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ABSTRACT

The goal of this research is to determine how Reinforcement Learning (RL) can be best
used for board-card games. Board-card games are marble racing games with imperfect
information and team play. These game characteristics bring more complexity after the
successes of RL research on perfect information games like Go and Chess.

This research is based on, and part of, broader developments in RL. The study of re-
lated work led to the choice to apply the techniques of Deep Q-Networks (DQN) and Deep
Monte Carlo (DMC) to a board-card games case study. The agents learn from self-play only.
RLCard was chosen as the RL research framework.

The results with DMC are much better than with DQN. DQN scores a maximum win
rate of 68% against randomly playing agents, and manual analysis shows that the DQN
agents learns the game poorly. The variances caused by the characteristics of board-card
games (large action space, multi-agent, imperfect information) are the likely cause of the
problems with the incremental nature, ε-greediness and Artificial Neural Network (NN) of
DQN. DMC scores a win rate of 99% against randomly playing agents and 49% against rule-
based agents after 49 days of training. Manual analysis shows that DMC learns gradually.
Experiments with the NN size, reward function and the observation model demonstrate
that even better results are likely with more training.

DMC seems to be the best technique to learn board-card games. The playing strength
is good enough and other properties of RL techniques are interesting enough to be applied
to board-card games in practice. Future work on DMC would be worthwhile to determine
how strong the agent can become.
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1
INTRODUCTION

Scientific research in the area of Artificial Intelligence (AI), and the sub-area Machine Learn-
ing (ML) in particular, has shown tremendous progress in recent years. Computers are
learning on their own and are becoming better than humans. AI research is the driver be-
hind developments such as image recognition, face recognition, speech recognition, vir-
tual assistants, autonomous cars, robotics, language processing, game playing, and data
classification.

ML is a part of AI that studies computer systems that learn from experiences or data.
Rules and logic are not manually programmed. A machine recognizes patterns in data or
results of actions and learns to apply these experiences.

This research project takes place within a part of ML called Reinforcement Learning
(RL). In RL research the actions of agents in an environment and their (optimal) results or
rewards are studied. RL is, among others, successfully applied to game-playing agents that
learn from self-play.

The research in game-playing plays a prominent role in the development of AI, and RL
in particular. Games provide a controlled environment for simulations and experiments
with AI algorithms. Games can be considered models of real-world problems. The progress
of AI can be measured on game-playing. AI research has brought new and creative insights
into game-playing. Especially RL-based game-playing agents came up with strategic nov-
elties. AlphaZero has enriched the playing field of Chess and Go with fascinating moves in
beautiful matches [Silver et al., 2018].

After the successes of applying RL to games like Go and Chess, the research on RL has
taken on further challenges. Games with incomplete information and cooperative game-
play bring more complexity to the table. In games with incomplete information, the cur-
rent state is not entirely known. In cooperative game-play, agents have to find ways to work
together. Games with these properties have specific mechanics, making it worthwhile to
research cooperative, incomplete information games. Furthermore, incomplete informa-
tion and cooperation are common properties in practical applications of AI, such as au-
tonomous cars.

One category of games with incomplete information and cooperative game-play is board
games with marbles that are moved by playing cards. This type of games is referred to as
board-card games. Two teams of two players race their marbles to the finish area. The
first team to finish all marbles wins. A deck of cards provides functions (e.g., start, run and
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switch) that a player can apply to the marbles on the board. The deck of cards and team-
play lead to incomplete information and cooperative game-play. Examples of board-card
games are Dog, Tock/Tuck, Sorry! and Keezen.

1.1. RESEARCH GOAL
The goal of this research is to determine how RL can be used for board-card games. This
research aims to develop game-playing agents that perform well on imperfect information
and cooperative play. The agents are based on the principles of RL, following recent sci-
entific progress on other games like Go, Chess, Shogi, Poker, Bridge, etc. The agents learn
from self-play from scratch without any domain knowledge.

1.2. RESEARCH QUESTIONS
The research searches for answers to the following questions:

• How can an RL-based agent achieve the strongest gameplay in incomplete infor-
mation and cooperative board-card games?

This main research question points to the overall goal of the research. The next ques-
tions are sub-questions, supporting the main question.

(i) What RL research is done in incomplete information and cooperative games?

(ii) How can these RL techniques be used for a board-card game, with Keezen as a
case study?

(iii) How do RL agents perform in board-card games?

(iv) Which RL techniques lead to the best results?

1.3. RESEARCH DESIGN
This research is based on and part of the broader developments in the research area of
RL. The research started with the study of existing research, which is described in the next
chapter. The choice of techniques originate in former research.

We try to find answers to the research questions by implementing multiple RL-based
agents and conducting experiments. This RL research project aims to learn without trans-
ferring externally collected data or knowledge to the agents. All data is generated by self-
play. The agents start from scratch and only learn from their own experiences, similar to
AlphaZero [Silver et al., 2018].

This project does not study all board-card games separately. The game Keezen is taken
as a case study. Although the games Dog, Tock, and Sorry! are not investigated directly, the
intention and expectations are that the conclusions could be generalized to these board-
card games.

The results of the experiments are examined:

• quantitatively: by analyzing the performance of agents in tournaments.

• qualitatively: by manual analysis of the gameplay.
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1.4. CONTRIBUTIONS
The following contributions of this research could be identified:

• An overview of RL research on games.

• An RL model of Keezen

• Full implementations to train RL agents for Keezen.

• Agents with good gameplay against people

1.5. THESIS OUTLINE
The remainder of this thesis is structured as follows. The next chapter introduces related
work to this research. It handles RL and game-playing research. Chapter 3 describes the
board-card games with an analysis of their characteristics. Then the method is described
in Chapter 4, followed by the experiments in Chapter 5. The results and discussions are
in Chapters 6 and 7. This report ends with the conclusions, future work and reflection in
Chapter 8.

3



2
REINFORCEMENT LEARNING AND GAMES

This chapter describes the related work in the area of RL and game-playing. The first part
describes the RL techniques that are relevant for this research. The last section gives an
overview of research on games. The main part of the description is based on 2nd edition
of the book ’Reinforcement Learning - An Introduction’ by Sutton and Barto [Sutton and
Barto, 2018], with some additions based on [Graesser and Keng, 2019].

2.1. REINFORCEMENT LEARNING
RL is one of the main areas of research in ML, next to supervised learning and unsupervised
learning. In RL agents discover which actions return the highest reward by trying them. An
agent tries to behave optimally without supervision or a complete model of the environ-
ment. RL is a natural fit for sequential decision-making problems such as games and many
real-world problems.

Figure 2.1 shows the basic RL control loop. In RL, the agent, the learner and decision-
maker, explores the actions in the environment in a quest for the best rewards. Rewards are
numerical values from the environment. The rewards may be sparse. Training consists of
simulations or trial-and-error without an intelligent teacher. The training develops a policy
that governs the behavior of the agent.

Figure 2.1: Reinforcement learning control loop.

Figure 2.1 also applies to multi-agent environments. The agents are part of the environ-
ment, and each agent experiences the environment with the changes that follow from the

4



actions by other agents.
The Markov Decision Process (MDP) [Bellman, 1957] is used commonly in science to

research systems, states, and state transitions. It is a mathematical model for decision-
making and a natural fit for games. An MDP is defined by a tuple 〈S, A,P,R,γ〉, where:

• S is a set of states (state space)

• A is a set of actions (action space)

• Pa(s, s′) = Pr (s′|s, a), state transition function. A probability distribution that an ac-
tion a in state s leads to a certain next state s′.

• Ra(s, s′), reward function. The immediate rewards for the transition from state s to
next state s′ due to action a.

• γ is the discount factor, γ ∈ [0,1]. This factor balances between the values of immedi-
ate and future rewards.

A process is said to have the Markov property if the probability distribution of future states
P depends only upon the current state s. In other words: the future of the process follows
from the current state s and does not depend on the past. If agents use observations from
the past (like already played cards) to come to optimal decisions, then the process does not
have the Markov property.

In general, the agent does not know the P and R functions a priori and experiences these
by executing actions in the environment. When an agent interacts in a sequential manner
and each interaction is a time step, then the trajectory begins like s0, a0,r1, s1, a1,r2, .... Every
time step is a tuple 〈s, a,r 〉. An episode is a trajectory that spans a full game from start
to finish. In a finite MDP, which is common for many games, the sets of states, actions,
and rewards have a finite number of elements. An episode of a board-card game is finite
because the marbles move in the direction of the finish fields.

The return Gt is the sum of all rewards. With rewards r , time steps t and discount rate
γ, the return is:

Gt = rt+1 +γrt+2 +γ2rt+3 + ... or Gt = rt+1 +γGt+1 (2.1)

The goal of an RL algorithm is to learn a policy that governs the choice of actions to
maximize the return G . The policy π is a probability distribution over possible actions in
states. π(a|s) is the probability of taking action a in state s under policy π. This defines a
stochastic policy. A deterministic policy π(s) maps one action a to a state s. Policy-based
algorithms directly learn a policy. On-policy methods evaluate or improve the current pol-
icy that generates the trajectories, and off-policy methods evaluate or improve a different
policy. In general, on-policy methods are more simple than off-policy methods. On-policy
and off-policy algorithms differ in the way training data can be used. On-policy algorithms
can only utilize the data from the current policy. The policy iterates through versions that
have their specific training data that becomes unusable after the training. Examples of
on-policy algorithms are Reinforce, Sarsa, Actor-Critic, and Proximal Policy Optimization
(PPO). Off-policy algorithms can reuse any data to train. DQN and Monte Carlo Methods
(MCM) are, in general, implemented as off-policy algorithms.

A value function describes how good states s or state-action pairs (s, a) are related to the
future reward under a policy π. A value function V (s) evaluates the value of a state s and
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Q(s, a) evaluates the value of a state-action pair (s, a). The value function Vπ(s) of a state s
under a policy π is the expected return G when starting in s and following π thereafter. The
value function Qπ(s, a) is similar for the action a in state s. An algorithm is called value-
based if the agent learns a value function (V or Q). Examples are Sarsa and DQN.

A model of the environment predicts the probabilities of the next state s′ for each action
a in a state s. The model is defined by the transition function P (s′|s, a). Model-based ap-
proaches can be said to emphasize planning (a map of the environment) and model-free to
emphasize learning (the values of actions or states). Model-based algorithms learn a model
that describes the transition dynamics of the environment. Model-free algorithms do not
do this and can not make predictions about the next states and expected rewards before
taking actions. The agent utilizes the model to predict the behavior of the environment in
the next steps. An environment with a large state or action space can be hard to model. A
model is only useful if it can reliably predict many steps in the future. MCM and Q-learning
are examples of model-free algorithms.

The optimal policy π∗ gives the best rewards. For a process with finite episodes one or
more optimal policies exist with an expected return G in all states greater than or equal to
all other policies. All optimal policies share the same value function V∗(s) or Q∗(s, a). If
the optimal value function is known, then the optimal policy is the policy that selects the
highest scoring actions (greedy). Unlike Q∗, the V∗ function requires to calculate one step
further. Hence, the estimation of action values is beneficial compared to state values if no
model of the environment is available.

The trade-off between exploration and exploitation is a challenge in RL. The agent should
exploit experiences to obtain high rewards and explore new paths to discover better ac-
tions. The agent must balance these two to come to the best results. Epsilon-greedy is a
method to balance exploration and exploitation randomly. Epsilon refers to the probability
of choosing exploration over exploitation. Epsilon-greedy prefers exploitation with a small
chance of exploration.

The state s can mean two things: the state of the environment and the state observed
by an agent. If the observed state matches the environmental state, then the environment
is fully observable otherwise the environment is partially observable. Partial observability
is caused by hidden information (such as the cards in board-card games) or limitations in
the measure equipment or the data representation. This means many real-world problems
are partially observable.

In board-card games, the game state is not fully observable. The agents have to make
decisions under uncertainty. The more general (Partially Observable Markov Decision Pro-
cess (POMDP)) [Astrom, 1965], [Kaelbling et al., 1998] handles this by extending the MDP
with:

• Ω is a set of observations

• O(s, a) = Pr (o′|s′, a): Observation function. A probability distribution that an action
a in state s leads to a next observation o′ in the next state s′.

In a POMDP agents make observations o(s, a) based on the actions and the resulting
states. The distribution function represents the probability of the state of the environment
and forms the basis to act under uncertainty. The probability distributions over the par-
tially observable states make the POMDP more computationally intensive than a MDP. The
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POMDP can be seen as an MDP with an extended state space, with so-called belief states.
A belief state of an agent is a probability distribution over the set of states (S).

The imperfect information adds complexity and requires extra computational resources
if a POMDP is to be solved exactly. In board-card games the hidden state space, caused by
the playing cards, is huge 1.

In practice, the optimal functions and policies are rarely found due to enormous state
spaces (hidden or not). Computational power and available memory are two constraints
that often make the use of approximations of value functions, policies and environmen-
tal models necessary. Function approximation is a possible solution for large state spaces
and can be a solution for POMDPs too. In practice, function approximation can perform
surprisingly well when providing the observations and ignoring the unobservable informa-
tion. Non-linear function approximation is the subject of Section 2.5.

MCM and Temporal Difference learning (TD) [Sutton and Barto, 1987] are two funda-
mental classes of methods for solving finite Markov decision problems. Both methods have
strengths and weaknesses. In general, MCM are simple and do not require a model of the
environment, but require more computation. TD also requires no model and is incremen-
tal and harder to stabilize. These two types of algorithms are the subjects of the following
two sections.

2.2. MONTE CARLO METHODS
MCM in general are solutions to problems based on repeated random sampling. To learn a
state-value function for a policy, values of states and/or actions are estimated by averaging
the returns from rollouts (play until the game finishes) from a state s. MCM works with
finite episodic tasks.

MCM approximates optimal policies by maintaining an approximate policy and an ap-
proximate value function. Algorithm 1 shows an MCM algorithm. The value function
Qπ(s, a) is continuously improved regarding the current policy πwhile the policy is greedily
improved with the updated value function. Together, these two moving targets try to ap-
proach optimality. The policy is replaced by a new policy when the new policy is uniformly
better than the old policy. The policy that is used to generate behavior, the behavior pol-
icy, is different from the policy that is evaluated and improved, the target policy. The target
policy can be greedy and the behavior policy explores all possible actions.

In MCM there are two ways of handling multiple visits to a state in the same episode.
First-visit MCM estimates the value of a state based on the first visits to the state, while
every-visit MCM averages the returns of all visits to a state. These two methods have small
differences. First-visit is more studied and every-visit seems to fit better with function ap-
proximation.

MCM do not estimate values based on estimations of successor states, like TD. In other
words: MCM do not bootstrap. MCM can efficiently estimate the value of a single state or
a subset of states. MCM supports generating many episodes from a start state and only
averaging the returns from the states of interest. As MCM works without a model of the
environment, the algorithm calculates the state-action value function.

1To give an idea of the extra state space: if all 4 players have 5 cards and the other 32 cards are in the stock,
then the number of possible combinations of unknown cards in the hands of the other 3 players is:

(47
5

)×(42
5

)× (37
5

)= 5.7×1017.
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Algorithm 1 Monte Carlo Methods. The algorithm is first-visit and becomes every-visit by
removing the if condition on line 9.

1: Input:
A policy π to evaluate

2: Output:
Qπ(s, a) (value function)

3: Initialize:
Qπ(s, a), Returns(s, a)

4: loop(for each episode)
5: Generate an episode (tuples of 〈s, a,r 〉 until game ends at T)
6: G ← 0
7: for each Step of the episode (t=0, t=1,..., t=T-1) do
8: G ← γG + rt+1

9: if st , at not in s0, a0, s1, a1, ..., sT−1, aT−1 then
10: Append G to Retur ns(st , at )
11: Qπ(st , at ) = avg(Retur ns(st , at ))
12: end if
13: end for
14: end loop

Maintaining sufficient exploration is important in MCM. If the policy is deterministic
then many state-action pairs will never be visited. Learning requires continuous explo-
ration, the execution of multiple different actions in a state.

An advantage of MCM is that they may suffer less from violations of the Markov prop-
erty than bootstrapping methods, like TD or Q-learning. This is because MCM do not up-
date value estimates on the basis of other (incomplete observations of) states.

Monte Carlo Tree Search (MCTS) is a popular algorithm that is an extension of MCM
with tree search and is used frequently for searching the best moves in games. The enor-
mous progress of computer playing strength in large, perfect information games such as
Go and Chess is largely achieved by using MCTS.

2.3. TEMPORAL-DIFFERENCE LEARNING

TD refers to learning methods that update estimated values based in part on previously
calculated estimates. TD can learn directly from experience without a model of the envi-
ronment, like MCM. TD methods only have to wait for the next step without knowing a final
return, while MCM have to finish an episode.

The simpliest form of TD is one-step TD or TD(0).
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Algorithm 2 Tabular TD(0).

1: Input:
A policy π to evaluate

2: Output:
Vπ (value function)

3: Initialize:
α: step size parameter, Vπ(s) = 0,∀s ∈ S

4: loop(for each episode)
5: Initialize s
6: for each step of the episode do
7: a ← action a for s given by π
8: Take action a, observe r , s′

9: Vπ(s) ← Vπ(s)+α[r +γVπ(s′)−Vπ(s)]
10: s ← s′

11: end for
12: end loop

TD combines the sampling of MCM with bootstrapping. TD updates estimates partly
based on other estimates. TD are online and incremental. Especially with long or infinite
episodes this is an advantage over MCM. TD learns from each transition. In practice TD
seems to converge faster than MCM on stochastic tasks according to [Sutton and Barto,
2018]. In general, TD based algorithms also converge less robustly than MCM.

2.4. Q-LEARNING
Q-learning [Watkins, 1989] is an off-policy TD algorithm. The introduction of Q-learning
can be seen as an early breakthrough in RL. The optimal action-value can be calculated
with the recursive Bellman equation (2.2). The maximum future reward Q(s, a) is the cur-
rent reward r plus the maximum reward for the next state s’. The discount factor γ controls
the weight of future states (early rewards are valued higher than late rewards).

Q(s, a) = r +γmax
a

(Q(s′, a)) (2.2)

State-action pairs Q(s, a) are more efficient to calculate with than just values of states
V (s) if no model of the environment is available. The value of Q(s, a) can be approximated
iteratively as in equation (2.3), which is the base of Q-learning algorithms.

Q(st , at ) ←Q(st , at )+α[rt+1 +γmax
a

Q(st+1, a)−Q(st , at )] (2.3)

The learned action-value function Q(s, a) directly approximates the optimal action-
value function Q∗(s, a), independent of the current policy. The policy still has an effect
in steering the visits and updates of state-action pairs. The learning rate α weights the new
information. A value of zero means the agent learns nothing and a value of 1 means only
new knowledge is considered.
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Algorithm 3 Q-learning. Resembles TD with Equation 2.3.

1: Input:
A policy π to evaluate

2: Output:
Qπ(s, a) (action-value function)

3: Initialize:
Q(s, a) = 0,∀s ∈ S, a ∈ a(s)

4: loop(for each episode)
5: Initialize s
6: for each step of the episode do
7: a ← action for s derived from Qπ

8: Take action a, observe r , s′

9: Qπ(s, a) ← Qπ(s, a)+α[r +γmaxa Qπ(s′, a)−Qπ(s, a)]
10: s ← s′

11: end for
12: end loop

2.5. NON-LINEAR FUNCTION APPROXIMATION
The simplest problems in RL, with small state and action spaces that fit entirely in arrays
or matrices, might have exact solutions. This means that the optimal value function and
policy is found. However, most RL problems of interest are more complex and need non-
linear function approximation methods. NNs are widely used for these approximations.

NNs are a main component of the algorithms in this research. Non-linear activation
functions let the NN approximate highly complex non-linear functions. The network ar-
chitecture consists of the number of units and how these units are connected. The units
are organized into groups, which are called layers. The layers are in a chain structure, with
each layer being a function of the layer that preceded it. The main considerations are the
depth of the network and the width of each layer. The depth corresponds to the number of
layers. The first layer is called the input layer, and the final layer is called the output layer.
Layers between these two are the hidden layers. Fully connected layers or dense layers,
mean that every output of a layer is connected to every node in the next layer. A feedfor-
ward NN has no loops in the network. A NN is called recurrent if it has at least one loop.
Connections between units of the NN have associated weights that the units typically use
to compute a weighted sum of the inputs. The result is applied to a so-called activation
function, to produce the unit’s output or activation.

The NN approximates the value function V or policy π. The input of the NN consists of
states s or observations o, which are converted to vectors. The outputs of the NN are the
available actions with the corresponding Q-values.

Experiences are fed into the NN in batches. These batches consist of training samples
to update the internal model (propagate through the NN). The batch size is a so-called
hyperparameter that defines the number of samples that is processed before updating the
parameters of the NN.

There are several types of networks with particular characteristics that fit different types
of input data. Each type is characterized by the type of layers and the way the network is
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computed. It is common to combine NN types to form a hybrid type. Three main type of
networks can be identified:

• Multi Layer Perceptrons (MLP) or (deep) feedforward network)
MLPs consist only of fully connected layers. An MLP is a general purpose NN with a
single vector as input format. This makes an MLP less feasible for input data that has
structure, like the pixels of a 2D image. An MLP has many parameters which involves
longer learning. MLPs are stateless, they do not have a history and inputs are not
ordered and are all processed independently. MLPs have no feedback connections
when no outputs of the model are fed back into itself. If a NN contains feedback
connections, they are called recurrent neural networks.

• Convolutional Neural Networks (CNN)
CNN are specialized in processing image data. They contain one or more convolution
layers consisting of convolution kernels. Each kernel may learn a different feature.
CNN are stateless and feedforward.

• Recurrent Neural Networks (RNN)
RNNs are specialized in sequential data. A datapoint in an RNN consists of a se-
quence of elements or vectors. An RNN assumes that the order of inputs has mean-
ing. RNN are stateful, the input is part of a sequence. The RNN has recurrent lay-
ers with a hidden state. The memory lasts for the sequence and is reset for a new
sequence. Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]
layers are most common.

The type of network depends on the characteristics of the environment. [Graesser and
Keng, 2019] describe some guidelines for choosing a network family. The information po-
sition plays an important role. The authors identify three categories of POMDPs:

• Fully observable given partial history

• Fully observable given full history

• Never fully observable

Board-card games would fit best in the third category. The history of the played cards does
not reveal the internal game state to a player. However, the board-card games have game
positions with full observability. If the other players have no cards, which happens at the
end of every round, all playing card locations are known.

The shape of the input layer is given by the environment’s state space. The shape of the
output layer depends on the action space and the algorithm. Examples are Q-values, action
probabilities or action probabilities and V-values if the agent learns a Q-function, a policy
or both a policy and a value function respectively.

Action and state representation are important factors in the success of RL. States and
actions vary greatly from task to task, and how they are represented can strongly affect per-
formance. According to [Sutton and Barto, 2018], in RL, as in other kinds of learning, such
representational choices are more art than science. Important factors in the design of a
state representation are completeness (sufficient information to solve the problem), com-
plexity (available computational resources) and information loss (representation losses in-
formation).
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2.6. DEEP Q-NETWORKS
DQN are a variant of Q-learning with non-linear function approximation by NNs. The
function approximation of DQN should generalize from visited state-action pairs to sim-
ilar states and actions. If there are parts of the state-action space that are very different
from the experienced states and actions, then it is unlikely that the function approxima-
tion results in accurate Q-values. DQN have improved performance compared to plain
Q-learning with large state spaces, but has decreased convergence and stability. Stability
issues are caused by the correlation in sequential observations and actions. Multi-agent
environments have more variance than single agent environments, which could influence
the learning progress negatively. DQN can suffer from a maximization bias. The algorithm
consists of a maximization over estimated values, which can lead to a positive bias if the
estimated values are distributed around a low value. If a true value is zero, the maximum
of the estimated values is relatively high.

Researchers have proposed several extensions to DQN to gain efficiency and stability.
Notable optimisations are Double DQN [Van Hasselt et al., 2016], Prioritized Replay Buffer
[Schaul et al., 2015], Dueling DQN [Wang et al., 2016] and Distributional DQN [Bellemare
et al., 2017]. Combining these techniques resulted in better performance on Atari games
[Hessel et al., 2018]. The domain of classic Atari 2600 games is a common testbed for rein-
forcement learning, including an interesting article of DeepMind [Mnih et al., 2013].

2.7. DEEP MONTE CARLO
DMC is MCM combined with NNs for non-linear function approximation. The DMC algo-
rithm was successfully trained for Dou Dizhu, a Chinese card game that has similar charac-
teristics as board-card games such as large action space, multi-player and imperfect infor-
mation. DMC in this report refers to the implementation that was used for DouZero [Zha
et al., 2021]. The DouZero implementation handles large action spaces with legal actions
that vary significantly. The authors point out that DMC has three advantages over DQN:

• DMC is, as a MCM based implementation, not susceptible to overestimation.

• With DMC the episode length (length of play) does not impact the convergence.

• DMC’s handling of large action spaces with varying legal actions is more efficient.

The authors have developed DouZero to handle a large set of actions with the legal actions
varying from turn to turn. DouZero is MCM with function approximation by NNs, action
encoding in matrices, and parallel processing. An agent consists of multiple actor pro-
cesses and one learner process. The learner process maintains Q-networks for the states
and updates the networks based on the data from the actor processes. The actors sample
trajectories from the game implementation and calculate the rewards for every state-action
value. The Q-networks of the actors are synchronized with the global networks periodically.
There are three shared buffers between the learner and the actors. The parallel actors make
the system scalable.

2.8. OTHER ALGORITHMS
In the dynamic research area of RL, there is a wide range of algorithms. Some notable algo-
rithms that are not described here are:
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• Asynchronous Advantage Actor-Critic (A3C) is a further development on such called
Actor-Critic methods [Konda and Tsitsiklis, 2000]. The asynchronous nature leads
to efficient learning on Atari games, TORCS Car Racing Simulator, MuJoCo Physics
Simulator, and a 3D environment [Mnih et al., 2016].

• Counterfactual Regret Minimization (CFR) is an algorithm that is based on counter-
factual regret, which exploits the degree of incomplete information [Zinkevich et al.,
2007].

• PPO is a policy gradient method. PPO is among others successfully applied to arcade
games [Schulman et al., 2017].

• Neural Fictitious Self-Play (NFSP) is was developed for imperfect information games.
NFSP is based on DQN and performed better than DQN at poker [Heinrich and Silver,
2016].

2.9. RL IN GAMES
This section describes related research on the use of RL for the turn-based board and card
games with imperfect information and cooperation between agents. RL proved very fruitful
in game playing. Recent years have shown significant achievements in board games and
card games like Chess, Bridge, Poker, and Go by applying self-play. Also in video games, RL
has been successful. Just defining the rules of a game and running hours, days, or weeks
of self-play turned out to be enough to beat the best humans and the most sophisticated
computer programs, depending on the characteristics of the games. Each game has specific
properties and dynamics that influence the success of RL techniques.

No prior work was found on board-card games like Keezen, Tock, Dog, or Sorry!. RL
research has been applied to Pachisi and Ludo, simpler dice-based pawn racing games. In
this research, the TD algorithm did perform well [Matthews and Rasheed, 2008], as did the
Q-learning algorithm [Alhajry et al., 2012].

Table 2.1 shows an overview of researched games with some characteristics, the RL
techniques, and the achieved level of play compared to humans. The games and the re-
search are briefly described after the table.
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Table 2.1: Overview of characteristics of games with the RL algorithm and achieved level compared to hu-
mans. The level of play is divided in amateur (experienced player) and top (potential world champion).

Game Chance Information Players Team Algorithm Level of play
Backgammon Yes Perfect 2 No TD-learning, NN Slightly below top
Big 2 Yes Imperfect 4 No PPO, NN Better than amateur
Bridge Yes Imperfect 4 Yes MCM, NN Amateur
Clue(do) Yes Imperfect 3-6 No Q-learning, NN Amateur
Dou Dizhu Yes Imperfect 3 Yes MCM, NN Better than top
Go No Perfect 2 No MCTS, NN Better than top
Hanabi Yes Imperfect 3-5 Yes ? Worse than amateur
Hearts Yes Imperfect 3-6 No MCTS, NN Amateur
Poker Yes Imperfect 2-10 No MCM, CFR, NN Better than top
Scrabble Yes Imperfect 2-4 No B*, MCM Better than top
Settlers of Catan Yes Imperfect 3-4 No Q-learning, NN ?, beats best heuristic
Skat Yes Imperfect 3 Yes MCM Amateur
Ticket to ride Yes Imperfect 2-5 No MCTS Amateur

Backgammon is a two-player, perfect information board game with randomness. The
program TD Gammon achieved in 1995 a strong level of play in Backgammon by applying
the TD algorithm [Tesauro, 1994]. The game has a large branching factor which made brute
force not feasible [Tesauro, 1995].

Big 2 is a four-player, imperfect information card game of Chinese origin. The PPO
algorithm is used to train a NN, purely learning via self-play [Charlesworth, 2018]. The
trained agents have beaten some amateur players and are not tested against expert players.

Bridge, also known as Contract Bridge, is a card game with randomness, imperfect in-
formation, team play, and bidding. Two pairs of two players play this game. As the subject
of this research, the game is competitive and cooperative. At this moment, the top hu-
man bridge players are not outperformed by computers. One complex part of Bridge is
the bidding phase [Yeh et al., 2018]. Other complicating factors are team play and imper-
fect information. The best performance is achieved by MCM with customizations, accord-
ing to [Khemani and Singh, 2018]. Tournaments between bridge bots are organized since
decades. Micro Bridge is the latest tournament winner (2019), using MCM.

Clue is a detective board game. Clue is the name of the game in the United States, the
game is also known as Cluedo. Pawns or figures move through a house and find information
in rooms to solve a murder. The game is based on a partial observable state. A combina-
tion of Q-learning and a Bayesian network gave good results, according to [Cai and Ferrari,
2008].

Dou Dizhu is a three-player card game with bidding that is popular in China. A combi-
national Q-learning agent outperformed other RL methods and plays well against humans
[You et al., 2019]. In the summer of 2021, an even better performing solution was devel-
oped: DouZero [Zha et al., 2021]. DouZero implements DMC, which is described in Section
2.7.

Go is a two-player perfect information board game that has been a major challenge
in AI research because of the enormous state space. In 2015 and 2016 AlphaGo was the
first computer program to defeat professional Go players on a full-size board [Silver et al.,
2016]. AlphaGo uses MCTS with a value network and a policy network. It was trained by
human and computer play. AlphaGo contained Go-specific logic. AlphaGo Zero succeeded
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AlphaGo in 2017. AlphaGo Zero was based on reinforcement learning by self-play only. It
mastered the game of Go without applying human knowledge [Silver et al., 2017b]. Alp-
haZero is the successor of AlphaGo Zero. AlphaZero generalized the algorithm of AlphaGo
Zero to the games of Chess and Shogi, a Japanese more complex chess variant [Silver et al.,
2017a], [Silver et al., 2018].

Hanabi is a cooperative card game for 3 to 5 players. The company DeepMind proposed
The Hanabi challenge in 2019 as a testbed game to drive research to cooperative and imper-
fect information games [Bard et al., 2020]. Regarding the current performances of agents
on Hanabi, there is no preferable algorithm yet.

Hearts is a multi-agent, imperfect information card game. MCTS resulted in strong play
according to [Sturtevant, 2008].

Poker is a family of multiplayer card games with randomness, imperfect information,
bluffing, and bidding. The poker program Libratus has defeated top players in no-limit
Texas hold ’em, one of the most popular variants of poker, in a tournament in 2017. Libratus
applies three different algorithms. The blueprint strategy depends on Monte Carlo Coun-
terfactual Regret Minimisation with self-play [Brown and Sandholm, 2018]. Another suc-
cessful agent is DeepStack that uses deep counterfactual value networks [Moravčík et al.,
2017].

Scrabble is a multiplayer, words-based board game. The program Maven plays at a su-
perhuman level [Sheppard, 2002], with game-specific logics and the slightly improved B*
tree search algorithm [Berliner, 1981] that could be considered as a truncated Monte Carlo
simulation.

Settlers of Catan is a multiplayer, non-deterministic, turn-based, imperfect information
game with trading between agents. Several MCTS-based agents have been developed, but
apparently, a Q-value function-based recurrent neural network outperforms them [Kon-
stantia et al., 2019].

Skat is a three-player, bridge-like game that was successful with the Recursive Imperfect
Information Monte Carlo search algorithm [Furtak and Buro, 2013].

Ticket to ride is a two to five-player game with randomness, pathfinding, and imperfect
information. An MCTS agent performed well according to [Huchler, 2015].
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3
CASE STUDY BOARD-CARD GAMES

This chapter describes the board-card games and their characteristics. The game Keezen,
as subject of the case study, is described in detail.

3.1. BOARD-CARD GAMES
The board-card games of this research are marble racing games. Players run their four
marbles from the start to the finish fields. The goal is to be the first to get all marbles in the
finish area.

A setup with four players is the most common. The players across the table form teams.
Each player starts with their own four marbles. When a player’s marbles have reached the
finish fields, the player continues with the marbles of the teammate. The first team to run
all marbles to the finish fields wins.

Marbles can pass, hit or block other marbles depending on the location on the board.
At every turn, players make decisions, balancing between supporting the team’s marbles
and thwarting opponent marbles.

The movement of marbles on the board is steered by the functions of playing cards. The
playing cards bring imperfect information to the game. Every turn, a player throws a card
with a function and changes the position of one or more marbles. For example, a three (of
any suit) allows a marble to run three steps,

3.2. BOARD-CARD GAME VARIANTS
The most notable board-card games are Tock (or Tuck)1, Dog2, Sorry!3 and Keezen4. Tock
originates from Canada, Dog is particularly played in Swiss and Germany, Sorry! in England
and Keezen in the Netherlands. The foundation of these games is analogous, but there are
variations in boards, rules, cards, and actions:

• Keezen is played by four players in two teams with a French deck of cards without the
jokers. The board has 96 fields: four wait fields and four finish fields per player and a
round of 64 fields. The rules of Keezen are described in detail in Section 3.3.

1https://en.wikipedia.org/wiki/Tock
2https://de.wikipedia.org/wiki/DOG_(Spiel)
3https://en.wikipedia.org/wiki/Sorry!_(game)
4https://nl.wikipedia.org/wiki/Keezen
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• Tock is played with the same stock of cards as Keezen, but the actions per card differ.
The 5 moves the marble of any player 5 steps. The 7, like Dog, is distributed over all
marbles. Black Jacks swap marbles, while red Jacks move a marble 11 fields. The King
is used as a starter or to run 13 fields.

• Dog is played on almost the same board as Keezen, with more cards and a different
number of cards per round. Teammates exchange one card at the start of each round.
The cards are different. The King moves 13 fields, the 7 splits 7 steps over all the
players’ marbles, and the 4 moves forward or backward. Marbles may have to pass
the finishing area to run another round. The board has the start field located in front
of the finish fields.

• Two main variants of Sorry! exist. The classic variant involves a proprietary deck
of 45 cards. The 6 and 9 are left out and four Sorry! cards are added. The actions
of cards are slightly different from those of Keezen. A Sorry!-card sends a marble of
an opponent back to the start field. In 2013, a Sorry!-version was introduced that is
played with only three marbles per player and introduced a notion of Fire and Ice to
change rules for specific marbles.

3.3. RULES OF KEEZEN
This research follows the Keezen rules as defined for the national Keezen championship of
The Netherlands 5. These rules are chosen for clarity and in the belief that these are the
standard rules.

Figure 3.1 shows the Keezen-board. The figure shows definitions for fields and player
positions as used further in this report. The forward running direction is clockwise.
A step means moving a marble to an adjacent field.
Starting means putting a marble from a waiting field to the start field.
Finishing means running a marble to the furthest finish field.
Hitting means landing a marble on a field that is already occupied by a marble (if allowed),
sending the other marble back to a waiting field.
Switching means swapping two marbles.
Blocking means marbles can’t pass another marble. A marble on a field of the same color
(start or finish field) is blocking other marbles.
Playing a card means throwing the card in the middle of the board and executing one of the
defined actions of the card.

The marbles are moved by the functions of 52 playing cards from a classical deck with-
out the jokers. Each type of card has one or two actions (independent on the suit):

The flow of the game:

• The game starts with all marbles at the waiting fields.

• Each round, the dealer gives cards from the stock to the players. In the first round five
cards, then four cards, and again four cards per player. Every three rounds, the stock
is reset. This means all cards are in the stock and shuffled. Note that at this moment
the game state is entirely known to all players.

5https://nk.keezbord.nl/officiele-spelregels
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Figure 3.1: Keezen board with all marbles at the waiting fields.

Table 3.1: The cards and their functions in Keezen.

Card Function(s)
Ace Run 1 step or set up a marble (starting).
2, 3, 5, 6, 8, 9, 10 Run 2, 3, 5, 6, 8, 9 or 10 steps respectively.
4 Run 4 steps backward. A marble cannot run backward directly into or

out of the finish area. A marble can run backward past the finish area
and finish forward in the next move.

7 Run 7 steps in total with one or two marbles.
Jack Swap own marble with other players marble (not allowed from the start

fields).
Queen Run 12 steps.
King Set up a marble (starting).
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• The player next (clockwise) to the dealer starts. If a player has a starter (Ace or King),
then a marble can move to the start field to start running to the finish area.

• If the round is finished, then the next (clockwise) player becomes the dealer.

• If a player finishes all four marbles, then the player continues with the marbles of the
teammate. The action of card 7 may be split between the last finishing marble and
one marble of the teammate.

• If a team finishes all eight marbles, then the team wins and the game is over.

Rules:

• Each turn, the execution of an action is mandatory. If a player has no valid action to
execute with his cards, then the player discards all cards and waits for new cards in
the next round.

• If a marble ends up at a field that already contains a marble, then the other marble is
hit and returned to a waiting field. It does not matter if it is your marble or not.

• A marble on a field with the same color (start or finish field) blocks other marbles
and can not be hit or swapped. Posting a marble on the start field effectively opposes
other marbles. Moving marbles into the finish area might require precise maneuver-
ing because they cannot pass each other.

Several direct variations on Keezen exist. Most consist of small variations in the rules, re-
garding the preconditions for swapping marbles and running backward. The game Kruiskeezen
has an extra cross in the center of the board to support shortcuts. It is likely that the findings
of this research are also valid for small variations in the Keezen rules.

3.4. GAME CHARACTERISTICS

3.4.1. DEFINITION
In science, it is commonplace to identify, describe and categorize subjects of research. Ob-
served similarities lead to an arrangement in groups. An obvious example is the detailed
classification system for plants and animals.

Work has been done for classification systems for games [Elias et al., 2012]. Considering
the short history and current dynamic nature of the research area, one cannot expect a
classification system in place like it is in Biology. Even if it was there already, one might still
wonder how to apply the characteristics of the hybrid board-card games.

It is hard to define a meaningful classification system for games in general. There are
many different games with many different features or characteristics. It is even hard to
come up with a definition of a game [Elias et al., 2012]. One can argue that the definition
should cover everything from word search puzzles, to video games, to professional soccer.

There are at least two good reasons to analyze the characteristics of board-card games:

• Compare games
Classification helps to compare the characteristics of a game with other games.
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• Match RL algorithms to games
The characteristics could help to determine which (RL) techniques are effective to
develop game-playing agents.

These reasons make determining the characteristics of board-card games beneficial. In-
spired by [Elias et al., 2012], based on other games literature, and based on the experiences
in this research, we come to the following relevant characteristics of board-card games:

• Number of players
The number of players to play the game.

• Roles of players
A game can have multiple roles for the players. If so, agents have to learn different
strategies for those roles.

• Teamplay
Teamplay implies that one or more players work together.

• Turn-based or real-time
Games can be turn-based or real-time (sequential or parallel). Most board and card
games are turn-based. Players execute their moves sequentially.

• Length of play
The length of play is an indicator of the number of actions to be executed during an
episode (gameplay from start to finish) of a game. Turn-based games can be mea-
sured in a turn or move number. In Keezen each action or turn of a player is counted
as a move. Throwing all cards is a move and skipping the turn after throwing all cards
is not counted as a move.

• Chance events
Chance events bring randomness into the game. Throwing dice or dealing cards are
chance events that control the state of a game that is otherwise manipulated by the
actions of agents. This is just a boolean indicator without an indication to what extent
a game is random.

• Information position
In a perfect information game, all players know the full state of the game. There is no
hidden information. In an imperfect information game, agents miss information to
make their decisions. The information position influences the level of assurance of
decision-making by agents. This is just a boolean indicator. It would be interesting
to have a factor that indicates to what extent a game has hidden information. This
factor could be calculated for a game position or over the average of all moves of an
episode.

• Branching factor
In a generic sense, the branching factor is the number of children at a node. If each
node is a valid game position then the branching factor at that point is equal to the
number of valid moves (sub-nodes). The average branching factor is a characteristic
that indicates the exponentially increasing number of nodes of a game. The branch-
ing factor is an important indicator of the required resources to learn to play a game
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well. In general, the games that are subject to glsAI research have a branching factor
and length of play that lead to a combinatorial explosion that is not feasible to solve
by brute force.

• Action space
The action space comprises all available unique actions that the game supports. The
legal actions at a game position form a subset of the action space or, if all actions are
valid, a set equal to the action space. The value for the action space size is Low (<=10),
Medium (>10 and <=50), or High (>50).

• Combinational actions
This characteristic expresses the dynamic nature of legal actions as part of the action
space. An indication can be calculated by dividing the number of legal actions by
the size of the action space. One can calculate this value as an average over a full
episode. This indication is satisfactory to the purpose of this research although it
uses the average number of legal actions and ignores the distribution of legal actions
in the action space.

The value for the combinational actions is High (<=0.33), Medium (>0.33 and <=0.66)
or Low (>0.66). These values seem reasonable based on the values of other games 6.
Games with allowed actions that are more or less independent of the state, such as
poker, have a value Low for combinational actions. All board-card games have a value
High for combinational actions.

• State space
The state space is the set of all possible states of a game. The size of the state space is
an indicator of the required computational resources like the branching factor. The
value for the state space is Small (<=105), Medium (>105 and <=1010), or Large (>
1010). In RL research many games have large state spaces.

• Outcomes
There are competitive and non-competitive games. Most games end in a win, a loss,
or a draw. The board-card games end with a win or a loss for the teams.

• Symmetry
Symmetry means that a game is (partially) invariant under some transformations7.
Symmetry in games regarding roles, states, or actions opens possibilities to optimize
search algorithms [Schiffel, 2010]. For example, if multiple board positions are iden-
tified as the same but mirrored or rotated, that reduces the search tree and limits the
calculations required. Board-card games are symmetric regarding the roles of play-
ers, the state of the board, and actions.

3.4.2. VALUES
In this section we estimate the values for the game characteristics for the board-card games
(Dog, Keezen, Tock and Sorry!).

The values of the following characteristics are estimated:

6https://en.wikipedia.org/wiki/Game_complexity
7https://en.wikipedia.org/wiki/Symmetry
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• Length of play
The average length of play of Keezen is determined by counting during a tournament
of 500 matches with rule-based clients. The result: 207 moves on average. The mini-
mal number of moves of a full game was 103 and the maximum number of moves of
a full game was 342. The lengths of plays of other board-card games are estimated to
be similar.

The possible values for the length of play are Low (<=50), Medium (>50 and <=100),
and High (>100). These values seem reasonable based on the values of other games.
All board-card games have a high length of play.

• Branching factor
The average branching factor of Keezen is determined by counting during a tour-
nament of 500 matches with rule-based clients. The result: 6. This means that on
average a player has 6 possible actions to choose from in a state s. The branching
factors of other board-card games are estimated to be slightly higher (Dog), equal
(Tock), and less than Keezen (Sorry!) based on the number of cards in the hands and
the number of functions of the cards.

The possible values for the branching factor are Low (<=10), Medium (>10 and <=100),
and High (>100). These values seem reasonable based on the values of other games 8.
The branching factors of Tick-tac-toe, Chess, and Go are 4, 35, and 250 respectively.
All board-card games have a low branching factor.

• State space
The state-space of Keezen consists of the positions of the marbles on the board and
the cards. A rough estimation:

– Board:
The total number of 16 marbles of the four players can occupy 72 possible fields.
Ignoring overlap: (72x71x70x69)4 = 3.7x1029

– Cards:
There are six positions for each card: four players, stock or played: 652 = 2.9x1040

– Total:
Board positions x Card positions = 1.1x1070, hence: Large. To compare: chess
has 2x1040 positions according to [Steinerberger, 2015]. The other board-card
games have large state spaces too. Dog and Tock have a similar board with 16
marbles. Sorry! has 12 or 16 marbles on a board with fewer fields. The number
of cards of Dog is more than Keezen (102), Tock has the same number of cards
and Sorry has fewer cards (45). These calculations are disputable because of
multiple reasons (for example overlap of marble positions and equal card ranks
are ignored), but the conclusion stands that the state spaces are large.

Table 3.2 shows the characteristics of the board-card games, and two other games to
compare with, filled in. The values for Chess and Go are from Wikipedia 8.

The analysis of the characteristics of the board-card games shows that all board-card
game have the same values for all characteristics. This suggests that the conclusions re-
garding the case study are valid for all board-card games.

8https://en.wikipedia.org/wiki/Game_complexity
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Table 3.2: Values of the characteristics of the board-card games and two other games to compare with.

Dog Keezen Tock Sorry! Chess Go
Number of players 4 - 6 4 - 6 4 - 6 4 2 2
Roles of players Equal Equal Equal Equal Equal Equal
Team play Teams of 2 Teams of 2 Teams of 2 Teams of 2 No No
Turn-based? Yes Yes Yes Yes Yes Yes
Length of play High (207) High High High Medium (70) High (150)
Chance events Yes Yes Yes Yes No No
Information pos. Imperfect Imperfect Imperfect Imperfect Perfect Perfect
Branching factor Low Low (6) Low Low Medium (35) High (250)
Action space High High (271) High High High High
Comb. actions High High High High High High
State space Large Large (1070) Large Large Large (1044) Large (10170)
Outcomes Win-loss Win-loss Win-loss Win-loss Win-draw-loss Win-loss
Symmetry Yes Yes Yes Yes Yes Yes

On a higher level, the results could be generalized, with reservations, to situations out-
side the game world. All situations have their characteristics. The characteristics of Section
3.4 will not fit completely in other situations, but it is a start. There are situations of im-
perfect information, team play, and large action space. The research into games with these
characteristics can be beneficial to those situations, probably in real-life.

3.5. SKILL AND CHANCE
The characteristics of board-card games influence the expectations one can have of the
learning outcomes. The skill-factor for a game type is a factor that indicates the extent
to which skill determines the outcome of a game. Game characteristics like imperfect in-
formation, chance events, branching factor, and length of play steer to a lesser or greater
extent the determining factor of choices during a game. In Chess, with perfect information,
no chance events, and a higher branching factor, the skill of the player has a greater influ-
ence on the outcome than it has in board-card games with shuffled cards and imperfect
information. This goes two ways. Bad moves can turn out to be good moves and brilliant
moves can turn out to be bad moves.

Skill and chance in games have been researched for the legal distinction between games
of skill and gambling. In [Borm and van der Genugten, 2001] the relative skill-factor is
defined as:

Ski l l = Learning effect
Learning effect+Random effect =

Result Real-average-player - Result Beginner
Result Virtual-average-player - Result Beginner (3.1)

The value of the skill factor lies between zero (pure chance) and 1 (pure skill). The learning
effect indicates the difference in result that comes from learning better moves. The three
types of players that are defined to measure skill are:

• Beginner: somebody who has just mastered the rules of the game and plays in a naive
way.

• Real-average-player: represents the vast majority of players.

• Virtual-average-player: an average player who is told the outcome of chance events
before an action is chosen.
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The skill-factor influences the expectations we may have concerning the gameplay of
agents. In games of Chess or Go, with high skill-factor values, we can enjoy brilliant moves
that determine the outcome of matches. In addition to brilliant moves, one can also talk
about a playing style. AlphaZero brought excitement in the world of Go and Chess with
tactical novelties, stunning moves, and a distinct playing style [Sadler and Regan, 2019].
Not surprisingly, brilliant moves in a game with chance events like Ludo will not lead to the
same excitement. To a greater or lesser extent this will also apply to board-card games.

The skill-factor of board-card games is unknown. The outcomes of board-card games
depend not solely on the skill of the players, but it is hard to determine to what extent
chance and skill influence the outcomes of board-card games. In general, the role of skill
in games is determined relatively by considering the results of different types of players
([Borm and van der Genugten, 2001]) or the rating of players ([Duersch et al., 2020]). Un-
fortunately, there are no board-card game references to compare. To this research, we just
keep in mind that the expectations regarding brilliant play in board-card games are lower
than games like Chess and Go. Further research into the relation of the characteristics of
games and the role of skill and chance in the context of RL might be interesting.
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4
METHOD

This chapter describes the technical implementations and the choices we made. All imple-
mentations are available for future research.

An RL-framework provides base functionalities for RL experiments. A custom game
environment runs episodes of the Keezen game implementation with specific state and
action model designs. RL-agents execute actions following algorithms in the environment
to learn how to play the game. The training progress is measured by playing auto-play
tournaments against randomly playing agents and rule-based agents, and by analyzing the
gameplay manually. We will cover these subjects in more detail in this chapter.

4.1. SCOPE
The research focuses on the four-player composition with two teams of two players, which
is the most common way to play board-card games. Other configurations, with more or
fewer teams, bring other game dynamics. Two equal agents (two agents from the same
training stage) team up. Combining different agents with different strategies in one team
would add complexity and is out of scope.

Following 1.3, the game Keezen will be implemented and experimented with as a case
study. The game is learned from zero, without initial knowledge. There is no expert input to
the learning process. The imperfect information position is respected without exception.
Each agent is aware of its own cards and the played cards but unaware of other cards.

4.2. RL FRAMEWORK
Several frameworks aimed at researching game agents exist, most notably OpenAI Gym[Brockman
et al., 2016]1, OpenSpiel[Lanctot et al., 2019]2 and RLCard [Zha et al., 2019]3.

• OpenAI Gym
OpenAI Gym is a well-known general-purpose RL research framework. OpenAI is a
great source of information, tutorials, algorithms, and environments (Cartpole) to

1https://gym.openai.com
2https://deepmind.com/research/open-source/openspiel
3http://rlcard.org
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play with. OpenAI’s Spinning Up4 is a recommended resource. OpenAI Gym is also
used for research on (video) games.

• OpenSpiel
OpenSpiel is a framework for RL research on games. DeepMind is the company be-
hind OpenSpiel that has made notable contributions to RL and games in recent years.
Among others, they have made headlines with their achievements in Chess and Go
with MCTS based algorithms (AlphaGo and AlphaZero [Silver et al., 2017a]).

• RLCard
RLCard is a framework that aims at RL research on card games. RLCard is developed
at Texas A&M University.

All three frameworks were explored. OpenAI Gym is great, but not specifically made for
games. For example, it does not support multi-agent games out of the box. This research
could have been executed with OpenAI Gym, but the generality made it less suitable than
the two game-oriented frameworks. OpenSpiel and RLCard are both very capable frame-
works to research board-card games. Both support multi-agent games and there was no
clear preference for one over the other. The learning curve of RLCard is less steep than
OpenSpiel. The ease of getting started with a custom game was ultimately the deciding
factor. The case study experiment was running with DQN. RLCard has implementations of
other algorithms such as NFSP.

4.3. GAME IMPLEMENTATION
A custom game can be added to RLCard by implementing the game logic, wrapping it with
an environment, and then registering it to the framework. The game and environment use
the action model and the state model that are the subjects of the next two sections.

The Keezen implementations were taken from an iOs app (that we developed before)
and migrated from Swift code to Python code. The game logic differed from the suggested
RLCard design. The adapter class KeezenGameAdapter overcomes the incompatible inter-
face.
Environment
The environment KeezenEnv class extends the RLCard Env class. This class is registered by
the RLCard framework as ’keezen’. The KeezenEnv class has the following method imple-
mentations, imposed by RLCard:

• reset() returns the state (observation o) of the game and the index of the player to
move.

• step(action) performs an action (a) in the game. The action is an index of the array
with 271 actions in the GameActions class.

• _extract_state(state) extracts the state (observation o) as an array or matrix, for-
matted as input for the algorithm. See the state model description.

• get_payoffs() returns the rewards (Ra(s, s′)) as an array with for each player the
result. 1 for win and 0 for loss.

4https://spinningup.openai.com
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• _decode_action(action) returns the action string representation for an action in-
dex. See the action model description.

• _get_legal_actions() returns the legal actions for the current state as an array of
integers.

Game
The central classes of the game implementation are Game and KeezenGameAdapter. Game
implements the game logics without keeping a game state. This class refers to other classes
like Board, Marble, Field, Card, Player, Move, and GameState. The design deviates from
the structure that is suggested in RLCard documentation with Round, Dealer, Judger, and
Player. That is ok as long as the Game interface of RLCard is respected. We choose to
preserve the original design as it has already been extensively tested, even though it was
with another programming language.

Methods of the Keezen Game class are:

• init_game() initializes the game and returns an initial game state (observation o)
and the player to move.

• step(move, state) performs a move (action a) in the game. Returns the game state
(o), rewards (R) for all players, and if the game finished.

• is_over(state) returns if the game is over and the rewards (R) for all players.

• render() prints the game position to the standard out.

The KeezenGameAdapter class was introduced to convert the incompatible interface to the
Game interface of RLCard. The adapter class wraps the Keezen Game implementation class
and calls its methods, while maintaining the game state. The methods of the KeezenGameAdapter
are:

• init_game() initializes the game and returns an initial state and the index player to
move.

• step(action) performs an action in the game. Returns the game state (observation
o) and the player to move next.

• get_state(player_id) returns the game state (observation o) from the perspective
of a player.

• get_player_id() returns the index of the player whose turn it is.

• get_player_num() returns the number of the players: four.

• is_over(state) returns if the game is over.

• render() prints the game position (s) to the standard out. Used during the manual
analysis.

Register
The Keezen game is registered to the RLCard framework by setting the name and entry
point in rlcard/envs/__init__.py.
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4.4. STATES AND ACTIONS
The state model represents the state of the game as observed by the players. Each player
has its own unique observations of the game. The incomplete information position means
the observations do not reveal the cards in the hands of other players. The other players
are denoted as Opponent A, Teammate and Opponent B.

Figure 4.1 shows an example of an observed game state. The observation consists of
entirely observable board positions and partially observable card positions.

The board position is described by the field positions of the marbles. The fields are
identified by unique numbers. The marbles are identified by the color and a unique num-
ber with a 0 referring to the furthest marble and a 3 to the last marble.

The cards in the hand of the player and the played cards in the middle of the board
are observable. The other cards, in the hands of other players and in the stock are not
observable. The game state also includes an indication which player’s turn it is and the
move number.

Figure 4.1: Example of a Keezen game state observed by player south. Note the numbering of the fields (0-95)
and the marbles (0-3 for each color).
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The cards in the hand of the player in a state s determine the allowed actions of a player.
In general, an action a consists of a card that moves one or two marbles. In Figure 4.1 player
South may choose to throw card Spades 2 and run with the blue marble with number 3
from field 85 to field 87. Player South may instead choose to throw a card 5 (Diamonds or
Spades) to run the marble to field 90, sending the green marble (1) of his teammate back to
the waiting fields. Note that each action of a player is fully observable by the other players.
The card becomes a played card that all players can see.

The next two subsections describe the representations of the state model and the action
model.

4.4.1. OBSERVATION MODEL
The observation model that we also less-precisely call the state model, encompasses all
possible observations of the game. Refer to Figure 4.1 for the field and marble numbering.
The cards are identified by unique numbers from 0 to 12, corresponding with the ranks
from Ace to King.

The state model is represented by a matrix with 4 rows with only 0 and 1 values that
represent the observations to the players. The state matrix consists of the following blocks:

• Move player [0]: One column with a 1 for the player that has the turn, 0 otherwise.

• Player cards [1-13]: 13 columns with the current player’s cards.
The indexes of the 13 columns correspond with the ranks: Ace, Two, Three, Four, Five,
Six, Seven, Eight, Nine, Ten, Jack, Queen, and King. The suits play no role. Multiple
cards of the same rank result in multiple 1 values in one column. The player in figure
4.1 has the cards Diamonds 5, Hearts Queen, Spades 2, Spades 5, and Spades 7. This
results in the matrix to represent the cards:

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 1 0


In which the columns refer to the following cards:[

A 2 3 4 5 6 7 8 9 J Q K
]

• Played cards [14-26] 13 columns with the played cards.
Identical representation model as with the current player’s cards.

• Board [27-122] 96 columns with the board state.
The board state consists of rows of 96 columns. Each column matches a field as
seen from the perspective of the player. The field numbers are shown in Figure 4.1.
Each row contains four 1 values that indicate the field positions of the marbles of one
player (and 88 zero’s). The first row contains the players own marble positions and
the next rows contain the marble positions of the other player in clockwise direction.

• Card counts [123-127] 5 columns representing the number of cards in the hands of
the players. Each card of a player is represented by a 1 from left to right. For example,
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this matrix indicates from top to bottom zero, two, three, and three cards in the hands
of the players: 

0 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 0 0


The matrix is flatten to an array (the rows are put one after the other) to confirm to the

RLCard framework DMC interface. The model is used on both DQN and DMC.
We experimented with several variations on the observation model. These experiments

are described in Section 7.2.6. We experimented with and without a fifth row that contains
a 1 if the column contains a 1 in any of the other 4 rows and a 0 otherwise, we experimented
with and without the block that holds the card count, and we experimented with two differ-
ent perspectives: player perspective and generic perspective. The difference between these
perspectives is in the order of the rows with information that is known to all players: the
move player, the positions of marbles on the board, and the number of cards in the hands
of the players.

We did not experiment with an explicit history of actions in the model like DouZero [Zha
et al., 2021]. In DouZero, the most recent 15 actions are encoded and fed into an LSTM and
then from the last cell into the NN. Adding a history with the actions per player during the
three rounds of the stock might improve the performance.

4.4.2. ACTION MODEL
The action model encompasses all possible actions of a player during the game. The action
model uses the same field, marble, and card numbering as the state model defined in the
previous section. Every action specifically defines which marble the action is applied to.
Running ten fields with the first marble is not the same action as running with the second
marble. Analysis and tests resulted in a set of 271 unique actions. These action definitions
are in GameActions.ALL_ACTIONS_271. It seems that an action space with less than these
actions is at the expense of information or adds more complexity.

The action model is formed by an array of 271 elements that is used by the NN. Like
the state model, the array contains just 0 and 1 elements. Each index of the array repre-
sents an action that is in an array with unique string representations of actions (or moves).
The string representations are mapped to the move objects that the game implementation
receives from the agents to update the game state.

The string representations of actions are structured by action types and marble refer-
ences. There are seven different action types with unique two character long identifiers:

• Run: RU

• Split: SP

• Start: ST

• Switch: SW

• Throw cards: TC

• Deal: DL
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• No move: NO

The first four action types require field and marble references to uniquely identify the
movement of marbles on the board. A ’P’ refers to a marble of the current player, ’T’ to a
marble of the teammate, and ’A’ and ’B’ to the marbles of the two opponents. The string
representation starts with the move type followed by the marbles to move. The actions are
defined as follows:

• Run actions (40x): "RU〈steps〉 〈mar bl e − i d〉"
Run 1 to 12 fields (excluding 7 and 11) with marble 0, 1, 2 or 3 (P0 is the furthest
marble, P3 is the latest).
Examples: "RU08P0": Run 8 steps with the furthest marble (P0), "RU08P1": Run 8
steps with the second-placed marble (P1).

• Split actions (172x): "SP07〈mar bl e − i d〉" and "SP07〈1st − mar bl e − i d〉 〈steps〉
〈2nd −mar bl e − i d〉"
Run 7 steps with one or two marbles.
Example: "SP07P32P2": Run 2 steps with the last marble (P3) and 5 steps (the re-
mainder) with the third marble (P2).
There are 4 shorter split actions, which are just moves with a single marble: "SP07P0",
"SP07P1", "SP07P2", and "SP07P3". The other split actions that move two marbles,
do 1 to 6 steps by one of the four marbles, with the remaining steps moved by one of
the three other own marbles or one of the four marbles of the teammate. This results
in a total of 4+6×4×7 = 172 split actions.

• Start actions (8x): "ST01P0" to "ST01P3" (Ace) and "ST13P0" to "ST13P3" (King)
Start with the first marble (P0) or the next marbles (P1, P2, and P3).
Example: "ST01P0": Start with the first marble (P0).

• Switch actions(48x): "SW11P0A0" to "SW11P3B3":
Swap an own marble with another players marble.
Example: "SW11P3A2": Swap the last marble (P3) with the third marble of opponent
A (A2).

• Special actions (3x): "TC" (Throw cards), "NO" (No move) and "DL" (Deal)
The actions "NO" and "DL" are the only actions that are no moves in the game. "NO"
is a no-operation and "DL" is a deal event.

This results in the set of all possible actions that is contained in Table 4.1. The action
model itself is an array of one row that contains only 0 or 1 values for indexes that match
actions in this table.

The idea behind the action model was to balance between unique actions and the num-
ber of actions. Another manner to define the action model is by defining the actions per
field which would have resulted in more than 6000 action definitions. According to [Zha
et al., 2021], DMC supports thousands of actions, which might open the door for field-
bound actions.
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Table 4.1: All possible actions from the action model.

Action type Actions
No action ’NO’
Deal ’DL’
Run (40) ’RU01P0’, ’RU01P1’, ’RU01P2’, ’RU01P3’, ’RU02P0’, ’RU02P1’, ’RU02P2’, ’RU02P3’,

’RU03P0’, ’RU03P1’, ’RU03P2’, ’RU03P3’, ’RU04P0’, ’RU04P1’, ’RU04P2’, ’RU04P3’,
’RU05P0’, ’RU05P1’, ’RU05P2’, ’RU05P3’, ’RU06P0’, ’RU06P1’, ’RU06P2’, ’RU06P3’,
’RU08P0’, ’RU08P1’, ’RU08P2’, ’RU08P3’, ’RU09P0’, ’RU09P1’, ’RU09P2’, ’RU09P3’,
’RU10P0’, ’RU10P1’, ’RU10P2’, ’RU10P3’, ’RU12P0’, ’RU12P1’, ’RU12P2’, ’RU12P3’

Split (172) ’SP07P0’, ’SP07P01P1’, ’SP07P01P2’, ’SP07P01P3’, ’SP07P01T0’, ’SP07P01T1’,
’SP07P01T2’, ’SP07P01T3’, ’SP07P02P1’, ’SP07P02P2’, ’SP07P02P3’, ’SP07P02T0’,
’SP07P02T1’, ’SP07P02T2’, ’SP07P02T3’, ’SP07P03P1’, ’SP07P03P2’, ’SP07P03P3’,
’SP07P03T0’, ’SP07P03T1’, ’SP07P03T2’, ’SP07P03T3’, ’SP07P04P1’, ’SP07P04P2’,
’SP07P04P3’, ’SP07P04T1’, ’SP07P04T2’, ’SP07P04T3’, ’SP07P05P1’, ’SP07P05P2’,
’SP07P05P3’, ’SP07P05T0’, ’SP07P04T0’, ’SP07P05T1’, ’SP07P05T2’, ’SP07P05T3’,
’SP07P06P1’, ’SP07P06P2’, ’SP07P06P3’, ’SP07P06T0’, ’SP07P06T1’, ’SP07P06T2’,
’SP07P06T3’, ’SP07P1’, ’SP07P11P0’, ’SP07P11P2’, ’SP07P11P3’, ’SP07P11T0’,
’SP07P11T1’, ’SP07P11T2’, ’SP07P11T3’, ’SP07P12P0’, ’SP07P12P2’, ’SP07P12P3’,
’SP07P12T0’, ’SP07P12T1’, ’SP07P12T2’, ’SP07P12T3’, ’SP07P13P0’, ’SP07P13P2’,
’SP07P13P3’, ’SP07P13T0’, ’SP07P13T1’, ’SP07P13T2’, ’SP07P13T3’, ’SP07P14P0’,
’SP07P14P2’, ’SP07P14P3’, ’SP07P14T0’, ’SP07P14T1’, ’SP07P14T2’, ’SP07P14T3’,
’SP07P15P0’, ’SP07P15P2’, ’SP07P15P3’, ’SP07P15T0’, ’SP07P15T1’, ’SP07P15T2’,
’SP07P15T3’, ’SP07P16P0’, ’SP07P16P2’, ’SP07P16P3’, ’SP07P16T0’, ’SP07P16T1’,
’SP07P16T2’, ’SP07P16T3’, ’SP07P2’, ’SP07P21P0’, ’SP07P21P1’, ’SP07P21P3’,
’SP07P21T0’, ’SP07P21T1’, ’SP07P21T2’, ’SP07P21T3’, ’SP07P22P0’, ’SP07P22P1’,
’SP07P22P3’, ’SP07P22T0’, ’SP07P22T1’, ’SP07P22T2’, ’SP07P22T3’, ’SP07P23P0’,
’SP07P23P1’, ’SP07P23P3’, ’SP07P23T0’, ’SP07P23T1’, ’SP07P23T2’, ’SP07P23T3’,
’SP07P24P0’, ’SP07P24P1’, ’SP07P24P3’, ’SP07P24T0’, ’SP07P24T1’, ’SP07P24T2’,
’SP07P24T3’, ’SP07P25P0’, ’SP07P25P1’, ’SP07P25P3’, ’SP07P25T0’, ’SP07P25T1’,
’SP07P25T2’, ’SP07P25T3’, ’SP07P26P0’, ’SP07P26P1’, ’SP07P26P3’, ’SP07P26T0’,
’SP07P26T1’, ’SP07P26T2’, ’SP07P26T3’, ’SP07P3’, ’SP07P31P0’, ’SP07P31P1’,
’SP07P31P2’, ’SP07P31T0’, ’SP07P31T1’, ’SP07P31T2’, ’SP07P31T3’, ’SP07P32P0’,
’SP07P32P1’, ’SP07P32P2’, ’SP07P32T0’, ’SP07P32T1’, ’SP07P32T2’, ’SP07P32T3’,
’SP07P33P0’, ’SP07P33P2’, ’SP07P33P1’, ’SP07P33T0’, ’SP07P33T1’, ’SP07P33T2’,
’SP07P33T3’, ’SP07P34P0’, ’SP07P34P1’, ’SP07P34P2’, ’SP07P34T0’, ’SP07P34T1’,
’SP07P34T2’, ’SP07P34T3’, ’SP07P35P0’, ’SP07P35P1’, ’SP07P35P2’, ’SP07P35T0’,
’SP07P35T1’, ’SP07P35T2’, ’SP07P35T3’, ’SP07P36P0’, ’SP07P36P1’, ’SP07P36P2’,
’SP07P36T0’, ’SP07P36T1’, ’SP07P36T2’, ’SP07P36T3’,

Start (8) ’ST01P0’, ’ST01P1’, ’ST01P2’, ’ST01P3’, ’ST13P0’, ’ST13P1’, ’ST13P2’, ’ST13P3’
Switch (48) ’SW11P0A0’, ’SW11P0B0’, ’SW11P0A1’, ’SW11P0B1’, ’SW11P0A2’, ’SW11P0B2’,

’SW11P0A3’, ’SW11P0B3’, ’SW11P0T0’, ’SW11P0T1’, ’SW11P0T2’, ’SW11P0T3’,
’SW11P1A0’, ’SW11P1B0’, ’SW11P1A1’, ’SW11P1B1’, ’SW11P1A2’, ’SW11P1B2’,
’SW11P1A3’, ’SW11P1B3’, ’SW11P1T0’, ’SW11P1T1’, ’SW11P1T2’, ’SW11P1T3’,
’SW11P2A0’, ’SW11P2B0’, ’SW11P2A1’, ’SW11P2B1’, ’SW11P2A2’, ’SW11P2B2’,
’SW11P2A3’, ’SW11P2B3’, ’SW11P2T0’, ’SW11P2T1’, ’SW11P2T2’, ’SW11P2T3’,
’SW11P3A0’, ’SW11P3B0’, ’SW11P3A1’, ’SW11P3B1’, ’SW11P3A2’, ’SW11P3B2’,
’SW11P3A3’, ’SW11P3B3’, ’SW11P3T0’, ’SW11P3T1’, ’SW11P3T2’, ’SW11P3T3’

Throw cards ’TC’
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4.5. RL-AGENTS
From the literature, the decision was made regarding the techniques to apply. The study of
related work in Section 2.9 led to the conclusion that Q-Learning and MCM based solutions
with non-linear function approximation were the best options. These techniques were the
most promising choices as they are the subject of many research projects and applied suc-
cessfully to many gameplay agents. More than other techniques, like A3C and PPO. Both Q-
Learning and MCM are model-free and fit environments with finite episodes. We decided
in favor of Q-Learning to start researching DQN agents and investigate DMC based agents
depending on the results with DQN and the available time (although Table 2.1 shows MCM
and MCTS are more popular than DQN). The non-linear function approximation with NN
has to address the imperfect information position of the agents.

The experiments with DQN and DMC are run on the same hardware with different soft-
ware versions. The version difference in RLCard between DQN and DMC is significant.
The framework is not backward compatible and requires changes in the model and envi-
ronment classes between versions. There were many adjustments in the configuration of
the DQN experiments in the search for success. These are described in Section 6.3. The
configuration of the DMC experiments was varied to compare changes in NN sizes and
state representations and are described in Chapter 7.

The DMC agents are trained by running the run_dmc_keezen.py script. This script in-
stantiates and starts the DMCTrainer. This trainer class creates the models, buffers, and
optimizers before starting the actor and learner processes. The agents are trained as 4 sep-
arate players that learn individual behavior without sharing anything.

4.6. RANDOM AGENT
The random agent or more precisely the randomly playing agent plays, as the name sug-
gests, random moves. The agent receives a set of allowed moves in a state s and returns one
of these moves randomly. The agent has no clue regarding positional values or strategy.

A reasonable player like the rule-based agent that is described in the next section de-
feats the random agent easily with a win-rate of 99% or more. Obviously the policy of the
random agent results in a bad playing strength. This does not mean the randomly playing
agent can never win. Randomly playing agents get lucky sometimes, getting good cards
and taking the best moves accidentally. Hence, winning against any opponent, no matter
how strong, is not impossible. Especially when playing thousands of games.

4.7. TRADITIONAL RULE-BASED AGENT
A traditional rule-based agent forms a benchmark for the RL agents by competing in auto-
play of tournaments. We developed the rule-based agent for an iOs app and migrated the
code to Python for this research. There were no other known agents available to compete.
The policy π of the rule-based agent is to select the allowed action a that results in the state
s with the highest value Vs .

The rule-based agent plays as strong as average, experienced human players, but weaker
than top players. Feedback from human players that is received via reviews in the iOs App
store shows that the playing strength of the rule-based agent is appreciated. There are peo-
ple that find the agent too strong and others say the agent is too weak, but on average the
players seem to appreciate the playing strength. Some users are annoyed by infrequent,
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awkward moves. Although the awkward actions are rare, they may have a disproportionate
influence on the appreciation of the game play.

The traditional rule-based agent is quite simple but plays reasonably well. The win
rate against agents that play random moves is >99%. The win rate of the rule-based agent
against humans is unknown. There are rare game positions where the calculated best ac-
tion seems awkward, for example unnecessarily blocking or even hitting the teammate.
These actions have only a small effect on the overall playing strength.

The rule-based agent evaluates board positions based on rules and values that are man-
ually programmed. The calculations to value a game position are based on the program-
mer’s biased view on the values of making progress, blocking opponents, hitting oppo-
nents, and helping the teammate.

The rule-based agent assigns values to marble moves. For example, a marble close to
the finish has more value than far away. Blocking and hitting also have values. Based on
those values, the move 4-steps-backward-from-start is played. The agent has no rule ’go
4 backward from start’. This also applies to the other observations shown in figure 5.1.
The evaluation of marble moves leads to values that induce expected behavior. Hence, the
agent needs no rules such as ’use the ace to start instead of running’, ’finish smart’, ’hit
opponents if you can’, ’don’t hit the teammate’ or ’swap pawns advantageously’.

The remainder of this section describes the implementation of the rule-based agent
briefly. The implementation of the RuleBasedAgent class is located in
\rlcard\games\keezen\agent.py.

The agent uses the following parameters while judging game positions:

• PROGRESS_OTHERS, PROGRESS_TEAMMATE, PROGRESS_SELF value the progress
made by the other team, the teammate and the own position.

• HIT_OTHERS, HIT_TEAMMATE, HIT_SELF estimate the chances of hitting the mar-
bles of the opponents, of the teammate and of the chance of being hit.

• BLOCK_OTHERS, BLOCK_TEAMMATE, BLOCK_SELF value the blocking of the other
team, the teammate and the chances of being blocked.

• SWITCHING calculates advantages and disadvantages of swapping marbles and chances
of own marbles being swapped.

The logic of the rule-based agent is shown in Algorithm 4. The value function of the agent
loops over all marbles that take part in a move. Each marble position receives a value that is
a combination of the listed parameters and if it is the current players marble, an opponents
marble or a teammate marble. The parameters lead to values that depend on the marble
positions, known card positions and possible card positions. Note that the terms move and
action are interchangeable in this context.

The evaluation function uses the values of all fields on the board that are calculated per
player according to Algorithm 5. The field values are progressively higher in the direction
of the FINISH fields.
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Algorithm 4 Calculation of the best move in a state by the rule-based agent.

1: Input:
os Observation of state s

2: Input:
Ms Set of legal moves in state s

3: Output:
ms Best move in state s

4: Initialize:
ms ← None

5: Initialize:
vm ← 0

6: for each move in Ms do
7: Execute move in s
8: tempvm ← 0
9: for each mar bl e of move do

10: for each par ameter in (PROGRESS, HIT, BLOCK, SWITCHING) do
11: tempvm ← tempvm +Eval uate(os ,mar bl e, par ameter )
12: end for
13: end for
14: if tempvm > vm then
15: ms ← move
16: vm ← tempvm

17: end if
18: end for
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Algorithm 5 Calculation of the field values from the perspective of a player.

1: Input:
F All fields ordered for the player, starting with WAIT fields and then
clockwise from START to FINISH.

2: Output:
V Dictionary that maps all fields to values.

3: Initialize:
value ← 1

4: Initialize:
del t a ← 1

5: Initialize:
V ← {}

6: for each f in F do
7: if f is WAIT-of-player then
8: V [ f ] = 0; continue
9: end if

10: if f is START-of-player then
11: V [ f ] = 50; continue
12: end if
13: V [ f ] = value
14: if f is START-of-other-player then
15: del t a ← del t a +1
16: value ← value +15
17: end if
18: if f is FINISH-of-player then
19: del t a ← del t a +2
20: value ← value +50
21: end if
22: value = value +del t a
23: end for
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The field values for all marbles directly lead to the values for the PROGRESS parameters
during a move. The progress of the own marbles and the marbles of the teammate are
positive and progress of the marbles of opponents is negative.

The values of the progress of marbles are adjusted by the opportunities and risks of
blocking and hitting. The own cards, the played cards and the number of cards in the
hands of the other players are input to chance estimations of possible actions of other play-
ers. The values for the HIT parameters depend on the field values and the chances that
the opponents have a required card to hit the marble. The values for the BLOCK param-
eters depend on the length of the free path of the marbles and on the number of marbles
the player has on the board. If the free path of a marble is 12 or less, then the value is
path_leng th ∗100/12. If a player has a marble on the START field, a waiting marble, and
a start card then a blocking value of −50 is calculated.

4.8. TRAINING PARAMETERS
Table 4.2 shows the parameters to train the DQN-agent. Experiences can be stored in a re-
play memory and sampled randomly to train the network. This is called experience replay.

Table 4.2: Parameters of the DQN agent.

Parameter Description Default Value
replay_memory_size Size of the replay memory. 20000 20000
replay_memory_init_size Number of random experiences to sample

when initializing the replay memory.
100 100

update_target_estimator_every Copy parameters from the Q estimator to the
target estimator every N steps.

1000 1000

discount_factor Gamma discount factor. 0.99 0.99
epsilon_start Chance to sample a random action. 1.0 1.0
epsilon_end Final value value after epsilon is decayed. 0.1 0.1
epsilon_decay_steps The steps to decay epsilon over. 20000 20000
batch_size Size of batches to sample from the replay

memory.
32 32

num_actions The number of actions. 2 271
state_shape The shape of the state space. None [5x123]
train_every Train the network every N steps. 1 1
mlp_layers The layers numbers and dimensions of the

MLP.
None [4x512]

learning_rate Learning rate. 0.00005 0.00005
device Whether to use the CPU or the GPU. None GPU

Table 4.3 shows the parameters to train the DMC-agent. The values that deviate from
the default values are shown in bold. The value for the unroll_length was increased to 400
to prevent OutOfMemory errors. This parameter is related to the game length. The RM-
SProp parameters (alpha, momentum and epsilon) steer the Root Mean Square Propaga-
tion, which is a gradient descent optimization algorithm.
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Table 4.3: Parameters of the DMC agent (DMCTrainer).

Parameter Description Default Value
xpid Experiment id. dmc exp7
save_interval Interval in minutes to save the model. 30 120
num_actor_devices The number of devices (GPU’s). 1 1
num_actors Number of actors for for each device. 5 5 or 6
training_device The index of the GPU used for training models. 0 0
total_frames Total frames to train. 1011 1011

exp_epsilon The probability for exploration. 0.01 0.01
batch_size Learner batch size. 32 32
unroll_length The unroll length (time dimension). 100 400
num_buffers Number of shared-memory buffers. 50 50
num_threads Number learner threads. 4 4
max_grad_norm Max norm of gradients. 40 40
learning_rate Learning rate. 0.0001 0.0001
alpha RMSProp smoothing constant. 0.99 0.99
momentum RMSProp momentum. 0 0
epsilon RMSProp epsilon. 0.00001 0.00001
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5
EXPERIMENTS

This chapter describes the experiments that produced the results in the next two chapters.

5.1. PLAN
The experiments are conducted to answer the research questions about the techniques and
the performance of RL-agents at board-card games. The goals of the experiments are:

• Determine if board-card agents could be trained effectively using DQN or DMC.

• Measure the performance of the agents.

• Optimize the performance.

The experiments should indicate as early as possible if the technical setup actually works
and if the training will deliver useful results. The importance of this step should not be
underestimated. The first experiment is designed to fail fast to minimize the time to come
to a working setup.

The measuring of the performance of the board-card agents, mainly the playing strength
and the processing time, gives insight in the training process and is described in Section 5.3.

We tried to improve the performance of the DMC agent by conducting experiments
with the NN size, the reward function, and the state representation. The DMC setup, like
any RL environment, has many configurations or components to play with. The measuring
methods provide a great benchmark for optimizing the performance.

The expectations of the experiments were that randomly playing agents would be de-
feated easily and that the rule-based agents could (be proven to) be defeated.

5.2. SETUP
The experiments were based on learning by self-play and the goal was to play full board-
card games without simplifications. These two starting points lead to a configuration of
four self-learning agents at all four board positions. These agents learn from their limited
observations of the game state and the end rewards only.

The training takes place in an environment with four separate agents. The agents at
opposite locations of the board form teams. All agents observe the game from their own
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perspective. They do not observe any hidden information and can not communicate with
their teammates. The only observables are defined by the rules of the game. Every agent
has a separate NN that is fed with the game experiences of episodes with observables (o)
and actions (a). During the training, each configured interval a total of 4 models (one for
each agent) is saved in the designated experiment directory.

The models are loaded from disk back into memory for evaluation during tournament
play. To evaluate the models of a stage of the training process, the models for two board
locations (for example North at index 0 and South at index 2) and two other agents (ran-
dom, rule-based or other trained agents) for the remaining board locations are initialized
and play a tournament against each other.

5.3. MEASURING METHODS
The results are measured according to five methods. The first three methods are based
on determining the win rate in tournament play, the fourth method focuses on in-game
behavior, and the last method is all about effectiveness.

1. Play against randomly playing agents

Trained agents play tournaments against agents that play random moves. The teams
are formed by two identical agents, as stated in Section 4.1. Each tournament con-
sists of 1000 matches. This number was chosen as a trade-off between resource con-
sumption and noise reduction. The tournaments ran in parallel with the training
processes. Every generated model competes in pairs in a tournament against a pair
of randomly playing agents. The models from board positions North and South were
taken to compete with agents at East and West.

Defeating randomly playing agents should be an easy barrier to take. Random move
selection makes the agent very weak (see Section 4.6). The win-rate against randomly
playing agents is a good indicator especially during the first stages of the training
process. The performance of untrained models is comparable to randomly play-
ing agents en should increase quickly with training. One would expect a win-rate
of around 99% like the rule-based agent (see Section 4.7) against randomly playing
agents.

2. Play against other trained agents

Tournaments between agents of different stages of the training process provide in-
sight into the learning process. Expectations are that agents from early stages are
weaker than agents from later stages in the learning process. Each tournament con-
sists of 4000 matches.

3. Play against rule-based agents

Rule-based agents play a decent game against humans and defeat randomly playing
agents easily. Awareness of positional value is key to reaching the finish area faster
than the opponents. Especially moving four steps backward from the start field is an
effective accelerator that a strong agent is expected to apply often. Each tournament
consists of 4000 matches. Models are chosen to compete in tournaments at reason-
able intervals of 5×108 frames.
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4. Manually analyze the play

Manual analysis of the gameplay provides insights into the learning process and the
playing strength and style of the agents. The analysis is executed by spectating the
play of two teams of the same version of the agent. All moves of all agents are exam-
ined for interesting situations and overall style.

The interesting situations are positions where real choices are made. Some choices
generally have a worse outcome than alternatives. For example: running four steps
backward from the start field is almost always clearly better than alternative moves.
The choices are categorized into six aspects of play: Starting, Running, Finishing, Hit-
ting, Blocking, and Switching. Some style-related observations, like ’plays the highest
card first’, are taken into account as well. The reason is that it might be disadvanta-
geous if the play gets predictive. Figure 5.1 shows examples of observations.

The observations of the manual analysis and the rule-based agent cannot be seen as
fully independent from each other. I observed, interpreted, and chose the situations,
while I also made the rule-based agent. As a result, my view might be biased and
there is a risk that the manual analysis judges the RL agents according to the rule-
based implementation. A consequence is that it might be difficult to spot better play
than the behavior of the rule-based agent. It is precisely in complex situations for
the rule-based agent (and me) that RL agents could excel. It is good to be aware of
this while trying to observe games without prejudices to form a useful addition to
auto-play tournaments.

Manual analysis of observations and selected actions of trained agents at different
stages of the training process provides insights in the learning process. The increased
playing strength is expected to go hand in hand with better judgment in the situations
shown in Figure 5.1.

5. Measure the processing time

The time a training takes is an important part of the performance. One wants good
results with minimal processing time and low resource consumption. The processing
speed is measured by the processing time per frame. The win rate progress in time to
determines the most efficient solution.

The playing strength is measured by the mutual performance in tournament play and
expressed in a win rate percentage. The use of existing indicators of the playing strength,
such as ELO 1 and Microsoft TrueSkill 2, was considered. Both indicators measure the rel-
ative skill levels. Although these rating systems have their value, the extra value in this
project is minimal because of the lack of references or benchmarks.

The tournament play has advantages and disadvantages. An advantage of automatic
tournament play is that it is a clean quantitative measurement. The speed of automatic
play allows a large number of matches to be played, reducing the noise generated by ran-
domness and incidental errors. A disadvantage is that it is just a relative measurement. It
measures the playing strength between the tournament participants without absolute val-
ues. During tournament play, biased agents or fouls may stay unnoticed.

1https://en.wikipedia.org/wiki/Elo_rating_system
2https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/
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Figure 5.1: Examples of observations during manual analysis. Green cards and arrows indicate good choices
and red indicates bad choices.
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Manual analysis is a sensible addition to tournament play to identify biases and fouls.
This analysis is a qualitative and resource-intensive method. Although a small number of
games are analyzed, these games consist of a decent amount of moves that provide trust-
worthy insights into the playing strength and style of the agents. There is a lot of nuance in
the manual analysis. Players do not always have one right move. Moves often have nuances
because multiple considerations regarding progressing, blocking, hitting, and finishing are
made in parallel. In some positions running four steps backward might not be chosen to
block an opponent. In general, it is better to play an Ace to start than to run 1 field, but
if a marble of the opponent is hit or during a finishing maneuver, then running with an
Ace might be smarter. The interesting events are moves with a choice that has clear wins
or losses. These events are counted as plus or minus in case of a good or bad choice. The
moves with no clear outcome were ignored.

5.4. RUNNING EXPERIMENTS

The experiments with DQN and DMC run in separate configurations but are very similar.
The DQN training is started with the script keezen_dqn.py and the DMC training is started
with the run_dmc_keezen.py. Every experiment has a unique identifier and each training
run outputs a log file and the results in a dedicated folder. Agents are instantiated for each
of the four player positions. Then the trajectories are generated by running games in the
environment and feeding them to the agents. The progress of the training was measured
by running tournaments of the trained agents against randomly playing agents.

The evaluation tournaments against random agents differs somewhat between DQN
and DMC. The DQN experiments run the tournaments as part of the training script every
10k trained episodes. The DQN experiments save the performances in the tournaments at
every stage of the training, and a graphical representation (a .png file). The DMC evalua-
tions are run by a separate cron job that administrates all processed tournament results in
a text file (processed.csv). Every run, the job checks for not processed models and starts
a tournament with the latest one.

5.4.1. TOURNAMENTS AGAINST RANDOMLY PLAYING AGENTS

The tournaments against randomly playing agents are run by a cron job that runs the
evaluate_keezen_rnd.py script. The script reads the already processed models from
the file processed.csv. It reads all generated models from the same path, picks the lat-
est, and runs a tournament of 1000 matches against randomly playing agents. The script
create_graph_rnd.py reads all results from the the file processed.csv and generates the
Figure 7.1.

5.4.2. TOURNAMENTS AGAINST OTHER TRAINED AGENTS

The tournaments against other versions of agents are started manually. The script eval-
uate_keezen_versions.py loads the agents of two teams and runs a tournament of 4000
matches. The agents load the models by specifying the number of trained frames. The
resulting values are collected in Table 7.1.
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5.4.3. TOURNAMENTS AGAINST RULE-BASED AGENTS

The tournaments against rule-based agents are run by the script evaluate_keezen_rb.py.
Every 5x108 frames two DMC-agents team up and play 4000 matches against a team of
rule-based agents. Figure 7.2 is created with the script create_graph_values.py.

5.4.4. MANUAL ANALYSIS

The manual analysis is run by the script evaluate_keezen_man.py. The script loads the
four DMC-models and outputs the game position, including the cards of all players, to the
screen. The player that has the turn is indicated by the "<->" next to the cards. By pressing
Enter, the next move is executed by a DMC-agent. Figure 5.2 shows the output during the
manual analysis.

Figure 5.2: Output during manual analysis.

5.4.5. PROCESSING TIME

The processing time is measured by collecting the time of the creation of the generated
models. The processing speed is the number of frames per unit of time. The script cre-
ate_graph_rnd_exp7_exp20_speed.py finds the models and plots the modification dates
versus the number of frames.

During training, the goal is to achieve a high win rate in the least possible time. The pro-
cessing speed (processed frames per unit of time) tells not the entire story, as the win rate
per processed frame is not constant. The win rate per unit of time plots tells a completer
story. For example, the higher processing speed due to a smaller NN should not decrease
the win rate per precessed frame (too much) to be beneficial.
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5.5. SYSTEM
Table 5.1 specifies the hardware and operating system used during the research.

Table 5.1: Hardware and operation system

Processor AMD Ryzen 7 3700x 8-core
Memory 32GB
GPU NVIDIA GeForce RTX 2070 Super
OS Ubuntu 20.04.3 LTS
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6
DQN

This chapter discusses the attempts that were taken to train board-card agents with DQN.
We briefly describe the experiments, the results, and a discussion. Due to the disappointing
results, the discussion of DQN is limited compared to the description of the more success-
ful DMC in the next chapter.

6.1. EXPERIMENTS
The experiments with DQN consist basically of training DQN agents, evaluating the agents
in tournaments against randomly playing agents, doing manual analysis of the playing style
to track causes of the weak performance and making changes to the experiment.

A lot of effort has gone into experiments to improve the playing strength of the DQN
implementation without success:

• We experimented with parameters of the algorithm, such as learning rate, discount
factor, and epsilon (exploration versus exploitation).

• We experimented with technical parameters, such as batch size, update period, buffer
size, replay size, and network size.

• We experimented with changes in the model:

– We used marble identifiers and we used marble indexes based on board posi-
tions.

– We tried different perspectives: birds-eye perspective and player perspective.

– We tried models without the cards, just the board.

– We changed the input shape from numbers to only zeros and ones.

– We experimented with perfect information in the game.

• We tried with longer training. Several training sessions lasted for two weeks without
any improvements after two or three days. There was no indication that continuing
would make sense.

• We experimented with simplifications of the game. We tried:
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– games with fewer marbles: two or three marbles per player instead of four.

– games with fewer cards/actions: fewer cards and no 7-card to decrease the num-
ber of actions to 25 instead of 271.

– games without team play (stop when one player’s marbles are finished).

– a combination of the above.

– an implementation of Ludo (Mens-erger-je-niet) (25 actions).

• We have validated the experiment setup:

– We tested extensively.

– We debugged extensively.

– We have done code reviews.

• We did more literature study (action shaping, DQN limitations such as overestima-
tion).

• We have analyzed the play manually.

• We have tried to introduce specific rewards:

– We have experimented with the values of rewards: higher values for winning
and lower values for losing.

– We have experimented with extra rewards: reward for moving four steps back-
ward from the start field

– We have experimented with higher rewards for shorter games.

• We contacted an expert from the RLCard team. He confirmed that DQN could be
problematic with large action spaces.

• We tried alternatives. NFSP did not improve. We failed to get A3C and PPO working
with Keezen. DMC performed much better.

6.2. RESULTS
Training DQN agents at the Keezen game gives the results as shown in Figures 6.1, 6.2 and
6.3. These figures are three samples to show that the trained DQN agents have a maximum
win rate of only 68% against randomly playing agents. This score is low, considering ran-
dom play already scores a win rate of 50%. These are the results of many attempts that did
not get better than this. The next section discusses a possible explanation. In DQN, the
timestep represents the number of times a batch of training data is processed.

The results of the DQN implementation against randomly playing agents are the reason
to skip the tournaments during training and against rule-based agents. Not taking the first
barrier makes those two tournament types of little value. Expect a win rate of about 3%
against rule-based agents, based on the results of a short-trained DMC agent of comparable
strength.

Manual analysis confirms that DQN agents perform poorly. The agents did not learn
the move to go four steps backward from the start field, effectively skipping a complete run
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Figure 6.1: Tournament results sample of DQN agents against randomly playing agents.

Figure 6.2: Tournament results sample of DQN agents against randomly playing agents.

Figure 6.3: Tournament results sample of DQN agents against randomly playing agents.
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of a marble on the board. This opportunity manifests itself at least once in most episodes.
During manual analysis of the moves, it is hard to point out what the DQN agents have
learned better than randomly playing agents.

6.3. DISCUSSION
The results, as presented in the previous section, show that the DQN performance on board-
card games is much worse than anticipated. The expectations based on results with a sim-
ple rule-based agent were that the DQN implementation would defeat the random agents
with a win rate of at least 95%. After many experiments, the maximum tournament result
is a 68% win rate against randomly playing agents.

The results confirm that the playing strength of the DQN agents is very weak. Automatic
tournament play and manual analysis show that the DQN agents do not learn the game
well. An obvious move like four steps backward from the start field, effectively skipping a
full run of the marble around the board, is not performed. Even interim rewards for this
move did not help.

More experiments and changes did not significantly improve the performance. In gen-
eral the later results as seen in Figures 6.2 and 6.3 were only slightly better than the early
results in Figure 6.1.

The characteristics of board-card games result in variances in the DQN training. The
characteristics were discussed in Section 3.4 and show that board-card games have many
action definitions (Keezen: 271). Only a small subset of these actions in a state is legal,
depending on the cards in the hand of the player and the position of the marbles on the
board. Often there are no legal moves at all. Variances are also introduced by the multi-
agent and imperfect information characteristics.

The variances that are inherent to the characteristics of board-card games are likely to
cause difficulties in training board-card games with DQN. Chapter 2 discussed that TD is
incremental and harder to stabilize than MCM and that DQN has decreased convergence
and stability compared to TD.

According to [Heinrich and Silver, 2016], the DQN algorithm learns a deterministic and
greedy strategy that is sufficient for single agent MDPs, but not for large multi-agent im-
perfect information games. This type of games require more stochastic policies. If agents
are ε-greedy, with smaller chances on exploring, the generated experiences are highly cor-
related with a narrow distribution of states. The authors introduce NFSP to achieve better
results at imperfect information games and show improvement over DQN at playing poker
(Limit Texas Hold’em). The policy of NFSP agents to generate experiences changes more
slowly. This results in smoother variances in the experiences and more stable NNs. Experi-
ments with NFSP on board-card games did not indicate any better performance than DQN.
The characteristics of board-card games are worse for DQN, such as a larger action space
and much longer games.

Literature describes similar problems of the card game Dou Dizhu with DQN [You et al.,
2019]. The authors propose combinational Q-learning to handle the combinational action
space. In DouZero this problem is tackled by the implementation of DMC [Zha et al., 2021].
DMC is more efficient than DQN in handling large action spaces.

The failure to achieve decent results with DQN does not mean board-card games can
not be trained with DQN. This research shows it is harder to get good results with DQN than
DMC, but the belief remains that it is possible to achieve better results with DQN.
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7
DMC

This chapter discusses the experiments and the results with DMC.

7.1. EXPERIMENTS
All experiments that were described in Chapter 5 were conducted with DMC:

• The playing strength was measured against randomly playing agents, against other
versions of the agents, and against rule-based agents.

• Games played by DMC agents from several stages of the training process were man-
ually analyzed.

• The processing time (and cost) of the training was determined.

• Experiments with several possible training optimizations were conducted.

7.2. RESULTS

7.2.1. TOURNAMENTS AGAINST RANDOMLY PLAYING AGENTS

Figure 7.1 shows the tournament results of two trained DMC agents against two agents that
play random moves. The figure shows the number of frames or game positions and the win
percentage against random agents. The models at board positions North and South played
a tournament of 1000 games against two randomly playing agents at board positions East
and West. The agents achieve a win rate in tournaments of over 99%.

The NN size is [5× 512], the model has no card count information, and the model is
created from the generic perspective (see Section 4.4.1). The training took 49 days (cycle
time).

7.2.2. TOURNAMENTS AGAINST OTHER TRAINED AGENTS

Table 7.1 shows the tournament results of several versions of DMC agents during the train-
ing. Each row in the table shows the tournament results of that agent against the other
agents in the column headers.
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Figure 7.1: Tournament results of DMC agents against randomly playing agents. The thinner line after 4×109

frames is due to a change in the save interval of the models from 30 minutes to 2 hours.
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Table 7.1: Win-rate of DMC agents during training.

Agent (frames) 0 (random) 1x109 2x109 3x109 4x109 7x109 10x109

0 (random) X 0.058 0.034 0.019 0.008 0.005 0.004
1x109 0.942 X 0.313 0.238 0.194 0.138 0.109
2x109 0.966 0.687 X 0.416 0.348 0.274 0.226
3x109 0.981 0.762 0.584 X 0.436 0.342 0.295
4x109 0.992 0.806 0.652 0.564 X 0.411 0.355
7x109 0.995 0.862 0.726 0.658 0.589 X 0.426
10x109 0.996 0.891 0.774 0.705 0.645 0.574 X

7.2.3. TOURNAMENTS AGAINST RULE-BASED AGENTS
Figure 7.2 shows the results of tournaments of 4000 games of DMC agents against rule-
based agents.

The increasing win-rate values from left to right indicate that the DMC agents get stronger
with more training. The DMC agents come on par with the rule-based agents and the curve
suggests that the trained agents will surpass the rule-based agents.

The agents are the same as the agents that played against the random agents. The NN
size is [5×512], the model has no card count information, and the model is created from
the generic perspective (see Section 4.4.1).

7.2.4. MANUAL ANALYSIS
The agents of three separate training stages are evaluated manually according to the de-
scribed method. Table 7.2 shows the analysis of the DMC agents after training 1.5x109,
4x109, and 10x109 frames. The results are based on two games (428 moves), three games
(721 moves), and three games (793 moves), respectively. The values are calculated by di-
viding the number of positive events by the total of events. The values are rounded to 1
decimal place. Hence, the values are between zero and one, and higher values are better. If
two or fewer events occurred in total, this resulted in a N/A (not applicable).

The values of the manual analysis in Table 7.2 lead to the learning status of the three
DMC-agent versions. Table 7.3 shows the analysis of DMC after training 1.5x109 frames, Ta-
ble 7.4 shows the analysis of DMC after training 4x109 frames, and Table 7.5 shows the anal-
ysis of DMC after training 10x109 frames. After more training, the DMC agent learned to
start, run, finish, hit, block and switch much better. The latest agent seems to have learned
to anticipate on hitting opponents and avoiding to get hit.

The second agent performed an interesting move. Instead of directly running four steps
backward from the start field, the agent first moved two steps forward and ran four steps
backward the next turn. This maneuver seems smarter because of decreased chances of
opponents swapping the marble to prevent a fast finish. It is not clear if this was the result of
the learning process or just a coincidence. The third agent used the Ace to run in the finish
area more than the second agent, resulting in a lower score. The latest agent’s primary focus
seems hitting the opponents. The agent has learned better not to hit the own marbles and
helps the teammate when swapping marbles.
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Figure 7.2: Tournament results of DMC agents against rule-based agents. After 10.5× 109 the DMC agents
play as strong as the rule-based agents.
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Table 7.2: Manual analysis of DMC-agents after training 1.5x109, 4x109, and 10x109 frames.

1.5x109 4x109 10x109

Starting
Use ace as starter, not run 0.4 0.9 0.8
Moves marble from start if agent has other starter card 0 0.4 0.5

Running
Runs 4 backward from start field first marble 0.6 1 0.9
Runs 4 backward from start field other marbles 0 0.8 0.8
Runs not just with front marble 0.9 1 1
Plays not always the highest card first 1 1 1
Splits seven steps beneficial over two marbles 0.9 0.9 0.9

Finishing
Finishes with priority 0.8 1 1
Finishes smart 0.6 0.9 0.9

Hitting
Hits opponents if possible 0.9 0.9 1
Does not hit the teammate 0.3 0.7 0.7
Does not hit self 0.1 0.3 0.8
Runs with chance on hitting opponents N/A N/A 1
Decreases chances of being hit 0.4 0.6 0.6

Blocking
Keeps marble on own start field to block opponents 0.7 1 0.9
Avoids blocking the teammate 0.2 1 1
Tries to avoid being blocked N/A N/A 0.8

Switching
Switches beneficial for self 0.6 0.9 0.9
Switches beneficial for teammate 0 0.4 0.8
Switches not beneficial for opponents 0.4 1 0.9
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Table 7.3: Learning analysis of DMC after training 1.5x109 frames.

Aspect Learning status at 1.5x109 frames Still to learn
Starting Prefers running one step with a marble over

putting a new marble on the start field.
More starting with ace.

Starting Does not free the start field to start with new
marbles if applicable.

Free the start field for waiting mar-
bles.

Running Plays 4 backward with the first marble, not
with the other marbles.

Run 4 backward with all marbles.

Running Runs marbles and plays cards without being
predictive.

Ok

Finishing Finishes with priority and quite smart. Get smarter at finishing.
Hitting Hits opponents almost perfectly, but hits the

teammate and own marbles too.
Don’t hit teammates and own
marbles.

Blocking Blocks opponents and blocks the teammate
too.

Don’t block the teammate.

Switching Switches the own marbles ok. Switching mar-
bles of teammate is bad and the opponents a
little better.

Switch more effective, especially
teammate and opponents.

Table 7.4: Learning analysis of DMC after training 4x109 frames.

Aspect Learning status at 4x109 frames Still to learn
Starting Prefers putting a new marble on the start field

over running one step with a marble.
More starting with ace.

Starting Frees the start field in some occasions to start
with new marbles.

Free the start field more often for
waiting marbles.

Running Always plays 4 backward with the first mar-
ble, in most occasions with next marbles.

Run 4 backward with all marbles.

Running Runs marbles and plays cards without being
predictive.

Ok

Finishing Finishes with high priority and smart. Get smarter at finishing.
Hitting Hits opponents almost perfectly, but hits

teammates and own marbles unnecessary on
some occasions.

Don’t hit the teammate or own
marbles.

Hitting Seems to have some notion of chances of be-
ing hit, but seems not to avoid other start
fields.

Learn to prevent being hit.

Blocking Blocks opponents and avoids blocking the
teammate.

Ok

Switching Switches own marbles, and those of the
opponents effectively. On some occasions
switching the teammates marbles could be
better.

Switch more effective, especially
the teammate.
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Table 7.5: Learning analysis of DMC after training 10x109 frames.

Aspect Learning status at 10x109 frames Still to learn
Starting Prefers putting a new marble on the start field

over running one step with a marble.
Ok, prefers finishing occasionally.

Starting Frees the start field in some occasions to start
with new marbles.

Free the start field more often for
waiting marbles.

Running Always plays 4 backward with the first mar-
ble, in most occasions with next marbles.

Run 4 backward with all marbles.

Running Runs marbles and plays cards without being
predictive.

Ok

Finishing Finishes with high priority and smart. Get smarter at finishing.
Hitting Hits opponents with high priority, still hits

the teammates marble on some occasions
and hits fewer own marbles.

Don’t hit the teammate or own
marbles.

Hitting Seems to have some notion of chances of be-
ing hit, but seems not to avoid other start
fields.

Learn to prevent being hit.

Blocking Blocks opponents, avoids blocking the team-
mate and tries to avoid being blocked.

Ok

Switching Switches own marbles, and those of the op-
ponents and teammates effectively.

Learn even better switching the
teammate.
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7.2.5. PROCESSING TIME AND COST
Table 7.6 gives an indication of the training time given the setup described in Sector 5.4.
Two periods of the training took much longer. A job was running in parallel to gather the
tournament results between 3x109 frames and 4x109 frames, and there was a problem with
a resource-consuming job after 8x109 frames. Without those two delays, the training pro-
cessed roughly 9.7x106 frames per hour.

The training time results in costs. There are many dependencies and assumptions in
a cost calculation. For example, dealing with depreciation, produced (useful) heat and
fluctuating energy prices. We keep it simple and calculate the direct costs of the train-
ing without taking depreciation and other factors into account. The power consumption of
the training system with 100% GPU load is 200 Watt. A kWh costs Euro 0.24. This electric-
ity price is low given the current market prices, but the system also works on solar panels
during the day. These considerations lead to the following calculation:
Cost s = Consumption [kW] × Time [h] × Price [EUR/kWh] = 0.2×1185×0.24 = 56.88 EUR

Table 7.6: Training time of DMC.

Frames trained Delta (hours) Total (hours) Total (days)
1x109 103 103 4.3
2x109 103 206 8.6
3x109 102 308 12,8
4x109 192 500 20.8
5x109 100 600 25
6x109 102 702 29.3
7x109 102 804 33.5
8x109 100 904 37.7
9x109 179 1083 45.1
10x109 102 1185 49.4

7.2.6. OPTIMIZATION EXPERIMENTS
We experimented with the NN size, the reward function, and the observation representa-
tion to try to optimize the training process and improve the evaluation results. Table 7.7
shows the experiments with the variables.

Table 7.7: Experiments with DMC to optimize the results: id, description and variables. The bold values (that
are not in the first row or first column) indicate a change compared with the experiment above. The color
column indicates the line color in the graphs.

Id Description NN Size Reward Card count Rows Perspective Color
A Base experiment [5×512] [0, 1] No 5 Generic Blue
B NN size [2 × 512] [0, 1] No 5 Generic Red
C Rewards [2×512] [-26, 26] No 5 Generic Purple
D Card count [2×512] [-26, 26] Yes 5 Generic Black
E No redundancy [2×512] [-26, 26] Yes 4 Generic Green
F Perspective [2×512] [-26, 26] Yes 4 Player Orange

Experiment A forms the basis that we try to optimize with the other experiments. It is
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the DMC experiment that is already described with the results in this chapter. The experi-
ments B up to and including F build on experiment A by cascading the extra variables.

Figures 7.3 and 7.4 show the results of the experiments that are listed in table 7.7. The
first figure shows the win rate against randomly playing agents during the training of the
experiments. The second figure shows the same data as the first figure with a higher zoom
level.

Figure 7.5 shows the processing speed of the experiments. Note that three groups of
experiments are formed: Experiment 1) A, 2) Experiments B and C, and 3) Experiments D,E
and F.

Figure 7.6 compares the win rate during a training of experiment F with base experi-
ment A. The training of F shows a higher win rate per frame. The training of experiment
F also had a higher speed than experiment A. Due to different training circumstances it is
hard to measure the speed difference exactly. An estimation is a speed gain of a little less
than 15% based on Figure 7.5.

NETWORK SIZE

The NN of the DMC agents in experiment A has a size of [5× 512]. A smaller network is
expected to speed up the training process at the cost of some possible information loss.
Experiment B utilizes a NN size of [2× 512] to test how much faster the training process
would be and if the playing strength would suffer. One extra (6th) actor process was con-
figured to achieve a 100% GPU utilization again.

Figure 7.7 shows the results of experiments A and B with the two different network sizes
after training more than ten days. The win rate against randomly playing agents during
both learning processes largely overlap. Figure 7.5 shows that the processing time per frame
between experiments A and B decreased due to the smaller NN. Processing of an equal
number of frames of 2.75×109 took 240 hours in stead of 283 hours, meaning 15% faster
processing per frame.

REWARD FUNCTION

Experiments A and B have a simple reward function: 1 for the winners and 0 for the losers.
A more aggressive reward function is expected to show some difference in the scoring re-
sults and probably shorter games. Experiments C and further utilize a reward function that
rewards wins by a big lead higher than wins by a small small lead. The reward function is
inspired by the scoring system at the national Keezen championship in the Netherlands 1

and is calculated as follows:

• Each finished marble is 2 points.

• The winners get 10 points bonus.

• The losers get the negative value of the reward of the winners.

The winning team will always have 8 finished marbles. This is 8×2+10 = 26 points. Each of
the finished marbles of the losing team counts as 2 points and is subtracted from 26. So if
the losing team has 5 finished marbles then the winning team gets a reward of 26−5×2 = 16.
The losing team gets a reward of −16.

1https://nk.keezbord.nl/officiele-spelregels/
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Figure 7.3: Tournament results of DMC agents of optimization experiments A to F against randomly playing
agents.

Figure 7.4: Zoomed in at figure 7.3.
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Figure 7.5: Processing speed of training DMC agents of optimization experiments A to F. Experiments B and
C overlap and experiments D,E and F overlap.

Figure 7.6: Performance of training DMC agents of experiments A to F against rule-based agents.

60



Figure 7.7: Tournament results of DMC agents with different network sizes against randomly playing agents.
Experiment A: [5×512] and B: [2×512]

Figure 7.8: Average rewards for DMC agents, that are trained with different reward functions, against rule-
based agents. The DMC agents were trained with two different reward functions: [0,1] and [−26,26].
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Figure 7.9: Average number of moves of DMC agents, that are trained with different reward functions, against
rule-based agents. The DMC agents were trained with two different reward functions: [0,1] and [−26,26].

Figures 7.8 and 7.9 show the results of experiments B and F. Although there is no direct
comparison of the win rate and game length between experiments B and C, with the results
against the randomly playing agents (Figure 7.4), there is a trend to recognize. All experi-
ments with the more aggressive [−26,26] reward function start with worse win rates than
the experiments with the [0,1] reward function and seem to recover after 2×109 frames and
achieve higher win rates after that. The agents need a little more time to understand the
more aggressive reward function and benefit from this later. The average length of games
shows a comparable pattern.

The average length of games depends on the playing strength of both teams. A team of
not trained DMC-agents is beaten fast by a team of the rule-based agents. During training
the DMC-agents learn to play better. Better game-play consist of two game facets: finish
faster (shorter games) and thwart the opponents better (longer games). The manual analy-
sis can give an explanation. Table 7.2 shows that hitting the marbles of opponents is learned
early in the training process (at 1.5× 109 f r ames). On average, this makes games longer.
The manual analysis also shows that the moves to finish quickly are learned later. Example
moves are ’running 4 steps backward from the start field’, finishing (smart and with prior-
ity), and switching beneficially. This explains the curve starting with a game length of 200
moves, with a top around 260 moves and then gradually declining. We can also speculate
that the more aggressive reward function stimulates to finish faster more than to thwart the
opponents, which results in shorter games and the orange curve in Figure 7.9.

OBSERVATION MODEL

The observation model was changed by three variables (see Table 7.7): the card count, a
5th row with redundant information, and the perspective.
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Card count
The number of cards in the hands of other players is observational information that helps
judging some positions. A player without cards to play will not interfere with the current
board position. During one or a couple of turns, the other players with cards have no risk of
being hit or blocked by this player and have chances to hit or block the player without in-
tervening. Adding the card count to the model is expected to improve the playing strength
of the agents. The models of experiments A, B, and C did not include the number of cards
in the hands of all players. In experiments D, E, and F this information is included.

No redundancy
The observation models of experiments A, B, C, and D contain a fifth row with redundant
information because we thought this could be beneficial for the NN. This fifth row contains
a 1 at each index of a column that contains a 1 in any of the other 4 rows, and a 0 otherwise.
Since the other four rows contain the marble positions per player, this row accumulates all
fields that are occupied by marbles. The drawback is that the model with a fifth row is 25%
larger and requires extra resources.

Perspective
The perspective means from which point of view the representation is created. In one per-
spective, the generic perspective, the first row in the model represents the move player, the
marble positions, and the card counts of the player with index 0 (player North), the second
row the player with index 1 (player East) and so on. A second perspective, the player per-
spective, starts with the currently observing player at index 0, the next clockwise player at
index 1 and so on.

Agents that are trained with the generic perspective are board position specific. An agent
trained at position North has position specific knowledge that results in bad moves at the
other board positions. This is unnecessary given the symmetry of the board-card games. A
player perspective agent should be able to play at all for board positions.

Another reason to experiment with two perspectives is that the evaluation results show
that the North-South team is stronger than the East-West team. The mean episode return
values for both teams are 0.55 against 0.45. We did not find a cause for this and probably
this difference would not exist when using the player perspective.

7.3. DISCUSSION

7.3.1. TOURNAMENT RESULTS

The DMC agents of experiment A score a win rate of more than 99% against randomly play-
ing agents and more than 49% against rule-based agents. This is achieved after 49 days of
training. Figure 7.2 suggests that the playing strength will increase with more training. It is
hard to estimate how the win rate will develop further and where it will end.

The playing strength of the DMC agent of experiment A is good enough to play against
humans. The rule-based agent is strong enough for experienced human opponents and is
matched by the strength of the DMC agent.
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7.3.2. MANUAL ANALYSIS

The manual analysis of some games played by DMC agents of experiment A at 1.5x109,
4x109, and 10x109 frames gives insights into the training process. The agent learns to play
the most effective moves gradually. The earlier agent has learned some beneficial moves
and the later agent has progressed further. For example, the agents at 1.5x109 frames know
to apply the effective 4-steps-backward-from-start move for the first marble, the two later
agents know to perform the effective 4-steps-backward-from-start move for the next mar-
bles too.

The manual analysis results from Table 7.2 show that the agent learns some types of
moves faster than others. The first agent has already learned to hit opponents effectively.
Later, the agent learned to hit the teammates and their own marbles less. The same can
be said about blocking and switching. The agents learned to look further and play more as
a team during the learning process. The agents help the teammate and thwart the oppo-
nents. The agent at 4x109 has improved to value positions and team play. The latest agent
matches the rule-based agent by making hitting opponents a higher priority, hitting fewer
own marbles and bringing more anticipation in the game. Better anticipation is expected
with more training and with observation models that take the number of cards in the hands
of other players into account.

7.3.3. OPTIMIZATIONS
The optimization experiments have a positive effect on the processing speed and the win
rate progress. The processing speed of experiment F, compared to experiment A, increased
a little less than 15%. The win rate increased around 3% at the same stage of the training.
This estimation of the win rate has more uncertainty as it is unknown how it will develop in
later stages of the training.

NETWORK SIZE

The most straight-forward optimization is the size of the NN. Experiments A and B in Fig-
ures 7.5 and 7.7 show that a smaller NN improves the speed, apparently without impact on
the win rate. Training with a NN of [2×512] is 15% faster than with a NN of [5×512].

REWARD FUNCTION

A more aggressive reward function with values at an interval of [26,−26] as described in
7.2.6 causes rougher and less performant starts of the trainings that catch up later on. After
2× 109 frames the reward values show a positive trend that seems to hold. The average
game length is decreased by around 5 moves. It is hard to draw conclusions regarding the
decreased game length as this can be caused by the other optimizations as well.

OBSERVATION MODEL

Adding the card count is not expected to improve the playing strength in the interval of
Figures 7.3 and 7.4 drastically. The manual analysis of the learning process shows that at
these stages the agent is still learning important actions that have more practical value,
such as preventing to be hit and moving 4 steps backwards, than the number of cards of the
other players. It is quite possible that the number of cards of other players is less decisive
in the outcome of the games. The hope is that the card counts will make some difference
at later stages, especially if players have no cards. To draw conclusions longer training with
card counts is required.
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Experiment F, with the state representation from the player perspective in Figure 7.3,
has better balanced mean episode return values. Although the agents of experiment F are
more board position independent, for yet unknown reasons (start player is selected ran-
domly) they still prefer the board position that they were trained for. The mean episode re-
turn values are 1.7 versus -1.7 in favor of the North-South team. A tournament with agents
of experiment F trained at North and South and positioned at East and West score only 7.6%
against rule-based agents (on positions North and South the score is 43%). This is better
than the experiments with the generic perspective, but not good enough.

Figure 7.5 shows the processing speed of the experiments. One can see that experiment
A (5 layer NN) is the slowest and experiments B and C are the fastest. Experiments D, E
and F are, not clearly visible due to overlapping, in the middle without much differences.
Hence, the smaller NN helps efficient processing the most, while the cart count costs some
processing power. This may be caused by the extra numpy concatenate and flatten op-
erations. Preventing these operations would be worthwhile. Note that a representation of
4 or 5 rows (experiment D versus E), does not seem to make any difference in processing
speed.

7.3.4. OVERALL
Overall the agent of experiment F is the best because it is faster, has a better win rate and
the expectations are better on longer trainings (card count and reward function). More
experiments might still improve the results:

• Changing parameters of the training, such as learning rate, alpha, exploration

• Changing technical settings, such as number of devices, number of actors, number
of threads, batch size, buffer size, replay size, network size

• Changing the action model or other observation model representations

• Steering the training by adding knowledge or extra, intermediate rewards

• More processing power

It would be interesting to see how strong the DMC agent becomes after more training. More
training with more processing power, in the cloud or not, is expected to be beneficial. The
experiments with the NN size and state representation show that improvements are achiev-
able, but adding more computing power or training time seems the most beneficial way to
improve the playing strength.

The use of RL techniques for board-card games depends on more than just the playing
strength. RL has advantages and disadvantages, depending on the game and the deploy-
ment environment:

• + The agents have an interesting, original playing style.

• + There is no need to manually program the behavior of agents.

• + It is possible to let agents learn while playing.

• - It can take a long time to train a model.
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• - RL requires more hardware resources (challenging in mobile environments).

The different characteristics make RL agents an interesting technique in addition to or even
as a replacement of rule-based agents. The playing style may be the most important fea-
ture, as in general, a learning process of RL does not result in fully predictable, rule-based
behavior. The required hardware resources and training time are disadvantages that seem
manageable as the experiments were not run on high end hardware (see Section 5.5).

7.4. VALIDITY, VERIFIABILITY AND RELIABILITY
The research of DMC is validated by the results of a significant number of matches be-
tween various agents and manual analysis. The match statistics show which RL techniques
achieve the strongest gameplay and how it performs against a rule-based agent. Manual
analysis reveals the good and bad moves and the playing style.

It seems that the measurements, as described in Section 5.3, cover all aspects of the
research. The three types of tournaments, against randomly playing agents, against other
versions of DMC agents, and against rule-based agents, measure the performance in many
different circumstances. The thousands and thousands of matches guarantee a wide range
of game situations are evaluated.

The setup of the experiments with DMC delivers reliable results. The research is repeat-
able with the available software and the programs run on an average computer. The learn-
ing process starts from scratch with a configured seed of 42, which helps to reproduce the
results. Tests with tournaments of 1000 or 4000 matches deliver consistent results, with and
without a seed. The tournament results and the manual analysis form a cohesive picture.
All measurement methods seem to correlate and reflect a step-by-step learning process.
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8
CONCLUSIONS AND FUTURE WORK

This chapter answers the research questions based on the results and the discussions from
Chapters 6 and 7. Future work is suggested and a reflection on the process of the research
project is described thereafter.

8.1. ANSWERS TO RESEARCH QUESTIONS
The main research question was how an RL based agent can achieve the strongest game-
play in board-card games. We experimented with DQN and DMC. The results of the case
study with Keezen presented in Section 7.2 show that DMC leads to much better results
than DQN. DMC agents trained from scratch scored 99% win rate against random agents
and 49% against rule-based agents. Extra experiments were conducted to optimize the re-
sults. A smaller NN, a more aggressive reward function and changes to the observation
model improve the processing speed and the win rate. As argued in Section 7.3 better re-
sults are expected with more training and suggested improvements, especially with more
processing power and more training.

Chapter 2 described RL research that is done into incomplete information and coop-
erative games. This answers research question (i). The previously conducted research on
multi-player imperfect information games formed the base of this research and the exper-
iments with DQN and DMC. The research on the Chinese card game Dou Dizhu proved
useful for this research.

Chapter 4 described the method to train agents and examine the generated models. All
implementations are available for further research. It looks like the Keezen implementation
will be included in RLCard. The case study with Keezen could be used as a template for the
other board-card games. The analysis of the characteristics of board-card games in Section
3.4 suggests that the results of the case study are valid for the other card-board games. This
answers research question (ii).

The strength of the agents was measured by automatic tournament play, manual anal-
ysis, and processing time measurements. The measure methods to examine the playing
strength and style were described in Section 5.3. This answers research question (iii). Man-
ual analysis shows that the agent learned to look steps ahead and play as a team. The next
steps are to keep improving and add even more anticipation to the game.

The answer to research question (iv) is that DMC leads to the best results. DQN and
DMC were chosen from the related work as the most promising techniques. Based on the
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study of related work, it is not expected and not ruled out totally, that other algorithms
might perform better at board-card games. We could not compare with other research
into board-card games and we experimented with a small subset of techniques. Hence, we
cannot rule out that there might be better solutions than presented in this research.

We conclude that DMC is a great technique for board-card games. The playing strength
is good enough and will be even higher. Other properties of RL techniques, such as playing
style and no need to manually program the behavior, are interesting enough to be applied
to board-card games. There are some disadvantages, such as training time and hardware
requirements, that generally seem manageable.

8.2. FUTURE WORK
The results of this research suggest that future work on DMC is worthwhile. Suggestions for
future work with DMC are:

• How good can DMC become at board-card games?
The results with DMC are promising and the results against the rule-based agent
could be even better. It would be interesting to investigate how good DMC can be-
come. The conducted experiments with DMC suggest there is room for improve-
ment.

• Optimize DMC
The current training generates four separate models. The generation of one shared
model would be an improvement. The training could benefit from the symmetric
nature of the game in two ways. First, sharing and synchronizing the model between
agents brings efficiency to the training. Second, fewer resources are required if only
25% of the models are generated.

• Add a history to the training model
The addition of history in the training model could provide more insights in the game.
Processing of the most recent actions could be beneficial for the training process and
the playing strength.

• Longer training
The current status is that more training leads to better play. All experiments show
that the agent is still improving.

• New or adapted algorithm
The applied DMC implementation is relatively new and the developments in RL go
fast. Expect the future to bring better solutions that can improve the playing strength
of board-card agents.

As argued in Section 3.4, a classification system of games could be beneficial for RL re-
search. Work has been done on the characteristics of games and this research project has
looked at the characteristics of board-card games, but there seems to be a place for a struc-
tured classification system that shows the similarities and differences of games and their
RL research status. This may also be valuable outside the context of games. Such a sys-
tem would have helped this research. However, it is questionable if it is just beneficial for
beginners and how much value it adds to the next project.
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Section 3.5 contains a suggestion for further research into the relation of the character-
istics of games and the role of skill and chance. Probably, one would be able to relate game
characteristics and mechanics to the quantitative outcomes of relative performances.

Although the performance of DQN on board-card games is worse than DMC and ex-
pectations for improvements that compete with DMC are low, it could be interesting to see
what happens when the techniques described in the rainbow paper [Hessel et al., 2018] are
applied. The results could shine more light on the role of the action space in DQN. Possibly
DQN is able to achieve good results at board-card games.

8.3. REFLECTION
Table 8.1 shows a coarse picture of the research process and timelines. This process devi-
ates considerably from the initial planning. This is mainly caused by setbacks during the
research process and the decision to keep on searching for a solution.

Table 8.1: Research project process with timeline.

Period Activities
Jul 2019 - today Self study AI and NN
Aug 2019 Start research preparations
Feb 2020 Finish research proposal.
Mar 2020 Purchase training hardware
Mar - May 2020 Develop game model and rule-based agent
Jun 2020 Proof of concept RLCard + DQN
Jul-Mar 2021 Attempts DQN
Apr-Jul 2021 Develop alternatives: A3C/PPO/DMC
Aug - Nov 2021 Experiments DMC
Nov-May 2022 Process results with DMC, additional experiments and finish project

The process involves a large amount of self-study. Initially, this was to obtain a required
knowledge level, later it was necessary to follow the developments in the research area.

After finishing the research proposal, the research project started with the development
of the game model, a rule-based agent, and a decision about the training resources. Hard-
ware was purchased. The choice between running my own hardware or running in the
cloud is mostly a personal preference with some expectations that a lot of experimenting
was necessary. Looking at the amount of training labor during this research with an un-
certain outcome, running self-owned hardware was a good decision. Especially if we con-
sider technical difficulties, such as the encountered memory leaks. In the case of a stable
solution, like at the end of this project, a cloud solution with more computing power is pre-
ferred. Probably, we should have anticipated to run the local project in the cloud later. It
would have made it less time consuming to run experiments and evaluations in parallel.

Setting up the environment for the experiment with RLCard went reasonably smoothly,
but the results were not as expected. Table 8.1 shows that experimenting with DQN alone
took nine months and the development of alternatives, of which A3C and PPO failed, took
another 4 months. DQN was expected to give decent results. This led to endlessly train-
ing DQN agents and experimenting with varying models, conditions, configurations, and
parameters without much better results. Meanwhile we were trying to rule out errors and
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questioning the assumptions.
We even considered to stop the project and report what did not work. Because it was

fun and interesting we extended the project with the expectation of better results. In con-
sultation with the supervisors, we decided to shift deadlines. Fortunately, better results
came. After that we conducted extra experiments to try to optimize the results with DMC
and did more work on the theory.

With today’s knowledge, we should have stopped the experiments with DQN earlier. In
hindsight, it took a long time to set the expectations aside while still doubting if errors in
the setup were made. Besides this, we could have given the paper [Hessel et al., 2018] more
attention, although it is more focused on Atari games. Based on this research, one would
expect that the results improve slightly and not come near DMC because the characteristics
of board-card games better match DMC. Of the rainbow techniques Double DQN [Van Has-
selt et al., 2016] and Dueling DQN [Wang et al., 2016] seem most interesting for board-card
games.

Part of the process was the identification of risks. All three risks were spot on:

Risk 1: Framework
Dependency on a framework introduces a risk. Things might not work out as promised
upfront.

Risk 2: Training time
A well-known risk in RL is the amount of required training time to reach acceptable
results. Buying the required hardware or applying a cloud solution are valid options.

Risk 3: Unexpected results
The RL techniques might not achieve the intended results. Despite a substantiated
research design, the algorithms may fail in practice or need extensive tuning that runs
out of schedule. The simple game implementation, which is part of the framework
investigation in the first phase, will not mitigate this risk. This risk can be accepted
(and reflected in the conclusions) or mitigated by investing more time. The path to
follow will be discussed with the supervisor.

All three identified risk events were realized to a greater or lesser extent.
The first risk manifested itself on several occasions, although we did a proof-of-concept

with RLCard early to mitigate this risk. The version of RLCard with DMC broke the code
developed for DQN. On several occasions, memory leaks occurred. Some were hard to
find and fix as they appeared in rare game positions or after hours of training. Later in
the research project experimenting with another framework, Tf-agents with A3C and PPO,
failed and took a lot of time.

The second risk manifested itself very clearly during the project. AI research may take a
long time because of a loop of two time-consuming activities. Training a model takes time,
and unexpected, interesting results take time to evaluate and explain or fix. To shorten the
loop, investing in shortening the training time proved valuable. The training was made fail-
fast by tweaking parameters and the size of the NN. Combined with training experience, the
time to conclude whether changes worked or not was reduced by almost half. If possible,
parallelization of training processes and powerful hardware will pay off.

The third risk came true in experimenting with DQN. We had not previously identified
the characteristics of board-card games as problematic for DQN. It would have saved a lot
of time.
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ACRONYMS

A3C Asynchronous Advantage Actor-Critic.

AI Artificial Intelligence.

CFR Counterfactual Regret Minimization.

CNN Convolutional Neural Networks.

DMC Deep Monte Carlo.

DQN Deep Q-Networks.

LSTM Long Short-Term Memory.

MCM Monte Carlo Methods.

MCTS Monte Carlo Tree Search.

MDP Markov Decision Process.

ML Machine Learning.

MLP Multi Layer Perceptrons.

NFSP Neural Fictitious Self-Play.

NN Artificial Neural Network.

POMDP Partially Observable Markov Decision Process.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

RNN Recurrent Neural Networks.

TD Temporal Difference learning.
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