 2112
091 4785 1263
095 1296 336
098 2592 672
209 5 3
311 2 2
327 3 5
601 2208 2592
862 400 80

Table 3.2: Number of safe and unsafe samples for all CWE categories present in the SAMATE testset.

38

4
FINDING PATHS

4.1. RQ1: HOW CAN WE FIND PATHS IN PHP-CODE EFFICIENTLY?
We want to determine input values that trigger a path. The entry point and the exit point
of the path are known. Our tool must determine which code path is run between these two
points. It is possible that there are several paths between entry and exit points. A condi-
tional statement like an IF or SWITCH statement can result in multiple paths between entry
point and exit point that only differ in the branches of the IF/SWITCH statement. A WHILE
statement can cause a path to differ from another path because the number of times the
loop is run differs. In a similar way, this can also happen with DO or FOR statements. When
paths are found, the conditions and statement for this path must be translated into condi-
tions for the SMT solver. It is then up to the SMT solver to determine whether the conditions
are satisfiable and whether a model for the conditions can be found.

4.2. CREATE AST’S FROM PHP-FILES
In order to get an AST we use a PHP program: astarg.php. This is a small PHP program that
uses an ast_dump-function that is part of PHP-ast (See listing 4.1).

1 <?php
2 require ’ . / u t i l . php ’ ;
3
4 $filename = ’ . / ’ . $argv [1] ;
5 $code = f i le_get_contents ($filename) ;
6 $ast = ast_dump (ast \parse_code ($code , $version = 7 0) , 1) ;
7 $path_parts = pathinfo ($filename) ;
8 / / filename i s only since PHP 5 . 2 . 0
9 \ $astfilename= \ $path_parts [’ filename ’] . ’ . ast ’ ;

10 f i l e _put\ _contents ($astfilename , $ast)
11 ?>

Listing 4.1: source code of astarg.php

39

The program takes a PHP file as an argument and exports a text file with the same name
and extension .ast. Running

php phparg.php example.php

creates a file example.ast.

1 <?php
2 $a =2;
3 $b=3;
4 $c=(5−$a) * ($b + 7) ;
5 $d=$c/max(2 , 3) ;
6 echo ("$c $d") ;
7 ?>

Listing 4.2: source code of example.php

The PHP code of the program in listing 4.2 is thus exported to the code in listing 4.3 repre-
senting the AST.

40

1 AST_STMT_LIST @ 1
2 0 : AST_ASSIGN @ 3
3 var : AST_VAR @ 3
4 name: "a"
5 expr : 2
6 1 : AST_ASSIGN @ 4
7 var : AST_VAR @ 4
8 name: "b"
9 expr : 3

10 2 : AST_ASSIGN @ 5
11 var : AST_VAR @ 5
12 name: "c"
13 expr : AST_BINARY_OP @ 5
14 f l a g s : BINARY_MUL (3)
15 l e f t : AST_BINARY_OP @ 5
16 f l a g s : BINARY_SUB (2)
17 l e f t : 5
18 r i g h t : AST_VAR @ 5
19 name: "a"
20 r i g h t : AST_BINARY_OP @ 5
21 f l a g s : BINARY_ADD (1)
22 l e f t : AST_VAR @ 5
23 name: "b"
24 r i g h t : 7
25 3 : AST_ASSIGN @ 6
26 var : AST_VAR @ 6
27 name: "d"
28 expr : AST_BINARY_OP @ 6
29 f l a g s : BINARY_DIV (4)
30 l e f t : AST_VAR @ 6
31 name: "c"
32 r i g h t : AST_CALL @ 6
33 expr : AST_NAME @ 6
34 f l a g s : NAME_NOT_FQ (1)
35 name: "max"
36 args : AST_ARG_LIST @ 6
37 0 : 2
38 1 : 3

Listing 4.3: AST of listing 4.2

The AST file contains nodes from the AST tree. These nodes have a descriptive name
starting with AST_ In listing 4.3 we recognise a number of these nodes. If a node is a child
of a previous node, the line is indented with 4 extra spaces. A node on a line with 8 spaces
is a child of a node on the first preceding line with 4 spaces. An AST node is followed by an
@-sign and a line number (or line numbers). Each child consists of a key, value pair. The
children of AST_STMT_LIST have the successive keys 0, 1, 2, ... followed by an AST node

41

describing the type of statement.

AST_STMT_LIST @ 1 list of statements
0: AST_ASSIGN @ 3 assignment

The assignment on line 4 can be found in the tree as 1: AST_ASSIGN @ 4. This is the second
statement in the statement list. The node of statement 4 again has two children.

1: AST_ASSIGN @ 4
var: AST_VAR @ 4

name: "b"
expr: 3

The var key has the value AST_VAR and indicating it describes a variable. The name is
described in the second child of the node: the "name" (key) is "b" (value).

name: "b"

The expression on the right hand side of the assignment is simple in this case

expr: 3

The expression consists of the value 3. The third statement has a somewhat more com-
plicated expression. The expression contains a binary operator. The child node determines
that it is a multiplication operator.

expr: AST_BINARY_OP @ 5
flags: BINARY_MUL (3)

The two operands of the multiplication are worked out in the nodes with the keys left
and right. The left node is a binary operator. In this case, a subtraction. The two operands
are 5 and the variable a.

left: AST_BINARY_OP @ 5
flags: BINARY_SUB (2)
left: 5
right: AST_VAR @ 5

name: "a"

2: AST_ASSIGN @ 5
var: AST_VAR @ 5

name: "c"
expr: AST_BINARY_OP @ 5

flags: BINARY_MUL (3)
left: AST_BINARY_OP @ 5

flags: BINARY_SUB (2)
left: 5
right: AST_VAR @ 5

name: "a"

42

right: AST_BINARY_OP @ 5
flags: BINARY_ADD (1)
left: AST_VAR @ 5

name: "b"
right: 7

In the fourth statement, we encounter a function call.

right: AST_CALL @ 6
expr: AST_NAME @ 6

flags: NAME_NOT_FQ (1)
name: "max"

args: AST_ARG_LIST @ 6
0: 2
1: 3

The name of the function is max. This function takes arguments 2 and 3.
Our program reads in an AST file and processes it into an internal representation of this
AST. It starts with a root node connected to AST nodes which have a key and value. Below
this are possibly child nodes.

4.3. MORE ABOUT ASTS
An AST is generated from each PHP source code file. An AST may contain function or class
declarations (See Figure 4.1). These declarations form a subtree in an AST (See Figure 4.2).
Functions or methods can be called from the main code or from other functions and meth-
ods. Moreover, functions and classes from another file can be used.

Figure 4.1: Excerpt from an AST file showing function declarations and function calls

Definition 4.3.1 (subtree). A subtree of a tree T is a tree consisting of a node in T and all of
its descendants in T (See Figure 4.3).

43

Figure 4.2: Example of function declarations and function calls in an AST

Figure 4.3: The red nodes form a subtree

Figure 4.4: ASTs with multiple function calls

44

When all the source code files of a project have been read, a forest of trees exists. The
entry point is chosen in some AST and at another point an exit point determined. That exit
point can be in an other function or even in a function in another tree.

The statements of ’main’ or of a function are contained in a statement list. In the AST,
these are the children of an AST_STMTLIST node. These statements are executed sequen-
tially. The program deviates from this sequence in the case of control structures or function
calls.

Each node in the AST has an AST nodetype that indicates which type of statement it is.
Examples are:

• AST_ASSIGN

• AST_CALL

• AST_IF

• AST_SWITCH

• AST_WHILE

• AST_FOR

Each statement is defined by the subtree of that node (See Figure 4.3).
A complete list of node types can be found in Appendix C. Some node types may only

appear as part of a subtree. For example the node AST_VAR can be a part of a subtree of an
AST_ASSIGN statement, to describe to which variable a value is assigned.

Control Flow Statements essentially consist of two types of statements: choices (IF,
SWITCH) and loops (WHILE, DO-WHILE, FOR, FOREACH). Branches of choice statements
or loops again consist of a statement list. A statement list can in principle be empty (i.e.
does not contain any commands), but usually a sequence of statements is executed. With
an IF Statement, one branch will be executed (the first branch of which the condition is
true). With a SWITCH Statement it is possible to execute combinations of branches. A loop
is sometimes not executed, but in theory it can be executed an infinite number of times.

4.4. CREATE A SEARCHABLE DATA STRUCTURE FROM AN AST-FILE
We propose a algorithm that transform the AST into a structure that is suitable for searching
for paths in the program. Algorithm B is an algorithm that searches paths directly from the
ASTs. We found no source in the literature that described a similar algorithm before.

Algorithm B merges separate CFGs into an interprocedural CFG (ICFG) to provide a
structure in which paths can be searched throughout the program. There are earlier de-
scriptions in the literature of procedures which make a large ICFG out of CFG’s.

In the general case, the entry point and exit point are located in two different functions.
The algorithm must determine how the code path from the entry point runs through the
first function and then through a function call to the next function until it reaches the func-
tion in which the exit point is located. In the latter function, the code path runs to the exit
point. In the case where the entry point and exit point are located in the same function,
only paths within that function need to be searched.

Definition 4.4.1 (Simple function path (SFP)). Simple function path from function f to
function g is a sequence of function calls starting in s and ending in e. The number func-

45

tion between s and e might be zero. with 0 or more functions in between. Each function
appears at most once in the simple function path.

Definition 4.4.2 (Local Simple Path (LSP)). A local simple path in an AST between two
nodes A and B is a simple code path in a single function (without cycles). The path consists
of a sequence of nodes in an AST that represent a code path from statement A to statement
B. Between A and B are 0 or more nodes of the AST. Each node occurs at most once in the lo-
cal simple path. In its simplest form, an LSP is a sequence of nodes from a single statement
list.

Definition 4.4.3 (Lowest common ancestor). The lowest common ancestor (LCA) of two
nodes v and w in a tree or directed acyclic graph (DAG) T is the lowest (i.e. deepest) node
that has both v and w as a descendant, where we define each node as a descendant of itself
(i.e. if v has a direct connection to w, w is the lowest common ancestor). (See Figure 4.5)

Figure 4.5: The yellow node is the lowest common ancestor (LCA) of the red and blue node.

In an AST the LCA is always a AST_STMTLIST node (See figure 4.6).

Figure 4.6: In an AST the LCA is a AST_STMTLIST node

4.4.1. ALGORITHM B
This algorithm aims to represent the source code in a structure, in which paths between
entry and exit points can be searched. The algorithm immediately processes an AST into
an ICFG. If we encounter a function declaration, we remember where it is in the AST. If we

46

later encounter a function call, we use the node of the declaration to insert the code of the
function. The AST’s nodes contain all the information about the statements that make up
the program. We now describe how to use the AST nodes to build a CFG.

4.4.2. STATEMENTS
There are three types of statements. The first type are the control flow or conditional state-
ments. This category includes IF, SWITCH, WHILE, DO, FOR and FOREACH. We can recog-
nise which statement it is by the AST node type. With these nodes, a condition is evaluated.
Depending on the result, the statements in a statement list are executed. A statement list
may consist of only one statement. In a CFG, we recognise the control flow statements as
nodes from which more than one arrow departs. For each arrow, there is a condition under
which the statement list is executed. A condition is an expression that has the value true or
false.

Assignments are the second type of statement.Once the code flow arrives at an assign-
ment, it is always executed.An expression is evaluated and the result is put into a variable.
The same goes for the third kind of statements: The function calls. With a function call. In
PHP, functions may or may not return a function value. If the function returns a function
value, the function is usually part of an expression. The expression can be part of a condi-
tional statement (and thus determine the code flow) or it can be part of an assignment; the
return value is assigned to a variable. Functions without a return value contain a statement
list that can be inserted one by one in the place of the function call.

4.4.3. ASSIGNMENTS
As we have seen, an assignment consists of an expression and a variable value that stores
the value of the expression. For a normal concrete execution of a statement, this is the end
of the matter. For a symbolic execution we need to look a little further. After executing
an assignment, the state of the symbolic store is altered. Suppose the assignment a=1 was
executed. The variable a then has the concrete value 1, but we can also see this as that
the condition a==1 is true. In the case of an assignment with a symbolic store, this is no
different. Suppose we assign the variable v the symbolic value S, then after execution the
assignment the condition v==S is true.

In the usual definition of a CFG [10] , the non-conditional statements are summarised
in a simple block. This does not match with the way assignments are represented in the
ast-file. In the AST each assignment node represents one single expression (See Figure 4.7).

Figure 4.7: A single assignment in a CFG for a single expression simple block

In our algorithm, we do not summarise assignments in a simple block nor as a node per ex-
pression, but we include each assignment as one or more separate nodes in the CFG. There
are several reasons to do this. Firstly we want each node in the graph to be responsible for
generating part of the conditions for the SMT solver. Later on we will see that function calls
that are part of an expression are inserted in the graph. These function calls might include
conditional statement and loops, which cannot be represented by a simple sequence of
nodes.

47

So in our algorithm an assignment is broken up into separate nodes for each (unary or
binary) operator in the calculation. Each intermediate result is stored in a newly introduced
result variable that is reused in the next calculation (See Figure 4.8). These result variables
are then used in the following conditions to form the overall condition. This similar to the
way that compilers break up the calculation of expressions [1]. The result of c=(b+7)*(5-a)
can be broken up as:

res1 = b + 7
res2 = 5 - a
res3 = res1 * res2
c = res3

Figure 4.8: In our algorithm assignments in a CFG are a series of nodes for partial calculations

4.4.4. THE WHILE STATEMENT
A WHILE statement is usually included in a CFG in the manner of figure 4.9.

Figure 4.9: The arrows after a WHILE statement are labelled with the conditions.

We will now look at how to include a WHILE statement in a CFG based on its represen-
tation in an AST. We use the program in listing 4.4.

1 $x =1;
2 while $x <3{
3 $x=$x +1;
4 }
5 echo $x ;

Listing 4.4: PHP code of an example of a simple WHILE statement

The AST of this program is shown in Listing 4.5.

48

1 AST_STMT_LIST @ 1
2 0 : AST_ASSIGN @ 2
3 var : AST_VAR @ 2
4 name: "x"
5 expr : 1
6 1 : AST_WHILE @ 3
7 cond : AST_BINARY_OP @ 3
8 f l a g s : BINARY_IS_SMALLER (20)
9 l e f t : AST_VAR @ 3

10 name: "x"
11 r i g h t : 3
12 stmts : AST_STMT_LIST @ 3
13 0 : AST_ASSIGN @ 4
14 var : AST_VAR @ 4
15 name: "x"
16 expr : AST_BINARY_OP @ 4
17 f l a g s : BINARY_ADD (1)
18 l e f t : AST_VAR @ 4
19 name: "x"
20 r i g h t : 1
21 2 : AST_ECHO @ 6
22 expr : AST_ENCAPS_LIST @ 6
23 0 : AST_VAR @ 6
24 name: "x"

Listing 4.5: part of the AST code of programm 4.4

We see that the AST_WHILE node contains a cond key describing the condition that
must be met to execute the loop. If the loop is not executed, the negation of this condition
is. The conditions are expressions. For the same reasons as with the assignment, we do
not label an arrow for this condition, but insert additional nodes for partial calculations of
these conditions.

Figure 4.10: The conditions of a WHILE statement are represented by extra nodes before the statement in the
loop and after the WHILE

49

4.4.5. THE IF STATEMENT
As an example of a conditional statement, we will now look at the IF statement. An IF
statement always has a branch that is executed if the condition is true. If the condition is
false, the IF statement can jump to the first statement after the IF statement or execute an
ELSE branch. If ELSEIF branches occur, the associated conditions are included in the same
IF statement. We look at this from the program in Listing 4.6.

1 i f ($t < "12") {
2 echo "Have a good morning ! " ;
3 } e l s e i f ($t < "18") {
4 echo "Have a good day ! " ;
5 } else {
6 echo "Have a good night ! " ;
7 }

Listing 4.6: PHP code of an IF statement with multiple branches

For the representation of an IF statement as an CFG, this means the following. For all
branches except the ELSE branch, the associated condition is added as a path condition.
The arrow pointing to the first node in the branch is responsible for the condition (See
Figure 4.11). For the ELSE branch, the negation of all previous conditions is included. If no
ELSE branch is present, we must add this branch with an empty statement list.

Figure 4.11: Nodes in a CFG resulting from an IF statement

50

In an AST_IF, all branches are included as an AST_IF_ELEM. The "normal" IF condition
and the ELSEIF conditions are described by an expression in the value subtree of the cond
key. The ELSE branch has a null valued cond key 4.7.

1 1 : AST_IF @ 4
2 0 : AST_IF_ELEM @ 4
3 cond : AST_BINARY_OP @ 4
4 f l a g s : BINARY_IS_SMALLER (20)
5 l e f t : AST_VAR @ 4
6 name: " t "
7 r i g h t : "12"
8 stmts : AST_STMT_LIST @ 4
9 0 : AST_ECHO @ 5

10 expr : "Have a good morning ! "
11 1 : AST_IF_ELEM @ 6
12 cond : AST_BINARY_OP @ 6
13 f l a g s : BINARY_IS_SMALLER (20)
14 l e f t : AST_VAR @ 6
15 name: " t "
16 r i g h t : "18"
17 stmts : AST_STMT_LIST @ 6
18 0 : AST_ECHO @ 7
19 expr : "Have a good day ! "
20 2 : AST_IF_ELEM @ 8
21 cond : null
22 stmts : AST_STMT_LIST @ 8
23 0 : AST_ECHO @ 9
24 expr : "Have a good night ! "

Listing 4.7: Typical AST code for an IF statement

51

As with the assignment statement, we choose to break up the expression of conditions
in our algorithm into separate calculations for the same reasons. Each of the calculations is
inserted into the branch as a series of separate nodes before the first statement (See Figure
4.12).

Figure 4.12: Conditions for branches of a conditional statement in a CFG are inserted as extra nodes before
the statements.

52

4.4.6. SWITCH
A Switch statement can be seen as an IF statement with multiple branches. The statement
behaves like an IF if a branch is closed with a BREAK (See figure 4.13).

Figure 4.13: CFG of a Switch statement with all branches closed with a BREAK

If the BREAK is omitted, the code flow continues on the next branch (See figure 4.14).

Figure 4.14: CFG of Switch statements with 1 or 2 omitted BREAK statements.

53

4.4.7. FUNCTIONS
An AST may contain function declarations and function calls. These can be identified by
AST_FUNC and AST_CALL node types. In children of the AST_FUNC node, the function
name, a parameter list and a statement list are given.

In listing 4.8 we see three examples of function declarations. A normal function (outer1)
with an inner function (inner1) inside. In outer2 an anonymous function (inner2) is de-
clared.

1 <?php
2 function outer1 (\$msg) {
3 function inner1 ($msg) {
4 echo (’ inner 1 : ’ . \ $msg . ’ \n ’) ;
5 }
6 echo (’ outer 1 : ’ . $msg . ’ \n ’) ;
7 inner1 (\$msg) ;
8 outer2 () ;
9 }

10
11 function outer2 () {
12 $inner2=function () {
13 echo (" inner2 \n") ;
14 } ;
15 echo (’ outer 2 \n ’) ;
16 $inner2 () ;
17 }
18
19 outer1 (’ t e s t outer 1 ’) ;
20 outer2 () ;
21 ?>

Listing 4.8: Example of PHP with three kinds of function declarations

54

The functions outer1 and inner1 can be recognised in the AST by the AST_FUNC but-
ton. The children name, params and stmts describe the name, parameters and statements
respectively.

1 <?php
2 AST_STMT_LIST @ 1
3 0 : AST_FUNC_DECL @ 2−9
4 f l a g s : 0
5 name: " outer1 "
6 docComment: null
7 params : AST_PARAM_LIST @ 2
8 0 : AST_PARAM @ 2
9 f l a g s : 0

10 type : null
11 name: "msg"
12 default : null
13 stmts : AST_STMT_LIST @ 2
14 0 : AST_FUNC_DECL @ 3−5

Listing 4.9: Example of PHP with three kinds of function declarations

The anonymous function is described in the assignment. The function has no name, as
it is an anonymous function. The value of the key name is "closure". This gives the impres-
sion that the function is a closure, but this is not the case, as these anonymous functions
can only be used within the scope in which they were created.

1 0 : AST_ASSIGN @ 12
2 var : AST_VAR @ 12
3 name: " inner2 "
4 expr : AST_CLOSURE @ 12−14
5 f l a g s : 0
6 name: " { closure } "
7 docComment: null
8 params : AST_PARAM_LIST @ 12
9 uses : null

10 stmts : AST_STMT_LIST @ 12
11 0 : AST_ECHO @ 13
12 expr : " inner2
13 "
14 returnType : null
15 __declId : 2

Listing 4.10: Example of PHP with three kinds of function declarations

55

For the AST_CALL node, the AST describes which function is called and which argu-
ments are substituted for the parameters.

1 2 : AST_CALL @ 19
2 expr : AST_NAME @ 19
3 f l a g s : NAME_NOT_FQ (1)
4 name: " outer1 "
5 args : AST_ARG_LIST @ 19
6 0 : " t e s t outer 1"

Listing 4.11: Example of PHP with three kinds of function declarations

The closure is in fact a function variable and is therefore called in the same way as if a
normal function had been assigned to a variable.

1 2 : AST_CALL @ 16
2 expr : AST_VAR @ 16
3 name: " inner2 "
4 args : AST_ARG_LIST @ 16

Listing 4.12: Example of PHP with three kinds of function declarations

1 <?php
2 function f ($a , $b) {
3 $z=$a*$b ;
4 return $z ;
5 }
6
7 $x =1;
8 $y =2;
9 $z= f ($x , $y) ;

10 echo ($z) ;
11 ?>

Listing 4.13: Example of a PHP program with a function call

Figure 4.15: A node with a function call, calling the function f(a,b) with the arguments x and y.

56

When inserting the function into the CFG, the arguments for the parameters must be
entered. These are followed by the nodes of the statements of the function.

Figure 4.16: Example of a CFG where the function call is replaced by a parameter substitution and the CFG of
the function.

4.4.8. FUNCTIONS CALLING FUNCTIONS
If a function calls another function, this can give rise to a - in principle - infinitely long series
of function calls. An example is a function that calls itself: a recursive function. Fibonacci
numbers are a well-known example of numbers which can be calculated with a recursive
function (See Listing 4.14).

1 <?php
2 / / Recursive function f o r Fibonacci s e r i e s .
3 function Fibonacci ($number) {
4
5 / / the f i r s t two numbers in the s e r i e s
6 / / are 0 and 1
7 i f ($number <= 1)
8 return $number ;
9

10 / / Recursively c a l l the function Fibonacci
11 / / f o r the previous to numbers in the s e r i e s
12 else
13 return (Fibonacci ($number−1) + Fibonacci ($number− 2)) ;
14 }
15
16 $number = 10;
17 for ($counter = 0 ; $counter < $number ; $counter ++){
18 echo Fibonacci ($counter) , ’ ’ ;
19 }
20 ?>

Listing 4.14: Example of a recursive function in PHP

57

If it is possible in a program for functions to keep calling each other in an infinite se-
quence, this causes the algorithm composing the CFG to never end. In the case of the
Fibonacci function listing 4.14, the algorithm keeps inserting the function forever.

This can be avoided by setting a limit on the "depth" at which functions may call an-
other function. We call this depth the recursion depth, although it also applies in the case
where a function other than itself is called. If we set the recursion depth to 10, the function
will not be inserted after 11 times.

We need to determine what should happen at the point where the algorithm stops in-
serting CFGs of functions. We can just skip the function to be inserted. As a result, it is
not clear whether a path passes this point. If we add a node at the point where the CFG of
the function should have been inserted, this node, when compiling the SMTLIB code, can
add an assertion showing that the point was in the path: (assert (= maxrecursiondepth_001
True)). Because these types of points can lie in a path more than once, a counter must be
added to prevent the same variable from being used more than once.

4.4.9. FUNCTIONS VARIABLES
We have seen before that in PHP we can assign a function name to a variable. This variable
can then be used to call that (variable) function. We call such a variable a function variable.

FUNCTION VARIABLES USING A CONCRETE FUNCTION NAME

If a function variable contains a concrete function name, the CFG of this function can be
inserted in the same way as a normal function call. If the function variable depends on a
variable, the function can only be inserted correctly if the value of this variable is known.
However, the value of the variable may depend on the actual path followed.

FUNCTION VARIABLES USING A SYMBOLIC FUNCTION NAME

The value assigned to a function variable may also be a symbolic value. This situation is
complex. Which functions qualify for this symbolic value depends on a number of factors.
In principle, all functions are eligible. But a limiting factor could be the number of parame-
ters: the number of arguments to the function call must match the number of parameters.
We then limit the set of eligible functions to those with a matching number of parameters.
We can then examine several variants of a path that differ in the function substituted for the
symbolic function name. However, it is possible in PHP to write functions whose number
of parameters is variable. In those functions, a developer can write PHP functions1 that can
request the number of parameters, so that the function can execute a command depending
on that number. We have not gone down this complicated path.

1https://www.php.net/class.reflectionfunction

58

4.4.10. ARRAY ’S
An array in PHP is an ordered map: a list of key, value pairs. This data structure can be
used to form data structures known in other programming languages as indexed arrays,
associative arrays, lists or maps.

Integers or strings can be used as keys. In an array, keys of integer type and string type
can be used interchangeably. The values can be of any PHP type.

In its simplest form, we assign a number of integer or string values to an array. PHP then
chooses the keys itself. If there are no elements in the array yet, PHP chooses zero as the
first index. If there are already elements in the array, PHP chooses the highest index plus
one. This means that some indexes may remain unused.

The array() keyword can be used to assign an empty array to a variable.

$arr1=array();

In the AST we recognise this with the AST_ARRAY node as in the listing 4.15.

1 3 : AST_ASSIGN @ 9
2 var : AST_VAR @ 9
3 name: " arr2 "
4 expr : AST_ARRAY @ 9
5 f l a g s : ARRAY_SYNTAX_LONG (2)
6 0 : AST_ARRAY_ELEM @ 9
7 f l a g s : 0
8 value : 1
9 key : null

10 1 : AST_ARRAY_ELEM @ 9

Listing 4.15: Example of a recursive function in PHP

By placing values between the brackets of the keyword array(), we can immediately fill
the array. This can be done with integer values, string values or any other PHP type. The
first element from the list of values is assigned index 0, the second index 1 and so on.

$arr2=array(1,2,3);
$arr3=array("a","b","c");

The AST_DIM key of the assignment indicates that an index in an array follows. The
name of the array is found at the expr key, the index at the dim key (see listing 4.16).

1 4 : AST_ASSIGN @ 12
2 var : AST_VAR @ 12
3 name: " arr2 "
4 expr : AST_ARRAY @ 12
5 f l a g s : ARRAY_SYNTAX_LONG (2)
6 0 : AST_ARRAY_ELEM @ 12
7 f l a g s : 0
8 value : 1
9 key : null

Listing 4.16: Example of a recursive function in PHP

59

We can change the value of an existing index with an assignment. If the index of the
assignment does not exist yet, the first free integer value is chosen which is greater than the
highest index so far. If no index is written between the brackets, PHP will choose the index
according to the same procedure.

$arr1[2]=3; // 2 will be the first index in $arr
$arr2[3]=2; // adding an element
$arr3[2]="b"; // replacing an element

In the AST we see that the array element to which a value is assigned is in the AST_DIM
node. The expr key contains the name of the array and the dim key contains the index (see
listing 4.17).

1 4 : AST_ASSIGN @ 10
2 var : AST_DIM @ 10
3 f l a g s : 0
4 expr : AST_VAR @ 10
5 name: " arr2 "
6 dim : 3
7 expr : 2

Listing 4.17: Example of a recursive function in PHP

Conversely, we can use an element of an array in an expression, for example, to assign
the value to another variable.

$var = $arr1[1];

In the AST, the same method is used for indexing, only now it is not in the var key of the
assignment, but in the expr key (see listing 4.18).

1 3 : AST_ASSIGN @ 8
2 var : AST_VAR @ 8
3 name: " var "
4 expr : AST_DIM @ 8
5 f l a g s : 0
6 expr : AST_VAR @ 8
7 name: " arr1 "
8 dim : 1

Listing 4.18: Example of a recursive function in PHP

An associative array is filled by specifying the key, value pair. The key can be an integer
or a string. The value can be of any PHP type. We will only look at an example with integers
and strings.

$things = array("a"=>1, 2=>"23", "Joe"=>"34", 4=>5);

In the AST, we now see that for each AST_ARRAY_ELEM the value and the key are given
a value (see listing 4.19).

60

1 17: AST_ASSIGN @ 39
2 var : AST_VAR @ 39
3 name: " things "
4 expr : AST_ARRAY @ 39
5 f l a g s : ARRAY_SYNTAX_LONG (2)
6 0 : AST_ARRAY_ELEM @ 39
7 f l a g s : 0
8 value : 1
9 key : "a"

10 1 : AST_ARRAY_ELEM @ 39
11 f l a g s : 0
12 value : "23"
13 key : 2

Listing 4.19: Example of a recursive function in PHP

61

4.4.11. GRAPHS RESULTING FROM ALGORITHM B
Figure 4.12 shows an example of a CFG constructed with Algorithm B.

Figure 4.17: Example of a CFG constructed with algorithm B

62

4.5. CONSTRUCTION OF PATHS
Now that we have a CFG representing the code, we can search for paths between entry point
E and exit point X in the CFG. In a CFG with a conditional statement, there can be more than
one path between an entry point and an exit point. In the case of an IF statement, there are
at least two paths. In a WHILE loop there can be infinitely many paths between E and X
(See listing 4.20).

1 <?php
2 $x = 0 ;
3 while ($x <> 1) {
4 $x = random_int (1 ,1000000);
5 echo ($x . " ") ;
6 }
7 echo ($x) ;
8 ?>

Listing 4.20: Example of a PHP program with a while loop that possibly takes a while

Both the Breadth First Search (BFS) and Depth First Search (DFS) algorithms can, with
appropriate modification, generate useful paths in our situation. BFS is useful if we are
looking for short paths. DFS is more useful if we expect the paths to be long.

Our algorithm assumes an entry point E and a set of exit points X. The steps of the algo-
rithm construct a search tree of all paths leading from the root to the exit points. Whether
a point is added from a given node is determined by a feasibility criterion. If the algorithm
can decide that the stop criterion is no longer feasible, the search tree is no longer extended
at that point. When an exit point is added to the search tree, a stop criterion decides if the
path from the root to this point is added to the set of solutions. Thus, we do not assume
that a path necessarily ends when it reaches an exit point. If the exit point lies in a loop, it
may be that we are looking for a path which first passes the exit point a number of times
before the stop criterion is fulfilled (e.g. a vulnerability is triggered).

The stopping criterion takes into account two characteristics of the path: the number
of times a node appears in the path and the length of the path. The length of the path π

must be an element of a set of admissible lengths L(π) for the paths π. For example, we can
require that L(π) = {x|x < 20}.

The number of occurrences of a node vi in a path π is written as fπ(vi). In the starting
situation, an empty tree, all frequencies are zero. If the node vi is added to the search tree,
we increase the frequency of fπ(vi) by 1. The target consists of a set with per node a set of
target frequencies t fπ(vi). If there are no special requirements for a node (the number of
times a node occurs in the path is free), we take t fπ(vi) = N. If we require that a node must
occur 1 or 2 times in the path we require t fπ(vi) = {1,2}.

If we want only simple paths (cycle free paths) as a solution we take the target frequency
for all nodes to be t fπ(vi) = {1}. The path may then enter the loop. This can be avoided by
giving the first node in the loop the target frequency t fp i (vi) = {0}. The stop criterion is
fulfilled if for all nodes in the path π it holds that fπ(vi) ∈ t fπ(vi)

As mentioned above, all frequencies fπ(vi) are zero in the initial state. When adding a
node, the frequency can only increase. The goal is feasible, as long as the frequency of all
nodes in the path is less than or equal to the maximum frequency of the set target frequency

63

of that node is. For all nodes in the path π , fπ(vi) < max(t fπ(vi)). Therefore, max(t fπ(vi))
is the highest value in the set t fπ(vi).

The paths that satisfy the conditions form a solution set S. The set S is empty in the
initial state. If at an exit point the goal is reached, the path leading from the entry point to
the exit point is added to the set S.

It is important to realise that the algorithm generates cycle-free paths.
The algorithm proceeds according to the steps in algorithm 1.

Data: Given: Graph G , Entry point E, Exit point X, Target T
S ←;;
Tree.create(E);
Tree.setTarget(T);
Q ← E ;
while Q ̸= ; do

forall qi ∈Q do
Q.remove(qi);
if T.TargetFeasibleFrom(qi) then

forall b j ∈C FG .nei g hbour s(qi) do
Tree.addChild(qi ,b j);
if qi ∈ X ∧Tr ee.Tar g etReached In(b j) then

S.add(π);
end
Q’.add(b j);

end
end

end
Q ←Q ′

end
Algorithm 1: The search algorithm

64

As an example, we consider the CFG in 4.18 with six nodes. The graph consists of the six
nodes v1, v2, v3, v4, v5, v6. The entry point is v1. The set of exit points is v6. The collection of
target frequencies is: v1 = N, v2 = N, v3 = 1, v4 = N, v5 = N, v6 = 1. For path length, the target
is N (any value is allowed).

Figure 4.18: On the left: a small CFG to illustrate the search algorithm. On the right: the resulting search tree.

Preparation

Step 1: Set the frequencies for all nodes to 0.

Step 2: Put the entry point v1 in the queue. Adjust the frequency of this node: f (v1) = 1.

Round 1

Step 1: The queue is not empty, it contains v1. Make newQueue empty.

Step 2: Retrieve v1 from the queue.

Step 3: The target is feasible in v1, because for all nodes the frequency is less than or equal
to the maximum target frequency of that node. Therefore, determine which nodes
are the neighbours of v1: only v2 is a neighbour.

Step 4: Expand the search tree to include the branch v1 → v2.

Step 5: Since v2 is not an exit point, we have not reached an endpoint of a path.

Step 6: Enter v2 to newQueue

Step 7: Because the queue is empty, copy newQueue to Queue

round 2

Step 1: The queue is not empty, it contains v2. Make newQueue empty.

65

Step 2: Get v2 from the queue

Step 3: The target is feasible in v2, because for all nodes the frequency is less than or equal
to the maximum target frequency of that node. Therefore, determine which nodes
are the neighbours of v2: v3 and v5 are neighbours.

Step 4: First look at v3. Expand the search tree to include the branch v2 → v3.

Step 5: Since v3 is not an exit point, we have not reached an endpoint of a path.

Step 6: Enter v3 to newQueue

Step 7: Now look at v5. Expand the search tree to include the branch v2 → v5.

Step 8: Since v5 is not an exit point, we have not reached a possible endpoint of a path.

Step 9: Enter v5 to newQueue

Step 10: Since the queue is empty, we copy newQueue to Queue

round 3

Step 1: The queue is not empty, it contains v3 and v5. Make newQueue empty.

Step 2: Take v3 out of the queue

Step 3: The target is feasible in v3, because for all nodes the frequency is less than or equal
to the maximum target frequency of that node. Therefore, determine which nodes
are the neighbours of v3: v4 is a neighbour.

Step 4: Consider v4. Expand the search tree to include the branch v4.

Step 5: Since v4 is not an exit point, we have not reached a possible endpoint of a path.

Step 6: Feed v4 to newQueue.

Step 7: Retrieve v5 from the queue

Step 8: The goal is feasible in v5, because for all nodes the frequency is less than or equal to
the maximum goal frequency of that node. Therefore, we determine which nodes
are the neighbours of v5: v6 is a neighbour.

Step 9: Consider v6. Expand the search tree to include the branch v5.

Step 10: Since v6 is an exit point, we have reached a possible endpoint of a path. Because
for all nodes the frequencies are elements of the target frequencies of that node (we
have reached a goal), we add the path leading from v1 to v6 in the search tree to the
solutions: v1 → v2 → v5 → v6

Step 11: Enter v6 to newQueue

Step 12: since the queue is empty, we copy newQueue to Queue

66

round 4

Step 1: The queue is not empty, it contains v4 and v6. Make newQueue empty.

Step 2: We take v4 out of the queue

Step 3: The target is feasible in v4, because for all nodes the frequency is less than or equal
to the maximum target frequency of that node. Therefore, determine which nodes
are the neighbours of v4: v2 is a neighbour.

Step 4: Consider v2. Expand the search tree to include the branching v4.

Step 5: Since v2 is not an exit point, we have not reached a possible endpoint of a path.

Step 6: Input v2 to newQueue

Step 7: Retrieve v6 from the queue

Step 8: The goal is feasible in v6, because for all nodes the frequency is less than or equal
to the maximum goal frequency of that node. Therefore, determine which nodes
are the neighbours of v6: There are no neighbours. Therefore, we are finished pro-
cessing v6

Step 9: Since the queue is empty, we copy newQueue to Queue.

The only path resulting from the algorithm is: v1 → v2 → v5 → v6

67

5
EVALUATING PHP CODE BY SYMBOLIC

EXECUTION

5.1. RQ2: UP TO WHAT EXTENT CAN PHP-CODE BE EVALUATED

USING SYMBOLIC EXECUTION?
As a result of RQ1, we found paths. The nodes in these paths describe state changes that we
can express as conditions for an SMT solver. We use the intermediate language SMTLIB for
this purpose, because it allows us to make the expressions suitable for other SMT solvers
besides the Z3 solver we use in this study.

A PHP program consists of a number of statement types: assignments, function calls,
loops, conditional statements.

We adopted the assignments when processing into a CFG as a series of nodes describing
the sub-operation. We added the conditions of loop and conditional statement to the path.
User defined functions we inserted at the place of function call. Library functions are to
be processed as best as possible into conditions that describe the state change that the
function call brings about.

We first look at how to write variables, conditions and assignments in SMTLIB. We have
to take into account that a variable can be assigned a value more than once. Next, we will
look at how library functions can be evaluated. Finally, we will look at the problem of de-
termining the type of a variable.

5.2. VARIABLES IN SMTLIB
In contrast to PHP, SMTLIB variables must be declared. They are introduced in an assign-
ment or as parameters of a function. A variable has a name (identifier) and a type.

If a variable is not introduced first, an error message will be returned when the program
is executed. The following code declares the variable amount of type Int.

(declare-const amount Int)

Apart from the type Int, other types are possible in SMTLIB: Real, String, Bit vector,
Bool and Array. We must ask ourselves to what extent the types of SMTLIB correspond to
the types in PHP. In addition, the type chosen determines which operators are available.

68

SMTLIB type comparison

String The string type of PHP 1 and SMTLIB 2 corresponds. In both languages
it is possible to work with unicode strings.

Bitvector 3 In PHP, integers are stored in integer variables. The documentation in-
dicates that integer elements from the infinite collection mathbbZ.
In fact the number of bits available for an integer depends on the system
and is limited to 32 or 64 bits 4. In SMTLIB, bit vectors can be used whose
length can be freely selected.
In terms of characters, SMTLIB stumbles on two legs. For addition, only
an unsigned operator is available (which is not really a problem because
the result of signed and unsigned intersections is bitwise the same).

Int can be used to represent the PHP type integer.
Real Corresponds tot the PHP type float
Bool can be used to represent the PHP boolean type. The result of a condition

is a Boolean value (sometimes concretely True or False)

Table 5.1: Comparison of PHP and SMTLIB Types

It seems obvious to link PHP types and SMTLIB types in the way shown in table 5.2.
However, the precision of the float/real type is not necessarily the same and therefore the
results of concrete and symbolic may differ. The same applies to integers. The PHP type
Integer technically corresponds best to a bit vector of 32 or 64 bits, but it may be necessary
to use an operator that only occurs with the type Int. For example, SMT has a cast function
for integers, but not for bit vectors.

PHP type Sort (SMTLIB Type)

String String
Integer Int or Bitvector
Float Real
Boolean Bool
Resource A resource variables hold special handles

to opened files, database connections, im-
age canvas areas and the like. In PHP, con-
verting to a resource makes no sense.5. In
SMTLIB we have no equivalent type.

Array In addition to arrays of mixed types,
SMTLIB has the ability to perform store
and select operations with arrays

Class Mixed form of variables and functions

Table 5.2: Map PHP types to SMTLIB types

The name of a variable is used in the main program, but also in the functions. To distin-
guish between these use of variables we use the term context. The context is the function
name in which the variable is introduced.

69

The main program does not have a function name, but we use main, as is common in
other programming languages such as C and Python. The assignment $a=2; introduces the
variable $a into context main.

(declare-const a Int)

After executing the assignment, the condition is that the value of a must be equal to
two. So we can say that an assignment adds a condition. This is written in SMTLIB as:

(declare-const a Int)
(assert (= a_ 2))

A variable can be assigned a value more than once.

$a=2;
$a=3;

Translating blindly to the condition a = 2∧a = 3 we see that it has no solution. If $ has
the value 2, the condition $=3 is false, and if $ has the value 3, the condition $=2 is false.
Thus, there is no valuation that makes both condition true.

With a counter we keep track of how often a value is assigned to the variable in the path.
This is necessary to be able to distinguish between the different assignments that are made
to a variable.

The condition a1 = 2∧a2 = 3 has the solution a1 = 2, a2 = 3.
This method is sufficient because in the paths we construct with algorithm 1 there are

no loops [1].
We use this counter to give the variables in SMTLIB a unique value. Variables can have

a symbolic or a concrete value. In this case, the variables are given a concrete integer value.
Thus, the variables also become of integer type.

(declare-const a_001 Int)
(declare-const a_002 Int)
(assert (= a_001 2))
(assert (= a_002 3))

70

In the code of listing 2.13, we can see that the variables $x and $y are assigned a value more
than once.
In figure 2.11 we have expressed the path conditions as symbolic variables. The states of
program 2.13 when using SSA for numbering varuabeles can be seen in the symbolic exe-
cution tree in figure 5.1.

Figure 5.1: Symbolic execution tree with SSA

71

5.3. CONDITIONS AND ASSIGNMENTS IN SMTLIB
A condition in SMTLIB is written in Polish notation[24]. The condition

a = (2 + b) * (1 - a)
is written as

= a * + 2 b - 1 a.
In SMTLIB we write this as

(assert (= a_002 (* (+ 2 b_001) (- 1 a_001)))).
The counter is added to distinguish between successive assignments. As we have seen be-
fore, we can consider an assignment v=S as a condition that is fulfilled after executing the
assignment. Therefore we can write an assignment in SMTLIB as (assert (= v S)). For more
complicated expressions without a function call, we could also write an assertion.

$c=(5-$a)*($b+7);
then becomes

(assert (= (c (* (- 5 a) (+ b 7)))))
Which we can break up into:

= (res001 (+ (b 7)))
= (res002 (- (5 a)))
= (res003 (* (res001 res002)))
= (c res003)

These, in turn, can be translated into an SMTLIB condition. Each condition belongs to a
node in the CFG.

(assert (= (res001 (+ (b 7)))))
(assert (= (res002 (- (5 a)))))
(assert (= (res003 (* (res001 res002)))))
(assert (= (c res003)))

conditions of a conditional statement (IF, SWITCH, WHILE, DO, FOR) are translated to a set
of nodes in a similar way. The PHP expression

$a * $a + $b * $b == $c * $c;
then becomes

(assert (= true (= (* c c) (+ (* a a) (* b b)))))
Or as separate statements:

(assert (= res001 (* c c)))
(assert (= res002 (* b b)))
(assert (= res003 (* a a)))
(assert (= res004 (+ res002 res003)))
(assert (= res005 (= res004 res001)))
(assert (= true res005))

The last two statements can be summarised as

(assert (= true (= res004 res001)))

72

5.4. ARRAY ’S
In the next section, we look at two ways to execute arrays symbolically. The first solution
works with separate integer and string variables. The second method uses the Array Theory
of Z3. n the tool we use the first method, but in some examples we show the advantages of
using Z3 arrays.

5.4.1. SINGLE VARIABLES
If an array contains a small number of elements that don’t change (retaining the symbolic
value is an example), we can declare the elements as separate variables. An example of this
is the superglobals $_POST and $_GET. These variables are arrays. These arrays often con-
tain a small number of elements, for example, $_POST[’username’], which serve as input.
In symbolic execution, this input is given a symbolic value. We can, instead of using real
arrays, implement a simplification by declaring a variable of type string.

(declare-const post_username String)

For other small arrays we can use a similar simplification.

$arr = array("tic","tac","toe");

For a small array with the concrete elements "tic", "tac", "toe" we can declare three separate
string variables, which we then assign the appropriate values.

(declare-const arr_tic String)
(declare-const arr_tac String)
(declare-const arr_toe String)
(assert (= arr_tic "tic"))
(assert (= arr_tac "tac"))
(assert (= arr_toe "toe"))

When using an array element or assigning a new value to an array element, we can use the
names of the array elements in the conditions that apply after the assignment.
The PHP commands

$x = $arr["tic"];
$arr["tac"] = "cheese";

can thus be translated into:

; additional declaration for the variable x
(declare-const x String)

(assert (= arr_tic "tac"))
(assert (= arr_tac "cheese"))

Assigning a symbolic variable is the same as for normal variables. If the index is a variable,
we cannot determine in advance which element we mean.

73

$value = $arr[$key];

We can then use SMTLIB’s ite (if-then-else) command to determine which variable con-
tains the array element we are looking for (in the example we took a concrete value for the
key, but if the key is a symbolic value the method works the same).

(declare-const arr_tic String)
(declare-const arr_tac String)
(declare-const arr_toe String)

(declare-const key Int)
(declare-const value String)

(assert (= key 0))

(assert (= arr_tic "tic"))
(assert (= arr_tac "tac"))
(assert (= arr_toe "toe"))

(assert (= value (ite (= key 0)
arr_tic (ite (= key 1)

arr_tac (ite (= key 2)
arr_toe "unknown key"

)))))

The secret is in the generation of the last line. We can also reverse this. If the value of
the array element is given, we can ask for the corresponding key. We now create a search
function using the ite functions that determines the value of the corresponding key.

(declare-const arr_tic String)
(declare-const arr_tac String)
(declare-const arr_toe String)

(declare-const key Int)
(declare-const value String)

(assert (= value "tac"))

(assert (= arr_tic "tic"))
(assert (= arr_tac "tac"))
(assert (= arr_toe "toe"))

(assert (= key (ite (= value "tic")
0 (ite (= value "tac")

1 (ite (= value "toe")
2 "-1"

)))))

74

The method mentioned above works for array where key and value are of type integer or
string (with matching declarations). As mentioned, the method works well for arrays that
are not modified. The key and value pairs are constant and therefore the if-then-else state-
ments can be used to compose a query that fits the situation.

With some effort, we could also change the value of an element. The penalty we pay
for this approach is that we must create a new ssa version for all array elements, because
after the ite statements the code does not know for which element the conditions have
changed. If the all conditions change, it is clear from that point on that a new version has
been created for all elements of the entire array.

(declare-const arr_0_001 Int)
(declare-const arr_1_001 Int)
(declare-const arr_2_001 Int)
(declare-const arr_0_002 Int)
(declare-const arr_1_002 Int)
(declare-const arr_2_002 Int)

(declare-const key Int)
(declare-const value Int)

; fill array
(assert (= arr_0_001 2))
(assert (= arr_1_001 3))
(assert (= arr_2_001 5))

; set array[key] to value value
(assert (= key 1))
(assert (= value 7))

; set the right element to value 7
(assert (= arr_0_002 (ite (= key 0) value arr_0_001)))
(assert (= arr_1_002 (ite (= key 1) value arr_1_001)))
(assert (= arr_2_002 (ite (= key 2) value arr_2_001)))

5.4.2. USING SMTLIB’S ARRAY ’S
SMTLIB masters the possibility of declaring arrays. For these arrays we can use integer or
string types for the key or value.

(declare-const arr1 (Array Int Int))
(declare-const arr2 (Array String Int))
(declare-const arr3 (Array Int String))
(declare-const arr4 (Array String String))

The function (store arr index value) can be used to store a value on an index in an array. This
function returns a new version of the array in which the corresponding index has changed.
With (store ((as const(Array Int Int))) 0), all elements of the array are set to zero.
The PHP code

75

$arr = array(1,2,3);

can be written in SMTLIB as:

(declare-const arr (Array Int Int))
(assert (= arr

(store
(store

(store
((as const(Array Int Int))
0)

0 1)
1 2)

2 3)))

From this array we can determine the value of an element with the (select arr index) com-
mand.

(declare-const key Int)
(declare-const value Int)
(declare-const arr (Array Int Int))

; fill the array
(assert (= arr

(store
(store

(store
((as const(Array Int Int))

0)
0 1)

1 2)
2 3)))

;request the value for index 1
(assert (= key 1))

; value, now contains the value at index 1
(assert (= value (select arr index)))

This corresponds to an assignment in PHP:

$arr = array(1,2,3);
$key=1;
$value=$arr[$index];

In a similar way, we can change the value of an element of the array. However, we must take
into account that we need a second array to store the changed array.

76

(declare-const key Int)
(declare-const value Int)
(declare-const arr1 (Array Int Int))
(declare-const arr2 (Array Int Int))

; fill the array
(assert (= arr

(store
(store

(store
((as const(Array Int Int))
0)

0 1)
1 2)

2 3)))

;we are about to change the value for index 1
(assert (= key 1))
(assert (= value 7))

; value at index 1 is now 7
(assert (= arr2 (store arr1 index value)))

In PHP we could write this as:

$arr = array(1,2,3);
$key=1;
$value=7;
$arr[$key]=$value$;

77

5.5. FUNCTIONS

5.5.1. USER DEFINED FUNCTIONS FUNCTIONS
A path may contain the code of a called function. This function may contain parameters or
variables with the same name as in another parts of the path. We must ensure that these
parameters and variables have a unique name.

We solve this problem by making the naming of parameters and variables unique at
each call by combining a counter for each call and the name of the parameters or local
variables into a unique name. With this naming scheme, we can guarantee unique names
for variables even with multiple function calls.

$functionname_funtioncounter_variablename_varcounter

We illustrate this with the program in Listing 5.1. We have shortened the name of the func-
tion to make the example easier to read, so that the names of the variables do not become
too long.

1 function cs(&$x , &$y) {
2 i f ($x>$y) {
3 $x=$x+$y ;
4 $y=$x−$y ;
5 $x=$x−$y ;
6 }
7 assert ($x<=$y) ;
8 }
9

10 conditionalswap (2 , 1) ;

Listing 5.1: Example of a PHP program that swaps the values of the variables $x and $y if $x>$y.

There are again two possible paths. When calling the function, we need to enter argu-
ments 2 and 1 for the parameters x and y. We use a counter to keep track of how many times
the function has been called.

(assert (= cs_001_x_001 2))
(assert (= cs_001_y_001 1))

Since we are running the program symbolically, we do not know which path is being fol-
lowed. If we want to examine the path that skips the IF branch, we get as a condition

(assert (not (< cs_001_x_001 cs_001_y_001)))

For this condition, the SMT solver will find that it is not true. For the path that does follow
the IF branch, we get the following conditions.

(assert (> cs_001_x_001 cs_001_y_001))
(assert (= cs_001_x_002 (+ cs_001_x_001 cs_001_y_001)))
(assert (= cs_001_y_002 (- cs_001_x_002 cs_001_y_001)))
(assert (= cs_001_x_003 (- cs_001_x_002 cs_001_y_002)))

78

If a function calls another function, we also add the name of that function with a function
counter to the name. This also happens when a function calls itself. If the function f calls
the function g, the variable a in the function g is named:

$f_functioncounter2_g_functioncounter1_variablename_varcounter

5.5.2. FUNCTION RETURN VALUES

When a function returns values, there is generally an assignment of that return value to
a variable. We can think of these return values as local variables. With return values it is
necessary to give these values a unique name, because a function may contain multiple
return statements. The naming scheme is the same as for normal variables, except that for
the return value a new variable name is introduced (ret):

$function_functioncounter_ret_returncounter

On the first call of the function f, the following variable name is used on the second return
in that function.

$f_001_ret_002$

BUILT-IN FUNCTIONS

PHP has a large number (about 900) of built-in functions. A list of the functions can be
retrieved with the code in listing 5.2.

1 <?php
2 $arr = get_defined_functions () ;
3 print_r ($arr) ;
4 ?>

Listing 5.2: PHP code to retrieve all built-in functions

If we want to include these functions in symbolic code, we need to know how these
functions change the state of the symbolic store. Functions with no return value are a com-
plication. The function is executed for a reason. To know how the state of the program
changes, we need a model that shows what the state can change and how that state change
can affect elsewhere in the program. Without a return value, this is difficult to estimate.

If a library function does return a there return value, we can try to include the state
change in the SMTLIB program.

5.5.3. STRING FUNCTIONS

Appendix D contains an overview of the String functions that SMTLIB can handle natively.
For these functions a direct translation of a PHP function is possible. This is a small number
of the large set of string functions offered by PHP 6.

There are examples of String functions that are translatable to SMTLIB.

6https://www.php.net/manual/en/ref.strings.php

79

NL2BR

The function nl2br 7 puts an
 in front of all instances of \r \n, \n\r, \n and \r. In the
case of \r\n it is replaced by
\r\n. In a similar way, we can replace the other new line
occurrences.

(declare-const s_001 String)
(declare-const s_002 String)
(declare-const s_003 String)
(declare-const s_004 String)
(declare-const s_005 String)

; s_001 is the original string
(assert s_002 (str.replace s_001 "\r\n" "
\r\n"))
(assert s_003 (str.replace s_002 "\n\r" "
\n\r"))
(assert s_004 (str.replace s_003 "\n" "
\n"))
(assert s_005 (str.replace s_004 "\r" "
\r"))
; s_005 contains the resulting string

SUBSTR_COUNT

The function substr_count counts how many times a substring occurs in a given string. If
the substring does not occur, the return value is -1. The function substr_count is an exam-
ple of a string function that can be constructed for a concrete number of occurrences of the
substring. We can enforce that the string occurs a concrete number of times by requiring
that each instance come before the next instance. After the last instance, we require that
the substring not occur again. We can do that by using the SMTLIB function str.indexof.

(set-option :print-success false)
(set-option :produce-models true)

(declare-const s_001 String)
(declare-const substr String)
(declare-const index1 Int)
(declare-const index2 Int)
(declare-const index3 Int)
(declare-const index4 Int)
(declare-const index5 Int)
;(declare-const index6 Int)
;(declare-const index7 Int)

;(assert (= s_001 "babbab"))
(assert (= substr "a"))

; s_001 is the string to search in
; we assert that the substring occurs 2 times
; the index of the last assertion is -1
(assert (= index1 (str.indexof s_001 substr 0)))

7https://www.php.net/manual/en/function.nl2br.php

80

(assert (= index3 (str.indexof s_001 substr index2)))
(assert (= index5 (str.indexof s_001 substr index4)))
;(assert (= index7 (str.indexof s_001 substr index6)))

; the occurrences do not overlap
; the last occurrence does not exist
(assert (> index2 (+ index1 (str.len substr))))
; index1 + len(substr)<=len(s_001)
(assert (<= (+ index1 (str.len substr)) (str.len s_001)))

(assert (> index4 (+ index3 (str.len substr))))
(assert (<= (+ index3 (str.len substr)) (str.len s_001)))
;(assert (> index6 (+ index5 (str.len substr))))

(assert (distinct index1 -1))
(assert (distinct index3 -1))
(assert (= index5 -1))

If we do assert nothing about s_000 (s_001 has an symbolic value) and substr="a", Z3
returns the value s_001="a a" in the model. If we do assert nothing about substr (substr has
an symbolic value) and s_001="babbab". Z3 gives "ba" as a possible value for substr. Both
are correct solutions.

5.5.4. ARRAY FUNCTIONS

PHP has a whole set of array functions 8. The array function array_count9 is an example of
a function for which we have not found a solution as a translation to SMTLIB. We review
examples of functions with a possible translation to SMTLIB below.

IN_ARRAY

The function in_array() can be seen as a search function that searches for an item in an
array. In the code for a similar search function in SMTLIB, we set a value for the element in
the last line, but leave the index open.

(declare-const key Int)
(declare-const value Int)
(declare-const arr (Array Int Int))

; fill the array
(assert (= arr

(store (store (store ((as const(Array Int Int)) 0) 0 1) 1 2) 2 3)))

;we are about to search for the value 7
(assert (= value 7))

8https://www.php.net/manual/en/function.array
9https://www.php.net/manual/en/function.array-count-values.php

81

; the key for value 7 is
(assert (= value (select arr key)))

In this case, Z3 returns unsat because the value 7 does not exist in the array.

SORT

All conditions in SMTLIB must describe the change of state that has occurred by executing
the corresponding PHP statement. For sorting, the following logic condition applies for
elements of an array:

∀
i , j

i ≤ j =⇒ a[i] ≤ a[j]

We can also add these conditions to a SMTLIB program. We thereby require that the array
elements be sorted.

; declaration of arrays
(declare-const arr (Array Int Int))
(declare-const arr2 (Array Int Int))
; indexes
(declare-const i Int)
(declare-const j Int)

; values to put in array at index 0,1,2
(declare-const in0 Int)
(declare-const in1 Int)
(declare-const in2 Int)

; values to be read from index 0,1,2
(declare-const out0 Int)
(declare-const out1 Int)
(declare-const out2 Int)

; store 3 symbolic values in array arr
; the resulting array is arr2
(assert (= arr

(store
(store

(store ((as const(Array Int Int)) 0) 0 0)
0 0)

0 0)))

(assert (= arr2 (store (store (store arr 0 in1) 1 in2) 2 in3)))
;assert that the stored values are distinct
(assert (distinct in0 in1 in2))

; assert that arr2 is sorted
(assert (= true (forall ((i Int) (j Int)) (=> (<= i j) (<= (select arr2 i) (select arr j))))))

; retrieve the values at index 1, 2 and 3

82

(assert (= out1 (select arr2 0)))
(assert (= out2 (select arr2 1)))
(assert (= out3 (select arr2 2)))

FLOOR

Some PHP functions can be defined in SMTLIB by using functions that are already present
in SMTLIB. An example is the floor() function which rounds a float down:

(define-fun floor ((y Real)) Int (to_int y))

SYMBOLIC RETURN VALUES (E.G. RANDOM_INT)
There are several possibilities to include the return value of a library function in the SMTLIB
program. As an example we will look at the random_int function of PHP.

The simplest possibility is to choose a random concrete function value for the random
function. In general, we cannot say what influence this has on the degree to which the
program can be executed symbolically. We have thus introduced an element of concholic
testing.

A second possibility is that we choose a symbolic function value for random function.
In addition, we can specify a range10.

(declare-const random_001_ret Int)
(assert (>= random_001_ret 10))
(assert (<= random_001_ret 20))

A final option is to execute the operation random function completely symbolically.
This is possible in principle because the source code is available11. However, the goal is not
to find vulnerabilities in the random number generator, so we suffice with the assumption
that with a symbolic output we can take the function along well enough.

10https://www.php.net/manual/en/function.rand.php
11https://github.com/php/php-src/blob/master/ext/standard/mt_rand.c

83

5.6. TYPE INFERENCE
Before the PHP statements in a path can be translated to SMTLIB, we need to know what
type the variables are. This is necessary because SMTLIB is a statically typed language. If
we execute a program with concrete values, a variable at some point in the code flow has
a certain value and the corresponding type. With symbolic execution, the value is free.
Therefore, several interpretations of the code are possible. This also means that if several
types are possible for a PHP expression, several different translations to SMTLIB are also
required. Furthermore, the type and the operator to be used are related. For example, the
type determines which comparison operator can be used in SMTLIB (See Appendix D).
For the translation to SMTLIB, it must be clear which type is involved when a change of
state occurs. Van der Weijde [53] studied constraint based type inference for PHP. We have
adapted the type inference system discussed in van der Weijde’s [53] master thesis for our
purpose. Furthermore, we found inspiration in the master thesis of Klingstrom and Olssen
[30], who investigated whether Deep Learning can be used for Type Inference in PHP. We
do not need to use the algorithm discussed in [1], as we are only looking at cycle free paths
and each variable is only assigned a value once (SSA). We suggest a simple algorithm that
infers the type of all expressions.

Van der Weijde’s type system assumes a type tree for PHP (Figure 5.2). When we con-
cretely run the program, an expression has one specific type. using symbolic expression,
the type of an expression can be a set of types.

Figure 5.2: adapted PHP type tree

Since we also want to describe Type Juggling with our type system, we add the type
numericString. A numeric String is a string that starts with a string representation of a nu-
meric possibly followed by other characters. A numeric string is converted to a numeric by
Type Juggling. The second adaption of van der Weijde’s system part of the system consists
of derivation rules for the various operators. A rule of inference gives the type of expression
that results from the operator. The rules are listed as

pr emi se 1 pr emi se 2

constr ai nt 1 constr ai nt 2

Van der Weijde writes the inference rule for the greater than operator as:

E ≡ (E1 > E2)

[[E]] = {boolean}

84

We add extra type rules for premises of constraints. For the greater than operator out
adapter version is:

[[E1]] = {i nteg er } [[E2]] = {i nteg er } [E ≡ (E1 > E2)

[[E]] = {boolean}

The inference rule can be explained as follows. In the top right-hand corner of the line
is the expression to which the inference rule applies. We see that in the case of the greater
than operator, it compares two expressions E1 and E2. The type that the expression E1 and
E2 must satisfy is shown in the top left-hand corner of the line. Below the line is the type
that results from the greater than operator. A comparison operator does not only work on
integers. We can also create an inference rule for when the two expressions are of type
string.

[[E1]] = {str i ng } [[E2]] = {str i ng } [E ≡ (E1 > E2)

[[E]] = {boolean}

Thus, for an operator there may be more than one inference rule. Each rule applies to a
specific combination of types of expressions.

If we want to apply an inference rule, we first search for the inference rules that apply
to the operator in question. A partial set if inference rules for PHP can be found on github
12.

12https://github.com/rdohmen/grad

85

As an example we will now determine the type of the variables in listing 5.3.

1 $b=456;
2 $c="123 s t r i n g " ;
3 $a=(b<c) ;

Listing 5.3: PHP program to illustrate type inference

For the first rule we need an inference rule for an assignment.

[[E2]] = {i nteg er } E ≡ (E1 := E2)

[[E1]] = {i nteg er }

Van der Weijde provides a rule with subtypes for this. We choose to specifically mention
the allowed type. The inference rule below for an assigment of type numeric is interesting
at first glance because it can be used to summarise a number of other inference rules. The
problem in our context is that the type numeric leaves doubt between the PHP types integer
or float (or in the case of smtlib between integer and real).

[[E2]] = {numer i c} E ≡ (E1 := E2)

[[E1]] = {numer i c}

We can use the inference rule because it is a rule for an assigment and because the
right-hand side is an expression of type integer. There are two inference rules that can be
used in this case: the inference rule for assignment with a string and a similar one for a
numericString.

[[E2]] = {str i ng } E ≡ (E1 := E2)

[[E]] = {str i ng }

[[E2]] = {numer i cStr i ng } E ≡ (E1 := E2)

[[E]] = {numer i cStr i ng }

We conclude that there are two possibilities. c is of type string or of type numericString.

[[c]] = {Str i ng ,numer i cStr i ng }

Before we can determine the type of a, we must first determine the type of the equation.
For both cases there is an inference rule.

[[E1]] = {i nteg er } [[E2]] = {str i ng } [E ≡ (E1 > E2)

[[E]] = {boolean}

[[E1]] = {i nteg er } [[E2]] = {numer i cStr i ng } [E ≡ (E1 > E2)

[[E]] = {boolean}

So in both cases (c is a String or a NumericString) we can determine that the type of a is
Bool.

86

Data: Given: Path P, Set of Type Inference Rules R
TS_Tree.create(P.firstNode);
Q.add(P.F i r st Node);
while Q ̸= ; do

Q ←;;
forall qi ∈Q do

qi =Q.pop();
op ← qi .oper ator ;
E xpr Li st ← qi .E xpr Li st ;
forall ri i nR do

if R.match(ri , op, E xpr Li st) then
new_node ← R.apply(ri , qi);
TS_Tree.add(qi , new_node);
Q’.add(new_node);

end
end

end
Q ←Q ′;

end
Algorithm 2: A Type Inference Algorithm

87

PHP Code SMTLIB

<?php
function maximum($a,$b) {
if($a>$b) { max_a>max_b (assert (> max_a max_b))
$m=$a; max_m=max_a (assert (= max_m max_a))
} else {
$m=$b; max_m=max_b (assert (= max_m max_b))
} return $m; res001=max_m (assert (= res001 max_m))
}

function minimum($a,$b) {
if($a<$b) {
$m=$a;
} else {
$m=$b;
}
return $m;
}

function add($a,$b) {
$add=$a+$b; add_add=add_a+add_b (assert (= add_add (+ add_a

add_b)))

return $add; res002 = add_add (assert (= res001 add_add))
}

for($i=maximum(2,3); max_a=2 (assert(= max_a 2))
max_b=3 (assert(= max_b 3))
execution of max execution of max
main_i=res001 (assert(= i res001))

$i=5; main_i=5 (assert (= main_i 5))
$i=add($i,1)) add_a=i (assert(= add_a main_i))

add_b=1 (assert(= add_a 1))
execution of add execution of add
res003=main_i (assert(= res003 main_i))

{
echo($i); execution of echo execution of echo
}
?>

Table 5.3: Example of a translation of PHP code including a function to SMTLIB

88

6
SOLVING PATH CONDITIONS

6.1. DRAW UP PATH CONDITIONS
When we get to the point of solving path conditions, we have gone through a number of
steps.

• We have converted the PHP code into an ICFG

• In the ICFG, we searched for paths that met certain conditions.

• For these paths we made a translation to SMTLIB-statements as complete as possible.

For each path, a list of SMTLIB statements was drawn up. We call this list of conditions a
program in this section. The program consists of conditions that together describe all state
changes of the symbolic store that occur when the PHP statements in a concrete path are
executed symbolically.

An example of such a program can be found in listing 6.1 (this example is an translation
of one of the Samate Samples).

1 (set −option : print −success f a l s e)
2 (set −option : produce−models true)
3 (declare −fun A () (Array Int Str ing))
4 (assert (= A (store A 0 " safe ")))
5 (declare −const get_user_data Str ing)
6 (assert (= A (store A 1 get_user_data)))
7 (assert (= A (store A 2 " safe ")))
8 (declare −const tainted Str ing)
9 (assert (= (s e l e c t A 1) tainted))

10 (declare −const tainted2 Int)
11 (assert (= tainted2 (s t r . to . i n t tainted)))
12 (assert (> tainted2 0))
13 (declare −const res Int)
14 (assert (= res tainted2))

Listing 6.1: Example of PHP code that allows SQL injection, because the input has not been sanitised

89

6.2. SOLVING CONSTRAINTS WITH Z3
We now want to let an SMT solver determine a solution for the path conditions for a path.
This can be done by calling the SMT solver from within a program via an API.

The developers of Z3 mention a number of API links to programming languages 1. We
have rewritten an unofficial link to Delphi (Z34Delphi 2) to Lazarus (an Open Source clone
of Delphi): Z34Lazarus 3. The goal was to use this link to loop the SMTLIB scripts into Z3
without a diversion. Unfortunately, the SMTLIB link turned out not to work properly, so
another solution had to be found.

Therefore, we have written the python program exec_smt.py to execute the SMTLIB
programs. The python program expects the name of a file containing an smtlib program as
a parameter.

1 # ! / usr / bin / env python
2 import sys
3 from z3 import *
4
5 with open(sys . argv [1] , ’ r ’) as my_file :
6 cmd = my_file . read ()
7 print (cmd)
8
9 s = Solver ()

10 s . from_string (cmd)
11
12 r e s u l t = s . check ()
13 print (r e s u l t)
14
15 with open(sys . argv [1]+ " . sat " , "w") as f i l e _ o b j e c t :
16 # (over) write the r e s u l t (sat | unsat |unknown) to the f i l e
17 f i l e _ o b j e c t . write (s t r (r e s u l t)+ " \n")
18
19 #append r e s u l t to f i l e with r e s u l t s
20 with open(" r e s u l t s . t x t " , "a") as f i l e _ o b j e c t :
21 # Append the r e s u l t (sat | unsat |unknown) at the end of f i l e
22 l i n e =sys . argv [1]+ " "+ s t r (r e s u l t)+ " \n"
23 f i l e _ o b j e c t . write (l i n e)
24
25 # write a model in case the conditions are sat
26 i f s t r (r e s u l t)== " sat " :
27 model=s . model ()
28 print (model)
29 with open(sys . argv [1]+ " . model" , "w") as f i l e _ o b j e c t :
30
31 f i l e _ o b j e c t . write (s t r (model))

1https://github.com/Z3Prover/z3
2https://github.com/Pigrecos/Z34Delphi
3https://github.com/rdohmen/Z34Lazarus

90

Listing 6.2: Example of PHP code that allows SQL injection, because the input has not been sanitised

After installing the Z3 module

pip install z3-solver

a SMTLIB program in the example.smt file, can be executed as follows

python exec_smt.py example.smt

The program saves the result in three ways:

• A file example.smt.sat is created in which the result (sat, unsat, unknown) is stored.

• In the file result.txt a line is added with the file name and the result (example.smt sat)

• In the case of a fulfilling set of conditions, a model is stored in the example.smt.model
file.

The model is one of the possible solutions of the SMTLIB program. We can only influence
the chosen model by adding extra conditions (which are independent of the PHP program
itself).

6.3. SAMATE
One of the research goals was to see to what extent we could symbolically execute the safe
and unsafe PHP samples in the SAMATE dataset.

Because the development of our tool is not yet so advanced that it can produce the
SMTLIB code for a path, we have chosen to analyse samples manually.

There are a number of viewpoints associated with this question.

• The number of samples in the data set.

• The complexity of the individual samples.

• The extent to which the samples can be executed symbolically.

• The degree to which the answers of the SMT solver really say something about the
(in)security of the samples, but also the degree to which the samples are really usable
as examples of (in)secure code.

6.3.1. THE SIZE AND COMPLEXITY OF THE DATASET
The samples of the SAMATE set are assembled according to a certain pattern [49]. Each
code fragment starts with a part where input enters the code. In the second part, the input
is sanitised. Finally, sanitised input enters a sink where the input is used in output.

The total number of samples is large, because a limited number of variants for the in-
put, the cleaning and the sink are combined. Because the samples are composed in this
structured way, we do not need to study all the samples to be able to assess them.

The cyclomatic complexity [36] of the samples is low. Often no conditional statement
is included in the code. In the most complex samples, an IF and a WHILE statement are
present. Thus, the CFGs of these programs are often very simple. In many cases there are

91

one or two paths, only if a WHILE is present potentially infinite paths are possible. This
WHILE loop is always used for code that needs to check the rules of a database query. It
does not matter for the vulnerability how often the loop is executed. Since the operation of
the database function cannot be verified with symbolic execution, it is defensible to assume
that the vulnerability occurs on the first pass.

6.3.2. USABILITY
We look at two examples to see to what extent the sample can be used as an example of safe
and unsafe code.

EXAMPLE 1
In the filename 4 the sanitize part is "CAST-cast_float_sort_of". This is an example of a safe
sample. The description in the file name suggests that a cast to a float occurs and that
something is going to happen with sort, of that it might be "a sort of a cast". We recognize
the cast in line 6 of the code in listing 6.3.

1 $array = array () ;
2 $array [] = ’ safe ’ ;
3 $array [] = $_GET[’ userData ’] ;
4 $array [] = ’ safe ’ ;
5 $tainted = $array [1] ;
6
7 $tainted += 0.0 ;
8
9 $query = " find / s i z e ’ " . $tainted . " ’ " ;

10
11 $ret = system ($query) ;

Listing 6.3: Example of PHP code in which an implicit cast is used to enforce that the input is a numerical
value

The type of $_GET is String. Adding a Float to a string is probably to enforce a numeric
value. As of PHP 7 (it is not exactly clear which version), this command gives the warning:
"WARNING: non-numeric value encountered. This warning is comprehensible, because
the addition statement implicitly performs a cast, by applying Type Juggling. If the string
in $array[1] starts with a numeric value, this numerical value is added to 0.0. The decimal
part is omitted if it is equal to 0.

value of $tainted value of $query after implicit cast

$tainted = “string”; $query =”find / size 0”
$tainted = “2string”; $query =”find / size 2”
$tainted = “2.5string”; $query =”find / size 2.5”

Table 6.1: Examples of how line 6 sanitizes the input

The query contains the text "find / size". It is not clear how this is meant. It may indicate
that both the command FIND and the command SIZE can be used. Under Windows and
4CWE_78__array-GET__CAST-cast_float_sort_of__find_size-concatenation_simple_quote.php

92

Linux, the FIND command has no parameter /size . Moreover, there must be a directory
name between the find and the parameter. This can be a /. A minus sign must precede the
parameter size (-size).

Probably the intention is to search for files of a certain size: FIND / SIZE <numeric
value>. Looking at the possibility of exploiting a vulnerability here, the obvious thing to
do would be to prevent text from being entered after the -size parameter other than the
numeric value. With an && operator, another command could be added after the FIND
command. By the way, the numeric value in the string $query is as between two apostro-
phes. That already ensures that a command added with && will not work.

Finally, according to the manual, the numerical values can be preceded by +- and suc-
ceeded by one of the characters ’cbwkMG’. Casting to a number filters these characters
from the input.

So there are quite a few snags in this example. The example probably does not do ex-
actly what was intended. One has to guess what the exact intention is and the question is
whether all the details were really intended that way.

EXAMPLE 2
In the filename 5 the sanitize part is "FILTER_CLEANING-FULL_SPECIAL_CHARS". The
source code of this unsafe sample is shown in code in listing 6.4. The built-in PHP function
filter_var() is used to sanitize the input.

1 $array = array () ;
2 $array [] = ’ safe ’ ;
3 $array [] = $_GET[’ userData ’] ;
4 $array [] = ’ safe ’ ;
5 $tainted = $array [1] ;
6
7 $sanitized = f i l t e r _ v a r ($tainted , FILTER_SANITIZE_FULL_SPECIAL_CHARS) ;
8 $tainted = $sanitized ;
9

10 $query = " l s ’ " . $tainted . " ’ " ;
11
12 / / flaw
13 $ret = system ($query) ;

Listing 6.4: Example of PHP code that allows SQL injection, because the input has not been sanitised

In the first five lines of the sample, an array is filled. The second element of the array
is populated with the input of a $_GET. This input is filtered for special HTML characters
in line 7. The character &, single and double quotes, < and > are replaced by their HTML
equivalents. This filter thus prevents these characters from ending up in the query string of
line 10. A concatenation with && will therefore no longer appear in the string. The > is also
replaced. Characters such as | and (remain in the string, however, so a concatenation with
|| remains possible. It is therefore still possible to add a second command after the query.6.

It is not immediately obvious from the code fragment why it is an unsafe sample. It is
only clear once we know that the filter_var function passes symbols that make it possible

5CWE_78__array-GET__func_FILTER-CLEANING-full_special_chars_filter__ls-concatenation_simple_quote.php
6https://www.man7.org/linux/man-pages/man1/bash.1.html

93

to build a query with malicious code

6.3.3. CODE COVERAGE
We could consider code coverage as a criterion to determine how well we can use symbolic
execution to execute a PHP program. The problem here is that a single command that
cannot be executed symbolically can lead to an unusable solution. The weakest link can
cause the whole system to collapse. Therefore, we think that a percentage does not clarify
to what extent symbolic execution is usable. It is better to get a concrete picture of the kind
of problems that can be solved or are impossible to solve with symbolic execution.

BEGIN BLOCKS

The PHP samples begin with a choice of a limited number of code blocks 7. Non of these
begin blocks contain PHP code.

INPUT

For the input, the code generator can choose from 16 different code fragments. An overview
of these fragments can be found on github8. We have described a possible translation of
these fragments to SMTLIB. In addition, we have looked at for which specific language frag-
ments the tool should be able to generate SMTLIB code:

• A: Determine result of built-in function

• B: null type return value

• C: type of by reference parameter

• D: retrieve array element by index

• E: resource type return value and type juggling

• F: Two dimensional array

• G: Classes (create instance, execute constructor, execute method)

• H: Automatic indexing for arrays

example
For the following code fragment the tools should be able to generates code code that de-
termine result of built-in function, determines the type of a by reference parameter and
retrieve an array element by index.

$script = "/tmp/tainted.php";
exec($script, $result, $return);
$tainted = $result[0];

If the tool has these three capabilities, 12 of the 16 fragments can be translated. If the
tool is able to translate all eight requirements, all fragments can be translated. For other
combinations of the eight possible requirements, these numbers are different. For exam-
ple, if we want to be able to use all fragments with a class, the tool must also be able to

7https://github.com/stivalet/PHP-Vuln-test-suite-generator/tree/master/bin/fileSample
8https://github.com/rdohmen/grad

94

retrieve an array element by index and must be able to automatically index newly added
array elements.
Determine result of built-in function We saw earlier using the example rand_int that for
the return type of a built-in function we can assume a symbolic variable of the appropriate
type, supplemented by additional conditions that limit the possible values. In many other
cases, a similar translation is possible.

null type return value The PHP type null does not exist in SMTLIB. The solution that ig-
nores these situations in which a null type can occur is not satisfactory. With null types, of-
ten no other operations are performed as (implicit) cast to a Boolean for conditional state-
ments. A translator could generate two type paths for True and False in this case.

type of by reference parameter There are functions in PHP that use a by reference variable
to return a return value. We have not included by reference variable in our design. If they
are used not only for normal variable, but also for by reference parameters, they can be
handled the same way as symbolic return values.

retrieve array element by index We used the in_array function examples to show how this
language construct can be translated into SMTLIB.

resource type return value and type juggling We have not studied the PHP type of resource
(which does not appear in SMTLIB).

Two dimensional array We have not studied more dimensional arrays, but we expect that
it is possible to use this type if the type of a dimension is fixed.

Classes (create instance, execute constructor, execute method) We have not worked out
classes due to lack of time. For simplicity, we could see a class as a collection of variables
and functions that operate on these variables. With inheritance added, a complex situation
arises. Nevertheless, we expect this to be promising since the problem is built from parts
already studied.

Automatic indexing for arrays
If the index values are concrete, the translator can keep track of which indexes as used. For
the next index the highest value plus one is taken. If symbolic values for the indexes are
used in the meantime, a complex situation arises in which it is no longer clear which in-
dexes are free.

$array = array(1, 1, 1); // index 0,1,2
$array[5]=1; // index 5
$array[S]=1; // create a new index, append index 6,

//or overwrite an existing index

SANITIZING THE INPUT

For the sanitising methods that appear in the SAMATE samples, we have looked at the ex-
tent to which they can be executed using symbolic execution.

95

There are 42 code fragments that can be divided into 18 categories.

• A crypt

• B preg_match

• C escapeshellarg

• D filter_var

• E cast to float

• F type juggling

• G cast to int

• H issettype

• I addslashes

• J htmlentities

• K htmlspecialchars

• L mysql_real_escape_string

• M preg_replace

• N ternary operator

• O in_array

• P esapi

• Q pre_replace

• R array

Determine result of built-in function The function crypt is an example like the functions
we have seen before, for which for the return value a symbolic string value can be taken,
possibly supplemented by additional conditions to constrain the solutions.

preg_match, pre_replace These functions are examples of symbolic execution with regu-
lar expressions. We will seen in the examples of paragraph 6.4.3 that Z3 cannot reason with
symbolic expressions.

filter_var The function filter_var is a complex function that can take many different forms.
These functions can be grouped into two categories with a few exceptions (callbacks): san-
itize and validate filters. The sanitize filter FILTER_SANITIZE_EMAIL is a function that re-
moves all characters except letters, numbers, and !#$%&’*+-=?_̂‘| @.[]. This function can be
recreated with str.replace. We know from earlier examples we examined that Z3 can reason
symbolically with strings. The validate filter FILTER_VALIDATE_EMAIL checks whether a
string is in the form of a valid email address using a regular expression. We know from the
examples examined in paragraph 6.4.3 that Z3 cannot reason with symbolic regular expres-
sions.

96

esapi Esapi9 is a security framework that provides functions via an API. We have not re-
viewed this framework.

cast to float, cast to int For casts to integer and float values, SMTLIB has built-in functions.

type juggling Type juggling is possible because we consider the numericType separately.
We can require that the string is composed of a number followed by a non-numeric string.

array, in_array We have described the automatic indexing of array elements above

ternary operator We have not yet looked at this operator, but we expect that it can be in-
corporated into the methodology in a similar way.

mysql_real_escape_string The function mysql_real_escape_string is an example of a func-
tion that can be recreated with str.replace.

escapeshellarg The function escapeshellarg is an example of the system functions10 that
return a string as a return value. These functions, like others that return a string, can be
recreated by introducing a symbolic string variable with additional limiting conditions.

isset, unset The isset function is used to verify that a variable exists (is not null). A variable
can be made null with the function unset. These functions should make it possible to work
with the null type.

addslashes, htmlentities, htmlspecialcharsThe function addslashes places a slash before
a single quote (’), double quote ("), backslash and NUL (the ZERO byte). Except for the
last character, this should be achievable in SMTLIB with str.place conditions. The func-
tion htmlentities is an alias of htmlspecialchars that replaces some character with an html
equivalent. This function can also be implemented with str.place.

SINK

In the SAMATE samples, two systems are used to construct an exit point (the sink). On the
one hand, a small selecting of possible end blocks (fixed code fragments) that terminate
the sample. On the other hand, a selection of more extensive code fragments that can serve
as an exit point.

END BLOCKS

The PHP samples are closed with a choice of a limited number of code blocks 11. The clos-
ing code sometimes includes a sink. If that is the case, it is always an echo statement con-
taining the $tainted variable.

OTHER CODE FRAGMENTS

The remaining code snippets consist of 134 examples where a variable is used in a com-
mand that we can think of as an exit point. These commands fall into 18 categories::

9https://github.com/OWASP/owasp-esapi-php/blob/master/src/ESAPI.php
10https://www.php.net/manual/en/function.escapeshellarg
11https://github.com/stivalet/PHP-Vuln-test-suite-generator/tree/master/bin/fileSample

97

• A Try except

• B eval

• C echo

• D conn→prepare

• E mysql_query used as exit point

• F system

• G ldap_search

• H str_rot13

• I sha1

• J crypt

• K password_hash

• L sprintf

• M fopen

• N header

• O http_redirect

• P include

• Q require

• R string containing variable as a literal

Only 1 code fragment contains a WHILE loop. Two code snippets contain an IF state-
ment. As with the previous sections (input and sanitize), the tool must be able to process
the statements. It is not necessary to further process the variable that is passed as a param-
eter to the function.
Function with a symbolic output value This symbolic output value is then displayed with
an echo. This applies to the functions: str_rot13, sha1, crypt, password_hash.

variable passes (malicious) input to a function For most fragments, the malicious output
is passed to the function via a variable. Examples are eval, echo, conn=>prepare, mysql_query,
system, ldap_search, system, ldap_search, sprintf, fopen, header, http_redirect, include, re-
quire, string containing variable as a literal.

Try except We have not fully studied this language element. To include try catch blocks
correctly it must be known which exception a statement/function can raise. This exception
is then handled outside the function that raised the exception.The code flow in general is
probably complicated.

6.4. SPECIFIC CODE FRAGMENTS
In this section we will look at specific code fragments to see to what extent SMTLIB can
simulate the behaviour of PHP.

98

6.4.1. REGULAR EXPRESSIONS
It is possible in SMTLIB to execute conditions relating to regular expressions. For example,
it is possible to check whether a concrete string matches a regular expression. However, we
want to match a symbolic string with a concrete regular expression. We can write code in
smtlib for this purpose.

(set-option :print-success false)
(set-option :produce-models true)

;$array = array();
;$array[] = ’safe’ ;
(declare-const array0 String)
(assert (= array0 "safe"))

;$array[] = $_GET[’userData’] ;
(declare-const array1 String)
(declare-const get_userdata String)
(assert (= array1 get_userdata))

;$array[] = ’safe’ ;
(declare-const array2 String)
(assert (= array2 "safe"))

;$tainted = $array[1] ;
(declare-const tainted String)
(assert (= array1 tainted))

;$re = "/^[a-zA-Z]*$/";
(declare-const regex RegLan)
;(declare-const re String)
;(assert (= re "/^[a-zA-Z]*$/"))
;(assert (str.to_re re regex))
(assert (= regex (str.to_re "/^[a-zA-Z]*$/")))

;if(preg_match($re, $tainted) == 1){
; RE membership
(declare-const result Bool)

(assert (= (str.in_re tainted regex) true))

;(declare-const len Int)
(assert (> (str.len get_userdata) 3))

; $tainted = $tainted;
;}
;else{
; $tainted = "";

99

;}
;$query = "ls ’". $tainted . "’";
;$ret = system($query);

Unfortunately, Z3 does not generate an instance of a String that matches the regular
expression in the model. Z3 returns the same regular expression as a solution. That is a
correct, but unusable solution.

6.4.2. STRING FUNCTIONS
We will review to what extent string functions can be incorporated into an SMTLIB pro-
gram.

The program haystack.smt (See listing 6.5) examines whether a string exists that is a
substring of a given string. The given string is called haystack and contains the string
"aneedleinah".

1 (declare −const haystack Str ing)
2 (declare −const needle Str ing)
3 (assert (= haystack " aneedleinah "))
4 (assert (> (s t r . indexof haystack needle) −1))

Listing 6.5: Example of PHP code that allows SQL injection, because the input has not been sanitised

The program is sat and in the model the value of the string variable needle is a substring
of the variable haystack. When executing the program, the value of needle is not always the
same. We got the values "eedleina" or "aneedlei". The latter solution is more obvious,
because a string that corresponds to the first n characters of the string being searched is
always a substring. But apparently Z3 also searches for less obvious substring sometimes.

6.4.3. NUMERIC STRINGS
With Type Interference, strings representing an integer or float are cast to that number in
certain operations. We look at whether we can simulate this behaviour with symbolic exe-
cution.

If we use a concrete string s, Z3 manages to find a solution. We take the first character
of the string and condition it on an integer greater than 0 (-1 is an error code for situations
where the string to be converted contains integer representation).

(assert (= s "3string"))
(assert (= a (str.substr s 0 1)))
(assert (= i (str.to_int a)))
(assert (> i -1))

Z3 returns the solution: sat, with model: [s="3string", a="3", i=1].
We will now see if Z3 can also determine a solution for a symbolic string. We give as con-

straint for the string s that it must contain at least two characters (otherwise this gives Z3
the freedom to come up with a minimal solution for the string containing only a number).
We use the function str.isdigit to enforce that the first character is a digit:

(assert (> (str.len s) 1))

100

(assert (= a (str.substr s 0 1)))
(assert (= b (str.is_digit a)))
(assert (= b true))

Z3 gives the solution: unknown. If we check with the str.toint cast, Z3 does find a solu-
tion.

(assert (> (str.len s) 1))
(assert (= a (str.substr s 0 1)))
(assert (= i (str.to_int a)))
(assert (> i -1))

Z3 gives as solution: sat. With model: [s="0 ", a="0", i=0]. The string "0 " given by Z3 is a
correct string (the second position contains a space). We can try to generate a more realistic
example if we require the second character of the string s not to be a space.Therefore we
add the assertion (assert (distinct " " (str.substr s 1 1))). The solver then returns "unknown"
as a solution.

101

7
CONCLUSION

7.1. DISCUSSION
In this section, as the first part of the conclusion, we discuss the results of the study per
research question.

7.1.1. RQ1: HOW CAN WE FIND PATHS IN PHP-CODE EFFICIENTLY?
We will discuss the result of the first research question through the four sub-questions.

The first step, creating an AST from a PHP program, was easy, because PHP-ast uses an
extension that has made it possible to export the AST of a PHP program since PHP 7. Con-
verting most conditional statements into an AST was successful, so in the CFGs we can cre-
ate, the paths between conditional statements are fully modeled for most programs. Only
the FOREACH statement has not been worked out. The Continue and BREAK statement is
also well modeled. A special feature of these statements is, that they can not only jump out
of the statements (SWITCH, DO-WHILE, WHILE, FOR) they are used in, but they can also
jump back several levels within nested loops. Handling user-defined functions is done by
inserting the CFGs of the functions where there is a function call. Of the built-in functions,
only the symbolic return values are used. This can sometimes have complicated conse-
quences, because it must be guaranteed that symbolic return value matches state (think of
the count function that counts the number of elements in an array).

It is possible in PHP to create function variables. If the function name has a concrete
value, the CFG of the function is inserted as for normal function calls. For the situation
where the function name has a symbolic value, we have found some ideas for partial solu-
tions, but no conclusive solution that works in all situations. Classes are not included in the
tool, but we believe that to the extent that we store Classes in separate variables and can
think of these Classes as a collection of variables and functions that act on those variables,
it is likely that they can be included in a CFG in a similar way.

The proposed algorithm that searches paths in a CFG (Algorithm B) can find paths be-
tween nodes throughout the search space. We can easily limit the search space by speci-
fying a goal that the paths must satisfy. We can do this by specifying how often each node
may appear in the path, or what length the path may have. By setting the target frequency
for all nodes to mathb f N , the algorithm will accept all paths as solutions. Paths without
cycles can be found by setting the target frequency for all nodes to 1. Prohibited regions can
be specified by setting the target frequencies for the nodes in those regions to zero. In this

102

way, we can enforce that branches or loops are kept out of solutions, or enforce that solu-
tions go through these branches or loops (and how often). In this way, we can even search
in a limited way for paths that do or do not meet certain safety conditions. By choosing a
target frequency of zero for the node after a WHILE loop, we can search for paths for which
the condition of a WHILE loop is never false. This could happen in the case of a DoS attack
where the program enters an eternal loop.

7.1.2. RQ2: UP TO WHAT EXTENT CAN PHP-CODE BE EVALUATED USING SYM-
BOLIC EXECUTION?

We have described a method that allows us to translate PHP code into SMTLIB code. It
helps that Algorithm B only produces linear paths, because then a path consists only of
consecutive statements. The SMTLIB code must describe the state change of the corre-
sponding PHP statement. As far as the types and corresponding operators exist in both
languages, the translation is possible one-to-one. For string functions, this is possible with
a limited number of functions. We have shown examples of translations of PHP string func-
tion by using with the string functions provided by SMTLIB. For arrays, we face the limita-
tion that arrays in SMTLIB have a fixed type for the indexes and values. Arrays with a mixed
type cannot be translated to SMTLIB without much effort. It is possible to create an SMTLIB
translation for a limited number of array functions. These include a search function and a
sort function.

7.1.3. RQ3: UP TO WHAT EXTENT CAN PATH CONDITIONS BE SOLVED?
To what extent can the conditions be solved by an SMT solver? For the basic Int, Real and
Bool and String types, Z3 often provides a suitable model when symbolic variables are used.
However, there are examples where Z3 gives solutions that are not useful in relatively simple
situations. This happens when Z3 must reason with symbolic regular expressions. Other
research shows that it is possible to derive examples of regular expressions with SMT solvers
other than Z3. In other situations where the conditions for a complex path need to be
calculated, on the one hand, Z3 does come up with the correct solution, but the solution is
not usable because although the solution falls into the search space, it does not resemble
what a human user would have expected. This happens when Z3 needs to find solutions
involving from symbolic strings. The solutions are then sometimes of an unusable form.
Attempts to force Z3 to generate a real world solution sometimes end with no solution at
all.

7.2. RESEARCH CONTRIBUTION

A number of results emerge from the study. First, we have shown how the can structure
conditional statements of a PHP can be represented in a CFG. We have presented a search
algorithm that can efficiently search for paths in a CFG by setting appropriate targets. For
a path, we have proposed a type inference algorithm that can determine which type paths
belong to a path, so that depending on the type of the variable, matching SMTLIB transla-
tions are made. For a small subset of PHP, we investigated the possibility of translating to
SMTLIB conditions. It has become clear that this translation is not usable in some situa-
tions due to limitations of the Z3 SMTLIB solver.

103

7.3. LIMITATIONS AND FUTURE WORK
The result of this study has limitations in several areas of the approach taken.

When converting an AST to a CFG, we did not include several language elements of
PHP. If these language elements occur in a code path of a PHP program, the incomplete
translation to logical conditions may cause the solutions of an SMT solver to be completely
different from the actual solutions. Extending the methodology to include these missing
language elements may at least partially solve this problem. Examples are the ability to
handle classes and reference variables.

The proposed search algorithm is a modification of known search algorithms that can
flexibly influence which paths are considered solutions based on two properties (the num-
ber of times a node occurs in a path and the number of nodes in a path). The results of
this part of the research can be used as a starting point for further research in several ways.
First of all, it is difficult to prevent an arbitrarily chosen set of target frequencies from mak-
ing any path impossible. There are situations that are easy to recognise, for example when
in successive nodes in a part of a path without branches a node with a low target frequency
is followed by a node with a higher target frequency. In addition, other targets can be in-
cluded, these targets could be related to the type of statement that occurs in the path.

When translating PHP statement to SMTLIB, we quickly run into limitations of SMTLIB.
Research could find possible translations for types and functions that do not exist in SMTLIB.

By adding safety conditions we might be able to find more meaningful solutions that
trigger not only the path but also the vulnerability.

For a path that is executed symbolically, many solutions may exist. The set of input
values (the model) that the SMT solver determines is one of the possible sets of solutions
for which the path can be executed. If we want to look more specifically for paths that lead
to vulnerabilities, we can look at the conditions under which the vulnerability is not caused.
We call these conditions the security conditions (SC). If the path condition is met, but the
security conditions are not met, then we have the conditions for a code path that leads to a
vulnerability and also triggers this vulnerability.

We can only run a program from any language (such as PHP) symbolically in SMTLIB if
we can translate the conditions that follow from statements from the source language into
SMTLIB (the target language). We have described for a limited number of functions how
this is possible, but there are many parts of PHP for which it is possible to investigate if and
which translations into SMTLIB are possible.

104

7.4. RELATED WORK
In this section we discuss research that touches upon aspects of the proposed research. We
look at aspects of finding paths in graphs, symbolic execution and testing tools that were
the result of previous research.

In our research we combine techniques and frameworks of previous research. The use
of graph-representations to analyze code, search algorithms to find paths and the use of
SMT-solvers to solve for constraints resulting from Symbolic Execution has been used in
previous research. Existing frameworks 1 proved their usability and will therefore also be
considered in our investigation.

7.4.1. FINDING PATHS IN A GRAPH
When looking for paths, we have to distinguish between looking for paths in a mathemat-
ical graph or looking for code paths. The graphs described in the problem analysis are
directed graphs. ASTs are trees [51]. If we want to find a path starting from a node in a tree,
we can search forward from the start point using a Breadth First Search (BFS) or a Depth
First Search (DFS) algorithm. If we know where the endpoint is, the search is trivial. We
can traverse backwards through the tree beginning at the endpoint back to the start point.
Each path in an AST can represent an infinite number of code paths because a loop is rep-
resented by one node in the tree.

CGs or (I)CFGs are directed graphs in which cycles can occur. An infinite number of
paths is possible in a graph with cycles, because cycles can be run infinitely often one after
the other. Cycles are examples of Strongly Connected Components (SCC). If we replace
cycles in the graph by one single node, we create a graph without cycles: a directed acyclic
graph (DAG). The process of replacing a SCC by one single node is known as contracting.
Paths in a DAG can be searched efficiently using a lexicographical search algorithm [44]. A
path in a CG or (I)CFG can represent an infinite number of code paths. There is therefore a
danger of state explosion.

7.4.2. SYMBOLIC EXECUTION
King [29] introduces the idea of Symbolic Execution. The path condition is a Boolean ex-
pression of symbolic inputs. The evaluation of path condition is considered feasible only if
the symbolic variables are of the integer type and the expressions are linear combinations
of the symbolic variables. Path conditions resulting from the guard of a while loop are not
mentioned.

Burgstaller [10] presents a generic mathematical framework that can be used for im-
perative programming languages. The framework can define all variables bound to a given
point in the program. The path expression algebra uses the supercontext to model the con-
trol flow information.

Li [33] et al show how SE can be used when searching for vulnerabilities in computer
software. The location of a vulnerability (hotspot) can only be exploited if the hotspot can
be reached (the program constraint PC is met) and the conditions to safely execute the code
of the hotspot are not met (the security constraints SC are not met): PC ∧¬SC .

Dinges [18] et al combine in their research symbolic backward execution with forward
concrete execution. They use this ’symcretic’ method to efficiently find inputs that activate

1https://github.com/nikic/php-ast/blob/master/README.md#installation

105

https://github.com/nikic/php-ast/blob/master/README.md#installation

a specific branch statement of a Java program. Compared to concolic testing, their method
provides input values that trigger the desired code components. The method is more effi-
cient in the sense that fewer paths need to be explored. For solving path conditions the Z3
SMT solver is used.

Because path conditions have to describe all possible conditions that symbolic value
variables have to meet, they can be too general. Smaragdakis [45] et al show that path con-
ditions can be improved by combining these path conditions with concrete input values.
Only input values that meet the path condition are used. The set of selected input values is
therefore more limited than with fuzzing. This approach is called Dynamic Symbolic Exe-
cution. Loops, which are potentially run infinitely often, are abstracted by formulating pre
and post conditions based on the conditions of the loop.

baldoni [5] et al provide an overview of techniques used in symbolic execution. In their
analysis of research on SE, they give an overview of previous research that should remove
difficulties of SE. They give possibilities to counter the problem of path explosion (pruning
unreliable paths). Furthermore, they provide strategies that can further increase the use
of SMT-solvers (among recent advances). As application areas of SE, they provide input
generation, bug detection, bug exploitation and authentication bypass.

• CHEF, PHP interpreter aanpassen

• concholic testing

• selective execution

• dynamic execution

• Abstract execution

7.4.3. TOOLS RESULTING FROM PREVIOUS RESEARCH
STRANGER is a tool resulting from research by Yu [56]. The analysis tool detects string-
related vulnerabilities. A Control Flow Graph is constructed by using Pixy. A dependency
graph is extracted from the CFG, by analysing the input flow with respect to string opera-
tions. Set of strings and string manipulations are modeled as deterministic finite automata.
Cycles are replaced by one single strongly connected component. The tool is used to anal-
yse a large scale PHP-project: SimpGB.

Symbolic pathfinder [41] is a tool that generates test cases from Java Bytecode by com-
bining symbolic execution, model checking and constraint solving. From a conditional
statement, path conditions are drawn up in a non-deterministic manner. These are evalu-
ated with off-the-shelf constraint solvers.

SaferPHP [46] is a tool for discovering vulnerabilities in PHP-code. The tool can find
DoS vulnerabilities and missing authorisation checks. It uses the PHC compiler to parse
the code and to produce an AST. A Control flow graph (CFG) is made for each function. An
interpreter in SaferPHP evaluates PHP-statements using symbolic values. Twenty binary
operators (such as +, *, /,) are evaluated. Ten String-functions (such as substr, strlen) are
evaluated symbolically as well.

Driller [48] is a tool that combines fuzzing and concolic testing. First, the fuzzer gen-
erates input values. These input values can be used to run the program through to the
first complex checks. Now the program can try to generate input values that do meet these
checks.

106

CHEF [8] tackles the problem of symbolic execution in a different way. The PHP in-
terpreter is adapted in such a way that statement can also be executed symbolically. As a
result, there is immediate support for all language constructions and there is no need to
write a SE engine. The resulting tool is used for bug detection and exception exploration.

7.4.4. RESEARCH RELATED TO SMT SOLVERS
Vanegue [52] et al describe how SMT solvers can be used for vulnerability checking and
automated exploit generation. SMT solvers can determine whether there is a solution to
the path conditions. In that case the SMT solver can try to give a sample value. Modern
SMT solvers can evaluate not only integer expressions but also expressions of string val-
ues. HAMPI [21] evaluates "membership over regular expressions, context-free grammar
and the (in)equality of string values". Zheng [57] extends the SMT solver Z3 so that it can
evaluate not only strings, but also expressions of integers and Boolean values. Statements
about the length of strings can also be evaluated.

107

A
EXAMPLE OF PHP CODE VULNERABLE TO

INJECTION

Example of PHP code that retrieves data from a database. This code is vulnerable to injec-
tion because the input from line 12 is used without sanitization in the query on line 14.

1 <?php
2 / / connect to the database
3 $servername = " localhost " ;
4 $username = " root " ;
5 $password = "aPassword" ;
6 $database = "webshop" ;
7 mysqli_report (MYSQLI_REPORT_ERROR | MYSQLI_REPORT_STRICT) ;
8 $conn = new mysqli ($servername , $username , $password , $database) ;
9 / / echo " Connected s u c c e s s f u l l y
 " ;

10
11 / / r e t r i e v e table
12 $productdesc = $_GET["productdesc"]
13 $query = " s e l e c t * from product where productdesc = ’ $productdesc ’ ; " ;
14 $queryResult = $conn−>query ($query) ;
15 echo "<table >" ;
16 while ($queryRow = $queryResult −>fetch_row ()) {
17 echo "<tr >" ;
18 for ($i = 0 ; $i < $queryResult −>field_count ; $i ++){
19 echo "<td>$queryRow [$i] </ td>" ;
20 }
21 echo " </ tr >" ;
22 }
23 echo " </ table >" ;
24 $conn−>close () ;
25 ?>

Listing A.1: example script for retrieving data from a database

108

B
EXAMPLE OF HOW A SAMATE PHP FILE

TRANSLATES INTO SMTLIB

Line PHP SMTLIB Remark
1 (set-option :produce-models true)
2
3 $array = array(); (declare-const ia0 (Array Int String)) Declare array ia[Int]:String
4 (assert (= ia0 ((as const(Array Int String)) ""))) Fill ia with empty strings
5
6 $array[] = ’safe’ ; (declare-const s1 String) declare s1:String
7 (assert (= s1 "safe")) assign the value "safe" to s1
8 (declare-const ia1 (Array Int String)) declare a new array ia1[Int]:String
9 (assert (= ia1 (store ia0 0 s1))) Put s1 at index 0 of ia0, store the result in ia1
10
11 ar r ay[] =_GET[’userData’] ; (declare-const s2 String) declare s2:String
12 ;(assert (= s2 "get")) leave s2 empty
13 (declare-const ia2 (Array Int String)) declare a new array ia2[Int]:String
14 (assert (= ia2 (store ia1 1 s2))) Put s2 at index 1 of ia1, store the result in ia2
15
16 $array[] = ’safe’ ; (declare-const s3 String) declare s3:String
17 (assert (= s3 "safe")) assign the value "safe" to s3
18 (declare-const ia3 (Array Int String)) declare a new array ia3[Int]:String
19 (assert (= ia3 (store ia2 2 s3))) Put s3 at index 2 of ia2, store the result in ia3
20
21 t ai nted =array[1] ; (declare-const tainteds String) declare tainteds:String
22 (assert (= (select ia3 1) tainteds)) Assign the value at index 1 of ia3 to tainteds
23
24 t ai nted = (f loat)tainted ; (declare-const taintedi Int) declare taintedi:Int
25 (assert (= (str.to.int tainteds) taintedi)) cast the value of tainteds to in, store it in taintedi
26 (assert (>taintedi 0)) assert that taintedi >0
27
28 echo $tainted ; echo
29
30 (check-sat) check whether the constraints are satisfiable
31 (get-model) get a model

Table B.1: Example of a translation of PHP to SMTLIB

109

C
COMPARISON OF PHPAST AND PHPLY

110

PHP_AST PHPLY
AST_ARRAY_ELEM: value, key ArrayElement = node(’ArrayElement’, [’key’, ’value’, ’is_ref’])
AST_ARROW_FUNC: name, docComment, params, stmts, returnType, attributes
AST_ASSIGN: var, expr Assignment = node(’Assignment’, [’node’, ’expr’, ’is_ref’])
AST_ASSIGN_OP: var, expr AssignOp = node(’AssignOp’, [’op’, ’left’, ’right’])
AST_ASSIGN_REF: var, expr
AST_ATTRIBUTE: class, args // php 8.0+ attributes (version 80+) ClassVariables = node(’ClassVariables’, [’modifiers’, ’nodes’])

ClassVariable = node(’ClassVariable’, [’name’, ’initial’])
ObjectProperty = node(’ObjectProperty’, [’node’, ’name’])
StaticProperty = node(’StaticProperty’, [’node’, ’name’])

AST_BINARY_OP: left, right BinaryOp = node(’BinaryOp’, [’op’, ’left’, ’right’])
AST_BREAK: depth Break = node(’Break’, [’node’])
AST_CALL: expr, args FunctionCall = node(’FunctionCall’, [’name’, ’params’])

MethodCall = node(’MethodCall’, [’node’, ’name’, ’params’])
AST_CAST: expr Cast = node(’Cast’, [’type’, ’expr’])
AST_CATCH: class, var, stmts Catch = node(’Catch’, [’class_’, ’var’, ’nodes’])
AST_CLASS: name, docComment, extends, implements, stmts Class = node(’Class’, [’name’, ’type’, ’extends’, ’implements’, ’traits’, ’nodes’])
AST_CLASS_CONST: class, const ClassConstant = node(’ClassConstant’, [’name’, ’initial’])
AST_CLASS_CONST_GROUP class, attributes // version 80+ ClassConstants = node(’ClassConstants’, [’nodes’])
AST_CLASS_NAME: class // version 70+
AST_CLONE: expr Clone = node(’Clone’, [’node’])
AST_CLOSURE: name, docComment, params, uses, stmts, returnType, attributes Closure = node(’Closure’, [’params’, ’vars’, ’nodes’, ’is_ref’])
AST_CLOSURE_VAR: name
AST_CONDITIONAL: cond, true, false Constant = node(’Constant’, [’name’])
AST_CONST: name ConstantDeclaration = node(’ConstantDeclaration’, [’name’, ’initial’])
AST_CONST_ELEM: name, value, docComment
AST_CONTINUE: depth Continue = node(’Continue’, [’node’])
AST_DECLARE: declares, stmts Declare = node(’Declare’, [’directives’, ’node’])
AST_DIM: expr, dim
AST_DO_WHILE: stmts, cond DoWhile = node(’DoWhile’, [’node’, ’expr’])
AST_ECHO: expr Echo = node(’Echo’, [’nodes’])
AST_EMPTY: expr Empty = node(’Empty’, [’expr’])
AST_EXIT: expr Exit = node(’Exit’, [’expr’])
AST_FOR: init, cond, loop, stmts For = node(’For’, [’start’, ’test’, ’count’, ’node’])
AST_FOREACH: expr, value, key, stmts Foreach = node(’Foreach’, [’expr’, ’keyvar’, ’valvar’, ’node’])

ForeachVariable = node(’ForeachVariable’, [’name’, ’is_ref’])
AST_FUNC_DECL: name, docComment, params, stmts, returnType, attributes

Function = node(’Function’, [’name’, ’params’, ’nodes’, ’is_ref’])
Method = node(’Method’, [’name’, ’modifiers’, ’params’, ’nodes’, ’is_ref’])

uses // prior to version 60
AST_GLOBAL: var Global = node(’Global’, [’nodes’])
AST_GOTO: label
AST_GROUP_USE: prefix, uses x
AST_HALT_COMPILER: offset x
AST_IF_ELEM: cond, stmts

ElseIf = node(’ElseIf’, [’expr’, ’node’])
Else = node(’Else’, [’node’])

AST_INCLUDE_OR_EVAL: expr Eval = node(’Eval’, [’expr’])
Require = node(’Require’, [’expr’, ’once’])
Include = node(’Include’, [’expr’, ’once’])

AST_INSTANCEOF: expr, class
AST_ISSET: var IsSet = node(’IsSet’, [’nodes’])
AST_LABEL: name
AST_MAGIC_CONST: MagicConstant = node(’MagicConstant’, [’name’, ’value’])
AST_MATCH: cond, stmts // php 8.0+ match
AST_MATCH_ARM: cond, expr // php 8.0+ match
AST_METHOD: name, docComment, params, stmts, returnType, attributes
uses // prior to version 60
AST_METHOD_CALL: expr, method, args
AST_METHOD_REFERENCE: class, method
AST_NAME: name
AST_NAMED_ARG: name, expr // php 8.0 named parameters
AST_NAMESPACE: name, stmts Namespace = node(’Namespace’, [’name’, ’nodes’])
AST_NEW: class, args New = node(’New’, [’name’, ’params’])
AST_NULLABLE_TYPE: type // Used only since PHP 7.1
AST_NULLSAFE_METHOD_CALL: expr, method, args // php 8.0 null safe operator
AST_NULLSAFE_PROP: expr, prop // php 8.0 null safe operator
AST_PARAM: type, name, default, attributes, docComment Parameter = node(’Parameter’, [’node’, ’is_ref’])
AST_POST_DEC: var PreIncDecOp = node(’PreIncDecOp’, [’op’, ’expr’])
AST_POST_INC: var PostIncDecOp = node(’PostIncDecOp’, [’op’, ’expr’])
AST_PRE_DEC: var ** zie hierboven
AST_PRE_INC: var ** zie hierboven
AST_PRINT: expr Print = node(’Print’, [’node’])
AST_PROP: expr, prop
AST_PROP_ELEM: name, default, docComment
AST_PROP_GROUP: type, props, attributes // version 70+
AST_REF: var // only used in foreach ($a as &$v)
AST_RETURN: expr Return = node(’Return’, [’node’])
AST_SHELL_EXEC: expr
AST_STATIC: var, default Static = node(’Static’, [’nodes’])
AST_STATIC_CALL: class, method, args StaticMethodCall = node(’StaticMethodCall’, [’class_’, ’name’, ’params’])
AST_STATIC_PROP: class, prop StaticVariable = node(’StaticVariable’, [’name’, ’initial’])
AST_SWITCH: cond, stmts Switch = node(’Switch’, [’expr’, ’nodes’])
AST_SWITCH_CASE: cond, stmts Case = node(’Case’, [’expr’, ’nodes’])

Table C.1: List of AST nodes for PHPAST and PHPLY

111

PHP_AST PHPLY
AST_THROW: expr Throw = node(’Throw’, [’node’])
AST_TRAIT_ALIAS: method, alias TraitUse = node(’TraitUse’, [’name’, ’renames’])
AST_TRAIT_PRECEDENCE: method, insteadof TraitModifier = node(’TraitModifier’, [’from’, ’to’, ’visibility’])
AST_TRY: try, catches, finally Try = node(’Try’, [’nodes’, ’catches’, ’finally’])
AST_TYPE:
AST_UNARY_OP: expr UnaryOp = node(’UnaryOp’, [’op’, ’expr’])
AST_UNPACK: expr
AST_UNSET: var Unset = node(’Unset’, [’nodes’])
AST_USE_ELEM: name, alias
AST_USE_TRAIT: traits, adaptations
AST_VAR: name
AST_WHILE: cond, stmts While = node(’While’, [’expr’, ’node’])
AST_YIELD: value, key Yield = node(’Yield’, [’node’])
AST_YIELD_FROM: expr
// List nodes (numerically indexed children):
AST_ARG_LIST
AST_ARRAY Array = node(’Array’, [’nodes’])
AST_ATTRIBUTE_LIST // php 8.0+ attributes (version 80+)
AST_ATTRIBUTE_GROUP // php 8.0+ attributes (version 80+)
AST_CATCH_LIST
AST_CLASS_CONST_DECL
AST_CLOSURE_USES
AST_CONST_DECL
AST_ENCAPS_LIST // interpolated string: "foo$bar"
AST_EXPR_LIST
AST_IF If = node(’If’, [’expr’, ’node’, ’elseifs’, ’else_’])
AST_LIST
AST_MATCH_ARM_LIST // php 8.0+ match
AST_NAME_LIST
AST_PARAM_LIST
AST_PROP_DECL
AST_STMT_LIST Block = node(’Block’, [’nodes’])
AST_SWITCH_LIST
AST_TRAIT_ADAPTATIONS
AST_USE
AST_TYPE_UNION // php 8.0+ union types

Silence = node(’Silence’, [’expr’])
Finally = node(’Finally’, [’nodes’])
Default = node(’Default’, [’nodes’])
Trait = node(’Trait’, [’name’, ’traits’, ’nodes’])
InlineHTML = node(’InlineHTML’, [’data’])
UseDeclarations = node(’UseDeclarations’, [’nodes’])
UseDeclaration = node(’UseDeclaration’, [’name’, ’alias’])
ListAssignment = node(’ListAssignment’, [’nodes’, ’expr’])
TernaryOp = node(’TernaryOp’, [’expr’, ’iftrue’, ’iffalse’])
ConstantDeclarations = node(’ConstantDeclarations’, [’nodes’])
Directive = node(’Directive’, [’name’, ’node’])
Variable = node(’Variable’, [’name’])
LexicalVariable = node(’LexicalVariable’, [’name’, ’is_ref’])
MethodCall = node(’MethodCall’, [’node’, ’name’, ’params’])
ArrayOffset = node(’ArrayOffset’, [’node’, ’expr’])
StringOffset = node(’StringOffset’, [’node’, ’expr’])

Table C.2: List of AST nodes for PHPAST and PHPLY

112

D
OPERATORS FOR TYPES IN SMTLIB

113

Bool Int Real BitVec String
arithmetic
addition + + bvadd
subtraction - - bvsub
division / /
division div bvdiv
multiplication * * bvmul
unsigned div div bvudiv
unsigned rem mod bvurem
shl bvshl
unsigned logical sht bvlshr
Signed arithmetic shr bvashr
unary negation - - bvneg

bitwise operators
bitwise and and bvand
bitwise or or bvor
implication
bitwise not => bvnot
bitwise nand bvnand
bitwise nor bvnor
bitwise xnor bvxnor

numerical comparison
= = =
Signed < < < bvult
Signed <= <= <= bvule
Signed > > > bvugt
Signed >= >= >= bvuge
Unsigned < bvslt
Unsigned <= bvsle
Unsigned > bvsgt
Unsigned >= bvsge

lexicographical order
< Str.<
=
<= <=

114

Bool Int Real BitVec String
string functions
concat str.++
length str.len
at str.at
substr str.substr
prefixof str.prefixof
suffixof str.suffixof
contains str.contains
indexof str.indexof
replace str.replace
replace_all str.replace_all
is_digit str.is_digit

conversion/cast
from_int from_int
to_int cast to int
to.int str_to_int
int.to.str int_to_str
cast to float to_real

115

E
UTILITIES

In addition to the main tool, we have developed a number of utilities to support the use of
the main tool.

E.1. SAMATE LINE NUMBER INSERTER
The SAMATE test set provides the line number containing the vulnerability of unsafe sam-
ples in a separate XML file. This tool adds the line number to the comment section at the
beginning of the PHP file, so that the line number containing the vulnerability is immedi-
ately available when reading the PHP file.

E.2. SAMATE CWE SELECTOR
The beginning of a file name in the SAMATE collection indicates for which CWE vulnerabil-
ity it contains a sample. The utility uses this part of the filename to select all files belonging
to a certain CWE number and collects them in a folder.

In addition, the source file indicates whether it is a safe or unsafe sample. The utility can
use this line in the source file to break down the files for a CWE by sample type (safe/unsafe)
if required.

1 <?php
2 / *
3 Unsafe sample
4 input : use fopen to read / tmp / tainted . t x t and put the f i r s t . . .
5 s a n i t i z e : use of the function h t m l e n t i t i e s . S a n i t i z e s the qu . . .
6 construction : concatenation with simple quote
7 * /

Listing E.1: example of a PHP source file from the SAMATE dataset, showing the sample type (safe/unsafe) in
the comment section

116

Figure E.1: Utility for preparing a subset of the SAMATE dataset

E.3. REMOVE SPECIAL CHARACTERS FROM FILE NAME
When creating an AST file from a PHP file, the percentage symbol is removed from the
file name. Since the main tool requires that the PHP file and the corresponding AST file
have the same name (apart from the extension), we had to use this utility to remove special
characters (such as the percentage symbol) from the file name so that this condition is
met.1

Figure E.2: Utility for removing special characters from filenames

1https://github.com/rdohmen/remove-special-chars

117

E.4. BATCH FILE CREATOR
The main tool needs an AST file for each PHP file. We create these AST files by passing the
file name of the PHP source code as an argument to PHP script called astarg.php. This is
done for one file at a time. This utility can create a batch file that calls astarg.php for a series
of PHP files. In fact, the tool can be used for any situation where a series of files needs to be
passed as argument to a command line tool.2

Figure E.3: Utility for creating a batch file that produces all AST files

E.5. TESTING TOOL FOR GRAPH UNIT

Figure E.4: Unit test for the Graph unit

2https://github.com/rdohmen/batch-file-creator

118

E.6. TOOL FOR EXTRACTING AST FUNCTIONS

Figure E.5: Tool for extracting AST nodes from AST files

E.7. TESTING TOOL FOR TYPE INFERENCE UNIT

Figure E.6: Unit test for the type inference unit

119

E.8. TESTING TOOL FOR TESTING AST FUNCTIONS

Figure E.7: Tool for testing various AST functions

120

BIBLIOGRAPHY

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. “Compilers, principles, techniques”.
In: Addison wesley 7.8 (1986), p. 9.

[2] Mahtab Alam. “Software security requirements checklist”. In: International Journal
of Software Engineering, IJSE 3.1 (2010), pp. 53–62.

[3] Andrew W Appel. “SSA is functional programming”. In: Acm Sigplan Notices 33.4
(1998), pp. 17–20.

[4] John Aycock and Nigel Horspool. “Simple generation of static single-assignment form”.
In: International Conference on Compiler Construction. Springer. 2000, pp. 110–125.

[5] Roberto Baldoni et al. “A survey of symbolic execution techniques”. In: ACM Com-
puting Surveys (CSUR) 51.3 (2018), pp. 1–39.

[6] R.M.K Beisicht. “Injection Attack Mitigation; A secure multi-execution approach”.
MA thesis. Open University, the Netherlands, 2019.

[7] Matthias Braun et al. “Simple and efficient construction of static single assignment
form”. In: International Conference on Compiler Construction. Springer. 2013, pp. 102–
122.

[8] Stefan Bucur, Johannes Kinder, and George Candea. “Prototyping symbolic execu-
tion engines for interpreted languages”. In: Proceedings of the 19th international con-
ference on Architectural support for programming languages and operating systems.
2014, pp. 239–254.

[9] Bernd Burgstaller, Bernhard Scholz, and Johann Blieberger. “A symbolic analysis frame-
work for static analysis of imperative programming languages”. In: Journal of systems
and software 85.6 (2012), pp. 1418–1439.

[10] Bernd Burgstaller, Bernhard Scholz, and Johann Blieberger. “Symbolic analysis of
imperative programming languages”. In: Joint Modular Languages Conference. Springer.
2006, pp. 172–194.

[11] Vitaly Chipounov et al. “Selective symbolic execution”. In: Proceedings of the 5th Work-
shop on Hot Topics in System Dependability (HotDep). CONF. 2009.

[12] Stephen A Cook. “The complexity of theorem-proving procedures”. In: Proceedings
of the third annual ACM symposium on Theory of computing. 1971, pp. 151–158.

[13] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. “A simple, fast dominance al-
gorithm”. In: Software Practice & Experience 4.1-10 (2001), pp. 1–8.

[14] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

[15] Martin Davis and Hilary Putnam. “A computing procedure for quantification the-
ory”. In: Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

i

[16] Bjorn De Sutter, Ludo Van Put, and Koen De Bosschere. “A practical interprocedural
dominance algorithm”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 29.4 (2007), 19–es.

[17] Dominique Devriese and Frank Piessens. “Noninterference through secure multi-
execution”. In: 2010 IEEE Symposium on Security and Privacy. IEEE. 2010, pp. 109–
124.

[18] Peter Dinges and Gul Agha. “Targeted test input generation using symbolic-concrete
backward execution”. In: Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering. 2014, pp. 31–36.

[19] B.W.A. Elema. “Finding Chinks in the armour; Software vulnerability prediction using
deep learning on graph representation of source code”. MA thesis. Open University,
the Netherlands, 2020.

[20] Daniele Filaretti and Sergio Maffeis. “An executable formal semantics of PHP”. In:
European Conference on Object-Oriented Programming. Springer. 2014, pp. 567–592.

[21] Vijay Ganesh et al. “HAMPI: A string solver for testing, analysis and vulnerability de-
tection”. In: International Conference on Computer Aided Verification. Springer. 2011,
pp. 1–19.

[22] Patrice Godefroid. “Fuzzing: Hack, art, and science”. In: Communications of the ACM
63.2 (2020), pp. 70–76.

[23] David Grove and Craig Chambers. An assessment of call graph construction algo-
rithms. IBM Thomas J. Watson Research Division, 2000.

[24] C. L. Hamblin. “Translation to and from Polish Notation”. In: The Computer Journal
5.3 (Nov. 1962), pp. 210–213. ISSN: 0010-4620. DOI: 10 .1093 /comjnl /5 .3 .210.
eprint: https://academic.oup.com/comjnl/article-pdf/5/3/210/1172943/
5-3-210.pdf. URL: https://doi.org/10.1093/comjnl/5.3.210.

[25] Mark Hills, Paul Klint, and Jurgen J Vinju. “Enabling PHP software engineering re-
search in Rascal”. In: Science of Computer Programming 134 (2017), pp. 37–46.

[26] Roger Hindley. “The principal type-scheme of an object in combinatory logic”. In:
Transactions of the american mathematical society 146 (1969), pp. 29–60.

[27] Joxan Jaffar, Jorge A Navas, and Andrew E Santosa. “Unbounded symbolic execu-
tion for program verification”. In: International Conference on Runtime Verification.
Springer. 2011, pp. 396–411.

[28] Gary A Kildall. “A unified approach to global program optimization”. In: Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. 1973, pp. 194–206.

[29] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7
(July 1976), pp. 385–394. ISSN: 0001-0782. DOI: 10.1145/360248.360252. URL: https:
//doi.org/10.1145/360248.360252.

[30] Samuel Klingström. “Type Inference in PHP using Deep Learning”. MA thesis. Lunds
University, Sweden, 2020.

[31] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2016.

ii

https://doi.org/10.1093/comjnl/5.3.210
https://academic.oup.com/comjnl/article-pdf/5/3/210/1172943/5-3-210.pdf
https://academic.oup.com/comjnl/article-pdf/5/3/210/1172943/5-3-210.pdf
https://doi.org/10.1093/comjnl/5.3.210
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

[32] J.J. Kronjee. “DISCOVERING VULNERABILITIES USING DATA-FLOW ANALYSIS AND
MACHINE LEARNING DEMONSTRATED FOR PHP APPLICATIONS”. MA thesis. Open
University, the Netherlands, 2020.

[33] Hongzhe Li et al. “Software vulnerability detection using backward trace analysis
and symbolic execution”. In: 2013 International Conference on Availability, Reliabil-
ity and Security. IEEE. 2013, pp. 446–454.

[34] Ken Madlener, Sjaak Smetsers, and Marko Van Eekelen. “A Formal Verification Study
on the Rotterdam Storm Surge Barrier”. In: Proceedings of the 12th International Con-
ference on Formal Engineering Methods and Software Engineering. ICFEM’10. Shang-
hai, China: Springer-Verlag, 2010, pp. 287–302. ISBN: 3642169007.

[35] Abdalla Wasef Marashdih, Zarul Fitri Zaaba, and Saman M Almufti. “The Problems
and Challenges of Infeasible Paths in Static Analysis”. In: International Journal of En-
gineering & Technology 7.4.19 (2018), pp. 412–417.

[36] Thomas J McCabe. “A complexity measure”. In: IEEE Transactions on software Engi-
neering 4 (1976), pp. 308–320.

[37] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of com-
puter and system sciences 17.3 (1978), pp. 348–375.

[38] Glenford J Myers. The art of software testing. John Wiley & Sons, 2006.

[39] Toyoshiro Nakashima et al. “Analysis of software bug causes and its prevention”. In:
Information and Software technology 41.15 (1999), pp. 1059–1068.

[40] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Abstract DPLL and abstract
DPLL modulo theories”. In: International Conference on Logic for Programming Arti-
ficial Intelligence and Reasoning. Springer. 2005, pp. 36–50.

[41] Corina S Păsăreanu and Neha Rungta. “Symbolic PathFinder: symbolic execution of
Java bytecode”. In: Proceedings of the IEEE/ACM international conference on Auto-
mated software engineering. 2010, pp. 179–180.

[42] Frank Piessens. “A taxonomy of causes of software vulnerabilities in internet soft-
ware”. In: Supplementary Proceedings of the 13th International Symposium on Soft-
ware Reliability Engineering. Citeseer. 2002, pp. 47–52.

[43] John Alan Robinson. “A machine-oriented logic based on the resolution principle”.
In: Journal of the ACM (JACM) 12.1 (1965), pp. 23–41.

[44] Steven S. Skiena. The Algorithm Design Manual. Springer, 2009.

[45] C Csallner–N Tillmann–Y Smaragdakis. “DySy: Dynamic Symbolic Execution for In-
variant Inference”. In: (2008).

[46] Sooel Son and Vitaly Shmatikov. “SAFERPHP: Finding semantic vulnerabilities in
PHP applications”. In: Proceedings of the ACM SIGPLAN 6th Workshop on Program-
ming Languages and Analysis for Security. 2011, pp. 1–13.

[47] SQLinjection. https://www.researchgate.net/figure/Example-of-a-SQL-
Injection-Attack_fig1_265947554. Accessed: 2021-03-01.

[48] Nick Stephens et al. “Driller: Augmenting Fuzzing Through Selective Symbolic Exe-
cution.” In: NDSS. Vol. 16. 2016. 2016, pp. 1–16.

iii

https://www.researchgate.net/figure/Example-of-a-SQL-Injection-Attack_fig1_265947554
https://www.researchgate.net/figure/Example-of-a-SQL-Injection-Attack_fig1_265947554

[49] Bertrand Stivalet and Elizabeth Fong. “Large scale generation of complex and faulty
PHP test cases”. In: 2016 IEEE International conference on software testing, verifica-
tion and validation (ICST). IEEE. 2016, pp. 409–415.

[50] Peri L Tarr and Alexander L Wolf. Engineering of Software: The Continuing Contribu-
tions of Leon J. Osterweil. Springer Science & Business Media, 2011.

[51] M.N.S. Thulasiraman K; Wamy. Graphs: Theory and algorithms. John Wiley and Son,
1992.

[52] Julien Vanegue, Sean Heelan, and Rolf Rolles. “SMT Solvers in Software Security.” In:
WOOT 12 (2012), pp. 9–22.

[53] Ruud Weijde van. “Type inference for PHP; A constraint based type inference written
in Rascal”. MA thesis. Open University, the Netherlands, 2020.

[54] XSS cross site scipting. https://blogs.sap.com/2015/12/17/xss-cross-site-
scripting-overview-with-contexts/. Accessed: 2021-03-01.

[55] Javad Yousefi, Yasser Sedaghat, and Mohammadreza Rezaee. “Masking wrong-successor
Control Flow Errors employing data redundancy”. In: 2015 5th International Confer-
ence on Computer and Knowledge Engineering (ICCKE). IEEE. 2015, pp. 201–205.

[56] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. “Stranger: An automata-based string
analysis tool for php”. In: International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer. 2010, pp. 154–157.

[57] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. “Z3-str: A z3-based string solver
for web application analysis”. In: Proceedings of the 2013 9th Joint Meeting on Foun-
dations of Software Engineering. 2013, pp. 114–124.

iv

https://blogs.sap.com/2015/12/17/xss-cross-site-scripting-overview-with-contexts/
https://blogs.sap.com/2015/12/17/xss-cross-site-scripting-overview-with-contexts/

ARTICLES

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. “Compilers, principles, techniques”.
In: Addison wesley 7.8 (1986), p. 9.

[2] Mahtab Alam. “Software security requirements checklist”. In: International Journal
of Software Engineering, IJSE 3.1 (2010), pp. 53–62.

[3] Andrew W Appel. “SSA is functional programming”. In: Acm Sigplan Notices 33.4
(1998), pp. 17–20.

[5] Roberto Baldoni et al. “A survey of symbolic execution techniques”. In: ACM Com-
puting Surveys (CSUR) 51.3 (2018), pp. 1–39.

[9] Bernd Burgstaller, Bernhard Scholz, and Johann Blieberger. “A symbolic analysis frame-
work for static analysis of imperative programming languages”. In: Journal of systems
and software 85.6 (2012), pp. 1418–1439.

[13] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. “A simple, fast dominance al-
gorithm”. In: Software Practice & Experience 4.1-10 (2001), pp. 1–8.

[14] Martin Davis, George Logemann, and Donald Loveland. “A machine program for
theorem-proving”. In: Communications of the ACM 5.7 (1962), pp. 394–397.

[15] Martin Davis and Hilary Putnam. “A computing procedure for quantification the-
ory”. In: Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

[16] Bjorn De Sutter, Ludo Van Put, and Koen De Bosschere. “A practical interprocedural
dominance algorithm”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 29.4 (2007), 19–es.

[22] Patrice Godefroid. “Fuzzing: Hack, art, and science”. In: Communications of the ACM
63.2 (2020), pp. 70–76.

[24] C. L. Hamblin. “Translation to and from Polish Notation”. In: The Computer Journal
5.3 (Nov. 1962), pp. 210–213. ISSN: 0010-4620. DOI: 10 .1093 /comjnl /5 .3 .210.
eprint: https://academic.oup.com/comjnl/article-pdf/5/3/210/1172943/
5-3-210.pdf. URL: https://doi.org/10.1093/comjnl/5.3.210.

[25] Mark Hills, Paul Klint, and Jurgen J Vinju. “Enabling PHP software engineering re-
search in Rascal”. In: Science of Computer Programming 134 (2017), pp. 37–46.

[26] Roger Hindley. “The principal type-scheme of an object in combinatory logic”. In:
Transactions of the american mathematical society 146 (1969), pp. 29–60.

[29] James C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7
(July 1976), pp. 385–394. ISSN: 0001-0782. DOI: 10.1145/360248.360252. URL: https:
//doi.org/10.1145/360248.360252.

[35] Abdalla Wasef Marashdih, Zarul Fitri Zaaba, and Saman M Almufti. “The Problems
and Challenges of Infeasible Paths in Static Analysis”. In: International Journal of En-
gineering & Technology 7.4.19 (2018), pp. 412–417.

v

https://doi.org/10.1093/comjnl/5.3.210
https://academic.oup.com/comjnl/article-pdf/5/3/210/1172943/5-3-210.pdf
https://academic.oup.com/comjnl/article-pdf/5/3/210/1172943/5-3-210.pdf
https://doi.org/10.1093/comjnl/5.3.210
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252

[36] Thomas J McCabe. “A complexity measure”. In: IEEE Transactions on software Engi-
neering 4 (1976), pp. 308–320.

[37] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of com-
puter and system sciences 17.3 (1978), pp. 348–375.

[39] Toyoshiro Nakashima et al. “Analysis of software bug causes and its prevention”. In:
Information and Software technology 41.15 (1999), pp. 1059–1068.

[43] John Alan Robinson. “A machine-oriented logic based on the resolution principle”.
In: Journal of the ACM (JACM) 12.1 (1965), pp. 23–41.

[45] C Csallner–N Tillmann–Y Smaragdakis. “DySy: Dynamic Symbolic Execution for In-
variant Inference”. In: (2008).

[52] Julien Vanegue, Sean Heelan, and Rolf Rolles. “SMT Solvers in Software Security.” In:
WOOT 12 (2012), pp. 9–22.

vi

BOOKS

[23] David Grove and Craig Chambers. An assessment of call graph construction algo-
rithms. IBM Thomas J. Watson Research Division, 2000.

[31] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2016.

[38] Glenford J Myers. The art of software testing. John Wiley & Sons, 2006.

[44] Steven S. Skiena. The Algorithm Design Manual. Springer, 2009.

[50] Peri L Tarr and Alexander L Wolf. Engineering of Software: The Continuing Contribu-
tions of Leon J. Osterweil. Springer Science & Business Media, 2011.

[51] M.N.S. Thulasiraman K; Wamy. Graphs: Theory and algorithms. John Wiley and Son,
1992.

vii

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Thesis Outline

	Preliminaries
	Determining input values that trigger paths to injection vulnerabilities in PHP-code using Symbolic Execution
	The PHP programming language
	Vulnerabilities
	Static Software analysis
	Paths in software
	Triggering paths
	Symbolic Execution
	Static Single Assignment (SSA)
	branches
	loops

	SMT solvers

	Research Design
	Research questions
	Research method
	selection of frameworks and software tools
	Analysis of existing tools for creating AST's
	Choosing appropriate programming languages
	Choosing an appropriate SMT solver

	Testing
	Data description
	Test files with isolated PHP code
	PHP Vulnerabitity test suite

	Finding Paths
	RQ1: How can we find paths in PHP-code efficiently?
	Create AST's from PHP-files
	More about ASTs
	Create a searchable data structure from an ast-file
	Algorithm B
	Statements
	Assignments
	The WHILE statement
	The IF statement
	Switch
	Functions
	Functions calling functions
	Functions Variables
	Array's
	Graphs resulting from algorithm B

	Construction of paths

	Evaluating PHP code by Symbolic Execution
	RQ2: Up to what extent can PHP-code be evaluated using Symbolic Execution?
	Variables in SMTLIB
	Conditions and assignments in SMTLIB
	Array's
	Single variables
	Using SMTLIB's array's

	Functions
	User defined functions functions
	Function return values
	String functions
	array functions

	Type inference

	Solving Path Conditions
	Draw up path conditions
	Solving constraints with Z3
	SAMATE
	The size and complexity of the dataset
	Usability
	Code coverage

	Specific code fragments
	Regular expressions
	String functions
	Numeric strings

	Conclusion
	Discussion
	RQ1: How can we find paths in PHP-code efficiently?
	RQ2: Up to what extent can PHP-code be evaluated using Symbolic Execution?
	RQ3: Up to what extent can path conditions be solved?

	Research contribution
	Limitations and future work
	Related work
	Finding paths in a graph
	Symbolic Execution
	Tools resulting from previous research
	Research related to SMT solvers

	Example of PHP code vulnerable to injection
	Example of how a SAMATE PHP file translates into SMTLIB
	Comparison of PHPAST and PHPLY
	Operators for types in SMTLIB
	Utilities
	SAMATE line number inserter
	SAMATE CWE selector
	Remove special characters from file name
	Batch file creator
	Testing tool for graph unit
	Tool for extracting AST functions
	Testing tool for type inference unit
	Testing tool for testing AST functions

