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2
SUMMARY

2.1. DATA AND SYSTEM HEALTH MONITORING IN AN IN-
DUSTRIAL NETWORK

To be able to manufacture goods, an industrial site depends on a high availability of its
sensor data. When this data gets interrupted it might lead to problems when generating
reports, or wrong actions being taken by operators relying on outdated data. The research
in this thesis is aimed at maximising this availability.

Because earlier methods at rule based error detection failed or were to high mainte-
nance we attempted to solve this detection issue by using machine learning techniques. In
this research we compare 3 different machine learning techniques on data combined from
historically captured quality data and captured network data.

We used the CRISP-DM method of data mining to find what data can be combined to
form our model. The models we selected to work with are SVM, LSTM and Wavenet. These
models were chosen because they each represent a different method of model organisation.

The model that had the most promise was selected to be integrated in a monitoring ap-
plication. This monitoring application is a microservice based architecture with data col-
lection services, a communication service, a configuration service and an analysis service.
The model is loaded in the analysis service and can be updated or replaced at any time by
the configuration service. The data collection services can be independently added to the
application to extend monitoring capabilities and the communication service sends alerts
when the analysis service detects an issue or when it fails to connect to one or more peers
on the network.
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2.2. DATA- EN SYSTEEMSTABILITEITS-BEWAKING OP EEN INDUS-
TRIEEL NETWERK

Om goederen te kunnen produceren is een industriele site afhankelijk van de beschik-
baarheid van zijn sensor data. Als deze data onderbroken wordt kan dit leiden tot prob-
lemen met het genereren van rapporten, of verkeerde acties die genomen worden door
operatoren die op verouderde informatie afgaan. Het research in deze thesis is gericht op
het maximaliseren van deze beschikbaarheid.

Omdat eerdere methodes met rule-based fout-opsporing faalden of teveel werk met
zich meebrachten, trachten we dit probleem op te lossen met behulp van machine learning
technieken. In dit research vergelijken we 3 verschillende machine learning technieken om
historische kwaliteitsdata te combineren met netwerk data.

We gebruiken voor de analyse van deze data de CRISP-DM methode. De modellen die
we kozen om mee te werken zijn SVM, LSTM en Wavenet. We kozen deze modellen omdat
ze elk een verschillende methode van model organisatie voorstellen.

Het model dat hier als meest veelbelovend uitkwam moet dan geintegreerd worden in
een monitoring applicatie. Deze monitoring applicatie is gebaseerd op een microservice
architectuur bestaande uit data collectie services, een communicatie service, een configu-
ratie service en een analyse service. Het model wordt geladen in de analyse service en kan
ten allen tijde geupdate of vervangen worden door de configuratie service. De data collec-
tie services kunnen onafhankelijk toegevoegd worden aan de applicatie om de monitoring
mogelijkheiden uit te breiden. De communicatie service stuurt alarmen uit als de analyse
service een probleem ontdekt of als de service geen verbinding kan maken met één of meer
zijn peers op het netwerk.
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3
INTRODUCTION

This research stems from the need to operate and maintain an industrial data manage-
ment system in an environment where the loss of data can be critical but hard to notice.
This data management system is centered around a data historian, which is a time series
database used for retaining time sensitive data in an industrial environment. A data histo-
rian can have, often through a DCS, connections to a large number of distributed systems
and they in turn can have multiple sensors that can be added or removed ad-hoc. Writing
a rule based system to check for possible data loss would require a lot of time and effort
to create and would have to be diligently maintained. At the site where we will conduct
our study, multiple such attempts at rule-based data loss detection have already been at-
tempted but have all failed due to the large upkeep of such a system. As the large number
of false positives these system eventually created leads to the system being ignored.

This is where the use of machine learning or deep learning can be really valuable. Ma-
chine learning is using statistical algorithms to generate a model that can monitor and clas-
sify data based on this model [Samuel, 1959]. Deep learning is a subset of machine learning
based on the concept of neural networks that continuously keeps learning and can adapt
to changing environments [Schmidhuber, 2015]. If an algorithm can be trained on when to
generate alerts it could remove the need to maintain an expensive rule based system that
still requires a lot of manual checks even when performing optimally.
For this research we will be working with an industrial partner that has allowed access to
their data and systems to build models and build a proof of concept, that might later be
expanded to a fully operational suite. The goal of the research, as it stands, is to do a com-
parison on a few algorithms to find if it is feasible to create a model that can detect specific
connection problems based on network traffic and already generated metadata on a select
set of servers to peripheral devices.
In comparing the efficacy of a selection of popular machine learning techniques and using
them to monitor stability in a network, we hope to increase the general knowledge on the
use of machine learning, especially in a field where network instability might be hard to
detect but have a large impact when ignored for too long and the use of machine learning
on the metadata surrounding the actual data collected for process use.
The business partner in the case study is a data collection service that handles historical
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data for the sensors and instrumentation for a number of distinct production units on an
industrial site.

The intention is to test a number of algorithms with a wide spectrum of abilities includ-
ing at least a type of neural net and a type of static algorithm. On a test system that was
provided with real data (in this case a data historian server, data collector and simulated or
duplicated data from DCS systems), but can be turned on and off to simulate faults for the
system to detect.
This would serve as both a test for the algorithms and as a proof of concept for a moni-
toring application based on a microservice architecture that would continuously monitor
live systems for unexpected data loss due to connections problems. These test scenarios
would be created on a company owned environment and all data that leaves the company
network will be scrubbed as to not violate company policy. The monitoring service archi-
tecture would consist of individual machine learning nodes on data collection hubs that
would monitor data on their own system but also have a peer to peer (P2P) connection
between all such services on the network (or a specific set via configuration) where each
individual service communicates its status and the status of its monitored connection to
its peers. This way the services also monitor each-other and can send an alarm on any
irregularity.

3.1. STRUCTURE OF THE THESIS

First we will present a glossary with keywords that are important to, and will be used in, this
thesis. In chapter 4 we will discuss The context for this research. Here we will give a general
overview on machine learning algorithms and the relevant areas of network composition
and hierarchy.
In chapter 5 we will discuss other work in relevant fields and where this thesis is situated in
the collective body of existing work.
In chapter 6 we will discuss the data we base our research on. We discuss the sources and
format of the data and the operations required to make the data usable in the execution of
this thesis.
In chapter 7 we pose our research questions and explain the research model we will be
using.
In chapter 8 we will discuss the evaluation and implementation of our machine learning
models. We will discuss what criteria we will be using and which models we implemented
for what reason.
In chapter 9 we posit an architecture that would fulfill the requirements we set to monitor
network and system health and explain the reasoning behind the design choices we made.
In chapter 10 we discuss our conclusion and the possible future work we see following our
research.
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3.2. GLOSSARY

This section contains a general overview on the a number of concepts used in this docu-
ment and what is meant by them in this context.

labelling This is the concept of adding meaningful metadata to a dat-
apoint that is used to train an AI to correctly categorise said
datapoint.

microservice A service running on a system with loose coupling to other
services with a distinct function that can be seen as part of
an application.

microservice architecture An architecture built on single responsibility services that
makes a solution more easy to scale. Each individual service
is part of the greater whole.

IoT (Internet of Things) The concept of a network of physical
object that each contain sensor data and software to com-
municate on the network.

IIoT (Industrial Internet of Things) IoT as applied to industrial
systems.

OT (Operations Technology) All technology used in manufac-
turing systems. The difference between IT and OT is that OT
often has more proprietary communication. and often func-
tions as small islands to optimize system security.

network traffic The traffic generated by the communication between two
systems on the network. This can be monitored on either
end of the communication pipeline and give an approximate
idea of the amount of data that is exchanged between these
systems.

pattern drop A diminished change in the pattern of network traffic the AI
system is monitoring. Eg.: if the normal network traffic on a
port is between 10kb/s and 50kb/s, a pattern drop would be
a period where the network traffic does not exceed 5kb/s for
a longer than previously measured period.
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DCS (Distributed Control System) A control system for a produc-
tion unit that manages the control flow for a production pro-
cess.

historian A database specialised in storing time-series data. The data
stored by a historian is organised in such a way that data can
be easily retrieved for analysis and cannot be altered once
written.

backfilling Adding buffered datapoints in the history of a historian database.

ML (Machine Learning) The field of study focusing on data an-
alytics by use of self and/or guided -learning computer algo-
rithms.

ANN (Artificial Neural Network) A category of AI algorithms based
on the way biological neurons work.

RF (Random Forest) A learning method for classifying data where
decision trees a generated from training data and classifica-
tion is done based on average predictions from the individu-
als trees.

underfitting The concept of creating a machine learning algorithm not
attuned enough to the data following in a large number of
false positives.

overfitting The concept of creating a machine learning algorithm too
attuned to the training data causing a large number of false
negatives.

CRISP DM Cross-industry standard process for data mining.

ODBC (Open Database Connectivity) A protocol created for and
used to standardise communication with databases.

REST (representational state transfer) A software architectural style
that formalises sending or requesting data over the HTTP pro-
tocol.
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MAC address (Media Access Control) A unique identifier for any device
connected to most types of network.

IP address (Internet Protocol address) An address used to connect to a
device on a network.

ARP (Address Resolution Protocol) A protocol used by routers to
link MAC addresses to IP adresses.

TCP (Transort Control Protocol) A protocol used to send target-
ted messages over a network.

ROC (receiver operating characteristic) A graphical plot that trends
the ratio between true positives and false positives for a clas-
sification threshold value.
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4
SCIENTIFIC CONTEXT

In this chapter we will discuss some background information out machine learning and
machine learning techniques we applied in the execution of this research. We will also
discuss other work that has been done on the subject of using machine learning algorithms
to evaluate time series data in general and network or dataloss detection specifically. As
the research itself leans towards the use of metadata we will address the importance of
extensive and persistent keeping of metadata throughout this paper.
We will also focus on the use of a microservice architecture as opposed to a monolithic
application to create and maintain a distributed monitoring system.

4.1. MACHINE LEARNING

4.1.1. MACHINE LEARNING PRINCIPLES AND SUBDIVISIONS

Machine learning is the abstraction of processing data by use of descriptive or predictive
mathematical models where the processing algorithm is created by a machine based on
information learned from an existing dataset.
Machine learning can be done in different ways and the problems or issues in the field can
be subdivided in a couple of categories. Machine learning can be divided by the way the
model is trained and maintained into supervised, unsupervised or semi supervised. Su-
pervised algorithms are models based on a training set and clearly defined categories. A
supervised algorithm easily translates into a static model. A static model does not change
after training and does not have any flexibility after being created.

With a well defined training set and fully labelled categories these can be highly suc-
cessful in a narrow application.
Unsupervised algorithms are more useful for data that lacks labels and structure. These
can be used to discover methods to categorise data or to model data for which no cate-
gories can be defined. Unsupervised learning also allows for the use of dynamic models,
where the model is continuously retrained on new data. The strength of these techniques
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is that there is less effort or knowledge needed of the data under scrutiny and the model
can detect possible unknown correlations or causation. It can also be widely applied due
to the plasticity of the principles it is based upon. The weakness of these techniques are
that a model created using unsupervised learning can be less accurate than a static model.

There is also a gray zone between these categories. This gray zone is semi-supervised,
or weak supervision. These are terms used to describe machine learning methods where
some labelling is present but is either intentionally or through circumstances incomplete.
A semi-supervised technique uses a limited set of labels to optimally detect labels for the
remainder of the training set. This can then be used to keep a continuously updated model
running and steered in the right direction by manual input or to fill in the labels on a train-
ing set that can then be used as training data for another model.

Something our research might also touch on is transfer learning. This is the concept
of using a model trained on a set of data as the basis for another similar set of data. For
this research this would mostly apply to the difficulty of deploying a monitoring system
on multiple nodes in a system that can be used to detect dataloss issues and cross-train
detected signatures to other nodes. The more likely scenario is that this is a subject that
would be very interesting in follow up research.

4.1.2. MACHINE LEARNING ALGORITHMS

Here we will expand upon a number of machine learning algorithms. All of these algo-
rithms are widely used and researched and have their strenghts and weaknesses. We will
only describe the more generally known examples of machine learning as the full list could
fill libraries and most can be categorised as similar enough to one of the examples. There-
fore we will describe these algorithms as archetypes where similar ones would follow the
same of similar patterns.
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K-NN

kNN (k Nearest Neighour) classifies new datapoints based on their proximity to already
existing datapoints. k is a positive integer that denotes the number of existing datapoints
to consider. A k-value of 1 means the datapoint is classified as it’s nearest neighbour, for a
k-value of 5 the new datapoint is classified as the category with the majority of datapoints
amonst the 5 nearest. This is a simple algorithm but does not scale well. The plots in figure
4.1 visualise the possible difference when using a k of 1 vs a k of 3 neighours.

Figure 4.1: k-NN visualisation

NAIVE BAYES

This classification method is based on the bayes probability theorem described in [Swarnkar
and Hubballi, 2016]. A value can be predicted based on the likelihood of the value being
present in conjuncture with other values for which a value is known. At first this might
appear similar to the k-NN but the k-NN will compare a new datapoint with exisiting dat-
apoints and find the closest. From this follows that k-NN does not scale well, as each new
datapoints will have more other datapoints to compare with. The Naive Bayes method cre-
ates a function that outputs a probability. This will group a new datapoint together with
the most likely probable match. This function may be retrained or updated, but will not
require the calculation of every datapoint in the set for every new classification.

DECISION TREE AND RANDOM FOREST

A random forest is an algorithm consisting of a number of decision trees [Breiman, 2001].
When these trees are creating during the learning process they each have a different weight
used to classify a datapoint [Breiman et al., 1984]. When a new datapoint is tested the
random forest will output the result selected by most trees. A random forest has the ability
to have multiple different classifications that can be set as the output of a datapoint. This
makes it suitable for problems where more than two categories exist. A schematic example
for a decision tree and random forest can be found in figure 4.2.
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Figure 4.2: Decision tree and Random forest

AUTOREGRESSION ALGORITHMS

An autoregression algorithm is a machine learning algorithm based on time series data
where the next value in a series is predicted based on the previous values in the series com-
bined with a random signal to predict a future result. Autoregression algorithms are used in
statistical modelling and have their use mostly in field associated with nature, such as the
forcasting of climatological data, and economics. For economics specifically Regis et al.
[2022] collected a wide overview for autoregressive algorithms.

SUPPORT VECTOR MACHINES

Support vector machines use a ’kernel trick’ to draw a hyperplane that divides source data
into two categories. It work well for data with a larger number of features and due to the
kernel trick is relatively memory efficient [Razzak et al., 2020]. Support vector machines
will be discussed in more detail in the model implementation section of this thesis.

MULTILAYER PERCEPTRON

A multilayer perceptron can be seen as the most basic version of an Artificial Neural Net-
work. It works by emulating the operation of a biological nervous system. A multilayer
perceptron is composed from multiple cells arranged in layers where each cell has a weight
and bias that determine how it will classify input data. When multiple layers of these cells
are combined this network of neurons can be trained by altering the weight given to the
individual cells based on their accuracy. Inaccurate cells will have their weight reduced
and their output will become of lesser influence when the system as a whole generates an
output. The result of this process is a system that can reliably categorise data but maintain
some randomness to prevent overfitting.

12



Figure 4.3: Representation of a multilayer perceptron as found in [Hassan et al., 2015]

RNN (RECURRENT NEURAL NETWORK)

The RNN is a category of neural network where the input is sequential and where the nodes
in the network have an internal state where the evaluation of each node is dependent on
the previous state the node had. This increases the prediction power of the RNN in the case
of time series data at the cost of introducing an internal state that can diverge into infinity
[Bengio et al., 1994].

Figure 4.4: Representation of a multilayer perceptron as found in [Feng et al., 2017]
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4.2. NETWORK DATA TRANSMISSION

The basic metric we will be using for our research is the transmission of data over a net-
work. The manner in which computers send and receive data is crucial to understand how
a monitoring system can be set up. Network architecture can be broken down in layers
according to the OSI model in figure 4.5.

Figure 4.5: Open Systems Interconnection Model

The lowers layer defines the hardware and physical properties of the network. For the
purpose of our research it is mostly important to know it exists. Every higher layer requires
the lower layers to be present to function.
Each layer in this model increases the level of abstraction from an electronic signal up to
a human readable interface. The second layer provides a protocol for the most basic level
of communication over the hardware. This is where the linking is situated that allows net-
works to route data to and from the correct systems.
The next level up is the actual networking level. This is the level where addressed packets
are created and distributed over the network. This level is not concerned with the actual
routing (lower) or content of the message (higher). Its function is limited to the distribution
of an addressed packet to a destination.
Supported by this layer is the next layer up. The transport layer is where connections be-
tween client and server are negotiated and the form of the message is defined.
The fifth layer defines the individual session. This includes the opening and closing of con-
nections and defines the ports used for specific channels within an application.
The Presentation layer parses the data received from the network into streams and files the
client can use for further processing. The last layer, also known as the application layer or
end-user layer defines requests and replies that can be used by applications to provide end
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users with meaningful data.
For this research we are mostly interested in layers 3 to 5. We will be expanding on these
topics in the following subsections.

4.2.1. SECURITY

The existing framework surrounding the transmission of data over a network as discussed
in the previous section provides a number of different methods of measuring data transfer
over a network.
The research by [Diyeb et al., 2018] compares methods of hacking that can be used to gain
information on the traffic and data on a network. There are measures that can be taken to
scan the flow of data on an entire network. The process of network sniffing is a technique
that intercepts packets moving on a network. On older networking environments, where
devices are patched together with hubs this can work by accepting all packets on the net-
work, even those not addressed to the device the sniffer is hosted on. This works because
a network hub is not a routing component, meaning it does not send data to one specific
IP in its address list, but it broadcasts all packets it receives to all connected devices. This
works because the IP protocol has no built in security or reception acknowledgement. The
targeted device on the hub will receive and acknowledge the connection and all other de-
vices without a network sniffer will simply ignore the packets not addressed to them.
The hub network is for this reason an incredibly insecure network. Most modern systems
work with routers and switches. These systems hold address tables they use to send data
to a specific device. This means a network sniffer on a third device cannot access packets
sent between 2 devices on a network without redirecting the data from the router or switch
itself.
Redirecting this data is not impossible, as techniques like ARP poisoning exist. ARP poi-
soning works by abusing the ARP (Address Resolution Protocol), a protocol used by routers
to link MAC addresses to IP, to redirect traffic to the sniffing device. This attack can also be
defended against by implementing a static IP for all devices attempting to connect to the
system. Using a static IP layout sacrifices flexibility for security and is something an indus-
trial environment will likely implement.
The network traffic for a single device can be monitored using system handles and tools
provided by the operating system. For windows this is WMI or Windows Management In-
terface [whims]. These interfaces use the same handles that are needed for the operating
system to handle network sessions and are therefor always present. On the local system the
only limitation on monitoring applications is user privileges.
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4.2.2. PACKET ALLOCATION

As discussed earlier a network connection by the OSI model does not work in a single con-
tinuous stream of digital information. All data on a network is sent as a sequence of packets
[Braden, 1989]. These packets have meta information to denote source and destination and
for some protocols like TCP have a self-checking function to preserve integrity [tcp, 1974].
This meta information also includes destination ports that designate the packet as belong-
ing to a specific application. This meta information can be used to track packets entering a
device. The packets arriving on a server can be filtered by port and it’s size can be measured.

4.3. SUMMARY

As we understand it there is a lot of research surrounding the topics we chose to focus
on. Machine learning can be done using a variety of techniques and models and these
machine learning models can be integrated in a monitoring application using a number of
architectures. The detection of network activity can be narrowed down to a specific stream
to isolate away noise on the network and can be done in such a way as not to compromise
the security of the system under observation.
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5
RELATED WORK

In this chapter we will discuss the related work that touches on the various topics discussed
in this research. Most notably we will discuss the subject of monitoring dataflows on a
network, the use of machine learning to interpret, predict and classify time series data and
the use of a microservice architecture in an industrial setting.

5.1. MONITORING

Monitoring the stability of the dataflow in an industrial network can be done by different
approaches. For this research we have chosen to analyse the dataflow between the process
control layer and the business layer. In [Raposo et al., 2018] the researchers created services
that run on IoT devices that self-monitor and send data to a centralised service where logs
are kept for later analysis.

For more rigid process control networks that run for years without any modification
[Valdes and Cheung, 2009] suggest an easier rule based approach to whitelist normal be-
haviour and detect issues. This method counts packets and packet sizes to determine nor-
mal data flow. Based on these variables they define rules that categorises dataflows into
normal, anomalous or attack attempts.

5.2. MACHINE LEARNING FOR TIME SERIES DATA

The field of machine learning has explored a wide variety of possible algorithms to allow
a computer to detect patterns [Nguyen and Armitage, 2008]. These algorithms are ma-
ture enough that they can be found implemented in multiple libraries and programming
languages and be used by engineers without in depth knowledge about the mathematics
involved. Examples of these libraries as they exist for the programming language Python
can be found in Keras and Pytorch. Various papers exist that compare different machine
learning methods as they are used in different fields and applications[Cui et al., 2018]. This
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shows that, although machine learning has existed for a while and has a lot of applica-
tions, the specific strengths and weaknesses of each method can still be tested on different
datasets to further broaden our collective knowledge on the subject.
A field where machine learning has made a large difference in interpretting time series data
is text generation and sound analysis. Both of these applications have uses for the greater
public and have helped in the development of machine learning algorithms that can be
applied to other fields. One example of an algorithm that was designed for sound analysis
is wavenet [van den Oord et al., 2016]. This algorithm was after its introduction used by
google to create the voice of its digital assistant.

Machine learning algorithms have already been used and analysed in IoT and IIoT for
detecting device types on the network. This to detect and classify new IoT devices con-
nected to the network, [Meidan et al., 2017a] or detect and block unknown devices [Meidan
et al., 2017b]. Machine learning has also been used to find malicious access on a network
by analysing network traffic [Hasan et al., 2019] and to determine and detect the pattern of
specific internet protocols such as P2P (peer to peer) communication [Murat Soysal, 2010].
Using machine learning to detect problems on an industrial network has also been pro-
posed by Mantere et al. [2012]. This paper discusses advantages and disadvantages of us-
ing machine learning in industry as industrial networks can often be seen as closed systems
where internet accesq is either prohibited or restricted. It also mentions noise created by
maintenance on the network itself or adding and removing equipment as needed by the
operation of the factory itself.

Machine learning can also be used in predictive maintenance, where the trained algo-
rithm can alert to signals that a breakdown is imminent. To the best of our knowledge there
is no related work that uses this on the stability of the data gathering tool itself, which this
research will attempt. There is however information on how this has been achieved on
sensor data in industry to predict failing equipment [Namuduri et al., 2020]. There are also
algorithms specifically designed to work on time series data that indicate the feasibility of
using machine learning to detect signatures in time series data as proposed by Munir et al.
[2019] with DeepAnt and related Recurrent neural net (RNN) algorithms such as long short
term memory (LSTM) as proposed by Hochreiter and Schmidhuber [1997] that can miti-
gate the effect of the vanishing gradient problem as Hochreiter describes it.

The idea of the importance of data loss prevention is not new [Liu and Kuhn, 2010] and
has been proven to potentially lead to costs for the data owner. Data can be protected by
various means, as explained in Liu and Kuhn [2010] and for this project we chose to specify
monitoring network data as the focal point. A similar project has been done by Shipmon
et al. [2017] where Google network traffic was analysed to detect possible data loss, here in
a highly noisy sequence of network traffic datapoints. The research in Shipmon et al. [2017]
was limited by the lack of labelling data we will attempt to overcome by using data historian
bad data markers.
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5.3. MACHINE LEARNING IN INDUSTRIAL SETTINGS

This research is not the first to use machine learning methods on network traffic, a survey
of techniques used for this was compiled by Pacheco et al. [2019]. Most research however
places its focus more on intrusion detection over other areas such as faulty equipment,
human error or network fluctuations. When network traffic is monitored it is also often
on the level of snooping the network itself. In this research we use a more limited data
gathering sample where only the data to-and-from specific applications is monitored to
keep network intrusion to a minimum.

5.4. MICROSERVICE ARCHITECTURE

The increased reliance on distributed microservices has moved some to consider methods
of health monitoring for these services. An example of this is Jiang et al. [2020] where a
system is suggested where microservices register with a monitoring system that can warn
in the event of one of these microservices becoming unstable or generates an alarm that
must be pushed. This however does not eliminate the possibility of a single point of failure
disabling the system.

The microservice architecture is an extension of the service-oriented architecture. Which
in itself is already often used in industry settings as discussed in the survey [Xu et al., 2014].

Using microservices has very specific advantages over the standard service-oriented ar-
chitecture in that it allows for the use of multiple programming languages and technologies
in a single application domain. [Krylovskiy et al., 2015] uses this to their advantage in creat-
ing an framework that allows the components of a smart city to communicate. This paper
also discusses the specific pros and cons that can be found when using a microservice ar-
chitecture.

The strength of microservices not locking a developer into a specific programming lan-
guage or other tool is also discussed by [Thönes, 2015]. Where they also state the advantage
of scalability and maintainability a microservice architecture has as compared to mono-
lithic applications. They also discuss the legacy of monolithic applications in existing op-
erations and the cost of maintaining these systems.
In figure 5.1 we compare the setup for a traditional application versus a microservice ar-
chitecture. The microservice architecture is more involved and takes more time to set up
compared to the monolith, but by having the responsibilities of each service closely de-
lineated, the microservice architecture allows for the addition of additional business logic
or an additional external interface withouth changing the existing, working, application.
Each external access component, like a database, having an interfacing service, also al-
lows the application to be independant of a specific source. If a database vendor stops
the support for a legacy product, the decoupled nature of a microservice makes it possi-
ble to write an interface for a different database and substitute this service for the legacy
connection without changing any part of the business logic of the remaining services. the
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survey [Laigner et al., 2021] notes that databases are often abstracted in microservices, but
developers lacking complete business understanding of the application being developed
often create shortcuts when it surfaces that some data has to be combined from multiple
databases. From this follows that these services, which should be loosely coupled, gener-
ate problems when refactoring because of these shortcuts. A refactoring in such a situation
would require a larger analysis to attempt to decouple these services that might include
changes to other services. This shows a possible pitfall when designing an application with
microservices to have a full analysis of the dataflow within an application before starting
the architecture design.

Figure 5.1: Monolithic application versus microservice architecture

5.5. SUMMARY

There is already a large amount of research into the operation of different types of machine
learning models on network data and time series data. From what we found however the
machine learning research into network data focuses more on data as a whole, meaning
the detection of abnormal patterns that would indicate intrusion or tampering. From what
we found nothing researches the data for a specific system or process. This granularity can
be both a strength and weakness in our research. The isolation of external noise allows us
to detect problems within the process stream more clearly, but might cause us to miss ex-
ternal factors.
The use of microservices also has some research indicating its uses and advantages in the
environment we intend to use it. The maintenance and extensibility of a monitoring appli-
cation is important in this setting because of the heterogenous nature of the environment
where some instances might have different monitoring needs. On the other hand it is im-
portant for all services to be able to communicate their status with each other to create
a robust system. This plasticity in function combined with a rigidity in communication
matches with the specifications of a microservice architecture.
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6
RESEARCH METHOD

6.1. RESEARCH QUESTIONS

In order to achieve the stated research goal we formulate the following question:

Can an AI microservice infrastructure be created to monitor network data and com-
pile this data into a message to peers on a network to generate alerts when a pattern drop
is detected?

To answer this question we propose a set of subquestions:

• Rq1: How can recorded data from a data historian be linked to significant differences
in network usage?

This research question will be answered by finding statistically relevant
connections between gaps in data historian tags, network traffic on a data
collector service and/or reported system outages in operator feedback forms.

• Rq2: What algorithms are best to teach machine learning to monitor categorised data
usage?

There are a lot of different machine learning algorithms to consider when
modelling a system. From a highly varied subset of these algorithms, namely
LSTM, SVM and wavenet, we will test which would be the most accurate
and most performant choice.

• Rq3: What is the best architecture to create an alert system to warn of a pattern drop
and integrate a ML subroutine?

A number of software design patterns exist that could potentially be used
to create a functional, maintainable system as seen in course IM0203 Soft-
ware architecture. The problem discussed here is best solved by using a
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subset of these patterns. Weighing the advantages and disadvantages of
these patterns can provide a clear design to structure the solution with.

• Rq4: What are the requirements to maintain an AI model in a microservice structure?

An AI model needs to be maintained so it does not lose accuracy. We will
try to find the best way to go about doing this in a disconnected overarch-
ing architecture.

6.2. RESEARCH MODEL

The data collection section of the research will be based on the Cross-industry standard
process for data mining (CRISP DM) method [Wirth, 2000], where business and data un-
derstanding drive the formation of the data models that will be used. This method was
chosen as it is the industry standard for data processing and provides an open framework
to work with.
This research will consist of the creation and labelling of data on a simulated system. The
model derived from this will then be used to test a large amount of historical data from live
systems. Once this model, through the CRISP-DM method, has been iterated to a point
where its fidelity is high enough to warrant its use, it will be integrated into a service that
will monitor data live and has the ability to transmit its status to its peers.

6.2.1. CRISP DM

Figure 6.1: CRISP DM big picture
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Business understanding Define what it means for a system to be malfunctioning or
under performing and what exactly can be achieved within the scope of the project. As
data is a critical component in the manufacturing facility where this project is under-
taken, the undetected loss of a couple of sensors can cause a production process to be
slowed or even halted. From experience it was often the case that before a more general
system failure, data loss could already be found on a selection, but never or rarely the
same selection, of datapoints.

Data understanding Map what data is needed and identify possible issues with this
data. Find the location of the required data sources and test this data for quality and
relevance to the business problem. For this project we will be focus on network traffic
linked to gaps and upstarts in the historical data.

Data Preparation Clean the data that was collected by removing possible artefacts
or non-representative data such as shutdown periods. Then collate this data in a way
where it becomes useful for an AI algorithm. Here we will attempt to use network traffic
data and historical data, combined with simulated fault states to generate a learning
environment for the AI algorithms.

Modeling Select and train a selection of AI algorithms to find the best match for detec-
tion and diagnoses.

Evaluation The project will be evaluated on the success rate of the algorithms when
ran against a set of evaluation data. If this rate is high enough to project will be further
rolled out to a full alert suite, otherwise it can serve as a valuable lessons learned on the
use of AI in this field.

Deployment This will only be partially implemented in the scope of the graduation
project. A full deployment of the detection and cross-communication system would
take a long time and would have rapidly diminished returns.

6.3. SUMMARY

To fulfill our research we will start from an understanding of our data. We will collect and
select the data based on key meta information suspected to be interesting for the research
and classify the data accordingly. Once we have run the data through some models we will
evaluate the efficacy of the models in question. These models will then be judged on the
effort required to train and a ratio between false positives and false negatives to determine
the model most fit for purpose.

23



7
EXPLORATORY DATA ANALYSIS AND MODEL

IMPLEMENTATION

7.1. EXPLORATORY DATA ANALYSIS

To start the exploratory data analysis we attempted to identify visual patterns in existing
trending data. When assembling the necessary data we searched through the databases
using inbuilt tooling to search for problem areas and correlating trends. The data we were
interested in mostly focussed on tag quality data, memory consumption, and system up-
time. The nature of the historian is such that it backfilled most issues. The first attempt
we made to look for areas of increased data loss was by searching for occurrences with an
increased number of bad tag values.
These searches did indicate times of major physical changes, but were unable to locate
failures, hypothetically this might be due to a problem with the system itself not correctly
aggregating bad values at the time they were recorded or the diagnostic triggers not being
properly maintained themselves. Diagnostic tags were set up in the past by the team re-
sponsible for maintaining the database integrity to monitor critical system resources, but
most of these monitoring systems failed intermittently and were thus unreliable for this
study. This included valuable information on system uptime and service reboot or restart
logging.
The potentially useful monitoring systems we found during this search are the memory us-
age tags described above and an external database table where buffer-store trigger times
were registered. This database table was filled by a software trigger in the historian that is
sent from the historian on every occasion of a network interrupt and is updated with the
length of time the buffer was used. These database entries are not by definition a problem.
The system already has measures to track this buffering. The database buffer entries can be
used in an exercise to train a model to detect these same issues in the normal dataflow. In a
fully defined monitoring system these events will be classified as ’non-emergency’. For the
purpose of this research we will be using these trigger times as moments where data loss
could have occurred in order to train a model, The monitoring framework that will result
from this research will have a defined manner to add or redefine monitoring categories.

24



7.2. DATA SELECTION

7.2.1. DATABASE TAGS

For this project we will use data provided to us by a corporate partner. This is a dataset of
a combined 4TB worth of datapoints spread over 7 databases collecting data from 14 sites
spread over Europe and Asia. The oldest database stores data going back to 2005. This
data was collected through interval polling by an intermediary server on each site to then
forward this data to long term storage on the database. The databases in question each hold
data on an median approximation of 4.000 tags per database up to approximately 12.000
tags for the largest databases.

Every tag in the system has a number of properties dependant on its type. For the pur-
pose of this project we are only interested in a subset of these as illustrated in figure 7.1.
These properties each might have an impact on the quantity of data being polled and thus
the signature of the network data.

Polling Frequency The data collection for this particular system is driven by a polling
system based on groups of tags. Depending on the specific collector the tags are polled
by 1, 5, 30, and 60 second intervals.

Max time interval The maximum allotted time the system allows between datapoints.
This setting makes it so the system registers whatever data it has in cache even if it does
not extend past the deadband. On all datapoints we observe this period is set to one
hour.

Deadband The database system works with a data compression algorithm that dis-
cards incoming values that do not significantly differ from the previous value.

History Each tag has a table with its associated historical data. These represent the
indiviual datapoints for each tag.

The datapoints in the history each have the following fields:

Timestamp The time the value was registered. This can be backfilled by the the store-
forward option on the intermediate server.

Value The value that was registered, or intuited, by the database engine.

Quality The database engine has an internal system for gauging the quality of the tag
data. Good is unremarkable and means the data was correctly registered. Suspect
means there was a problem with the handshaking but a value might be registered. Bad
means the value was either not registered or was registered as an interpolated value as
calculated by the boxing algorithm on the database.

Metadata can be retrieved from these tags by use of the ’aggregate’ and ’history’ func-
tions provided by the database SQL engine.
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Figure 7.1: tag database architecture

The databases are also set up to monitor and store memory usage data. This moni-
toring was historically set up to detect memory leak issues that caused system failures by
triggering a task on a set schedule that uses the .NET PerformanceCounter Dotnet-Bot to
extract system resource information. The information gathered was recorded for specific
database source connection processes that might impact the network data we will be mon-
itoring and is therefore included in this study.

7.2.2. NETWORK DATA

The main focus of this study will be the network usage of the channel between the histo-
rian and the field. This channel is set up to poll data from an intermediate server physically
located on the field to minimise permanent data loss due to network instability. This inter-
mediate server then pushes the data to the historian if and when in normal operation. If
the historian server is not available the intermediate server will send the data to an internal
temporary database with limited storage to backfill the historian server when it becomes
available.

To gather the network data, we need we set up a monitor on the intermediate server
between the historian database and the field. The purpose of this server is to forward data
to the historian but also to store data when a network issue occurs. The monitoring was
set up as displayed in figure 7.2. Using the windows diagnostic PerformanceCounter we
monitor the data throughput for each second by monitoring all TCP connections filtered
on target server and process. This filter ensures we only capture data relevant to our pro-
cess. The data gathered from this monitor was then written to a daily *.CSV file and stored
locally on the monitored server. After 7 days of collection these files were then copied to a
development environment for further processing.

Figure 7.2: tag network monitor
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7.2.3. DATA COLLECTION

On the development environment we used a combination of Python and C# .NET code to
start processing the data. For Python we created the DataCollector class to group methods
we would be using to collate all our data.

In figure 1 in the appendix we have the imports and global variables for the DataCol-
lector class. The imported libraries will be discussed where they are used in the code. The
global variables we use are a timestamp and an integer. The timestamp, filetime, exists to
mark the output files with the correct date. The integer value, splitvalue, is used for paging
sections of each file. The use of paging will be discussed later in this section.

In figure 2 in the appendix the network data was loaded into Python using the Pandas
package. The Pandas package provides a powerful set of functions for processing datasets
in the form of dataframes. The data we loaded from the CSV file was indexed on the ’Time’
column. The time column was selected as index because it is a time series dataset where a
temporal signature might be relevant to our question. After loading the data we use Numpy
to split the dataframe into chunks small enough that the database can be queried for the
additional data we want.

After multiple failed attempts to reliably use the ODBC datasource drivers for the histo-
rian database in Python, a data collector REST service was set up to execute the queries on
the database and send this data to python. JSON was chosen as the best format to return
this data as it is a standard in the industry for web communication.

The bad tag data is collected in the historian using the SQL query from figure 4. This
query uses the inbuilt aggregation engine of the historian to return the number of bad tag
values at every period interval.

The memory data is collected analogous to the bad tag data with a REST service. The
SQL query for the memory data collects the interpolated data for all the memory tags that
were saved to the historian database to track earlier issues. The data returned from these
services is converted from JSON into a usable format. As part of this conversion the data is
parsed through the function in figure 6 to convert the time column into a sortable datetime
object.

This converted data is then linked to the networkdata on the time index and saved to a
parquet file for fast recovery.

DATA UNDERSTANDING

The following parameters were selected based on the field experience of the individuals
working with the system as possible indicators for issues. The points we chose to focus on
are:

BytesReceivedHistorian The main datastream received from the data historian. This
includes polling requests and configuration changes for a single DCS source.

BytesReceivedDCS The datastream received from the controller in the field. This is
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mostly data from the monitored field systems, but can also include configuration data.
item [BytesSentHistorian] The datastream sent from the intermediate server to the data
historian. This is a repacked version of the data received from the DCS system.

BytesInternalTraffic The system circulates data through an internal service that allows
for the creation of a buffer when a problem is detected. This problem detection is lim-
ited to a rule-based system and can therefore not detect all issues with the system.

Figure 7.3: network data

SUM(ng) This is an aggregated count for the number of bad tags during the selected
polling period. These are tags the system itself could identify as faulty, but cannot dif-
ferentiate between system or mechanical issues.

adlgp This is a memory metric on the asynchronous data polling service.

physmem This is a memory metric for all memory in use by the data historian server.

handles This is a metric on all handles in use by the operating system on the data his-
torian server.

From the data we have there is an expected high correlation between BytesInternal-
Traffic and BytesSentHistorian, as the internal traffic is the method the intermediate server
uses to control the flow to the buffer that further feeds into the data sent to the historian.
If these values ever diverge the result should be a drop of the datastream to the historian
to zero or a noticeable increase in the datastream to the historian after such an event to
backfill missed datapoints. A mismatch between these values where the datastream to the
historian is not higher than the internal traffic or zero would be cause for concern.

After normalisation we can visually detect a deviation in the normal distrubution of
BytesReceivedDCS where the lower 7 percent of values occur more often than a normal
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Figure 7.4: tag data

distribution would suggest. BytesSentHistorian and BytesInternalTraffic reflect this devia-
tion but only the lowest 3 percent of values show a deviation from the normal distribution.
This might be an effect of data compression or re-organisation in the intermediate server
but can also be an effect of momentary data loss. The distribution of BadCount, adlgp,
intermediate memory and historian memory do not have a normal distribution.

Figure 7.5: normalised data statistics
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Figure 7.6: comparing and plotting

In figure 7.6 we plotted the main features for our data to detect patterns in the ratios
between these features. Something that is noticeable in these plots is the points where
Buffering is 1, the classification we use to detect issues, is often found on the edge of the
plots.

DATA DISTRIBUTION

From our data we generated boxplot for the dataset as a whole in 7.7 and specifically for the
data where it has been classified as bad in 7.8.

Figure 7.7: complete dataset boxplot
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Figure 7.8: positive classified dataset boxplot

From these figures we can deduce a number of differences between the classes of data.
The full dataset has a BytesReceivedHistorian distribution that varies wildly. Something
that can also be seen in 7.3 where data spikes indicate data is not streamed but sent in bulk
transfers. The other features are more evenly spread with some outliers still present after
normalisation.
The boxplot for the bad data shows a distincly different distribution. The BytesReceived-
Historian shows what appears to be a normal distribution. The other features have more
outliers but do still show data is being sent and received. This behaviour is what prompts
the research into the use of Machine learning as a simple rule based system throws a lot of
false positives in this scenario.

NORMALIZATION

We normalised the data by removing outliers more than 3 standard deviations from the
norm and replacing these values with an average value to maintain the integrity of the time
series nature of the data. After this stem we applied a minmax fit to the set.

7.2.4. PRINCIPLE COMPONENT ANALYSIS

Using the Sklean decomposition PCA algorithm and maintaining a 0.95 fidelity to the orig-
inal dataset we downsampled the dataset to 4 points. VAR modelling gets results that indi-
cate an optimal lag prediction of 16 time intervals.

7.2.5. TIME SERIES PREPARATION

To increase the time series characteristic of the data we formatted the data into overlapping
windows. This sliding window creates a 5 by 4 input shape for the model that can be used
to compare a 5 second signature for the features that are being observed as can be seen
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visualised in figure 7.9.

Figure 7.9: sliding window selection

7.2.6. MODELS USED

For this research we have selected a number of different models to compare their detection
capabilities. In the following subsection we will discuss the models we researched.

LINEARSVC

The Linear SVC is an implementation of a Support Vector Machine with the weighted pa-
rameters added together to form a single classification value. The support vector machine
was first introduced at Bell laboratories in 1992 [Boser et al., 1992] The concept of a support
vector machine is built on the usage of hyperplanes. These hyperplanes are generated in a
feature space without set coordinates using an inner product calculation to create a gram
matrix as visualised in figure 7.10 .

Figure 7.10: creation of a gram matrix

This concept of using inner product calculations is called the ’kernel trick’ and removes
the necessity of calculation coordinates for each feature making the entire process compu-
tationally cheaper. Based on these gram matrices weights can be defined to maximise the
difference between categories.

A support vector machine can then be trained and used using either a soft or hard mar-
gin. With the hard margin the resulting classification is either true or false. A soft margin
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can give a gradient of truth based on the distance the input value is from the hyperplane
and allow for the manipulation of a threshold value for truth that can be used to compare
to other classification techniques or later finetuning once the model is in operation. The
manner in which the hyperplane classsifies the datapoint can be seen in the sequence of
figures in 7.11

Figure 7.11: hyperplane classification sequence

NEURAL NET

Because we will use multiple types of neural networks in this section we will first discuss the
general workings of a neural network and in the next sections we will go more into detail
on specific types of neural network we will be testing.
The concept of a neural net is based on the functioning of a biological nerve cell see figure
7.12 as an example. In a biological neural system a large number of cells are interconnected
and send impulses to other cells in the network. Based on feedback the cell receives in the
form of a reward or punishment the system will be formed in such a manner as to optimise
for prefered results.
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Figure 7.12: biological neuron vs machine learning neuron as found on [Nagyfi, 2018]

The machine learning neural net is likewise consisting of multiple nodes working to-
gether to learn and optimise for the classification of data. A neural net works by grouping a
number of nodes in a layer, sending data to this layer and then forwarding the output of the
nodes in this layer to a next layer. After a number of these layers the output of the last layer
is sent to a single result node that returns a classification of the input data. This output can
then be compared to a known classification and can send feedback to the underlying lay-
ers. Each node in the underlying layers will have given a classification on what the eventual
output will be based on a bias value to have variety amongst the nodes in the system and a
weight which the system as a whole can use to determine how much impact the node will
have on the overall result. The feedback from the known classification can decrease the
weight of a node to make its input less relevant in the whole, this creates a system where
connections that correctly classify a datapoint are reinforced.

Figure 7.13: simple mlp network
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CONVOLUTION IN NEURAL NETS

Convolution in mathematics is an operation on 2 functions that produces a third function
that expresses the overlap of on function as it is shifted over the other. The result is a type of
blend between these functions. This operation can then be used in a neural net to convolve
the input of each layer with a filter and send the result to the next layer. This filter can
be adapted through the machine learning process to better fit the required output. Each
neuron in the layer only processes data for a subsection of this result set, also known as its
receptive field, although fully connected layers are also possible. Convolutional neural nets
may also include pooling layers. These pooling layers are used to reduce the dimensionality
of the results.

LSTM

The long-short-term-memory node is a neural network that uses a specialised type of node.
An LSTM is a specifically good model to use for time series data. It is an improvement on
a standard RNN by extending the functionality of a node by using a forget gate by [Gers
et al., 1999] that also describes the strengths of RNN and LSTM specifically. The forget gate
was added to solve the vanishing gradient problem. The vanishing gradient problem is an
issue standard RNN’s have where a node’s weight can decay to zero. The LSTM resolves
this issue by implementing a forget gate that checks the input values and previous cell state
to prevent a weight change that would lead to a zero weight. The LSTM forget gates work
by sending the information from a hidden state and the current input through a sigmoid
function. The result of this function is then multiplied with the long term state to use as a
parameter in the classification of the new datapoint. We chose it because of its specialisa-
tion in time series data.

Figure 7.14: the construction of an LSTM cell
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WAVENET

Wavenet is a neural network that was developed for use with Text-to-speech technologies.
Although the data we use is not audio, we used a simplified wavenet algorithm to model
our data based on the idea that audio data is in essence also time-series data. Wavenet
is a causal linked dilated convolution. This forces the model to work sequentially, work-
ing sequentially allows the model to recognise failing pattern that are time dependant.
The dilation in the convoluted nodes increases the models performance as it can cover
a larger sequence of datapoints without the pooling cost a standard convoluted neural net
has. Having a causal linked dilated model give the model the ability to detect patterns with
various levels of granularity. We chose to include our simplified wavenet implementation
to contrast against the LSTM. Where The LSTM model has more complex nodes, the sim-
plified wavenet has a more complex network layout. Comparing these would give us a wide
spectrum on modeling techniques available to time series modelling.

Figure 7.15: the construction of a wavenet layered model

WAVENET -LIGHT

as an experiment we also implemented a causal linked dilated convolution followed by a
GRU node. This GRU node uses recurrence in the output of the wavenet implementation
to finetune the final result of the model.
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7.2.7. SOFTWARE

To implement our models in Python we used the keras libraries. These libraries are an ab-
stration over Tensorflow and include a wide variety of functions and predefined layer types
to create our models. This abstraction, building a model with neurons and layers makes it
easy to work with, without having to know the full detail of the underlying mathematics.
We did not use Pytorch because Keras provided a beginner friendly environment with gen-
eral functions and object pre-assembled whereas Pytorch is more finely grained and thus
provides a steeper learning curve.
We chose Python as a programming language because of its versatile use in both the world
of software development as its extensive use by academia where it has proven its value in
creating mathematical models.

7.3. SUMMARY

In this chapter we discussed the scope of the data and environment we work with, we have
a large quantity of historical data to work with and a smaller quantity of network monitor
data to link with. We have determined some features to be directly linked to others and
have determined some to be insignificant or unchanging even when problems occurred.
We have determined that for the purpose of this research we can work with a limited section
of data that after normalisation reduces down to 4 features we can use to train our models.
Other features however cannot be entirely excluded in follow up research as different types
of event might be categorised by using these additional features.
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8
MODEL EVALUATION

8.1. DESCRIPTION

To detect our events we created multiple models using different techniques. We are at-
tempting to create a model based on time series data, this shaped the choice of techniques
we considered in this research. The techniques we used and compared are linear Support
Vector Classification, Long-Short-Term-Memory neural network (LSTM for short), and a
simple implementation of a wavenet algorithm. The models will be compared by means
of an ROC curve and the corresponding AUC value and the confusion matrix created by
setting an optimal threshold based on the precision recall curve.

8.1.1. DEFINING SUCCESS PARAMETERS

The models we are using need to be evaluated by a set of metrics. We will be using pre-
cision and recall to define the threshold for our positive measure. Precision and recall are
according to [Handelman et al., 2019] amongst other metrics used in this paper a com-
mon method to define a threshold for machine learning models. We specifically chose this
method of determining a threshold to maximise the ability of our system to detect prob-
lems whilst keeping the false positives to a minimum.

The rationalisation behind this is that up to a few minutes of interruption does not
heavily impact the system, but more than a few false positives will lead to the responsi-
ble engineers ignoring alerts. In the graphical representation we use precision and recall
are mapped against a possible threshold value that can be used to classify a true or false
result.

This threshold starts from 0 where all results are classified as true up to a maximum of
1 where all results have been mapped. precision is the ratio of true positive results against
the total number of results that are classified as true according to a specific threshold. The
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graphical representation of the precision we show maps this ratio to all possible thresholds.
The curve on this graph can fluctuate and move back down after it has peaked because pre-
cision is a ratio and if the number of true positive results rises slower than the number of
false positives the curve will start dipping down again.
Recall is the ratio of true positive results against the total number of classified results. The
total number of classified results is the sum total of all true positive and false negative re-
sults that were classified using this threshold. The curve this graph makes should start in
1. If this curve starts in 0 this would mean the model under observation classified a false
negative as the most likely true value and this would be a bad model.
The recall curve bottoms out at the ratio where all results are classified as true. In contrast
to the precision curve, the recall curve will only slope down.

For the purpose of this research we will always try to maximise both precision and re-
call. To achieve this objective we will determine the threshold we use for classification of
a model as the threshold at the point of intersection between precision and recall on the
graph.
Besides the precision recall curve we will also be using an ROC curve to visualise the effec-
tiveness of the models.

The ROC curve (receiver operating characteristic curve) plots the threshold with true
positives against false positives. The curve this generate is a good indicator for the effective-
ness of a model. A perfect curve would move up horizontally until it reaches the maximum
value for true positives and then follows in a right angle. A diagonal line that follows from
(0,0) to (1,1) indicates a curve where the classifier works exactly as well as random chance.
From this follows that the AUC (area under the curve) a good indicator for effectiveness is.
An AUC of 0.5 or less indicates a classifier that works as well as random or worse. An AUC
of 1 would indicate a perfect classifier.

8.1.2. EVALUATING THE SUCCESS OF A MODEL

The success of a model will be based on the output from a Confusion matrix. The confusion
matrix for our dataset plots 4 quadrants comparing the classification of the output of a
model to the known classification. The quadrants in the confusion matrix set the number
of true positives, true negatives, false positives and false negatives against each-other to
visualise the quality of the output generated by the model. For the purpose of this research
a false negative would be a more impactful problem then a false positive. A false negative
could lead to a smaller number of important tags failures to stay unnoticed. A false positive
would lead to an engineer wasting a minimum of time to trace the veracity of a warning
signal. The most important factor in false positives would be the responsible team possibly
ignoring true positives. The threshold for this would have to be indicated by usage.
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8.1.3. LINEAR SVC CONFIGURATION

The Linear SVC is a standard implementation of a Support Vector Machine with the weighted
parameters added to form a single classification value. A Support Vector Machine works by
generating a hyperplane vector that functions as a divide between categories. It is a general
and reliable machine learning technique that can be used to model a variety of datasets.
It is also a computationally inexpensive technique and was chosen because it is a good
baseline to compare other more complex modelling techniques to. In our implementation
we use the CalibratedClassifier in Keras on top of the Keras linear SVC implementation to
generate a probability of a time point being problematic. This gives us more finely tuned
control over what threshold to define as the correct classification and gives us a more direct
analogue to the other models we run.

Figure 8.1: LinearSVC Precision/Recall graph

For the events we predetermined to be divergent, the Linear SVC model performs well
with a AUC score of 0.9997. This score is the highest of the models we tested and could be
an indication for it being the better method. The flattened curve indicates a high accuracy,
but in the edge cases detection becomes more difficult and gives more false positives. This
shape can also be explained by the Linear SVC model correctly identifying a true negative
most of the time. Due to the rarity of the events in the overall data this gives a slightly
distorted view.

Figure 8.2: LinearSVC roc with zoom
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8.1.4. LSTM CONFIGURATION

For the LSTM configuration we use a 3-layer model composed of an input layer with 30
nodes, a hidden layer of 30 nodes and a single dense layer to deliver a classification predic-
tion. The input layer receives a 5 by 6 input matrix to analyse 6 variables over a 5 second
moving window. We ran this model with a batchsize of 10 for up to 50 epochs. When a mov-
ing average of 2 minutes is applied to these predictions we can set a precision-recall curve
to determine the optimal threshold. This curve is displayed in figure 8.3 The precision and
recall curves meet at the threshold of 0.1 which gives us a recall and precision of 95 percent
each. For the events we predetermined to be divergent, the Linear LSTM model performs

Figure 8.3: LSTM Precision/Recall graph

well with a AUC score of 0.9995. This score is lower than the SVC model but within our
selection margins for preference. When selecting for a more time balanced dataset where
a larger portion of the data is event data the LSTM model more closely follows the correct
classification as can be seen in the appendix picture 11.

Figure 8.4: lstm roc with zoom

8.1.5. WAVENET CONFIGURATION

The model we use in this research is a model that uses 4 convoluted layers with a kernel
size of 5 followed by a Keras time distributed dense layer to condense the convoluted layers
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down to a single return value.

Figure 8.5: Wavenet Precision/Recall graph

For the events we predetermined to be divergent, the Wavenet model performs well
with a AUC score of 0.9996. This score is lower than the SVC model but within our selection
margins for preference.

Figure 8.6: Wavenet roc with zoom

42



8.1.6. MODEL PREDICTIONS

Using the threshold suggested by the precision recall graph gives us the confusion matrix
in figure 8.7 for the svc model. From this confusion matrix we can see most results can
be correctly classified as either true or false. With a threshold set at 0.22 from a total of
787727 datapoints 787033 were correctly classified as either normal or abnormal. The total
number of datapoints that were classified incorrectly either way is only 694. This accounts
for only 0,09 percent of all cases and even compared to only the true positive cases false
labeling only account for 0.111 percent of the total of these cases.

Figure 8.7: Linear SVC Confusion Matrix with threshold 0.22

Using the threshold suggested by the precision recall curve gives us a the confusion
matrix in figure 8.8 for the LSTM model. From this confusion matrix we can see most results
can be correctly classified as either true or false. With a threshold set at 0.1 from a total of
787727 datapoints 787165 were correctly classified as either normal or abnormal. The total
number of datapoints that were classified incorrectly either way is only 562. This accounts
for only 0.07 percent of all cases and even compared to only the true positive cases false
labeling only account for 0.09 percent of the total of these cases.

Figure 8.8: LSTM Confusion Matrix with threshold 0.1
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Using the threshold suggested by the precision recall curve gives us a the confusion ma-
trix in figure 8.9 for the Wavenet-light model. From this confusion matrix we can see most
results can be correctly classified as either true or false. With a threshold set at 0.1 from a
total of 787727 datapoints 787172 were correctly classified as either normal or abnormal.
The total number of datapoints that were classified incorrectly either way is only 555. This
accounts for only 0.07 percent of all cases and even compared to only the true positive cases
false labeling only account for 0.09 percent of the total of these cases.

Figure 8.9: Wavenet Confusion Matrix with threshold 0.1

Because of the sequential nature of the data we also made a visual observation of the
data. In figure 11 in the appendix we trended the predicted classification, the real classifi-
cation and the trained classification. For the event window shown in this figure we can see
that the moving average classification almost completely overlaps with the training event.
There is also a lower value leading prediction. For 20 minutes before the classified event
in the test set the model gives indications of a higher probability that does not meet the
threshold of the event. All models provided similar results but the Wavenet implementation
gave a result that more closely matches our event classification over the other 2 methods
under observation.
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9
ARCHITECTURE

This project was implemented using a combination of program languages and technolo-
gies broken down into sections with their own responsibilities and challenges. For data
acquisition there is a service running on the intermediate server that asynchronously pulls
data from windows management handles. This data acquisition service compares the total
byte transfer counter for a predefined set of network traffic handles for each second. This
function must work asynchronously to exclude external factors from the timing or data
measurements. To easily use Microsoft Windows handles we chose to use a C sharp .NET
program that provides access to Windows handles.

The data collected by this service is sent to an analysis service with 30 second intervals.
Another data acquisition service runs on the data historian server where the analysis ser-
vice will be able to poll for quality information over a 30 second interval with 1 second
interpolation. Combined this data can then be fed into the model to predict problems. If
the analysis service detects an issue it can attempt to mail a technician.

If these intermediate servers exist on a network with multiple similar systems, a module
could also be includes to monitor its peers on the network. Every preset time interval the
services broadcast a randomly generated number to its peers. Depending on a predefined
ruleset, if one of these services does not reply the service with the highest generated num-
ber will send a notification mail to a technician and a signal to its peers.
The server that could not be connected to will then be discarded from the signal pool for
a set duration before a recheck must occur. The server with connection issues can only
detect itself so has the highest number and will also send a notification. If this notifica-
tion mail arrives the technician can interpret this as a horizontal issue where intermediate
server communication is out, but vertical communication might still be operational.

The analytical model itself will run in a separate Python-based service. A retraining ser-
vice allows for the training of a new model and because the model runs in a standalone
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service it can be detached and replaced without any breaks in the system as a whole.

9.1. SERVICE COMPOSITION

The collection of microservices constituting the data loss monitoring application for a sin-
gle system can be visualised as in 9.1. This is an overview of how the various services would
interact on an intermediate server. It also shows both the need for the microservice ar-
chitecture through the use of multiple programming languages and the abstraction of the
monitor task to increase expandability to additional datasources.

Figure 9.1: monitor microservice architecture
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9.1.1. MONITOR SERVICE

The monitor service, as visualised in 9.2 implements an abstraction layer that removes the
datasource specific code from the operation of the polling system in the program itself. This
allows us to create different versions of the monitor manager that all work by polling data
and adding the collected datapoints to a queue to be retrieved without the need to rewrite
or copy code. The only method that has to be overridden is the polling method itself and
this can be done with minimal effort in case an additional datasource version needs to be
created.
The polling will run on an asynchronous thread to prevent delays in the execution of the
software from influencing the monitoring frequency.

Figure 9.2: monitorservice UML diagram
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9.1.2. COMMUNICATION SERVICE

The communication service, as visualised in 9.3 is the channel the application will use to
notify external systems or users of any problems. It implements both a peer health check
where it polls all the peers its configuration contains and periodically checks with the analy-
sis service for the current health status of the data is is monitoring. The use of a set configu-
ration file where peers are registered, opposed to a broadcast system is to prevent intruders
from impersonating a peer to receive information.
If the communication service detects any problems it will notify through email or a watch-
dog tag.

Figure 9.3: communicationservice UML diagram
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9.1.3. ANALYSIS SERVICE

The analysis service, as visualised in 9.4 implements the execution of the analytical model
that will run and classify the polled data. This is the only service that will be created with
python because of its specialisation in mathematical modelling.
The analysis service will retrieve data from the monitor services and merge this data to get
a feature set it will use to generate a classification. It will hold this classification in a queue.
This queue will be polled by the communication service.
We specifically chose for a polling architecture as opposed to a publish/subscriber pattern
because the polling method can be more easily synchronised and has a built in detection
method for failing services. It is easier to poll and get an error code than waiting for an
event that will not come.

Figure 9.4: analysis service UML diagram
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9.1.4. CONFIGURATION SERVICE

The configuration service, as visualised in 9.5 implements access to a configuration file.
This single access point to the configuration provides the list of peers the monitor service
can use and the optimal detection frequency and most recently trained model for the anal-
ysis service to use to keep its detection up to date.

Figure 9.5: configuration service UML diagram

9.2. SUMMARY

The UML schemes in this chapter describe the setup of a single monitoring node. They
were designed to optimally take advantage of the microservice architecture and would run
as a robust system to both detect problems in network traffic on a node and amongst its
peers on the network.
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10
CONCLUSION

From this research we can conclude the following answers to our research questions.

• Rq1: How can recorded data from a data historian be linked to significant differences
in network usage?

When analysing the data we could not find any links between meta data
in the historian and network usage. Possible reasons for this could be that
the problems we detected were always buffering events. We will need to
continue this research to include events of different types to be able to ex-
pand our list of failure events. The hypothesis for this lack of registration in
metadata is that the database will backfill the buffered data which means
we lose this valuable meta information.

• Rq2: What algorithms are best to teach machine learning to monitor categorised data
usage?

From the models we used, all were very successful at detecting the events
we had access to. The more complex models were slightly better in that
they more closely followed the defined classification. The least complex
model, the SVM, actually had a higher AUC and for the data and event
types we could work with was more than sufficient to classify our events.
The SVM is also faster to train than both the LSTM and Wavenet models.
This would be an advantage when trying to retrain the model to be more
accurate but when the data becomes more complex it might fall behind.

• Rq3: What is the best architecture to create an alert system to warn of a pattern drop
and integrate a ML subroutine?

The Keras model we will use for the analysis of the data itself can be re-
placed at runtime in our code by virtue of the abstract manner it was im-
plemented. This also pushes us to a microservice architecture because of
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the use of python for this specific part of the application.
Alerting was implemented as a peer network that would alert to a problem
even if the monitoring service itself becomes unresponsive. This provides
a highly reliable system without a single point of failure that could prevent
a problem from being detected.
The data collection service was abstracted to allow more data to be col-
lected from different sources. This allows for a high level of maintainability
and extensibility.

• Rq4: What are the requirements to maintain a machine learning model in a microser-
vice structure?

In the manner we implemented the machine learning models we can use
the deserialisation functions provided by Keras. We can use this function
to update the model at runtime. This new model can be trained on a de-
velopment machine and be uploaded to the configuration service to be
used in the application. This even allows us to switch out the model for an
entirely different structure.

From this we can distill the answer to our original question:

Can an AI microservice infrastructure be created to monitor network data and
compile this data into a message to peers on a network to generate alerts when
a pattern drop is detected?

The architecture we propose in this paper is capable of something similar which serves
the same purpose. It can detect problems with the network communication and send an
alert when problems are found. When multiple peers exist it can also alert to failures in
communicating with its peers. This is not exactly the same as the original question posed
because if a service can detect a problem but cannot contact its peers it cannot send an
alert message. Its peers however will send an alert because the service node with an issue
cannot be contacted.
For the events we could label, the optimal model was the wavenet model. This is in line
with what could be expected from related work, as this model was designed with time-
series data in mind. However the other models were close in effectiveness.
When implementing this detection improvement in the system it is hard to make a direct
cost-benefit analysis. Most of the benefits from this work would be indirect in the creation
of more confidence in the data that is being gathered. The ephemeral nature of this benefit
is impossible to distill into hard numbers but might become clearer with more work on the
subject.

10.1. FUTURE WORK

• The effort in this thesis highlighted the need to categorise bulk data and can with the
benefit of hindsight be repeated with a larger collection of data that is also labeled in
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instances where backfill occurred. This could give more accurate results and could
also serve a blueprint for how to label time series data as it is used in the industry.

• Another interesting avenue we noticed when working on this research is how closely
we could have a machine learning model follow live data. This could lead into re-
search that would create a machine learning clone for incoming data that would help
improve industrial operations by optimising certain processes to better fit an ideal or
create a shadow record that would give a result similar to the original data in case of
dataloss.

• Something that could also be interesting to research is a cross comparison of different
programming languages and paradigms on processing architectures for various types
of machine learning models.

The potential for further research on the topic of data loss and system health in industry is
great. From experience many industrial sites keep their operational network closed for re-
search. This guarded nature sets limits on what can be accomplished with this data. More
cooperation between academia and industrial partners could help both increase under-
standing in this area.
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APPENDIX FIGURES

Figure 1: DataCollector includes and global variables

Figure 2: DataCollector get filedata function pseudo code

Figure 3: DataCollector get bad data function pseudo code
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Figure 4: webservice bad data sql query

Figure 5: webservice memory data sql query

Figure 6: datetime converter function

Figure 7: collect function that writes to parquet files
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Figure 8: normalizer class definition

Figure 9: data normalization function

Figure 10: data tests
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Figure 11: comparison of model predictions for test event
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