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Abstract

Context It is not always clear to developers how they should write good com-
ments, nor are there many tools that help developers assess the quality of
their comments.

Objective Our goal is to gain better insight into the features that are associated
with good source code comments, by developing a predictive model that
can automatically assess the quality of comments in a software project.

Method First we derive features that may affect comment quality from scientific
literature and compare them with those found in open-source Java projects.
We then conduct an online survey among software developers to gather qual-
ity ratings for a diverse set of comments, which we use to construct a pre-
dictive model for comment quality.

Results Our results suggest that a wide array of features exist for comments, but
not all may be equally discernable in open-source projects. Our survey
shows that a lot of disagreement exists between different developers about
which comments are high-quality, presumably due to factors which cannot
be derived from the source code itself. Consequently, our predictive models
are only able to partially explain the variance in ratings given by developers.

Conclusion Disagreement among developers aboutwhat constitutes a high-quality
comment poses challenges for the construction of automated predictivemod-
els for comment quality.
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Chapter 1

Introduction

In the mid 1970s Brooks [5] suggested that the ‘total lifetime cost of maintaining
a widely used program is typically 40 percent or more of the cost of developing
it’. This number was expected to rise as software played an increasingly important
role in society [2]. Indeed, it is estimated that in some cases up to 90 percent of a
system’s lifetime cost can be attributed to maintenance [66].

A large part of that maintenance effort is not spent on actual development of
code, but rather on reading and understanding code [18, 60]; an activity that is
typically referred to as program comprehension, program understanding, or pro-
gram readability. Here we use the term program comprehension. Koenemann and
Robertson [40] define it as follows:

Definition 1 (Program comprehension). The process of understanding program
code unfamiliar to the programmer.

Program comprehension can be supported in several ways, but documentation
is arguably the most important way to augment maintainers’ understanding of the
implementation of a software system. Good documentation – together with good
software design and coding practices – can improve the maintainability of a soft-
ware system, thus reducing the effort required to maintain it [15]. Maintainability
is one of the characteristics in the ISO/IEC 25010 software product quality model,
which provides the following definition [35]:

Definition 2 (Maintainability). Degree of effectiveness and efficiency with which
a product or system can be modified by the intended maintainers.

Although many different types of documentation exist, a survey by de Souza
et al. [15] shows that software maintainers primarily rely on source code and com-
ments in their program comprehension process. Comments in source code can
convey information that cannot be derived clearly from the source code alone, and
as such can play an considerable role in supporting the maintenance of software.
ISO/IEC/IEEE [36] define comments as follows:

Definition 3 (Comment). Information embeddedwithin a computer program, job
control statements, or a set of data that provides clarification to human readers but
does not affect machine interpretation.

Comments come in many shapes and forms. We list a few important types
for the Java programming language here, as described by Steidl et al. [69]. For an
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Listing 1.1: This header comment provides a brief description of a class in the
RDF4J project and lists its two authors. It has been slightly edited to fit within the
confines of this page.

/**
* An iterating implementation of the {@link GraphQueryResult} interface.
*
* @author Arjohn Kampman
* @author Jeen Broekstra
*/

public class IteratingGraphQueryResult extends IterationWrapper<Statement,
QueryEvaluationException> implements GraphQueryResult {

exhaustive overview of different comment types and their purposes, we refer to
Pascarella and Bacchelli [57].

Header comments (alternatively: class comments) appear near the top of a class or
file. They explain the purpose or meaning of the class itself and may include
additional metadata. Listing 1.1 shows an example of a header comment.

Member comments (alternatively: method or field comments) are placed above
fields or methods (Listing 1.2). These comments tell those who wish to call
the method what it does and how it should be used.

Javadoc comments1 are a special type of comment that also contains semi-
structured descriptions of entities like method parameters and can be used
to automatically generate api documentation. Similar concepts exist in other
languages, e.g. godoc for Go and pydoc for Python.

Inline comments typically appear within method bodies and are used to convey
information about their implementation (Listing 1.2). They are primarily
written for maintainers.

Code comments contain code which has been commented out (Listing B.7). This
can be done for different reasons: it might have been intended for debugging
purposes and accidentally left in, or be meant for future reuse.

Task comments tell developers that some task still needs to be done (Listing 1.4).
Todo comments are a common type of task comment.

Not all comments are equally valuable. For instance, conventional wisdom
suggests that comments are only useful if they are correct, up-to-date, and provide
information that cannot be easily – or even feasibly – extracted from the code itself
[30]. An example of a comment that is superfluous can be seen in Listing 1.5: it
does not convey any additional information beyond what can be deduced from
the class and method name.

Normative sets of guidelines can often be found in professional handbooks
[68]. Some notable examples include Clean Code [45], Code Complete [70], and

1Javadoc – https://docs.oracle.com/en/java/javase/14/javadoc/javadoc.html
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Listing 1.2: A member comment and inline comment in Java

/**
* Reverses the order of the elements in the specified list.<p>
*
* This method runs in linear time.
*
* @param list the list whose elements are to be reversed.
*/

public static void reverse(List<?> list) {
int size = list.size();
if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {

for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
swap(list, i, j);

} else {
// instead of using a raw type here, it's possible to capture
// the wildcard but it will require a call to a supplementary
// private method
ListIterator fwd = list.listIterator();
ListIterator rev = list.listIterator(size);
for (int i=0, mid=list.size()>>1; i<mid; i++) {

Object tmp = fwd.next();
fwd.set(rev.previous());
rev.set(tmp);

}
}

}

Listing 1.3: A method in which a single line of code has been commented out
presumably to deactivate it.

public void start(BundleContext context) throws Exception {
logger.debug("Starting org.protege.common bundle");
context.registerService(
javax.xml.parsers.SAXParserFactory.class.getName(),
javax.xml.parsers.SAXParserFactory.newInstance(), null);
// CommonProtegeProperties.getDataDirectory().mkdir();
if (logger.isDebugEnabled()) {

startDebug(context);
}

}
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Listing 1.4: This comment was written to remind its author or other maintainers
of an edge case that is yet to be handled.

public final void setTagLabel(String tagLabel) {
// TODO what if tagLabel is null or empty ?
this.tagLabel = tagLabel;

}

Listing 1.5: Example of a comment that does not convey any information beyond
what can be deduced from the code

public class WorkspaceNameValue implements SkyValue {
/**
* Returns the name of the workspace.
*/

public String getName() {
return workspaceName;

}

The Pragmatic Programmer [34]. However, it is often unclear if the advice in these
books is based on conjecture and anecdotal evidence rather than empirical obser-
vations.

The importance of empirical evidence for such guidelines is highlighted by the
existence of studies that have found counter-intuitive effects of comments. For
instance, Börstler and Paech [3] discovered that source code with comments can
be perceived as more readable than source code without comments – even if those
comments are ‘bad’ and should not affect comprehension.

This can make it hard for developers to determine how they should go about
writing comments. While numerous tools exist to help developers assess the qual-
ity of their code, tools that help developers assess the quality of their comments
are few and far between.

1.1 Objective
The lack of tooling and clear, empirical evidence for guidelines on what makes a
good comment makes it hard for developers to understand when and how they
should write comments.

While there are studies on the effect of comments on program comprehension,
most are more than 20 years old [3]. This suggests that our understanding of com-
ments on program comprehension in modern contexts is limited at best [52]. Two
recent examples include studies by Khamis et al. [37] and Steidl et al. [69]. In both
studies a model for comment quality was designed. However, the approach by
Khamis et al. is entirely based on heuristics and has not been validated by de-
velopers. In contrast, the approach by Steidl et al. is partially based on surveys
with developers, but does not appear to be fully automated. Moreover, in neither
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case is it entirely clear why certain features were considered for their models and
which were left out.

Our research objective is therefore to gain better insight into the features that
are associated with good comments. We do this by developing a predictive model
that can automatically assess the quality of comments in a software project.

To clarify what we mean with the quality of comments, we provide the follow-
ing definition of comment quality, which is partially based on the ISO/IEC/IEEE
[36] vocabulary definition of ‘quality’ and the definition of overall code quality by
Stegeman et al. [68] as we could not find any succinct definitions in literature:

Definition 4 (Comment quality). The degree to which a comment clarifies a piece
of source code to its reader, determined by just looking at the comment and the
source code it describes, i.e. without any form of testing or checking against spe-
cification.

We limit the scope of our study to English-language comments in open-source
Java projects, largely for practical reasons:

• Most open-source software (oss) projects are developed internationally and
use English as their lingua franca. Limiting our scope to English means that
the population from which we can gather input for our model is as large as
possible, whilst avoiding potential issues with translation.

• Automated analysis of the textual content of comments requires the use of
computational linguistics tools and techniques. These aremuchmoremature
for global languages like English than for regional languages, like Dutch or
German.

• Source code from open-source projects can be easily discovered, accessed
and reused, unlike source code from closed-source projects which may re-
quire lengthy, manual approval processes and non-disclosure agreements.

• Java is currently one of the most popular programming languages, especially
in empirical research. Most contemporary studies base their findings on Java.
By focussing on Java, we can reuse existing knowledge and tools from those
studies.

1.2 Contribution
The theoretical contribution of this study is twofold. Firstly, we provide an over-
view of scientific research on features of comments. Secondly, we develop a pre-
dictive model that helps us gain better insight into the role of comments in the
program comprehension process. Ourmodel should also be usable as part of more
comprehensive models of software maintainability.

For practitioners, we aim to gather insights from literature and our own find-
ings that can be converted into empirically validated guidelines, are easy to follow
and ideally can be assessed automatically as part of developers’ daily development
and continuous integration workflows. This may help developers write comments
for their source code that are more helpful to those whowill maintain it, which im-
provesmaintainability of the software system andmay eventually lead to a decrease
in maintenance costs.
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1.3 Outline
The remainder of this thesis is structured as follows: In chapter 2 we present a brief
overview of research on automated assessment of code and comments in source
code. This provides groundwork for our study, which is needed for the subsequent
parts of the thesis. Chapter 3 decomposes our overall research objective into three
research questions that are more adequately scoped. It also discusses the four-
phase approach that we will use to answer those research questions. We present
the results for each of the four phases of our study in chapter 4. These are then
discussed in chapter 5, along with the limitations of our study and opportunities
for future work. Finally, we conclude this thesis by summarising the main findings
of our study in chapter 6.
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Chapter 2

Background

The objective of our study is to gain better insight into features of good source
code comments by developing a predictive model for comment quality. As briefly
mentioned in section 1.1, there have already been studies on the effect of comments
on program comprehension and proposals for models for comment quality. This
chapter summarises that existing work.

2.1 Static analysis of source code
Maintainability is an internal quality of software. This means that although it af-
fects the ease of its development and maintenance, it cannot be observed directly.
It is however possible to estimate how maintainable a software project is by ana-
lysing its code using a metric or model.

Historically, many metrics and models have been proposed to assess the main-
tainability of software projects. Some metrics are relatively simple and only pro-
duce simple values.

The best known example are lines of code (loc) metrics, which count the num-
ber of lines of code in a software project. These assume that projects with more
lines of code are harder tomaintain [25, 77]. Simple variants that count the number
of physical lines are easy to comprehend and implement. However, they are also
sensitive to variables like coding styles and language verbosity, which can greatly
affect howmany lines of code are needed to implement certain functionality. More
sophisticated approaches count the number of logical lines, where each line con-
sists of a single statement that may or may not be spread over multiple physical
lines [51]. They might also exclude comment lines, which are supposed to make
code easier to maintain.

The general idea of loc metrics is that larger volumes of code are harder to
understand, but in reality it is more likely that understandability – and thus main-
tainability – is affected by the number of possible outcomes that can be generated
by a unit of code, e.g. due to the presence of conditional statements such as if
and while. McCabe’s cyclomatic complexity is a metric that can be used to com-
pute the number of linearly independent execution paths through a unit of code
[46]. Newer metrics, like cognitive complexity [48], improve upon this idea by
focussing on how developers actually reason about these paths.
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There are many more examples of metrics that are designed to measure how
maintainable a software system is, either on its own or compared to others.

For instance, Halstead complexitymeasures count the number of distinct oper-
ators among other things, and use these to derive higher-level metrics like program
level and programming effort [26]. Although the theoretical underpinnings of the
measures are often criticised, a number of empirical studies have provided evidence
of the predictive value of Halstead complexity measures [77].

The maintainability index is a regression-based metric that combines several
smaller metrics. This includes volume-based metrics from Halstead complexity
measures. The metric interestingly also includes the proportion of locs that are
dedicated to comments; the assumption being that code with more comment lines
is more maintainable (see section 2.2). The output variable of this metric is a num-
ber, the index, that represents a system’s maintainability ‘score’ [11]. The scores
are meaningless on their own, but computing scores for multiple systems makes
it possible to compare their relative maintainability. The more recently proposed
SIG maintainability model improves upon the maintainability index in multiple
ways. First, by making use of straightforward sub-metrics that are easy to imple-
ment and compute. This makes the model easier to understand, especially to non-
technical stakeholders. Secondly, the SIG maintainability model generates mul-
tiple scores, where each score covers a particular aspect of maintainability. This
makes the model more transparent and helps its users conduct root cause analyses
for each sub-score [31].

Our research focusses on quality analysis of comments rather than maintain-
ability of code. Nevertheless, the qualities of these maintainability models can
also apply to a predictive model for comment quality: a good model should make
it possible to compare the relative quality of two (sets of) comments, should be
easily understandable, and help its users write better comments.

2.2 Assessment of comment quality
We have discussed several examples of maintainability models for source code,
some ofwhich took comments into account. Comments are part of the source code
of software systems, but have characteristics that are very different from ‘actual’
code:

• Their presence has no effect on the run-time behaviour of a software system.
Nevertheless, some comments do not only affect the behaviour of human
readers. For instance, the aforementioned Javadoc comments and annota-
tions may be used by developer tools like integrated development environ-
ments (ides) and linting tools;

• Code makes software more complex and has a detrimental effect on analys-
ability, and thus also on maintainability. Conversely, comments can be used
to make code more analysable and maintainable [15].

• Whereas code must strictly adhere to syntax, grammars and logic to be of
any use, no such restrictions apply to the contents of comments: developers
are technically free to write whatever they want in a comment, in whatever
format they desire.
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Comments can contain virtually any text and can be used for any purpose.
This makes automated assessment of comment quality extremely difficult; even
with the help of state-of-the-art natural language processing (nlp) tools, which
are generally more suited towards general texts as those found in newspapers [73].
Nevertheless, metrics have been devised for comment quality. Some metrics take
a heuristic approach, while others use nlp techniques. In the remainder of this
section we discuss a few common classes of metrics and models for several aspects
of comment quality.

2.2.1 Lines of comments
Studies show that the presence of comments makes source code more readable
[74]. One might therefore say that a project with many lines of comments is more
maintainable than a project that contains fewer lines of comments.

While this makes sense to some extent, it does not take into account the fact
that not all comments are useful. We have already seen an example of a superfluous
comment in Listing 1.5, but there are also other types of comments for which their
contribution to maintainability is debatable at best. Examples include comments
that consist solely of code (Listing B.7) and copyright notices.

Moreover, an exploratory study by He [29] showed that comment density var-
ies significantly between programming languages. Their analysis of popular pro-
jects showed that Java and Python projects have higher comment densities than
projects in other languages. This makes interpretation of line-based metrics more
difficult.

2.2.2 Code-comment consistency
A common problem with software documentation is that it is outdated. This is
especially problematic for types of documentation that are closely related to the
implementation, like comments [42]. Many approaches therefore focus on assess-
ing to what extent member comments appear to be in sync with their methods.

An early example of such an approach was by Tan et al. [73], who used a com-
bination of nlp, machine learning, statistics, and static analysis to detect inconsist-
encies between comments and code. An inconsistency could mean that a comment
is outdated or the code contains a bug. An evaluation with four large codebases
showed that these inconsistencies can be used to discover bugs in software systems.

Several other studies further explored the detection of similarity between com-
ments and code based on the textual contents of comments. Steidl et al. [69] de-
termined the coherence between member comments and method names by meas-
uring the similarity between the words that are used in the comments and the code.
Such an approach is fairly limited, because in order to be seen as similar, the words
have to be virtually exactly the same. Liu et al. [43] conducted a study on the role of
synonyms and polysemy1 in detection of code-comment consistency. They found
that accuracy can be improved by using WordNet2, a lexical database for English,
to include words in the detection process that have similar meanings, but look very
different. A similar discovery was made by Corazza et al. [12], who manually as-
sessed the coherence of 3,636 methods in three oss applications. They conclude

1The opposite of synonyms, i.e. when a single word has multiple meanings.
2WordNet | A Lexical Database for English – https://wordnet.princeton.edu/
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that lexical similarity alone does not suffice in practice. However, a more sophist-
icated vector space model with a tf-idf schema that takes the regularity of words
into account, produces promising results. These two studies show that analysis of
comments possibly requires the use of natural language processing techniques and
datasets.

2.2.3 Readability
Toour knowledge no comment qualitymetric exists that is solely based on its (free-
format) content. This should not come as a surprise, as comments are intended
to supplement code. Nevertheless, we feel that a brief discussion of general text
readability is warranted given that comments virtually always consist of natural
language text, e.g. Dutch or English.

Like source code, a text in English can be easy to read without being under-
standable. Comprehension of text is hard to measure automatically, even more so
than of code. Automated assessment of readability is very feasible in comparison.
While this is not the same as assessing understandability, it is nonetheless valuable
because readability is a prerequisite for understandability [76].

Readability metrics are typically based on features like the average lengths
of words and sentences, variety, and likely familiarity of the reader with certain
words. The accuracy of these metrics has been studied extensively for the English
language, but less for others [13].

2.2.4 Models for comment quality
All comment quality metrics discussed up to this point only focus on a single fea-
ture. To our knowledge there are only a few models for comment quality that aim
to determine the helpfulness of comments from multiple perspectives, although
none are actually available to practitioners.

Schreck et al. [65] developed the Quasoledo tool. This tool checks whether
comments are written for everymethod and parameter declaration, that comments
have an appropriate length (i.e. not so short that they provide insufficient informa-
tion, but also not so verbose that developers do not read them), and are easy to read
for their target audience. Their approach notably does not take code-comment
consistency into account yet.

Based on those early insights, Khamis et al. [37] developed a comment quality
assessment tool and model, the JavadocMiner. It makes use of nlp techniques to
analyse the textual contents of comments. In addition to the features originally
considered by Quasoledo, JavadocMiner also takes into account code-comment
similarity, can check whether comments use the ‘correct’ writing style (as sugges-
ted by Javadoc style guides), and verifies that comments add value beyond what
can be deduced from the method name. An evaluation of comments analysed by
the tool confirmed earlier findings by Tan et al. [73] that good comments are likely
correlated with a lower number of bugs, although it is not entirely clear to what
the role is of the various parts of their model.

A third model for comment quality was proposed by Steidl et al. [69], who
described a method to assess certain quality aspects of comments in Java and C++
code, following a conceptual model that is based on entities (comment categories),
activities (the developer’s intention), and four quality criteria which a comment
must meet:
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Coherence Comments must be clearly related to the code, but must not exactly
repeat the code.

Usefulness Comments must help readers gain a better understanding of the code
that is being described.

Completeness Commentsmust be present throughout the source code in the places
where you expect them, e.g. in the header of a file, and above fields andmeth-
ods.

Consistency Commentsmust be consistent throughout the source code, e.g. writ-
ten in the same language and following the same format.

An evaluation of their model on five oss projects shows that it provides more
insight than metrics based on simple comment ratios. The model can also reveal
where comments need to be refactored. Itwas later extended by Sun et al. [71], who
also included assessment of header comments and proposed a method for gener-
ating suggestions that may help developers improve their comments. The insights
that this model provides are somewhat similar to those of the SIG maintainability
model that we discussed earlier in section 2.1: both look at quality from various
perspectives and aim to produce actionable analysis results. These can be seen as
requirements for future predictive models for comment quality.
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Chapter 3

Study design

Recall that our objective is to develop a predictive model that helps us gain better
insight into features that are associated with good comments in source code. We
therefore formulate our main research question as follows:

Howwell do features of source code comments predict comment qual-
ity in Java code?

Our main research question cannot be answered immediately. We therefore
decompose it into three sub-questions.

RQ1 What features of source code comments can be derived from literature?

We start our study by cataloguing features of comments in source code that
may affect comprehension, and thus comment quality. Not only are we interested
in which features exist, but also how we can recognise them, and why and how
they may affect comprehension. The answer to this first question provides the
theoretical background for our model.

RQ2 What do features of source code comments look like in open-source Java
projects?

After we have learnedwhich features of source code comments have been stud-
ied by others, we quantify how common each feature is in real-world Java projects
and what they look like in practice. This helps us empirically validate our findings
from scientific literature.

RQ3 How do comment features affect developers’ perceived comprehension of
Java code?

Finally, our third research question helps us bridge the gap between features
and comment quality. We do this by conducting an online survey in which we
elicit information about the helpfulness of comments, which we then relate to fea-
tures using machine learning algorithms. This allows us to study the relationships
between each feature and the perceived quality of comments. Our overall research
strategy consists of four phases:
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1. We start with a systematic literature review on features of source code com-
ments. A literature review gives us a good overview of existing perspectives
and findings about the efficacy and usage of comments in source code. This
answers RQ1 and yields a list of candidate features that we can implement
in the next phase.

2. The candidate list of features shows what aspects of comments are described
in literature, but not what comments look like in practice. We therefore
analyse comments in a small sample of representative Java projects. This
answers RQ2. The analysis also tells us which features cannot be computed
reliably and should be excluded from the definitive list, as inaccurate values
would negatively affect the predictions of our model.

3. The quality of a comment cannot be measured directly, but is perceived by
developers who read it during software maintenance activities. We therefore
conduct an online survey in which we ask developers to rate the helpfulness
of comments in Java source code.

4. The subjective ratingsmade by survey respondents can be combinedwith the
list of ‘objective’ features to construct predictive models that automatically
assess the quality of individual comments in Java source code. This answers
RQ3 and achieves the main objective of our study.

We now describe the method of each phase in more detail.

3.1 Systematic literature review
We use a systematic literature review process to answer our first research question.
A systematic literature review process is much like a regular literature review pro-
cess, except that it follows a clear protocol that is determined a priori and describes
the precise steps, keywords, andmethods used to obtain the results. Such a process
offers numerous benefits over an ad hoc search process: important publications are
less likely to be overlooked and since each step in the process is clearly described,
the results can be reproduced more easily by others [39, 44]. Systematic literature
reviews are also commonly used within software engineering. An example of such
a study was conducted by da Silva et al. [14]. Our study uses a similar method.

3.1.1 Search strategy
Our search strategy consists of the following components: the searched databases,
the used keywords, inclusion criteria, and the protocol that we follow to conduct
the search.

Databases

We search for publications in four digital libraries that are likely to contain public-
ations we are looking for: the ACMDigital Library, IEEEDigital Library, Google
Scholar, and the dblp computer science bibliography.

The ACM and IEEE libraries provide first-party access to important papers
within the domain of program comprehension. Google Scholar and dblp may re-
turn additional papers that are not covered directly byACMor IEEE publications.
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Search query

Our goal is to find publications related to comments and program comprehension.
This makes comment and comprehension [52] a good starting point for a search
query.

We further refine this query to tailor it for our use case. First, studies do not
always use the term comprehension. Some use understanding (e.g. [53, 64]), while
others use readability (e.g. [7, 58, 74, 80]). We therefore include synonyms of the
term comprehension in our query. We also add keywords that often appear in titles
of papers about comments: maintainability, quality, and good. Finally, we wish
to make sure at an early stage that retrieved publications discuss commentswithin
the context of source code (or program code), as filtering them later is much more
time-consuming.

The final version of our search query is as follows: (source or program) and
code and comment and (comprehension or understandability or readability or
maintainability or good or quality).

Inclusion criteria

We define several inclusion criteria that each publication must meet in order to
be considered for further analysis. A publication must be 1) written in English
and describe results that apply to comments in English, 2) published in a peer-
reviewed journal or peer-reviewed conference proceedings, 3) about comments in
source code, e.g. not comments in pull requests, and 4) have been cited more than
20 times according to Google Scholar.

Search protocol

Our protocol is a modified version of the protocol originally used by da Silva et al.
[14] for their systematic literature review on systematic literature reviews in soft-
ware engineering and consists of six steps:

1. Perform a search in all databases using our query. We download the first 200
papers that we find.

2. Remove duplicates using automatic and manual methods. We do not count
follow-up papers as duplicates, because theymay provide additional insights.

3. Filter papers by reading the title and abstract, and estimating whether the
paper meets our inclusion criteria. Sometimes it is not immediately clear
whether a paper meets all criteria. When this happens, we also search for all
instances of ‘comment’ and read the surrounding text so we canmake a more
informed decision.

4. Sort articles in descending order of citations as shown in Google Scholar’s
search results, approximate impact of the journal or proceedings using its h5-
index1, and year of publication. This allows us to achieve the best coverage
of features in a brief amount of time, as highly cited papers are more likely
to contain contributions that others within the scientific community have
found valuable.

1https://scholar.google.com/citations?view_op=top_venues – Google Scholar Metrics
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5. Apply backward snowballing to discover other articles that may be relevant
for our review.

3.1.2 Data analysis
We used ATLAS.ti2 to annotate papers. Our annotation process followed a com-
bined deductive-inductive approach to assign the following codes to the identified
features:

Name The names that are used for a feature by researchers and practitioners.
Ideally these are explicit mentions, but indirect references are also included.

When multiple names exist, we attempt to choose a name that most closely
reflects what is used in literature. If there is more than one viable alternat-
ive, we also mention these alternative names. To simplify our analysis, we
normalise the name of each feature so that its purported effect would be non-
negative, e.g. ‘is correct’ rather than ‘is wrong’.

Cataloguing the names that are used for features makes it easier for us to
compare our results with existing work.

Rationale Reason(s) why the authors believe that the feature is worth taking into
account, e.g. based on experiments or interviews with developers. For us,
these can also be used to justify their inclusion in a model.

The data for rationale cannot be easily aggregated onto a nominal or ordinal
scale. We therefore attempt to summarise different descriptions while keep-
ing track of aspects that authors do not universally agree on.

Effect Whether the feature is thought to help or hinder the program comprehen-
sion process, based on argumentation or empirical findings. A feature that
has a clear effect on comprehension is more likely to be useful for a model
for comment quality than a feature for which the literature suggests that no
effect exists.

Since our feature names are normalised, each feature should have a non-
negative effect. Specifically, we distinguish between three types of effects:
clear (positive) effects, mixed effects, and no known effects. We consider a
feature to have mixed effects when the outcome of a single study is incon-
clusive or if two or more studies disagree with each other.

Validation Whether the feature was empirically validated, e.g. using a compar-
ative study, case study, or survey. This information helps us understand to
some extent how certainwe can be that a feature actually contributes to com-
prehension.

Ideally, each feature in our review is validated empirically, as this proves that
a feature contributes to the helpfulness of a comment. Some features are only
validated indirectly, e.g. a feature might have been validated together with
other features, but not on its own. This makes it impossible to attribute
effects to any single feature. Other features might not have been validated
at all. We label a feature as (partially) validated if at least one such study
exists.

2https://atlasti.com/ – ATLAS.ti: The Qualitative Data Analysis & Research Software
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Measurement How the feature can be measured, e.g. using an equation, a specific
requirement that a good comment shouldmeet, or more general descriptions
of desirable characteristics.

When there are multiple ways to measure a feature, we try to summarise
them all, while paying special attention to different perspectives and poten-
tial implementation pitfalls.

Quality criterion Features can contribute to quality along multiple dimensions
and as such can be categorised in different ways. We choose to take a de-
ductive approach here by assigning each feature to one of the four quality
criteria in the quality model by Steidl et al. [69] as described in section 2.2
(coherence, usefulness, completeness, consistency). Each criterion can be
seen as very short summary of why a comment with a particular feature is
high-quality. We therefore assign features based on their described rationale.

Aside from ‘Quality criterion’, all codes are generated using an inductive ap-
proach. Annotation is done in three steps: first, we annotate only the type (e.g.
‘Name’). Then, we revisit each paper to assign feature-specific codes to the ini-
tial set of type annotations. Finally, we revisit our list of feature-specific codes to
merge codes that are very similar to each other.

3.2 Mining repositories for comment features
To learn more about what comments look like in practice, we developed Coalaty;
a tool for automated comment analysis and assessment of understandability. Its
source code is available via https://figshare.com/s/d10cf6030ec7de1ef258. In this
section we describe howCoalaty works andwhich features it can extract from Java
projects.

3.2.1 Coalaty architecture
Coalaty is implemented using the Java programming language as a command-line
application. The application requires two input arguments: a directory that con-
tains Java source code and a semicolon-delimited csv3 file that will contain the
computed features for each analysed comment. Figure 3.1 shows Coalaty’s ana-
lysis pipeline. The process for analysis of a single project consists of five steps:

1. First, Coalaty identifies all .java source code files within a directory. Files
that contain test or example anywhere in their relative path name are ig-
nored, as test and example classes are not representative of ‘normal’ Java
code.

2. The open-source JavaParser library4 is one of the most popular parsers for
the Java language. Our tool uses JavaParser to parse each individual Java
source file into an abstract syntax tree, a representation that can be easily
traversed using Java code. JavaParser works using static analysis, i.e. Java
files are not compiled or executed in any way. We assume that any .java file
contains valid, compilable Java code that does not make use of experimental

3comma-separated values
4https://javaparser.org/
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1: discover eligible source code files

2: parse source code
into abstract syntax tree

3: convert abstract syntax
tree to data transfer objects

4: compute features

5: export results

Figure 3.1: A schematic overview of Coalaty’s analysis pipeline

language features. Any file that cannot be parsed by JavaParser due to invalid
syntax is automatically skipped by the tool, but will generate a stack trace.

The specifics of our usage of JavaParser and its limitations are described in
appendices B.1–B.2. Most importantly, we only consider comments that are
placed above entities, like classes, interfaces, and methods. Inline comments
are harder tomatch unambiguously to a clearly defined region of code, which
is likely a requirement for many important comment features and are thus
excluded from our analysis. Moreover, an implementation of symbol resol-
ution is beyond the scope of this project. Variable types and identifiers are
therefore not resolved to fully qualified names, but treated as simple strings.
This means that in some rare cases, our tool might not be able to differenti-
ate between two interfaces ormethods in different classes that share the same
name. We expect that this will have limited impact on the output of the tool.

3. To streamline the remainder of our analysis, we convert JavaParser’s abstract
syntax tree objects into minimalistic data transfer objects (dtos), which are
smaller data structures that are more suitable to our purpose, i.e. focussed
on the analysis of comments rather than source code in general.

For performance reasons we also precompute a few low-level text-related
metrics that form the basis for multiple features that are based on the textual
contents of source code and comments:

• Natural language text is divided into tokens (which correspond roughly
with words) using the open-source Stanford CoreNLP library5 and
sanitised in order to remove HTML and other meaningless tokens.

• Tokens are stemmed (i.e. reduced to their base form) using the open-
source ApacheOpenNLP library6, whichmakes it easier to match sim-
ilar tokens with each other.

5https://stanfordnlp.github.io/CoreNLP/
6https://opennlp.apache.org/

25

https://stanfordnlp.github.io/CoreNLP/


• The number of syllables in each token is computed using the open-
source syllablecounter library7 .

• We use languagetool.org’s Java API8 to verify that comments are writ-
ten in English, as only those are within the scope of our study.

Amore thorough explanation of these concepts can be found in appendixB.1.
After the conversion of JavaParser’s abstract syntax tree objects to dtos, our
tool has all the information that it needs for its comment analysis.

4. In the fourth step, the tool computes comment features using the informa-
tion that is stored within the data transfer objects.

The previous phase of our study (section 3.1) yields a list of features that
are described in scientific literature, along with instructions or guidelines on
how to measure them. As we discussed earlier in chapter 2, there may be
more than one way to measure one feature, e.g. the length of a unit of code
can be determined by computing the number of logical or physical lines. On
the other hand, there could also be features for which measurement is infeas-
ible. Each feature that we identify in our literature review will therefore be
mapped to zero or more distinct implementations of that feature.

When implementing features, we try to make as much use of existing lib-
raries as possible. Not only does this save time, it also makes it more likely
that the resulting implementation is correct, as libraries are generally thor-
oughly tested. In some cases reuse is not possible or unnecessary. In such
cases, we provide our own implementation, which we verify using unit tests
or by comparing computed results with manual inspections or results from
existing studies (see section 3.2.2).

5. Finally, the analysis results are exported to a comma-separated values (csv)
file. Such files can be easily viewed and processed using open source tools,
like Python, R and SQLite, or commercially available off-the-shelf software,
like Microsoft Excel or IBM SPSS Statistics.

Listing 3.1 shows a pretty-printed example of what Coalaty’s output looks
like. The output file starts with a header that describes each field in the csv
file. Each subsequent line contains a reference (location) to a relative path
to a Java source file and the physical lines of code which contain a single
comment, followed by the project name that is deduced from the direct-
ory name, the entity above which the comment is placed, and the computed
features.

3.2.2 Software repositories
To learn more about how features are distributed for real-world Java code would
be to mine oss Java software repositories. It would be infeasible to mine every
Java repository in existence. Even a selection of the 100 most popular repositories
would be computationally prohibitive. Selecting most popular repositories also
does not guarantee that sample is representative for Java code in general.

7https://github.com/m09/syllable-counter
8https://dev.languagetool.org/java-api
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Listing 3.1: Pretty-printed example of Coalaty’s csv output format

location ;project;type ;feature1;feature2;feature3;featureN
path/to/Foo.java:12-14;Example;Class ; 1; 0.34216; 0; 2
path/to/Bar.java:45-52;Example;Method ; 0; 0.12345; 43; 1

Rather than trying to select a representative sample ourselves, we reuse two
representative samples from existing studies. This makes it more likely that our
results are generalisable and also makes it easier to validate the correctness of our
tool, as its computed features should be very similar to those reported in the ori-
ginal studies.

The first sample consists of six heterogeneous Java libraries and frameworks
from different ecosystems: Apache Spark, Eclipse CDT, Google Guava, Apache
Hadoop, Google Guice, and Vaadin. The second sample consists of five hetero-
geneous oss Android projects that are developed using Java: AFWall+, Amaze File
Manager, AntennaPod, ownCloud, and WordPress. The source code for these
projects can be obtained via Pascarella and Bacchelli [57] and Pascarella [56] re-
spectively.

3.3 Survey
Coalaty provides us with a wealth of information about the features of all com-
ments contained in the aforementioned eleven Java projects.

The values that are computed for each comment give us an idea of what each
comment looks like, but are otherwise meaningless and free of judgment. In order
to bridge the gap between our ‘meaningless’ values and a quality rating we need
data that helps us understand the relation between features and perception of the
quality of a comment.

We gather this data using an online survey, which we distribute and promote
among people with programming experience, e.g. professional and hobbyist soft-
ware developers, computer science and software engineering staff and students,
and data scientists. In this survey we ask respondents to rate the helpfulness for a
small set of comments that we analysed earlier using Coalaty, as they have charac-
teristics that are known a priori.

3.3.1 Overview of survey design
The survey consists of three parts:

• In accordance with ethical guidelines for social research [6], we ask respond-
ents to provide explicit consent for their participation prior to the start of
the actual survey. Respondents can withdraw from the survey at any time
as long as they have not submitted their responses. Incomplete responses
are discarded in order to conform with regulations set by the research ethics
committee (cETO) of the Open University of the Netherlands.

• The main part of the survey consists of a sequence of code snippets from
the real-world software projects that we used in the previous phase (sec-
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tion 3.2.2). Each code snippet includes at least one Java comment, which
we ask respondents to rate the helpfulness of using a five-point Likert scale
(Figure 3.2). This approach – with comment features used as independent
variables and quality ratings as dependent variables – has been used in many
studies on code quality. Examples of such studies include [3], [7], [27], and
[64]. We discuss the selection process for suitable snippets in more detail
below.

In addition to a statement about the perceived helpfulness of a comment, we
sometimes also show one of the following secondary statements (Table C.1)
about a particular aspect of that comment that might stand out due to a par-
ticular feature:

– I think this comment is easy to understand.

– I think this comment provides the right amount of information.

– I think this code would be just as easy to understand without the com-
ment.

– I think this comment meets my expectations of what a comment should
look like.

Snippets are presented individually with syntax highlighting, as this is what
the majority of developers will be used to. We take care to present snippets
in an aesthetically neutral way to avoid halo effects [28], which could inad-
vertently affect how respondents perceive the quality of the comment in the
snippet.

Moreover, we show snippets in a randomised order in order to avoid order
effects, which would cause answers to questions to be consistently influenced
by questions that respondents have previously seen [6].

• We conclude the survey with a few questions about the demographic back-
ground of the respondent, specifically their level of education, English profi-
ciency, and programming experience [22]. This helps us interpret the results
andmakes it possible to correct for non-response of certain parts of the pop-
ulation [19] and control for other factors that may affect how the respondent
perceives code snippets and comments therein [80].

We conducted two small-scale pilot studies [19] with acquaintances to ensure
that the questions in the survey are clear and completing the survey takes an ap-
propriate amount of time. Participants in the pilot studies were asked to refrain
from taking the finalised version of the survey, as their participation in the pilot
could potentially influence their responses.

A more comprehensive description of the survey and its supplementary mater-
ials can be found in appendix C.

3.3.2 Snippet selection
The second phase of our study (see section 3.2) yields a very large number of real-
world snippets from representative Java projects whose features are known, but
their quality (i.e. perceived helpfulness) is not. Since respondents only have a
finite amount of time, we can only include a very small, heterogeneous sample of
snippets in the survey. We create this sample as follows:
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Figure 3.2: One of the snippets included in the survey

1. We start with the complete set of snippets that was extracted from the eleven
Java projects that we discussed earlier in section 3.2.2. Features are extracted
for each of the snippets and mapped to numerical values.

2. Snippets are grouped based on the values computed for each of their features.
We label snippets with very high or low values (but not extreme outliers) as
eligible for inclusion as this makes it easier to attribute any possible effects
on their perceived helpfulness to the feature that is associated with the ab-
normally high/low value.

3. We exclude snippets that are unsuitable for inclusion in a survey. This in-
cludes snippets that are completely impossible to understand without the
right context [3] or that consist of an extreme high number of lines [7]. To
keep things simple, we also choose to limit our scope to member (method)
comments for now.

4. We randomly select one or two snippets from each group for our sample.
Ideally we would include all remaining snippets in our sample, but this is
not practical. Only few respondents would be able to complete very long
surveys and due to resource limitations we can only distribute one version
of the survey. Including a high number of snippets would therefore result in
less – not more – data [19].

A complete list of included snippets can be found in Appendix C.4.

3.3.3 Distribution
The survey is created and hosted using LimeSurvey Professional9, an online survey
tool that allows us to collect responses in a gdpr-compliant way. We primarily re-

9https://www.limesurvey.org/
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cruit respondents by advertising the survey on our website10, in private Slack and
Discord communities, in public communities like Reddit and Dev.to, on social
media platforms that are popular among developers, like Twitter and LinkedIn,
and our personal networks at the Open University of the Netherlands and the
Dutch Broadcasting Foundation (Nederlandse Omroep Stichting). Respondents
who complete the survey are also encouraged to share it within their own net-
works, as this may help us reach potential respondents whom would have been
unreachable otherwise.

Two types of monetary incentives were offered to respondents for completing
and sharing the survey: we raffled three $50Amazon gift cards among respondents
who completed the survey and pledged to donate €1 to the Dutch Cancer Society
(KWF Kankerbestrijding) on behalf of each respondent.

There is evidence that offering monetary incentives increases response rates
– especially among respondents from demographic groups who would normally
hesitate to participate in potentially time-consuming surveys [17, 67]. This also
helps us to reduce the potential for non-response errors [19].

3.4 Model construction
In section 3.2 we explained how we compute features for all comments in a rep-
resentative sample of Java projects. This yields a dataset that tells us what each
individual comment looks like, e.g. whether it is lengthy, placed above a hard-to-
understand method, or contains any information that cannot be derived directly
from the code. Section 3.3 then described how we conduct a survey in which we
basically ask respondents to rate the ‘quality’ comments in several dozen snippets
from that dataset.

While ratings for the comments in those snippets already provide valuable in-
sights on their own, we are not really interested in these specific snippets: what
we actually wish to understand is the relationship between comment features and
perceived comment quality. The relationship between comment features and per-
ceived comment quality can be explored using various machine learning methods,
many of which are readily available via popular Python libraries like scikit-learn11.

3.4.1 Machine learning methods
Although there is a wide array of different machine learning methods that can be
used to predict comment quality, there are only a fewwidespread methods that are
also explainable. This is an important criterion for our model: a model that is not
explainable cannot be understood by its users, which in turn makes it hard to act
on reports of comments that are reportedly low-quality.

Linear regression

Linear regression (alternatively: multiple linear regression) is commonly used in
studies that try to relate specific features of comments to program comprehension
[7, 58, 61, 69, 73].

10https://chuniversiteit.nl/
11scikit-learn: machine learning in Python – https://scikit-learn.org/stable/
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A linear regression model uses the form 𝑦 = 𝛽0 +𝛽1𝑥1 +𝛽2𝑥2 +…+𝛽𝑛𝑥𝑛. Here,
𝑦 is the outcome that we wish to predict (with a certain degree of certainty), which
is the quality of a comment expressed as a numeric value. Given that a five-point
Likert scale can be seen as an approximation of an interval scale from 1 to 5 [81], the
outcome variable would be a value between 1 and 5. Predictor variables (features),
which affect the outcome, are denoted using 𝑥. Finally, the coefficient (weight) of
each predictor variable is denoted using 𝛽 [23]. We can determine these coefficients
by ‘fitting’ a regression model to a dataset that contains the predictor variables.

As the name already suggests, a linear regression model assumes that a linear
relationship exists between each feature and the outcome that onewants to predict,
and may generate unexpected results when this assumption is violated. Only fea-
tures for which a linear relationship exists with the outcome variable can therefore
be used for linear regression [23] (see section 3.4.2).

Logistic regression

Logistic regression is somewhat similar to normal regression, except that it can
be used for classification, i.e. the prediction of a categorical variable from a set
of categorical and continuous variables [23]. For example, a comment might be
classified as either ‘good’ or ‘bad’ with a certain probability [62]. To allow for bet-
ter comparisons between different models, we will assume that comments can be
classified in one of five ways: very helpful, somewhat helpful, neutral, somewhat
unhelpful, and very unhelpful.

Decision trees

A decision tree is a machine learning model that makes predictions (‘decisions’) by
navigating through a tree from the root until it reaches a leaf node that contains
the predicted outcome variable, which can be either a discrete or continuous value
[62]. In each internal node of the tree, it decides which branch should be followed
to reach the appropriate decision based on a test performed on one of the predictor
variables.

Decision trees can be used for both regression and classification, which makes
them quite versatile. Another benefit of decision trees is that their simple, intuitive
format can make them very understandable for laymen.

On the other hand, decision trees can quickly become unwieldy for certain
types of problems, for instance when the overall outcome depends on the value
of a very large number of predictor variables or when the model includes many
real-valued attributes. Another potential downside of decision trees is that they
can be sensitive to changes in training data: even small differences or additions in
the training data may result in trees that look vastly different [62].

Support vector machines

Support vector machines can be used for both regression and classification. They
were especially popular in the early 2000s for supervised learning problems, without
the need for specialised prior knowledge about a domain. Nevertheless, support
vector machines remain very useful due to their ability to generalise, flexibility to
represent complex functions and resistance to overfitting [62], i.e. when a model
performs very well on the data on which it was trained, but badly when it is used
to make predictions based on data which it has not seen yet.
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3.4.2 Data preparation
Earlier, we assigned features to each of the comments in our dataset and gathered
ratings for a small selection of those comments using a survey. By relating each
snippet to the features that were originally computed for the snippet, we canmatch
features with helpfulness ratings. Once combined with the demographic back-
ground information provided by respondents, we have a first complete version of
our dataset.

This dataset may already work for some machine learning methods, but not
all. For instance, for regression analysis all values must be numerical and present
(i.e. no null values). Moreover, the data should not include extreme outliers as this
might result in models that make sub-optimal predictions.

No action is required for the first two requirements:

1. All values in Table 4.5 can be expressed as floats or integers, and all survey
responses can be coded as ordinal values;

2. Our repository mining tool does not generate null output values and all
questions in the survey were required.

As discussed in section 3.3.2, we have tried to choose our snippets such that
they are at least somewhat representative. However, as the dataset includes 50
variables, outliers may still occur somewhere in the data. Such outliers may cause
our model to over-fit (‘overly specialise’) for the comments in our specific dataset
and lead to worse performance on comments in general.

Moreover, many variables express ratios or percentages, where an increase from
2% to 4% is substantial, but an equally large increase from 40% to 42% is negli-
gible [24]. Our regression models must be able to distinguish between these two
situations.

Both issues can be resolved by applying logarithmic transformations like these
to some of our variables [47]:

• a log transformation12 log(𝑥 + 1) to variables that either represent natural
numbers without an upper bound (e.g. the number of lines) or natural num-
bers that cover two or more orders of magnitude (e.g. many of our readab-
ility formulas). This assigns more importance to differences in lower values,
which reduces the impact of outlier values;

• a logit (alternatively: log-odds) transformation log( 𝑥
1−𝑥 ) to variables that rep-

resent proportions as numbers between 0 and 1, which helps us improve the
interpretation of proportional differences for restricted-range variables [24].
Because the result for 0 and 1 are undefined we remap all data proportionally
to a range between 0.025 and 0.975.

Variables that express simple ranges within the same order of magnitude (like
booleans and values derived from Likert scales) do not require any transforma-
tions. It is unclear what the effect of log transformations on such variables would
be [24].

12𝑥 + 1 is used, because log(0) is undefined.
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Feature selection

While it does not hurt to have an abundance of data available, we do not want to
include every single variable in our model. There are several reasons for this:

• Predictor variables with zero variance do not contribute to a model in any
way [23].

• For regression-based machine learning methods, the regression coefficient
of each predictor variable must be significantly different from zero. Linear
regression specifically also requires that all predictor variables have a linear
relationship with the outcome variable [23].

• Some machine learning methods are sensitive to the curse of dimensionality.
Their performance deteriorates when used with a large number of predictor
variables [63, 78], e.g. a model might make ‘random’ predictions that are
largely guided by noise rather than features that are actually meaningful [75].
Having toomany variables also makes models harder to understand. By cre-
ating a scree plot of the eigenvalues of principal components for our dataset
we can determine what number of variables is sufficient for our model [23].

• Two or more predictor variables might be highly correlated with each other,
a phenomenon that is known as multicollinearity. We discuss the issue of
multicollinearity in more detail below.

Multicollinearity

Some of our variables may be correlated with each other; this is a phenomenon
known as collinearity. Low levels of collinearity are acceptable, but high levels
can give rise to problems [23]:

• High levels of collinearity also increase the standard errors of the coefficients
in our linear regression model. This results in a model that may work well
in our sample of snippets, but not on comments in general.

• Each variable that makes it into the model affects the outcome of its predic-
tions in some way. When two variables are highly collinear, they affect the
outcome in the sameway. Intuitively, this means that the outcome is affected
by only one of the variables, while the second contributes nothing.

• Finally, when two variables are highly collinear it makes it hard to determ-
ine which of the two is actually important – knowing which variables are
important is crucial for gaining a better understanding of how and why the
model works.

We therefore test for multicollinearity after constructing our model by com-
puting variance inflation factor (vif) scores for each of our independent variables.
High vif scores are a sign that a variable has a strong relationship with other vari-
ables, while a vif score of 1 means that no correlation with other variables exists.

There are no hard rules about what vif values are cause for concern [23]. Nev-
ertheless, there are several rules of thumb:
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• Some sources suggest that variables with a vif score higher than 10 are un-
desirable [49], while other sources suggest 5 [24] or even 3 [1] as a threshold
value. Yet others argue that high vif scores are not necessarily problematic
on their own [54];

• An average vif score greater than 1 implies that a regression model suffers
from multicollinearity [4].

For our study, we will use a threshold of 5, as this appears to be one of the most
commonly chosen thresholds. When we compute the vif scores for our model
and find that at least one variable with a score above the threshold exists, we first
determine whether it is likely that two variables really measure roughly the same
thing [54]. If so, we drop the variable that is harder to compute accurately as this
will likely lead to an increase in data quality, and subsequently, predictions. We
then recompute vif scores until all variables have acceptably low vif scores.

3.4.3 Model validation
Like all software, machine learning models should be tested after construction
in order to verify that they work properly, but the method of verification dif-
fers somewhat. Correctness for most software is rather black and white: either it
works correctly or it does not. Machine learning models on the other hand make
predictions, which are unlikely to be correct 100% of the time. Moreover, the
quality and result of predictions strongly depends on the data that is used as input.
Model testing therefore is typically based on assessing the extent (for regression)
or likelihood (for classification) that a model produces right answers for a specific
set of data [23].

Up to this point, we assumed that there is only one set of data, a training set,
which is used as input for a model. In reality this set cannot simply be used to
evaluate our models: if we were to reuse the training set, a model would likely
receive a biased score that is too high as it is already ‘familiar’ with the samples
in the training set [62]. Machine learning models are therefore ordinarily trained
using only part of the available data. The dataset is typically split into a training
set and a test set. A model is trained using the training set and evaluated using the
latter. While simple, a naive split of the dataset into two parts may have adverse
effects –– especially if the dataset has a limited size. Dividing the dataset into two
parts reduces the number of individual samples that are used to train the model.
Furthermore, it introduces the risk that examples in the training or test set (or
both!) are no longer entirely representative of the set as a whole. This may result
in models that perform worse than when they would have been trained on the
entire dataset.

A method called k-fold cross validation allows us to mitigate these issues by
making better use of the training data [62]. It works by splitting the data into k
equally sized subsets, which then take part in k rounds of learning. In each round,
one of the subsets is used as a validation set, while the remaining subsets are used
for training [41]. Each subset is therefore used k − 1 times for training, and once
for testing. A commonly used value for k is 10 [9, 12, 57, 61, 75].
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Chapter 4

Results

This chapter describes the results of our study on what makes good comments in
Java source code. The study consists of five phases. Each phase is described in its
own section.

First, section 4.1 describes the results of our systematic literature review of
features of comments in source code, and answers RQ1, ‘What features of source
code comments can be derived from literature?’.

In section 4.2 we discuss the results of our analysis of comments in our sample
of Java projects and how they relate to our findings from the literature review.
This answersRQ2, ‘What do features of source code comments look like in open-
source Java projects?’.

In the third phase, we conducted an online survey on the effect of comments
on perceived code understandability. This yields the data for the fourth phase.
Section 4.3 provides high-level statistics about the respondents and responses of
our survey.

In section 4.4 we take a deeper dive in the survey results and construct a model
that can predict the effect of individual Java method comments on the perceived
understandability of their corresponding methods. This answers RQ3, ‘How do
comment features affect developers’ perceived comprehension of Java code?’.

4.1 Systematic literature review
Our search yielded 650 publications in total: we found 200 possibly relevant pub-
lications using Google Scholar and the ACM and IEEE databases, while our query
in dblp yielded only 50 search results.

While filtering this initial dataset we discarded 53 duplicate results that ap-
peared in multiple databases. We also discarded 371 publications that were not
peer-reviewed or did not describe comments in source code. After all filtering, we
had 45 distinct publications that are eligible for review. An export of the raw an-
notations can be downloaded fromhttps://figshare.com/s/16a9dd4bf6b01c2accb5.

Before we discuss the results of our analysis, we present an overview of the
overall characteristics of this dataset in order to make it easier to contextualise and
interpret our findings.
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Figure 4.1: Overview of reviewed papers per year since 2000

Table 4.1: Overview of reviewed papers per venue

Venue n %

Intl. Conf. on Program Comprehension (ICPC) 11 24.4
IEEE Trans. on Software Engineering 5 11.1
Intl. Conf. on Software Engineering (ICSE) 5 11.1
Intl. Conf. on Automated Software Engineering (ASE) 2 4.4
Other (n=1) 22 48.9

4.1.1 Years of publication
Most of the reviewed papers were published in the 2000s and later (Figure 4.1),
with a few exceptions from as early as 1981. The dataset does not include papers
published after 2018. This is presumably because our inclusion criteria require that
papers have been cited more than 20 times according to Google Scholar, which
might not have happened yet during our search.

4.1.2 Venues
Table 4.1 shows that our annotated papers come from a diverse range of venues.
Most of the reviewed papers were published in the proceedings of the Interna-
tional Conference on Program Comprehension (ICPC). Other popular venues in-
clude the IEEE Transactions on Software Engineering and the proceedings of the
International Conference on Software Engineering (ICSE).
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Table 4.2: Overview of reviewed papers per subject

Subject n %

Automated generation of comments 9 20.0
Vocabularies and natural language 6 13.3
Assessment of code quality 5 11.1
Up-to-date comments 5 11.1
Usage of comments and documentation 4 8.9
Effect on comprehension 4 8.9
Assessment of comment quality 3 6.7
Improving program comprehension 2 4.4
Task annotations 2 4.4
Automating program comprehension 1 2.2
Code reviews 1 2.2
Comments in practice 1 2.2
Recommendations for comments 1 2.2
Static analysis 1 2.2

4.1.3 Subjects
Based on titles and abstracts many papers seem to cover source code comments
from similar perspectives. As can be seen in Table 4.2, one out of five papers dis-
cusses ways to automatically generate comments from code using templates or
machine learning techniques. Other popular subjects include the linguistic content
of comments, causes and consequences of out-of-date comments, and methods to
determine the overall code quality of software systems.

4.1.4 Overview of features
Table 4.3 lists the 22 features that we have identified in our literature review. The
third (n) and fourth columns (%) respectively list the absolute and relative distinct
number of papers in which they were mentioned, i.e. a feature that is mentioned
in two different papers will be counted twice (even if both papers are written by
the same authors), but a feature that is mentioned twice in a single paper is only
counted once.

The most frequently mentioned feature is Describes code (code), which ap-
pears in 27 papers. This means that it is mentioned in more than half of the papers
in our dataset. Conversely, the least frequently mentioned feature Does not use
abbreviations (noabbr) only appears in 4 papers.

There are two other features that stand out in this table. The first is Is present
(present), which stems from the (somewhat controversial) notion that a comment
is always better than no comment. Is Javadoc (javadoc) is mentioned in an equally
large number of papers. Its inclusion is somewhat surprising, given that Javadoc
is specific to Java, which is only one of many programming languages. A possible
explanation for this is Java’s popularity in educational contexts [21], which makes
it more likely that readers and experimental subjects are familiar with its syntax
and concepts.

Table 4.4 summarises the findings for each of the features in our literature re-
view. The ‘Effect’ column lists the purported effect of each feature. The ‘Validated’
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Table 4.3: Features and papers in which they are mentioned, in descending order
of mentions

Feature Description n % Papers

code Describes code 27 60.0 [R3, R5, R8, R9, R11–R13, R15–R19, R21–R26, R28, R29, R31, R35–R38, R42, R44]
purpose Describes purpose 21 46.7 [R1, R2, R5, R11, R13, R15, R16, R21, R23–R27, R29, R31, R33, R35, R37, R38, R41, R44]
uptodate Is up-to-date 17 37.8 [R8, R9, R12, R13, R15, R18, R21, R24, R26, R29–R32, R35–R37, R40]
underst Is understandable 17 37.8 [R2, R5, R7, R12, R13, R15, R16, R19, R24, R28–R31, R33, R36, R37, R41]
succinct Is succinct 17 37.8 [R3, R5, R9, R11, R12, R15, R17, R23, R24, R28–R31, R35, R42–R44]
present Is present 16 35.6 [R2, R5, R9, R11, R12, R15, R16, R19, R24, R26, R27, R31, R34, R35, R38, R44]
javadoc Is Javadoc 16 35.6 [R3, R8, R11, R13, R15, R17, R23, R26, R27, R29–R31, R33, R39, R41, R43]
complete Is complete 14 31.1 [R9, R13–R15, R23–R25, R27, R29, R31, R33, R35, R39, R45]
correct Is correct 14 31.1 [R6, R9, R11–R14, R18, R23, R32, R37, R39, R41–R43]
identifiers Uses meaningful identifiers 13 28.9 [R6, R9–R11, R19, R20, R22, R24, R29, R30, R32, R33, R41]
highlvl Is high-level 12 26.7 [R5, R15, R19, R23–R25, R27, R28, R32, R33, R35, R45]
sublang Is written in sublanguage 12 26.7 [R4, R5, R11, R12, R20, R30–R32, R37, R39, R42, R43]
consist Is consistent 11 24.4 [R4, R5, R11, R12, R14, R15, R17, R22, R35, R36, R41]
hard Is for complex code 10 22.2 [R1, R2, R4, R13, R15, R19, R31, R42–R44]
tasks Mentions task 10 22.2 [R5, R6, R9, R11, R13, R26, R35–R37, R45]
decision Describes design decision 9 20.0 [R7, R13, R17, R18, R21, R26, R31, R35, R37]
extra Provides extra information 8 17.8 [R5, R11, R19, R24, R35, R37, R42, R43]
context Describes context 8 17.8 [R15, R23–R26, R33, R39, R42]
entity Is near entity type 6 13.3 [R8, R9, R11, R15, R28, R39]
usage Describes usage 6 13.3 [R13, R19, R23, R25, R26, R33]
trace Enables traceability 5 11.1 [R9, R14, R17, R20, R36]
noabbr Does not use abbreviations 4 8.9 [R10, R15, R20, R33]

Overall 44 100.0

n = number of papers in which a feature is mentioned
% = percentage of papers in which a feature is mentioned
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Table 4.4: High-level summary of features

Feature E
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code ± y •
purpose + y •
uptodate + y •
underst + y* •
succinct ± y •
present + y •
javadoc ? y •
complete + y •
correct + y •
identifiers + y •
highlvl + y •
sublang + y •
consist + n •
hard + y •
tasks ± n •
decision + n •
extra + n •
context + n •
entity + y •
usage + n •
trace ± n •
noabbr + y •

+ = positive effect, ± = mixed effect, ? = unknown effect
y= validated, y* = validated indirectly, n= not validated
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column shows whether the effect of the feature has been validated in at least one
study. Finally, the last four columns show to which of the four major quality cri-
teria proposed by Steidl et al. [69] the feature can be assigned.

Most features are thought to have a clear effect (+) on program comprehension.
Particularly noteworthy is the finding that Javadoc on its own does not have any
explicitly mentioned effects (?) on comprehension. This is likely because many of
the benefits of Javadoc are realised via other features or only indirectly related to
program comprehension, e.g. via the generation of external documentation.

Three features are possibly controversial (±). For example, while most studies
imply that including references to external resources (Enables traceability; trace)
is beneficial for program comprehension, we also found a study which suggested
that such references can be seen as ‘cluttering the code’ [R36]. While this does not
discount such features entirely, it does suggest that more research may be needed
about the effect of such features.

Just over two thirds of the features have been validated in some way using
experiments, surveys or case studies. The effect of one feature, Is understandable
(underst), was only validated together with other features. This makes it difficult
to determine to what extent the understandability of a comment contributes to
program comprehension on its own.

Finally, Table 4.4 shows that most features are related to the ‘usefulness’ cri-
terion, followed by ‘coherence’, ‘consistency’, and ‘completeness’. The remainder
of this section discusses the names, rationale and measurement of each feature for
these four criteria in more detail.

4.1.5 Features related to coherence
The coherence criterion essentially states that comments must be related to the
code that they are describing. There are seven features in this category: Describes
code (code), Is up-to-date (uptodate), Is succinct (succinct), Is correct (cor-
rect), Uses meaningful identifiers (identifiers), Is high-level (highlvl), and Is
near entity type (entity). Aside from Is correct (correct), all features in this cat-
egory can be easily computed from software artefacts, like the source code and its
change history.

Describes code (code)

A comment should provide a summary of the code by describing its most import-
ant parts, which may include both data and code structures [R13, R23, R37].

Rationale: This feature is mentioned in most of the papers in our review, but
is possibly also one of the most controversial features.

Manydevelopers believe that comments are notmeant to explain the how [R13]:
code should ideally be written in a self-documenting way by using small, easily
comprehensible methods in conjunction with meaningful method names, as it is
then no longer necessary to describe the code in a comment [R3].

Others have a more optimistic view of such summaries. Because comments
are written in natural language and can explain the code at an appropriate level
of detail [R33], they can be easier to understand (underst) than code. Further-
more, explanations of internals can also be helpful for future maintainers of the
code [R19]. Finally, documenting some higher-level aspects of code, like design
patterns, may also be beneficial for comprehension [R28].
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Some studies have demonstrated that describing the code in comments has a
positive effect on comprehension [R36], although it is possible that such comments
only affect the performance of novice programmers [R29].

Measurement: If a comment contains a summary of the code, one would typ-
ically expect that it describes the same concepts using similar words as those found
in the code [R8].

Words in the comment text are generally easy to detect, but those in the code
are hidden in the names of classes, methods, and variables – often in a snake_cased
orCamelCased format – and need to be pre-processed first to extract the individual
words from such identifiers [R35]. Moreover, stopwords (e.g. ‘the’, ‘is’) that occur
often in natural language and are relatively meaningless may need to be removed
[R42].

To determine whether the words in comments are sufficiently similar to those
in the code, one first needs to determinewhichwords from the two sets correspond
to each other. Then, the overall comment similarity can be computed by dividing
the number of corresponding words by the total number of words in the comment
[R35] or by using a cosine similarity measure [R19].

Is up-to-date (uptodate)

Comments should be kept up-to-date with their code and vice versa.
Rationale: Normally, whenever a change is made to source code the corres-

ponding comments are updated as well [R8]. This is not guaranteed however, as
developers may lack the time or motivation or simply forget to do so [R37]. When
this happens, comments can become outdated. Comments that are incorrect (cor-
rect) may mislead developers and eventually lead to bugs [R9, R21, R37].

Measurement: The most accurate methods to detect whether a comment is
up-to-date work by using the change history to determine which changes to code
and their corresponding comments were (not) made. We refer to Fluri et al. [R9]
and Ibrahim et al. [R13] for a more thorough explanation of this process.

Is succinct (succinct)

Comments should include all the necessary information, but still be succinct (also:
short or concise).

Rationale: Comment length is a double-edged sword. On one hand, longer
comments allow developers to include or repeat more information, which may aid
comprehension [R28, R35]. On the other hand, long comments take more time
and concentration to read [R28]. They are also disliked by many developers, who
prefer to obtain their knowledge from the code [R17, R30].

Measurement: The ideal comment length is partially subjective and subject to
individual circumstances, like the complexity of the associated code [R31] (also see
Is for complex code; hard). Nevertheless we did identify several heuristics in our
review, all of which assume that comments should be succinct:

• comments should be at most 30 words long [R12, R35];

• comments with at most two words are too short to contain information that
is not already in the code [R35];
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• empty comment blocks should not be treated as comments, as ides often
generate them automatically whenever a developer adds a new class, field, or
method [R9];

• html tags in Javadoc should not count towards the length of comments
[R31];

• inline comments commonly consist of one or at most three sentences [R5].

It is important to note that these guidelines apply primarily to the English lan-
guage. Other languages (e.g. Dutch or Chinese) may have different characteristics
and thus require other thresholds.

Is correct (correct)

A good comment is factually correct (also: accurate); a developer should be able
to trust its contents.

Rationale: Developers who wish to reuse or modify source code use com-
ments to improve their understanding of it. Misleading comments that provide
developers with incorrect information can cause them to introduce bugs [R37].
Some therefore believe that ‘wrong comments are worse than none at all’ [R13].

Moreover, one paper [R13]mentions a studywhich shows thatmost developers
who encounter an incorrect comment also lose confidence in the reliability of other
comments in the same codebase and thus ignore them. This could imply that incor-
rect comments have a disproportionately large negative impact on comprehension.

Measurement: Unlike code, comments cannot be tested to see if they are (still)
valid [R37]. It is therefore not possible to measure whether a comment is correct.
All is not lost however, as it is still possible to verify that a comment is up-to-date
(uptodate), which might be seen as a prerequisite for correctness.

Uses meaningful identifiers (identifiers)

Code should use meaningful identifiers for its class, method, attribute and vari-
able names, and so should comments.

Rationale: It is generally accepted that use of good meaningful identifiers in
code that reflect that domain and behaviour of the code make it easier to compre-
hend [R19, R22].

In some cases meaningful identifiers can even make code self-documenting,
removing the need for redundant comments [R19] that do not provide any extra
information (extra) on top of what can be inferred from the code.

It is important to include meaningful identifiers and other domain terms from
the source code in the comments that remain. Such terms can help comprehension
by:

• creating a shared lexicon or vocabulary that facilitates communication among
developers and other stakeholders [R6];

• making it easier to find related software artefacts, such as documentation and
requirements (trace) [R20, R30];

• reinforcing the cohesion of a class [R22], so that readers can more easily
understand it as a single unit;
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• implicitly making clear that the comment is up-to-date with its comment
when it mentions the same identifiers (uptodate) [R35].

Measurement: Measurement of this feature can be done in a way that is some-
what similar to that ofDescribes code (code), as in both cases there should be some
overlap between terms used in comments and the source code.

Is high-level (highlvl)

Comments should use natural language or some other notation to provide inform-
ation on a higher abstraction level than that of the code it describes.

Rationale: The code already is a rich source of low-level information. Com-
ments that are written on the same low level are thus too specific to be of much
use if one wants to understand the entire class or method [R27, R28]. This is also
why class- and method-level comments have a greater impact on comprehension
than comments within methods [R9].

Measurement: It is not entirely clear how this feature can be measured. One
paper [R32] suggests that comments that are more high-level can be written using
hypernyms (e.g. ‘fruit’ rather than ‘pineapple’) and holonyms (e.g. ‘computer’
rather than ‘cpu’). This may have consequences for measurement of other fea-
tures, like Describes code (code), Is up-to-date (uptodate) and Uses meaningful
identifiers (identifiers).

Is near entity type (entity)

A good comment is not only well-written, but also well-placed. We have already
discussed that comments are especially valuable when placed near code that is hard
to understand (hard). But some source code entities, like (public) methods and
variable declarations, are also more likely to warrant a comment than entities like
import declarations and variable assignments.

Rationale: It can be useful to document interfaces, public classes, methods, and
attributes as these are intended to be reused by other developers [R11]. Conversely,
comments on private members and declarations are invisible to external users and
thus primarily helpful for maintainers [R9].

In either case, Fluri et al. [R9] note that commenting high-level (highlvl)
scopes has a greater impact on comprehension than lower-level scopes or simple
statements (hard).

Measurement: Based on the papers in our review, the list of source code en-
tities that may affect the helpfulness of a comment at the very least includes the
following entities: 1. attribute declaration [R8, R9], 2. class declarations [R8, R9,
R11], 3. class constructors [R11], 4. method declarations [R8, R9, R11], 5. control
structures [R8, R9], 6. loop structures [R8], 7. method calls [R8, R39], 8. vari-
able assignments [R11], 9. variable declarations [R8], 10. package declarations [R8,
R11], 11. import declarations [R8, R11] and 12. try-catch blocks [R8, R11].

Comments can be matched to source code entities using a few heuristics. Most
importantly, comments are virtually always placed in direct proximity to a source
code entity. Multi-line comments typically – but not necessarily – precede their
corresponding source code entity, while single-line comments can sometimes also
be placed on the same line as the entity [R8, R9]. Note that single-line comments
on consecutive lines can sometimes be considered as a single comment. Moreover,
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when comments describe code (code) one would expect that there are words that
appear both in the comment and the corresponding source code [R9, R39].

4.1.6 Features related to usefulness
Of the four criteria included in the quality model by Steidl et al. [69], the use-
fulness criterion is associated with the largest number of features in our review:
Describes purpose (purpose), Is understandable (underst), Is for complex code
(hard), Mentions task (tasks), Describes design decision (decision), Provides ex-
tra information (extra), Describes context (context), Describes usage (usage),
Enables traceability (trace), andDoes not use abbreviations (noabbr). However,
these features are likely also some of the hardest to measure, as usefulness may
depend on the current activity of a developer. Moreover, ‘usefulness’ is perceived
by developers and thus partially subjective.

Describes purpose (purpose)

A comment should explain the purpose of code, i.e. the rationale orwhy it exists
from a functional perspective.

Rationale: Comments should explain the why of code as opposed to the how
or the what, as the why cannot be inferred from the code (code) [R13, R16]. Be-
cause the rationale behind code is easily forgotten, omitting such information from
comments might mean that developers need to invest a large amount of time in re-
discovering it [R31].

Measurement: Even though this feature is mentioned by many papers in our
review, none has proposed a method to detect this feature automatically.

Is understandable (underst)

Code can be hard to understand. Comments allow developers to provide explana-
tions about their code in a more easily understandable way. For this to be possible,
first and foremost the comment itself must be understandable.

Rationale: Comments are written in natural language, which can be ‘much
more direct, descriptive, and easy to understand than source code’, usually by be-
ing less rigorous [R37]. Moreover, the text should also be easy to read on its own,
e.g. not be verbose, confusing or contain many spelling and grammatical mistakes
[R5, R28, R37].

Measurement: For a comment to be more easily understandable than code, it
needs to meet several criteria:

• It needs to be written in a natural language (e.g. English) at a level that is
appropriate for its target audience, i.e. not too high, but also not too low.

Readability heuristics such as the Flesch-KincaidGrade Level, theGunning-
Fog Index, the SMOG Index, the Automated Readability Index, or other
heuristics that count the number of tokens, nouns and verbs, can be used to
automatically assess how hard a text is to read. [R2, R15];

• It needs to be free from linguistic mistakes [R5, R16].
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Is for complex code (hard)

A comment should be present for code that is hard to understand [R2, R13]
or unusual in some other way, e.g. for mathematically intensive code [R4, R15].
The converse is also true: comments are not needed for trivial code that is easy to
understand [R31, R42, R43].

Rationale: Comments can be used to enhance the understandability of code,
which makes them especially useful when paired with code that is hard to under-
stand [R2]. This is not the only way to make code easier to understand however:
refactoring and use of meaningful identifiers (identifiers) can improve under-
standability of code such that it can be seen as ‘self-documenting’, making com-
ments unnecessary [R19, R31].

Measurement: Hard-to-understand code can be detected using code quality
models that are based on code features like the number of identifiers, number of
operators, method length, and cyclomatic complexity [R2], or newer methods like
cognitive complexity [8, 48].

Two special cases were mentioned in the papers: mathematical calculations
[R15], which are harder to understand than normal code, and code related to graph-
ical user interfaces, whichmay be easier to understand [R31]. It is unclear howwell
these special cases are covered by code quality models.

Mentions task (tasks)

Comments can be used by developers to record code-related tasks that they or fu-
ture maintainers still need to perform. Comments that are made specifically to re-
cord tasks are often called task comments, task annotations, or todo comments.

Rationale: Task comments are primarily a way for developers to communicate
with others or their future selves [R6, R13] and therefore do not contribute directly
to program comprehension.

Having said that, there may be some indirect effects. For instance, a developer
can use a task comment to document a known issue that they have not resolved
yet [R35, R36]. This can be seen as a way to provide extra information (extra)
or to record (the deferral of) a design decision (decision). On the other hand,
out-of-date (uptodate) task comments can also be hard to understand or obscure
meaningful information, and thus negatively impact comprehension [R36].

Measurement: Task comments typically follow a fixed format and usually start
with a keyword like TODO, HACK, XXX, FIXME, or REVISIT [R13, R36]. This makes it
easy to find and list them using search tools or ides [R13].

Describes design decision (decision)

Comments should document design decisions and closely related technical in-
formation, like requirements, assumptions or informal constraints like pre- and
post-conditions.

Rationale: Inferring design decisions and related information from source code
can be difficult. One study in particular notes that developers often find such
questions hard to answer without external help, which might not always be avail-
able [R18]. Including such information explicitly in the comments thus makes it
easier for maintainers, external developers and testers to understand what some
code should and should not do [R17, R37].
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Measurement: It is not clear if and how the presence of information related to
design decisions in a comment can be determined algorithmically.

Provides extra information (extra)

Comments should provide extra information that cannot be deduced from the
source code.

This feature can be interpreted in different ways. Some [R24, R42] appear to
believe that a comment would be more helpful if it provides extra information,
possibly in addition to a summary of the code (code). However, others even go
as far as to argue that comments are only helpful if they provide extra information
and should otherwise be removed [R11, R35, R43].

Rationale: Reading source code can provide insights into what a program
does, but not why [R5], as the rationale (purpose) and other types of informa-
tion, like design considerations (decision), cannot be expressed using code. By
recording such information in comments, developers can help readers understand
implementation and design details [R11, R35].

Measurement: While this feature can in someways be considered to be the po-
lar opposite ofDescribes code (code), it can actually be measured in a very similar
way. Steidl et al. [R35] validated the following hypotheses in their study:

• If more than half of the words in a comment are very similar to those used
in the method name, it does not provide any extra information;

• Comments with at most two words do not provide any extra information;

• Comments with at least 30 words likely do contain information that cannot
be deduced from the code.

Describes context (context)

A good comment should tell readers more about its surrounding context beyond
the current unit of code, e.g. related classes [R15, R24, R25], and control or data
flows [R26].

Rationale: Descriptions of the surrounding context can provide information
on a level higher than that of the commented code. This helps developers under-
stand the role of a unit of code within a set of classes, or within a control or data
flow. Padioleau et al. [R26] suggest that contextual information may also help
developers check for bugs in code or navigate to related code.

Measurement: The presence of contextual information can be confirmed in
several ways. One can check whether (methods from) other classes are mentioned
in a comment [R15, R24, R39].

Moreover, comments for methods that override or overload another may refer
to their parent implementations. Such comments likely include the words ‘over-
ride’ or ‘overload’ [R39].

Finally, we note that features likeDescribes purpose (purpose),Uses meaning-
ful identifiers (identifiers), and Enables traceability (trace) can also be seen as
ways to provide contextual information to a unit of code.
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Describes usage (usage)

Comments for a class or method should explain how a developer is supposed to
use it.

Rationale: Public classes andmethods aremade for external users. Consequently
their comments should accommodate the needs of those who wish to use them
[R19].

Measurement: None of the papers offers concrete guidance on how to detect
this feature, although it is suggested that comments for methods should describe
their input parameters [R23], return value(s) [R25], and pre- or post-conditions
[R13] when possible.

In the case of Java programs, this requirement can be easilymet bywriting class
and method comments that follow the Javadoc conventions (javadoc), as Javadoc
already requires the writer to explain input parameters and return values [R33].

Enables traceability (trace)

Comments should enable traceability by referring the reader to specific informa-
tion in external sources.

Rationale: Comments are not the only formof documentation. Other sources,
like specifications, design documents, and issue trackers may also contain extra
information (extra) that cannot be easily deduced from the source code or com-
ments. Including references can make it easier to find such documentation and
relate changes in a system to them [R14]. However, some developers feel that such
references clutter the code [R36].

MeasurementA comment can support traceability in multiple ways. Traceab-
ility links are explicit references to an external source, in the form of hyperlinks
[R17] or identifiers, e.g. bug numbers [R14]. Traceability can also be made pos-
sible implicitly however, by ensuring that comments use meaningful identifiers
(identifiers) that appear in those external sources [R20].

Does not use abbreviations (noabbr)

Text within comments should not use abbreviations in lieu of full forms to make
comments more succinct (succinct).

Rationale: Not only does the official Java documentation recommend that de-
velopers avoid the use of abbreviations in comments [R15], most empirical studies
have also demonstrated that comments with full word identifiers are easier to com-
prehend than commentswith abbreviations [R10, R20]. One study even found that
abbreviations are strongly correlated with the number of bug defects in a system
[R15].

Measurement: Detection of abbreviations appears to be rarely discussed. Most
papers only provide a few examples of abbreviations (e.g. ‘aka’ for ‘also known
as’). However, one paper [R33] notes that abbreviations can also be part of identi-
fier names (e.g. butSelectAllwhen referring to a Button), which can bementioned
in comments. Techniques based on repository mining can be used to identify such
hidden abbreviations.
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4.1.7 Features related to completeness
The main idea behind the ‘Completeness’ criterion is that everything that can be
commented must be commented. This category includes two features about the
existence of comments, Is present (present) and Is complete (complete), where
the second might be seen as a stronger or more opinionated version of the first.

Is present (present)

A good comment is present (alternatively: is not missing). The presence of com-
ments in a codebase can enhance the understandability of code that is being covered
by the comments.

Rationale: The notion that adding comments to code can make it more under-
standable has been around for a long time, and indeed many studies have shown
this to be true [R1, R9, R19, R26] – with one major caveat, which is that those
studies only considered the total quantity or volume of comments within an en-
tire codebase, rather than the presence of individual comments [R35].

Several other features in our review show that adding comments to code may
only make sense in certain situations, for instance when the code is hard to un-
derstand (hard) or when there is extra information that is not already clearly ex-
pressed by the code (extra).

It is also interesting to note that changes and additions inwell-commented code
are more likely to be accompanied with updated and new comments [R13, R26],
somewhat analogously to the broken windows theory which suggests that visible
signs of (dis)order encourage further (dis)order.

Measurement: The extent to which a codebase is documented can be determ-
ined by computing the ratio between all units of code (e.g. methods) that have a
comment and all units of code that theoretically could have a comment [R31].

Is complete (complete)

The public part of a codebase should be (almost) completely commented and each
individual comment should also be exhaustive, i.e. describe all its inputs and out-
puts [R15], partial or exceptional behaviour [R23, R27], and other information that
is necessary to properly understand the code [R39].

Rationale: Completely documenting classes and methods makes it easier for
other developers to understand how the application programming interface (api)
works and can be used [R35]. Unsurprisingly, this is also what is recommended
by the Java documentation guidelines [R33].

This requirement only seems to apply to classes and methods that are part of a
program’s api as these have a specification, whereas private classes andmethods are
internal implementation details. Note that protected classes, methods, and fields
can also be considered to be part of a program’s api [R31].

Measurement: There are two types of completeness. Each comes with its own
method of measurement [R31].

First, every public and protected class, method, and field declaration should be
accompanied by a comment. The ratio of commented declarations can provide an
indication of the completeness on a repository level.

Secondly, comments for all public and protected class, method, and field declar-
ations should contain descriptions for their input parameters, return value, and ex-
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ceptions that may be thrown. For Java, these correspondwith the @param, @return,
and @throws Javadoc tags respectively.

4.1.8 Features related to consistency
Three features are clearly related to the consistency of comments throughout a
codebase: Is Javadoc (javadoc), Is written in sublanguage (sublang), and Is con-
sistent (consist).

Is Javadoc (javadoc)

Javadoc is both a tool and standardised format for certain types of comments in
the Java programming language [R15, R23]. Its scope is therefore technically lim-
ited to Java, although many other programming languages have similar tools and
standardised formats, e.g. pydoc for Python, Godoc for Go, and PHPDoc for
PHP.

Rationale: The Javadoc tool is primarily designed to process specially format-
ted comments in source code to generate api documentation for external consump-
tion. It therefore does not contribute directly to comprehension.

However, it can be argued that the Javadoc format and associated guidelines
also encourage developers to document all aspects of their code (complete) [R26,
R31] in a consistent way (consist) [R17], which can have an impact on compre-
hension.

Measurement: Javadoc comments only (need to) appear above public and
protected classes, methods, and variables. They can be easily detected as they
are delimited using /** …*/, which are generally not used for regular comments
[R35, R43]. Javadoc comments often contain structured metadata in the form of
tags, which developers can use to document specific aspects of a class, method, or
variable [R23, R31].

Is written in sublanguage (sublang)

Comments should be written using a specialised natural language (i.e. a sublan-
guage) that is free from linguistic mistakes [R13, R15, R16], and tailored towards
developers and the program’s problem domain [R5, R37].

Rationale: The natural language in comments often adheres to certain conven-
tions. Some of these conventions are derived from programming standards [R12],
but most seem to have evolved and gained acceptance through the community.

Examples include the verbatim inclusion of source code identifiers [R37], a
‘telegraphic’ writing style that omits articles and pronouns [R5], and use of terms
that have very specific meanings within software development or the problem do-
main, e.g. ‘buffer’ and ‘memory’ [R37].

Following conventionsmakes commentsmore consistent (consist), which can
make them easier to understand [R17, R31].

Measurement: Sublanguages follow rules that are slightly different from those
of ‘normal’ natural languages. These differences can make the use of regular read-
ability tools and spell checkers impractical. We refer to [R5] for a more compre-
hensive treatise on characteristics of sublanguages. Here, we only list some of the
most frequently mentioned differences:

• comments often are not full sentences [R5, R15, R43];
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• the full stop symbol is often omitted [R4, R43];

• identifiers in text can resemble spelling errors [R37, R39];

• mathematical expressions [R5].

Is consistent (consist)

A comment should be consistent with other comments in terms of language [R5,
R35], format [R41], and writing style (sublang) [R12, R14]. Its use of termin-
ology should also be consistent with the code and other types of documentation
[R22, R36]. Finally, depending on the conventions of the development team com-
ments might also have to be consistently placed above certain source code entities
(entity) [R11].

Rationale: As should be clear from the description above, ‘consistent’ can refer
to various tangentially related concepts. In most cases however these have the
same goal. Consistency among comments in the source code of the same or other
programs can make them easier to read [R14], which in turn makes it easier to
comprehend the comment and the code.

Measurement: While none of the papers explicitlymentions amethod tomeas-
ure consistency of comments, it would make sense that all comments within a
codebase should be written in the same language (sublang) and follow Javadoc
conventions (javadoc). Furthermore, if (virtually) all source code entities of a
particular type have corresponding comments it is likely that the intention is that
each entity of that typemust have comments [R35]. Similar arguments can bemade
for the inclusion of license and copyright information in headers [R35].

4.1.9 Conclusion
In this first phase we set out to answer the question ‘What features of source code
comments can be derived from literature?’.

The most important features include the extent that a comment describes what
the code does, describes what the code is for, is kept up-to-date with its code,
is understandable by its readers, and has a reasonable length (i.e. is somewhat
succinct).

Comments that have these features are more likely to be helpful to program-
mers than comments that do not have these features or only have part of these
features. The effect of more than half of the features that we have identified in
our review has been empirically validated. Nevertheless, in some cases the effect
is unclear – despite the existence of empirical studies.

Most features can be measured using static analysis of source code. A few fea-
tures require information from additional sources such as version control systems.
Unfortunately, there are also a few features for which it is still unclear how they
should be measured.

4.2 Mining repositories for comment features
In order to learn more about what comments look like in practice, we used our
repository analysis tool Coalaty (see section 3.2) on a representative sample of
open-source Java projects. As you may recall from chapter 3, this also gives us an
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Table 4.5: Overview of implemented features

Feature Metric Description

code overlap_percentage ratio of tokens in the comment that also appear in code

code cosine_similarity cosine similarity between the comment text and code

underst flesch_ease comment text readability, according to Flesch

underst flesch_kincaid comment text readability, according to Flesch-Kincaid

underst gunning_fog comment text readability, according to Gunning fog

underst smog_index comment text readability, according to the smog index

underst automated_readability comment text readability, according to the ari

succinct tokens number of tokens in comment text

succinct sentences number of sentences in comment text

javadoc is_javadoc true if the comment is enclosed by /** and */

javadoc is_block_comment true if the comment is enclosed by /* and */

javadoc is_line_comment true if the comment is preceded by //

complete coverage ratio of documented and applicable Javadoc tags

sublang omitted_full_stops ratio of omitted full stops in the comment text

sublang local_identifiers number of mentioned identifiers within scope

sublang math_symbols distinct arithmetic symbols in comment text

consist is_english ratio of comment text in proper English

hard identifiers number of identifiers in the accompanying code

hard operators number of operators in the accompanying code

hard method_length method length in number of lines of code

hard cyclomatic_complexity cyclomatic complexity for a method

tasks tasks number of tasks in the comment text

extra method_name_similarity true if > 50% of comment text repeats the method name

extra extra_info_score ratio of ideal comment length (≥ 30 characters)

context global_identifiers number of project identifiersin comment text

context mentions_parents true if the comment text refers to a parent or override

entity is_for_attribute true if the comment is above an attribute declaration

entity is_for_class true if the comment is above a class declaration

entity is_for_constructor true if the comment is above a class constructor

entity is_for_method true if the comment is above a method declaration

entity is_for_package true if the comment is above a package declaration

entity is_for_enum true if the comment is above an enum declaration

entity is_for_annotation true if the comment is above an annotation declaration

entity is_for_interface true if the comment is above an interface declaration

entity control_structures number of control structures within comment scope

entity loop_structures number of loop structures within the comment scope

entity method_calls number of method calls within the comment scope

entity variable_assignments number of variable assignments within scope

entity variable_declaration number of variable declarations within scope

entity try_catch_blocks number of try-catch blocks within the comment scope

usage describes_inputs ratio of inputs documented using Javadoc

usage describes_output ratio of outputs documented using Javadoc

trace hyperlinks true if the comment text includes at least one hyperlink

trace issue_numbers number of possible issue numbers in the comment text

noabbr abbreviations true if comment text includes at least one abbreviation
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Table 4.6: Project size in lines of code (loc), and number of files and comments

Project LOC Files Parsed files Comments Parsed comments

AFWall+ 28,841 645 114 (18%) 1,399 411 (29%)

Amaze File Manager 40,987 905 205 (23%) 2,072 555 (27%)

AntennaPod 60,963 1,477 316 (21%) 1,900 1,021 (54%)

Apache Hadoop 194,770 1,471 514 (35%) 7,439 3,065 (41%)

Apache Spark 6,475 110 33 (30%) 243 103 (42%)

Eclipse CDT 173,992 1,700 776 (46%) 12,491 4,068 (33%)

Google Guava 36,530 317 73 (23%) 1,040 528 (51%)

Google Guice 10,943 125 42 (34%) 227 151 (67%)

ownCloud 62,903 1,174 204 (17%) 3,520 1,248 (35%)

Vaadin 55,018 783 149 (19%) 1,912 964 (50%)

WordPress 140,847 2,329 642 (28%) 5,766 1,457 (25%)

idea of which features cannot be computed reliably and thus are not suitable for
our predictive model.

Table 4.5 lists the implemented features. The first column, Feature, lists the
features from our review (Table 4.3) for which we have provided one or more im-
plementation based on the descriptions of how they can be measured in sections
4.1.5–4.1.8. The second column, Metric, shows our name of the implementation.
Finally, the third column, Description, briefly describes its meaning. We refer the
reader to appendix B.3 for a more detailed description of these metrics.

Some notable examples of features for which no implementation exists include
Is correct (correct) and Is up-to-date (uptodate). These cannot be computed
using the source code as the sole artefact.

4.2.1 Sampled projects
Our sample includes the source code for 11 projects of varying sizes1. Table 4.6
provides a summary of various size-related metrics for these projects.

With only 6,475 physical lines of code (locs), Apache Spark is clearly the smal-
lest project in our sample. WordPress is the project with the highest file count,
while Apache Hadoop is the project with the most lines of code. Neither of these
metrics are very useful for us however: most (but especially Android) projects in-
clude files that are not source code, e.g. configuration files, stubs, graphical and
audiovisual assets, and documentation. The loc metric is a bit more useful, but
also includes test and example files which are excluded from our analysis. After ex-
cluding these test and example Java files, Eclipse CDT is clearly the largest project,
with 776 Java files that includes approximately2 12,491 distinct comments.

The last column in Table 4.6 shows the actual number of comments that have
been analysed by our tool. This number is considerably lower than the total num-
ber of comments in the Java code, because many comments cannot be clearly

1The source code can be obtained via [56] and [57].
2Determining the precise number of comments is non-trivial. See appendix B.1 for a more detailed

explanation.
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matched to some part of the code. Appendix B.2 discusses such comments in more
detail.

4.2.2 A first look at comment features in the wild
Table 4.7 provides a high-level summary of the computed metrics for the software
projects in our sample3. Definitions of each metric are provided in appendix B.3.
Note that eachmetric is independent andmay have different units ofmeasurement.
In most cases the values between two metrics can therefore not be compared with
each other directly. We describe some of the major observations below.

Most comments are placed abovemethods (65%), followed by attributes (19%),
classes (10%), constructors (3%), interfaces (1.7%), enums (0.1%), annotations,
(0.1%), and packages (0.01%). Note that this does not necessarily mean that de-
velopers primarily choose to documentmethods: amore likely explanation for this
finding is that methods simply occur more often in software projects. Without a
comparison with the actual number of entities (methods, attributes, classes, et cet-
era) it is not possible to determine which entities are commented relatively often.

The majority of comments are Javadoc comments (80%) that can be used to
generate API documentation, followed by line comments (11%) and block com-
ments (9%).

Javadoc comments can contain structured metadata, like @param and @return,
which should be used whenever an entity accept arguments or returns values. Our
findings suggest that this only happens 42% of the time, which means that most
Javadoc comments are technically incomplete.

Although some comments reach lengths ofmore than 1,400 tokens and asmuch
as 57 sentences, most comments are fairly short. The average comment contains
just under 20 tokens and is 2 sentences long. The distributions of both features are
heavily skewed however: at the 75th percentile the number of tokens in a comment
is only 24, while more than half of all comments only contain one sentence.

The findings for the entities that have been documented with a comment are
somewhat similar to those for the comments themselves: the characteristics of
commented entities varies wildly, with most entities being relatively simple and
thus easy to understand and a smaller number of outliers with extremely high
cyclomatic complexity, operators, variable assignments, declarations, or outgoing
method calls.

4.2.3 Similarities and differences between projects
Until now, we have only discussed the ‘average’ comment and assumed that our
findings apply to all software projects equally. This is true to some extent, as the
mean values for 13 of the 45 metrics show very little differences (< 5%) between
all 11 projects and are thus very similar to the mean values in Table 4.7:

• overlap_percentage (B.3.1),

• cosine_similarity (B.3.2),

• cyclomatic_complexity (B.3.21),

• extra_info_score (B.3.24),

3The complete dataset can be downloaded from https://figshare.com/s/d10cf6030ec7de1ef258.
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Table 4.7: Descriptive statistics for computed metrics

Metric mean std min 25% 50% 75% max

overlap_percentage 0.314360 0.259611 0.000 0.1000 0.286 0.5000 1.000
cosine_similarity 0.236707 0.185578 0.000 0.0910 0.224 0.3540 1.000
flesch_ease 39.433770 105.543308 -1908.175 37.5030 65.642 81.5965 122.158
flesch_kincaid 11.170730 14.447508 -3.400 5.3200 8.350 11.5725 279.800
gunning_fog 11.944296 7.979842 0.000 8.0015 11.314 14.6050 52.607
smog_index 9.395972 3.574248 0.000 8.8420 9.607 11.2080 33.358
automated_readability 16.229663 18.885221 -11.510 8.8640 12.419 16.7500 459.490
tokens 19.704007 27.304685 0.000 6.0000 12.000 24.0000 1424.000
sentences 2.090030 1.893671 0.000 1.0000 1.000 3.0000 57.000
is_javadoc 0.792783 0.405327 0.000 1.0000 1.000 1.0000 1.000
is_block_comment 0.094532 0.292578 0.000 0.0000 0.000 0.0000 1.000
is_line_comment 0.112685 0.316220 0.000 0.0000 0.000 0.0000 1.000
coverage 0.413921 0.428375 0.000 0.0000 0.333 1.0000 1.000
omitted_full_stops 0.563724 0.440106 0.000 0.0000 0.667 1.0000 1.000
local_identifiers 1.584016 10.841801 0.000 0.0000 0.000 1.0000 1161.000
math_symbols 0.086783 0.440223 0.000 0.0000 0.000 0.0000 5.000
is_english 0.953817 0.143156 0.000 1.0000 1.000 1.0000 1.000
identifiers 21.668216 54.475709 0.000 2.0000 7.000 20.0000 2212.000
operators 1.941111 5.490300 0.000 0.0000 0.000 2.0000 140.000
method_length 6.454653 13.693136 0.000 0.0000 2.000 7.0000 353.000
cyclomatic_complexity 2.044794 3.843659 0.000 0.0000 1.000 2.0000 122.000
tasks 0.008413 0.102745 0.000 0.0000 0.000 0.0000 4.000
method_name_similarity 0.363589 0.481050 0.000 0.0000 0.000 1.0000 1.000
extra_info_score 2.153845 3.535514 0.000 0.0000 1.267 2.8670 82.600
global_identifiers 5.216737 5.431169 0.000 2.0000 4.000 7.0000 73.000
mentions_parents 0.000590 0.024291 0.000 0.0000 0.000 0.0000 1.000
is_for_attribute 0.185817 0.388973 0.000 0.0000 0.000 0.0000 1.000
is_for_class 0.105601 0.307338 0.000 0.0000 0.000 0.0000 1.000
is_for_constructor 0.038669 0.192811 0.000 0.0000 0.000 0.0000 1.000
is_for_method 0.649399 0.477176 0.000 0.0000 1.000 1.0000 1.000
is_for_package 0.000959 0.030959 0.000 0.0000 0.000 0.0000 1.000
is_for_enum 0.001476 0.038391 0.000 0.0000 0.000 0.0000 1.000
is_for_annotation 0.001033 0.032127 0.000 0.0000 0.000 0.0000 1.000
is_for_interface 0.017047 0.129450 0.000 0.0000 0.000 0.0000 1.000
control_structures 1.312966 3.083077 0.000 0.0000 0.000 1.0000 113.000
loop_structures 0.108258 0.414158 0.000 0.0000 0.000 0.0000 7.000
method_calls 3.453767 8.461595 0.000 0.0000 0.000 3.0000 324.000
variable_assignments 0.643347 2.090380 0.000 0.0000 0.000 1.0000 63.000
variable_declaration 0.833075 2.148275 0.000 0.0000 0.000 1.0000 40.000
try_catch_blocks 0.071877 0.323038 0.000 0.0000 0.000 0.0000 8.000
describes_inputs 0.416067 0.489406 0.000 0.0000 0.000 1.0000 1.000
describes_output 0.420670 0.490278 0.000 0.0000 0.000 1.0000 1.000
hyperlinks 0.007970 0.102060 0.000 0.0000 0.000 0.0000 3.000
issue_numbers 0.000000 0.000000 0.000 0.0000 0.000 0.0000 0.000
abbreviations 0.213195 0.694580 0.000 0.0000 0.000 0.0000 15.000
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• global_identifiers (B.3.25),

• method_name_similarity (B.3.23),

• is_for_attribute (B.3.27),

• is_for_method (B.3.30),

• method_calls (B.3.37),

• variable_assignments (B.3.38),

• try_catch_blocks (B.3.40),

• describes_inputs (B.3.41), and

• describes_output (B.3.42).

There does not appear to be an obvious reason why the average computed
values for these metrics are so similar across projects. It is possible that there
are widely accepted software development practices that developers try to fol-
low. For instance, the values for overlap_percentage (B.3.1), cosine_similarity
(B.3.2), extra_info_score (B.3.24), and method_name_similarity (B.3.23) all are
within the range that was determined to be ideal by Steidl et al. [69]. Moreover, the
cyclomatic_complexity (B.3.21) and some of its related metrics, like variable_-
assignments (B.3.38) and try_catch_blocks (B.3.40), have a lowvalue almost every-
where, which suggests that most code in methods is kept simple. On the other
hand, describes_inputs (B.3.41) and describes_output (B.3.42) have lower val-
ues than one would expect, given the supposed importance of completeness for
Javadoc comments.

To determine whether and which differences exist between projects, we com-
puted the same descriptive statistics per project. Tables D.1–D.11 in appendix D
list the metrics whose mean values differ most noticeably from the overall mean
across all projects, i.e. they show a difference of at least 50% relative to the overall
mean.

At first glance it is already clear that there are differences between projects.
Many of the low values in Table 4.7 are apparently due to the complete absence of
certain features in many of the projects. For instance, comments are not placed
above packages in 6 out of 10 projects. The distribution of values also differs
between projects, which possibly suggests that different projects prioritise differ-
ent aspects of source code. For example, based on the computed metrics it appears
that the source code of the Google Guice project is relatively tidy, which pos-
sibly removes some of the need to describe all inputs and outputs (Table D.8). On
the other hand, the source code for Amaze File Manager appears to have longer
methods that contain more logic, which is associated with a higher number of task
comments (todos) and references to documentation (Table D.2).

4.2.4 Correlations between comment metrics
As discussed earlier in section 3.4.2, some of the metrics may be correlated with
each other. High levels of multicollinearity are to be avoided.
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A simple and intuitive way to detect multicollinearity4 is by plotting correl-
ations between each pair of features in a correlation matrix. Figure 4.2 visualises
correlations between the metrics that we computed for the comments across all
projects in our dataset5.

Pairs of metrics that are not or very weakly correlated with each other are visu-
alised using light, lowly-saturated colours, whereas strongly correlated pairs are
visualised using bright, highly-saturated cells. The diagonal red line in the centre
shows self-correlations, which are meaningless and thus best ignored. The line di-
vides the matrix into two halves, which are mirrored versions of each other. Note
that the row and column for issue_numbers (B.3.44) is blank due to the lack of any
variance for this metric in our sample of software projects.

From this visualisation it is possible to extract several factors. Factors are
groups of metrics that are highly collinear, which suggests that each of the met-
rics essentially aims to measure the same ‘thing’. This has implications for our
model construction in a later phase, asmetrics that are highly collinear can be safely
discarded in order to keep models as simple as possible (see section 3.4.2). Col-
linear metrics can be found by examining clusters of at least two adjacent bright,
highly-saturated cells that appear below the diagonal line and relating them to the
corresponding metrics.

We can identify the following factors, which neatly map to some of the features
that we saw earlier in literature and from which the underlying implementations
were derived:

Code-comment similarity overlap_percentage (B.3.1) and cosine_similarity (B.3.2)
are two specific implementations of theDescribes code (code) feature, which
is about the extent that the comment and the code look alike.

Comment readability For the Is understandable (underst) feature we imple-
mentedfive different commonly used readability formulas, flesch_ease (B.3.3),
flesch_kincaid (B.3.4), gunning_fog (B.3.5), smog_index (B.3.6), and automated_-
readability (B.3.7). These metrics are clearly visible as the second cluster
in Figure 4.2. Note that the correlation between flesch_ease (B.3.3) and
the other readability formulas in negative. This is because its direction is re-
versed, i.e. a higher score means that a text is less readable rather than more
readable.

Method difficulty This factor is actually spread across two clusters, both ofwhich
include metrics that aim to capture how difficult it is to understand a unit of
code: operators (B.3.19), method_length (B.3.20), cyclomatic_complexity
(B.3.21), control_structures (B.3.35), loop_structures (B.3.36), method_-
calls (B.3.37), variable_assignments (B.3.38), variable_declaration (B.3.39),
and try_catch_blocks (B.3.40). In our literature review, these were related
to the Is for complex code (hard) and Is near entity type (entity) features,
which are about the difficulty and properties of code respectively. Many of
these metrics are also part of general code complexity measures, which we
described in chapter 2.

Comment length The length of a comment can be measured in various ways, e.g.
by counting the number of tokens (B.3.8) or sentences (B.3.9). A longer

4Section 4.4 discusses a more formal approach to detection of multicollinearity.
5Note that the lower left diagonal half is a mirrored version of the upper right half.
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Figure 4.2: Correlation matrix for comment metrics
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comment is more likely to contain extra information that cannot be deduced
from the code, which results in a higher extra_info_score (B.3.24). In-
terestingly enough, there appears to be an even stronger relationship with
global_identifiers (B.3.25). This suggests that longer comments are often
used to describe the context in which a unit of code is used. Thesemetrics are
derived from three different features: Is succinct (succinct), Provides extra
information (extra), andDescribes context (context). The first is related to
the ‘Coherence’ quality criterion, while the other two metrics are related to
‘Usefulness’ (Table 4.4). This could suggest that different categorisations are
possible.

Comment completeness AJavadoc comment describes_inputs (B.3.41) and describes_-
output (B.3.42). These twometrics are highly correlatedwith coverage (B.3.13),
which combines the two earlier metrics into one single value. Note that des-
pite the clear relationship between these two sets of metrics, they are derived
from two seemingly unrelated features in our review: Describes usage (us-
age) and Is complete (complete); the purpose of coverage (B.3.13) is simply
to determine whether the usage has been documented completely.

4.2.5 An ideal number of principal components?
Principal component analysis (pca) is another correlation-based method that al-
lows us to look at our data in a different way [23]. PCA works by converting our
metrics into principal components, each of which consisting of a combination of
linearly uncorrelated metrics [63]. It is therefore not directly applicable for our
model, which must be easily explainable. However, it can still be useful to estim-
ate how many variables we should keep when we construct a predictive model in
the next phase.

Figure 4.3 shows a scree plot, in which the variance explained by each principal
component is plotted against the nth principal component that we retain. This
plot shows that the first (and ‘best’) principal component only manages to explain
about 16% of the variance in the data, with each subsequent principal component
contributing less to the overall ability to explain the variance.

Of particular interest in this plot is the so-called point of inflexion [23], which
one might informally describe as the ‘elbow’ in the plotted line. It appears that
this point of inflexion lies around the 7th component, which means that the ideal
number of components would be 6. Unfortunately these 6 components would
only be able to explain 54.3% of the variance in the data, which would likely not
suffice for a well-performing predictive model.

4.2.6 Conclusion
After learning what features of source code comments are described in scientific
literature (section 4.1), we set out to answer our second research question, ‘What
do features of source code comments look like in open-source Java projects?’, in
order to empirically validate our findings from theory.

We constructed a repository mining tool that computes many of the features
from our literature review, based on the descriptions of how they can be measured
that we have found in the reviewed papers. This resulted in 45 distinct implement-
ations of features (Table 4.5). We used this tool to analyse comments in the source
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Figure 4.3: Scree plot of principal components for our comment metrics

code of a representative sample of 11 open-source Java projects (Table 4.6).
Most of the comments that we found are placed above methods. When we

looked at the overall characteristics of comments across projects, we saw that 13
out of 45 features have values that are very similar in all of the projects in our
sample. Many of these 13 features have values that correspond with what has been
suggested in literature as good values. At the same time, there are also many fea-
tures for which the values differ greatly between projects, with varying degrees
of adherence to the best practices that we identified in scientific literature. Even
without a predictive model for comment quality we can therefore already see that
differences in comment quality exist between projects.

4.3 Measuring the perceived helpfulness of comments
We conducted a survey to learn more about what developers actually consider to
be features of good comments. The survey was active from 18 June 2021 until 25
November 2021. During this period we recorded 220 survey starts, which resulted
in 64 complete responses that were potentially usable for further analysis6.

4.3.1 Detection and exclusion of fraudulent responses
Monetary incentives were offered to respondents for completing the survey (see
section 3.3.3) in the form of a gift card raffle and a charitable donation. We suspec-
ted that these incentives might attract some respondents who cheat by completing
the survey as quickly and with as little effort as possible and/or by taking the sur-
vey multiple times. It is possible to detect such fraudulent responses by incorpor-

6An anonymised file containing all survey responses can be downloaded from https://figshare.com/
s/d10cf6030ec7de1ef258.
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ating check questions into surveys [10]. However, we opted to not include such
questions in our survey in order to keep it as simple as possible for respondents.

We therefore conducted an informal fraud analysis for survey responses that
were submitted by those that opted to participate in the raffle. Although more
sophisticated methods of fraud detection based on behavioural monitoring [32]
and detection of suspicious ip addresses [79] exist, these could not be used due to
privacy concerns.

First, we identified responses where each answerwas answered in the sameway
(e.g. ‘strongly agree’) as it is extremely unlikely that someone would provide the
same answers for each of the snippets in the survey. Then, we looked for responses
that were made within the same period of time and were extremely similar to each
other, despite large differences in demographic background.

We identified 12 responses that were likely fraudulent. After excluding these
from our dataset, 52 valid responses remain for further analysis.

4.3.2 Demographic background of respondents
We concluded the surveywith three sets of questions about the demographic back-
ground of respondents.

Level of education

Figure 4.4 shows that our 52 respondents are highly educated. Close to half of all
respondents has completed graduate school and holds at least a master’s or doc-
toral degree, while about a third is currently enrolled in a bachelor’s or graduate
programme. One respondent reported that they ‘Did not attend school’. It is not
clear whether this is due to a misinterpretation.

When we compare the level of education in our sample with those found in
the Stack OverflowDeveloper Survey of 2021 [55], it appears that highly educated
respondents are over-represented in our sample. Given that master’s degrees are
relatively common among software developers in our personal and professional
networks, this was to be expected.

60



0 5 10 15 20 25

Elementary proficiency

Limited working proficiency

Professional working proficiency

Full professional proficiency

Native or bilingual proficiency

Figure 4.5: Self-reported English proficiency level

English proficiency

We also asked respondents to estimate their English proficiency. A lower level may
affect how well they are able to understand comments and instructions provided
by the survey, as both are written in English. Figure 4.5 shows these self-reported
English proficiency levels.

Unsurprisingly, virtually all respondents report having at least professional
working proficiency, while a large number also claim to have full professional or
bilingual proficiency. Two respondents reported having only limited or element-
ary level of proficiency. Coincidentally, these respondents had only completed
high school at the time of their survey submission.

Programming experience

We asked respondents about their experience with computer programming using
four questions that were proposed by Feigenspan et al. [22]. Figure 4.6 visualises
the responses for these four questions.

When asked to estimate their programming experience on a scale of 1 to 10,
most respondents answered with a 7 or higher (Figure 4.6a). While our survey
shows snippets with Java code, it appears that our respondents’ programming lan-
guage of choice is not always Java (Figure 4.6b).

Most respondents do seem to use other, possibly similar object-oriented lan-
guages as they report high levels of experience with object-oriented programming
(Figure 4.6c).

Finally, we asked respondents about their experience with functional program-
ming using less mainstream languages like Haskell, Erlang, or Elixir. Experience
with such languages can be a sign that a respondent’s programming skills are above
average, which could affect how they perceive code and comments. Figure 4.6d
suggests that this is not the case for most of our respondents.

4.3.3 Helpfulness ratings for snippets
The main part of the survey consisted of code snippets that included a Java com-
ment, and the statement ‘I think this comment improves my understanding of the
code’ (Figure 3.2). Respondents were asked to indicate their agreement with this
statement using a five-point Likert scale.

Figure 4.7 provides a summary of the responses for each snippet in the form
of a stacked bar chart. Agreement is visualised using blue bars on the left, while
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Figure 4.6: Self-reported programming experience (higher is better)

disagreement is visualised using red bars on the right and neutral responses are
shown in light grey. A vertical, dotted line in the centre of the visualisation divides
it into two equally-sized halves. If we treat the Likert scale as an interval scale7,
one might say that this divider line shows the mode for each snippet.

Overall observations

In the visualisation there are more blue bars on the right side of the dotted divider
line than red bars on the left. This suggests that respondents were overall at least
somewhat positive about the helpfulness of comments. When we code ‘strongly
agree’ as 5 and ‘strongly disagree’ as 1, the mean value for all responses is 3.168,
which one might interpret as neutral or at best very weak agreement.

What the visualisation also clearly shows is that there is no such thing as uni-
versal agreement about the helpfulness of comments: for each snippet there were
many respondents who thought it improved their understanding of the code, but
simultaneously also many respondents who did not believe that the comment was
helpful.

Clear examples of good and bad comments

While the helpfulness of most comments in our survey might be seen as contro-
versial there are a few exceptions.

For instance, the majority of respondents believed that the comments in snip-
pets C.3, C.9, C.21, C.29, andC.31 were not helpful. At first glance, it appears that

7A sizeable amount of disagreement exists within the scientific community about the ‘right’ way to
analyse Likert scales – especially those with a low number of answer options, like ours. Some argue that
they are ordinal scales [81], which normally means that they cannot be used with arithmetic operations.
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Figure 4.7: Levels of agreement with statements that a comment was helpful.
Comments C.1–C.44 can be found in Appendix C.4 by looking up the identifiers
next to the chart. They are also clickable in the digital version of this document.
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these comments are all relatively short (succinct) and do not contain information
that can be deduced from the code (code).

Conversely, the comments in snippets C.6, C.8, C.30, C.33, C.35, and C.42
were almost universally thought to be helpful. It is possible that some relation-
ship exists between these positive ratings and features like Is high-level (highlvl),
Provides extra information (extra), and Describes usage (usage).

We discuss possible relationships between features and the perceived helpful-
ness of comments in more detail in section 4.4.

Potential factors

Our literature review showed that there may be several factors that contribute
to the perceived helpfulness of comments. A large number of snippets were ac-
companied by a secondary statement about one of four factors (Table C.1), which
respondents also rated on a five-point Likert scale: whether a comment is easy to
understand, looks like a proper Javadoc comment, contains the right amount of
information, or includes too little information to be of use to a reader.

Figure 4.8 visualises the answers that respondents have provided for each of
these secondary statements. Each dot represents the overall answer of a single
respondent. Their position on the horizontal axis is determined by transforming
the responses to these statements to a nominal scale and computing the mean value
for responses across all snippets where the statement was shown. The position on
the vertical axis is determined in a similar way for the primary statement about the
perceived helpfulness of the comment in the snippet for that same set of snippets.

As expected, a clear positive relationship exist for three of these factors, i.e. a
comment is more likely to be perceived as helpful if it:

• is easy to understand (Figure 4.8a);

• follow conventions for Javadoc comments (Figure 4.8b);

• does not contain too little or too much information (Figure 4.8c).

Figure 4.8d shows that the relationship is a lot less clear for the fourth factor,
which relates to the question whether the code would have been just as easy to un-
derstand without the comment. One would expect that a comment that is thought
to be unnecessary is also seen as less helpful, but this does not appear to be the case
for everyone. This may suggest that the helpfulness ratings are mostly unaffected
by the comment’s perceived ‘right to exist’.

Effect of control variables

Since programming experience is an important confounding factor in controlled
experiments that involve program comprehension [22], we suspected that pro-
gramming experience could also affect the perceived helpfulness of comments.
After all, comments are used to provide explanations about code and different
readers may require different amounts of information. Moreover, a respondent’s
level of education and mastery of English may also affect how they perceive com-
ments.
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Figure 4.8: Relationships between secondary statements and perceived helpfulness
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Figure 4.9: Relationships between control variables and perceived helpfulness

66



Figure 4.9 shows scatter plots for each of the six control variables that wemeas-
ured using our survey. The horizontal axis shows the self-reported levels of educa-
tion or proficiency, while the vertical axis represents the average helpfulness rating
given by a respondent across all snippets.

The correlations with perceived helpfulness appear to be negligible for virtu-
ally all control variables, as is demonstrated by the nearly horizontal best-fit line.
The only exception is the amount of experience with functional programming (Fig-
ure 4.9f), which seems to have a slight positive relationship with perceived help-
fulness.

Overall, the lack of correlations suggests that programming experience does
not have a discernable effect on the perception of comments. Assuming that the
self-reported experience levels are accurate, this is a somewhat surprising result.

4.3.4 Conclusion
Our survey we asked respondents to rate the perceived helpfulness of 44 snip-
pets, whose features we computed earlier (section 4.2). It was completed by 52
respondents, of which most are highly educated. Results show that in general a lot
of disagreement exists among respondents: there only a few snippets for which a
clear majority of respondents agrees that they are either helpful or unhelpful. This
disagreement makes for noisy training data, which can make it difficult to train a
well-performing machine learning model for comment quality.

4.4 The relationship between comment features and
perceived comment quality

We constructed and evaluated several machine learning models which we trained
on our dataset of input variables (the features computed using our repository min-
ing tool, listed in Table 4.5) and the output variables (the perceived helpfulness of
comments, as rated by respondents in our survey) using the popular scikit-learn
library for Python.

4.4.1 Data cleaning
As discussed earlier in section 3.4.2, linear regression models require that a linear
relationship exists between each input feature and the output variable. Visualisa-
tions make it easy to detect the type of relationship (linear or otherwise) between
two variables [72].

Figure 4.10 shows these relationships using scatter plots. Each dot represents
one of the comments in our survey. The computed value of the feature determ-
ines its position on the horizontal axis, while the averaged perceived helpfulness
ratings for that comment determines its position on the vertical axis. The plots
clearly show that the relationship is not always linear. More specifically, we can
distinguish between three types of features:

1. Features for which a linear relationship may or may not exist, e.g.
the control_structures (B.3.35) and variable_declaration (B.3.39) features;
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Figure 4.10: Relationships between comment feature values (horizontal) and per-
ceived helpfulness ratings (vertical)
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2. Features for which a non-linear relationship appears to exist. Examples in-
clude tokens (B.3.8), which likely has a logarithmic relationship with help-
fulness, and gunning_fog (B.3.5), which shows a quadratic relationship with
helpfulness.

Note that both results are expected: The precise number of tokens (B.3.8)
matters more when the number is low – with larger numbers, the number
of tokens is more likely to be perceived as simply ‘large’ (see section 3.4.2).
With regard to the readability-based gunning_fog (B.3.5) feature, we previ-
ously discussed in section 4.1.6 that comment text should not be too difficult
or simplistic.

3. Features which have zero variance in our sample and thus no relationship at
all, e.g. mentions_parents (B.3.26) and is_for_annotation (B.3.33);

Features in the first category can be included in a regression model as is, while
features in the second category can be included after applying a transformation so
that the relationship becomes linear: for featureswith a logarithmic relationshipwe
apply a log transformation, while features for which a quadratic relationship exists
we compute the inverse distance to the value that yields the highest helpfulness
rating.

The remaining features are essentiallymeaningless for our purpose and are thus
discarded. We also discard features that are highly multicollinear, i.e. those that
have a variance inflation factor greater than 5. Table 4.8 provides an overview of
which features are transformed or discarded before or during model construction.

4.4.2 Comparison of model performance
Weused 10-fold cross-validation to train and evaluate six different predictivemod-
els. Three models are regressors (linear, decision tree, and support vector machine)
and three are classifiers (logistic ‘regressor’, decision tree, and support vector ma-
chine).

Table 4.9 lists the three regressors, along with three metrics that are commonly
used for regressor models. The goal of all three metrics is to estimate the distance
between predictions of the model and actual (expected) values, but this is done in
slightly different ways:

Mean absolute error (MAE) This is the simplest of the three metrics. It looks at
the absolute difference (i.e. error) between the predicted and expected value
for each example in the data. The final score is obtained by computing the
mean of all these errors. Lower values are better.

Root-mean-square error (RMSE) The second metric is conceptually similar to
mae, but differs in two ways: 1) the error between each predicted and ex-
pected value is squared, and 2) the overall score is the square root of the av-
eraged errors. This has the effect of assigning greater weight to larger errors.
Again, lower values are better.

Adjusted R2 R2 is a metric that tells us how much of the variance the regression
model is capable of explaining. The AdjustedR2 is a modified version of that
metric that also takes the effect of including larger numbers of variables into
account. Values are generally between 0 and 1, higher values are better.

69



Table 4.8: Overview of features for machine learning models

Feature Included Reason for exclusion Applied transformation

overlap_percentage no high vif (> 5) distance to ideal value
cosine_similarity yes distance to ideal value
flesch_ease no high vif (> 10)
flesch_kincaid yes distance to ideal value
gunning_fog no high vif (> 10) distance to ideal value
smog_index no high vif (> 5) distance to ideal value
automated_readability no high vif (> 10) distance to ideal value
tokens no high vif (> 10) log
sentences yes log
is_javadoc no high vif (∞) logit
is_block_comment no high vif (∞) logit
is_line_comment no low variance
coverage no high vif (> 10) logit
omitted_full_stops no high vif (> 10) logit
local_identifiers yes log
math_symbols yes
is_english no high vif (∞) logit
identifiers no high vif (> 10)
operators no high vif (> 10) distance to ideal value
method_length no high vif (> 10) log
cyclomatic_complexity no high vif (> 5)
tasks yes
method_name_similarity no high vif (> 10) logit
extra_info_score yes log
global_identifiers no high vif (> 5) log
mentions_parents no low variance
is_for_attribute no high vif (∞) logit
is_for_class no low variance logit
is_for_constructor no low variance
is_for_method no high vif (∞)
is_for_package no low variance
is_for_enum no low variance
is_for_annotation no low variance
is_for_interface no low variance
control_structures yes
loop_structures yes
method_calls no high vif (> 5)
variable_assignments yes
variable_declaration yes
try_catch_blocks yes
describes_inputs no high vif (> 10) logit
describes_output no high vif (> 10) logit
hyperlinks yes
issue_numbers no low variance
abbreviations yes
_control_education no high vif (∞)
_control_english no high vif (∞)
_control_prog_exp no high vif (∞)
_control_oo_exp no high vif (∞)
_control_java_exp no high vif (∞)
_control_func_exp no high vif (∞)

vif = variance inflation factor
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Table 4.9: Performance comparison for regression models

Model MAE RMSE Adjusted R2

Linear regressor 0.31704 0.36646 -0.74188
Decision tree regressor 0.31466 0.39379 -1.52904
Support vector machine regressor 0.30496 0.36906 -0.23653

RMSE = root-mean-square error
MAE = mean absolute error

All threemodels have very similar amae, ranging from0.30496 (best) to 0.31704
(worst). The difference in rmse between the three models is also negligible, as it
ranges from 0.36646 (best) to 0.39379 (worst). Given that the values that could
be predicted range from 1 to 5, these do not seem like bad results at first. How-
ever, the AdjustedR2 paints a different picture: the values are negative for all three
models. This suggests that none of these models are a good fit for the data and
thus really capable of predicting comment quality. Another factor that may have
contributed to these results is the large number of features relative to the number
of distinct training examples.

Classifiers are assessed using different methods and were therefore evaluated
separately. Table 4.10 shows the results for the classification models, along with
results for two popular metrics that are appropriate for models that distinguish
between multiple different classes:

Accuracy The accuracy is defined as the proportion of examples for which the
predicted class is equal to the actual class of the example. Values are between
0 and 1, higher is better.

Balanced accuracy Accuracy scores can be inaccurate when datasets are very im-
balanced, i.e. when some classes appear more often than others. The bal-
anced accuracy score takes any imbalances that may be present in the data
into account. The resulting values and interpretation are the same as those
for the ‘normal’ accuracy metric.

Not only do the logistic regressor and decision tree classifier have a similar level
of accuracy, the difference between the accuracy and balanced accuracy scores is
also negligibly small. The support vector machine classifier has an accuracy score
of 0.64 and a balanced accuracy score of 0.625, which is slightly higher than those of
the other two classifiers. Overall, these results suggest that from these six different
models, the support vector machine classifier provides the best results.

4.4.3 Comparing the comment quality predictions of different
models

While these accuracy scores seem acceptable at first sight, further analysis shows
that these numbers may be misleading. We used each of the six models to predict
the comment quality for the 11 software projects that we mined earlier (Table 4.6).
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Table 4.10: Performance comparison for classification models

Model Accuracy Balanced accuracy

Logistic regressor (classifier) 0.540 0.54167
Decision tree classifier 0.535 0.55833
Support vector machine classifier 0.640 0.62500

Table 4.11: Summary of predictions of comment quality

Model Min Max 𝜇 𝜎
Linear regressor 2 5 4.1228 0.5249
Decision tree regressor 2 4 3.8026 0.4146
Support vector machine regressor 2 4 3.0568 0.3071
Logistic regressor (classifier) 2 4 3.2817 0.5102
Decision tree classifier 2 4 3.7645 0.4302
Support vector machine classifier 2 4 2.9589 0.5702

All models 2.3 4.2 3.5032 0.4595

A high level summary of the predictions that are made by the models can be
seen in Table 4.11. Predictions from regression models have been rounded to the
nearest integer.

Even though predictions can theoretically be in a range from 1 (worst) to 5
(best), most models make predictions that are in a much narrower range, from 2
to 4. Consequently, the standard deviation of predicted values (𝜎) is also very low.
The support vector machine classifier, which is the best performing model, makes
predictions with a standard deviation of 0.5702; the largest of all models. At the
same time, it is also the most pessimistic model, as its average prediction value (𝜇)
is only 2.9589, whereas all other models on average predict values that are above
3. Conversely, the linear regressor makes predictions that are relatively optimistic.
It is also the only model that is capable of predicting the maximum value, 5. The
six models do not always produce the same or even similar predictions. For in-
stance, out of 8,800 comments there are 1,041 for which the linear regressor model
predicted a 5, the highest possible rating, and the support vector machine classifier
predicted a 2, the lowest rating produced by any of our models.

We can also compute the mean for comment quality predictions in a differ-
ent way. Table 4.12 shows the distribution of the overall quality ratings when we
combine the outputs of the six models by computing the mean value of their pre-
dictions. In some cases this results in quality ratings that are very low or very
high, although most comments end up receiving a comment quality rating of 3.5
on a scale from 1 to 5. This table also shows that the standard deviation is highest
for scores in the middle of the range (2.8–3.7), which suggests that these scores are
at least partially the result of ‘disagreement’ among the models. The only excep-
tion within this range is formed by comments with a mean comment quality rating
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Table 4.12: Aggregated predictions of comment quality, from best to worst

Mean quality rating Count 𝜎
4.2 29 0.4082
4.0 382 0.1788
3.8 641 0.4572
3.7 1655 0.6655
3.5 3855 0.5996
3.3 559 0.7203
3.2 1112 0.7117
3.0 367 0.2367
2.8 39 0.7677
2.7 79 0.5696
2.5 68 0.5520
2.3 14 0.5164

Total 8800 0.5894

of 3.0, although it is not clear why.

4.4.4 What predictions look like in practice
Another intuitive way to informally evaluate the quality of these predictions is by
examining some comments that are allegedly very high- or low-quality.

As shown in Table 4.12, our dataset includes 29 comments that have received
the highest possible mean average rating (4.2). Assuming that the models are trust-
worthy, this would imply that these comments are indisputably high-quality. A
manual inspection of these comments suggests that this is indeed the case. What
many of the comments seem to have in common is that they have non-trivial de-
scriptions in the comment text, describe the input parameters, return values, and
possibly other attributes that may be relevant for the reader.

Listings 4.1 and 4.2 show two examples of such high-quality comments which
appear to meet all four quality criteria defined by Steidl et al. [69], i.e. coherence,
usefulness, completeness, and consistency: the comments clearly describe the code
beyondwhat can be deduced directly from the code itself and document all aspects
of their methods, all in English whilst following Javadoc conventions.

When we look for comments that have received the lowest quality ratings, we
see that there are 14 comments with an average rating of 2.3 across all models.
Note that these ratings are obtained by four models that predicted a 2, while two
models predicted a value of 3. This could suggest that these comments are not
necessarily very bad comments, even though they received the lowest ratings in
our dataset. However, when we inspect the comments with these low ratings, it is
clear that they are all comments that do not contain any meaningful information.
Two examples of such comments are shown in Listings 4.3 and 4.4.

The accuracy of predictions is less clear between these two extremes. For in-
stance, the comments in Listings 4.5 and 4.6 both received an average quality rating
of 3.5, even though one is clearly higher-quality than the other.
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Listing 4.1: A high-quality rating that is likely correct

/**
* Encapsulate the acquisition of the JWT token from HTTP cookies within

ë the
* request.
*
* @param req servlet request to get the JWT token from
* @return serialized JWT token
*/

protected String getJWTFromCookie(HttpServletRequest req) {
String serializedJWT = null;
Cookie[] cookies = req.getCookies();
if (cookies != null) {

for (Cookie cookie : cookies) {
if (cookieName.equals(cookie.getName())) {

LOG.info(cookieName
+ " cookie has been found and is being processed");
serializedJWT = cookie.getValue();
break;

}
}

}
return serializedJWT;

}
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Listing 4.2: A high-quality rating that is likely correct

/**
* Gets the next page that should appear in the wizard. This takes

ë into account the selected
* project type, project nature, and toolchains.
*
* @param currentPageID - The unique ID of the page the wizard is

ë currently displaying.
* @return The next page that should be displayed in the wizard, or

ë null if at the end of the wizard.
* @since 3.0
*/

public static IWizardPage getNextPage(String currentPageID)
{

// find the current page in the set of pages
MBSCustomPageData pageData = getPageData(currentPageID);
Iterator iterator = pageSet.iterator();
while (iterator.hasNext())
{

if (pageData.equals(iterator.next())) {
IWizardPage nextPage = null;
while (iterator.hasNext() && nextPage == null)
{

MBSCustomPageData potentialPage = (MBSCustomPageData)
ë iterator.next();

if (isPageVisible(potentialPage.getID()))
nextPage = potentialPage.getWizardPage();

}
return nextPage;

}
}
return null;

}

Listing 4.3: A low-quality rating that is likely correct

/**
* @param string
*/

private void log(String string) {
if (verbose)
System.err.println(string);

}
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Listing 4.4: A low-quality rating that is likely correct

/**
* @param operation
* @return
*/

private boolean isDetach(String operation) {
return (operation.startsWith("det") && "detach".indexOf(operation)

ë != -1); //$NON-NLS-1$ //$NON-NLS-2$
}

Listing 4.5: A high-quality comment that received an acceptable rating

/**
* Assigns sort modes
* A value from 0 to 3 defines sort mode as name/last modified/size/

ë type in ascending order
* Values from 4 to 7 defines sort mode as name/last modified/size/type

ë in descending order
* <p>
* Final value of {@link #sortby} varies from 0 to 3
*/

public void getSortModes() {
int t = Integer.parseInt(sharedPref.getString("sortby", "0"));
if (t <= 3) {

sortby = t;
asc = 1;

} else if (t > 3) {
asc = -1;
sortby = t - 4;

}

dsort = Integer.parseInt(sharedPref.getString(PreferencesConstants.
ë PREFERENCE_DIRECTORY_SORT_MODE, "0"));

}

Listing 4.6: A comment that repeats the code yet still received a high rating

/**
* Sets the name.
*
* @param name
* <code>IASTName</code>
*/

public void setName(IASTName name);
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4.4.5 Effect of features on comment quality
Themodels that we constructed can use a small set of features to predict the quality
of individual comments, to a certain extent. Many contemporary types of mod-
els are essentially black boxes: their performance can be evaluated, but their inner
workings are unclear. But for some of the models that we included in our compar-
ison it is relatively easy to examine what the fitted model looks like on the inside.

Table 4.13 shows the coefficients for a linear regressor model that has been
trained on the complete dataset. Given the lacklustre performance metrics for our
linear regressor model these coefficients should clearly be taken with a grain of
salt. However, they still provide some information about the relative importance
of each feature. There are several things that stand out in this table:

• cosine_similarity (B.3.2) has the largest absolute coefficient value, which
is almost thrice as much as that of the next coefficient. This is not surprising,
especially considering the importance of coherence for comments [69] and
the fact that code-comment similarity can be computed for all comments.

• The next three features in the list, hyperlinks (B.3.43), tasks (B.3.22) and
abbreviations (B.3.45), on the other hand have in common that they can
only be found in a small proportion of comments. This naturally limits the
overall effect that they can have on the quality of a comment.

• Many of the remaining features are either related to characteristics of the
code that is described by the comment or the amount of information presen-
ted in the comment itself. Their effect on comment quality is relatively small,
possibly because these do not make or break a comment, but merely make
it slightly more or less helpful.

4.4.6 Conclusion
After computing features for a large number of comments that we extracted from
a representative sample of open-source Java projects (section 4.2) and eliciting per-
ceived helpfulness ratings from a small subset of those comments (section 4.3), we
obtained the necessary ingredients to construct a predictive model for comment
quality.

In this section we have tried to answer our third research question, ‘How do
comment features affect developers’ perceived comprehension of Java code?’, and
main research question, ‘How well do features of source code comments predict
comment quality in Java code?’. Figure 4.10 shows the relationships between in-
dividual comment features (as computed using our repository mining tool in sec-
tion 4.2) and perceived helpfulness (as rated by our respondents). We have used
this data to train six machine learning models, of which three are regressors and
three are classifiers. Although the models appear to be capable of correctly classi-
fying some examples of comments that are clearly good or bad, there is still much
room for improvement when it comes to accuracy and range of predicted values.
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Table 4.13: Coefficients for the linear regressor model, ordered by absolute effect
size

Feature Coefficient

cosine_similarity 2.00765
hyperlinks 0.70491
tasks -0.28479
abbreviations 0.11193
sentences 0.10017
loop_structures 0.09770
math_symbols -0.08359
flesch_kincaid 0.05315
try_catch_blocks 0.05153
extra_info_score -0.05042
variable_assignments 0.04321
local_identifiers 0.02337
control_structures 0.01771
variable_declaration -0.01287
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Chapter 5

Discussion

In this study we have explored the various ways and places in which comments
are written and contribute to program comprehension. As discussed earlier in
chapter 2, some parts of our research are entirely novel, while others have already
been studied in the past. In the latter case, our contributions primarily serve as a
partial replication of those earlier studies.

5.1 Literature review
We started our study with a literature review, in order to answer our first research
question, ‘What features of source code comments can be derived from literature?’.
We identified 22 features, which can be found inTable 4.3 and are described inmore
detail in section 4.1.

Many of the identified features were originally described for different purposes
and from different perspectives. Consequently, sometimes different authors refer
to separate concepts using a very similar or even the exact same name, or several
authors have slightly different interpretations of certain features. We have tried to
reconcile such differences, although we should note that this is partially a subject-
ive process: reconciliation requires careful interpretation of feature descriptions
within the context of each study, as they cannot always be taken at face value.

We have seen that in some cases opinions differ about the effect of certain fea-
tures (Table 4.4). However, in some cases different features may also conflict or
interact with each other. For instance, it is not possible to both document all pub-
lic methods (Is complete; complete), while at the same time only documenting
methods that are hard to understand (hard).

An important reason why these conflicts seem to exist between features is that
comments can be read as part of many different software development activities.
For instance, a library maintainer might be more interested in information about
the implementation of a method, while a user of that same library likely benefits
more from a description of what the method does and how it should be used. Our
review does not take these developer activities into account yet.

Another possible explanation is that some of the arguments given in favour
of certain features are subjective, and may depend on experience with computer
programming, a particular language, its culture and ecosystem, a specific project,
or personal preferences.
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Altogether, based on the potential conflicts between features and the role of
subjectiveness it is already likely that a predictive model for comment quality will
either need to take all these conflicts and nuances into account or gloss over them.
Even when the goal is not to construct a model, but merely analyse specific aspects
of comments in a software project, one would have to understand comments from
different perspectives.

5.1.1 Comparison with features for existing models
Previous studies aboutmodels for the assessment of comment quality in a software
project, like Khamis et al. [37] and Steidl et al. [69], showed which features may
contribute to comment quality and to what extent. However, they do not explain
why these specific features were chosen, which makes it hard to determine how
complete these models for comment quality are. Further complicating the matter
is the lack of a complete overview of all possible comment features. While some
work is currently being done on this subject [59], no results have been published
to date.

Our review therefore provides a first insight into the wide array of features
that exist for comments, and what portion of those features have been included in
existing models for comment quality.

The features that we have identified in our review can be used to design new
or extend existing models for comment quality, which implicitly reconcile some of
these contradictions and interaction effects.

Schreck et al. [65] presented the Quasoledo tool, which measures the quality of
comments in a Java project by computing various metrics related to completeness
(Is complete; complete), quantity (Is succinct; succinct), and readability (Is un-
derstandable; underst). Our overview can therefore be seen as a superset to the
set of features included in their tool.

Compared to the set of features thatwas implemented byKhamis et al. [37], our
overview includes a larger number of distinct features. They consider two types
of feature categories: internal features and ‘code vs. comment’ features. Internal
features are roughly similar to Is understandable (underst), although Khamis et
al. focus more on general readability and writing style. ‘Code vs. comment’ can be
seen as a combination of our Is complete (complete), Is up-to-date (uptodate),
and Provides extra information (extra) features.

Finally, we have already briefly discussed the quality model used by Steidl et al.
[69], which is based on entities, activities, and criteria. Entities are concepts whose
quality are being evaluated, i.e. the comments. Activities refer to the intention
of the developer, e.g. wanting to understand implementation details while de-
veloping code, or being aware of the copyright license when reusing code. The
four criteria (coherence, usefulness, completeness, and consistency) apply to entit-
ies during specific developer activities. Our review covers all types of comments
rather than focussing on specific types of entities, like class comments or inline
comments. On the other hand, our review only focusses on features of comments
and does not take developer activities into account, as those are beyond the scope
of this study.
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5.2 Repository mining
Following our literature review, we implemented a repository mining tool that
can help us answer our second research question, ‘What do features of source
code comments look like in open-source Java projects?’. Our literature review had
already shown that features can often be measured in different ways. For instance,
if we want to know if a comment is placed above code that is hard to understand,
we could compute its cyclomatic complexity or its length in number of lines. Our
tool therefore provides multiple implementations for most features. Table 4.5 lists
all the features forwhichwe have provided implementations in the formofmetrics.
More detailed explanations of these metrics can be found in appendix B.3.

At the same time, our tool does not implement all of the features that we iden-
tified in our literature review. Some features cannot be measured automatically,
most notably Describes purpose (purpose), Is up-to-date (uptodate), Is correct
(correct), and Describes design decision (decision). The results therefore paint
an incomplete picture. However, because the tool still covers most of the features,
the results should still provide a decent overviewof the characteristics of comments
and the code that they document in our sample of projects.

5.2.1 Overall statistics
When it comes to the interpretation and implementation of features, we already
discussed many of the possible considerations in section 4.1. Our review showed
what features look like in theory. Comments in practice often conform well to
guidelines that are described in scientific literature, but this is not always the case.

Coherence

A significant point of contention is what the main purpose of comments is: should
they describe what the code does, should they also provide information about the
context of the code, or should they only provide information about the context?

Several metrics measure the similarity between the comment and the commen-
ted code. On average, comments are at least somewhat similar to their commented
entities. When computed as an overlap_percentage (B.3.1) the average similarity
is 31%, whereas the average cosine_similarity (B.3.2) is lower, at an equally ac-
ceptable 23%. At 36% the level of similarity is higher when we only look at sim-
ilarities between the comment text and the entity name (method_name_similarity
(B.3.23)), but still well below the maximum threshold of 50% as determined by
Steidl et al. [69]. The computed values for the extra_info_score (B.3.24) feature
suggest that most comments tend to be long enough to have the ability to provide
additional information beyond what can be deduced from entity name.

Overall, based on the length of comments and the amount of difference between
the comments and the code it describes, it appears that comments in practice gen-
erally do not simply repeat identifier names, but also include extra information
beyond what can be deduced directly from the source code.

Comment texts

The relative succinctness of comments clearly affects their readability scores. Most
readability formulas (Flesch-Kincaid, Gunning fog index, smog index, and the
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automated readability index) estimate that the texts in comments are understand-
able for high school students. Given that most software developers have received
a bachelor’s degree or higher [55] this may suggest that on average comments are
written such that they are easy to understand.

The only readability formula that gives a different result is the Flesch read-
ing ease score, as it suggests that comment texts are primarily suitable for college
graduates. This is somewhat unexpected, as are the minimum and maximum val-
ues for some the readability scores. These aberrant results are likely due to the fact
that comment texts are not entirely representative of most English texts. Read-
ability formulas are designed and optimised for regular texts, like newspaper art-
icles. Moreover, some formulas are intended to be computed on texts with specific
(minimum) lengths [76]. Be that as it may, when taken as a whole the computed
readability scores appear to reflect the actual readability of comment texts.

Finally, we found that comment texts rarely include math symbols, hyperlinks,
and tasks (i.e. todo comments) in our sampled projects. Sentences are however
terminated with full stops in only half of all comments. While the absence of full
stops at the end of sentences is only one of many signals that comment texts use a
sublanguage, it is a pretty clear one. Issue numbers do not seem to appear in our
sample at all. On the other hand it appears that abbreviations are fairly common
in comments.

5.2.2 Differences between projects
In section 4.2.3 we already showed that differences exist between projects. There
are several aspects that stand out: the placement of comments, indications of the
code quality of a project, and the readability of comment texts.

Placement of comments

One of the most noticeable differences is placement. We saw earlier that com-
ments are primarily placed above methods, classes and attributes, but rarely above
constructors, packages, enumerations, annotations, and interfaces.

The project-specific tables (Table D.1–D.11) show that not only are these latter
entities less commented on – in many projects they are not commented on at all.
This is especially the case for AFWall+, Amaze File Manager, AntennaPod, own-
Cloud, and WordPress, which all have in common that they contain source code
for end-user Android applications. Conversely, in the library and framework pro-
jects in our sample (particularly Apache Spark, Google Guava, and Google Guice)
those same entities tend to be commented more thoroughly, presumably to facil-
itate reuse by developers that incorporate the library or framework in their own
application. However, exceptions exist. For instance, enumerations are heavily
commented in Amaze File Manager andWordPress, while attributes are commen-
ted often in AFWall+.

Code quality

Although our study focusses on comment quality rather than code quality, some
comment features are related to code quality: code that is hard to understand may
be more likely to warrant a (good) comment (Is for complex code; hard).
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Although it is not possible to test that assumption from this data alone, we do
see signs that code quality differs between projects. The cleanest project in our
sample is likely Google Guice (Table D.8), which contains a below-average num-
ber of try-catch blocks, operators, variable assignments, variable declarations and
method calls, and has shorter methods. We might consider Amaze File Manager
(Table D.2) to be its polar opposite in our sample, as its methods tend to be longer
and are more complex. It is possible that software that is explicitly intended for
reuse by other developers, like libraries and (to a lesser extent) frameworks, must
have higher-quality code than client applications whose source code is only seen
by their maintainers.

Readability

Until now we have only focussed on features that appear in the project-specific
tables, but there are also features that are largely conspicuous in their absence.

Given that each projects has different types of requirements and thus may also
attract certain types of developers, one might expect that comments in some pro-
jects are more readable than in others. However, aside from the Flesch reading
ease feature no other features based on readability formulas appear in any of the
project-specific tables.

This does not mean that differences do not exist, merely that they are not large
enough to be included in them. This is logical, as Table 4.7 has shown that virtually
all readability scores have fairly small standard deviations. Moreover, readability
scores are supposed to work on a fixed scale, where a 50% difference in any dir-
ection is massive.

Considering that most readability formulas do not show up in any of these
tables and the minimum and maximum values of flesch_ease (B.3.3) seem some-
what spurious, we might conclude that perhaps our implementation of the Flesch
reading ease score is unsuitable for comments.

5.3 Perceived comment quality
After having computed the features for the most important comments in a sample
of Java projects, we distributed a survey among people with programming exper-
ience, in which we elicited helpfulness or ‘quality’ ratings for some of those com-
ments. These ratings, combined with the features that were originally computed
for the comments, can be fed into a machine learning model for comment quality.

Machine learning models are generally trained using a large number of distinct
training examples. Examples can be mined from historical data or created from
scratch by having annotators make predictions manually. In order to capture as
much of the diversity in features that occurs in real-life examples, the number of
distinct examples to be annotated are typically very large. To reduce the impact
of subjectivity, each example is often annotated by several annotators. The overall
expected prediction for each example can be obtained by averaging annotations or
using a voting system, where the most commonly annotated prediction ‘wins’.

For our study, we took a slightly different approach due to practical limitations.
We used a rather limited number of examples, 44, which were annotated by 52
respondents. As we will see later in section 5.4, such an approach is far from ideal
for training predictive models.
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However, our approach does provide additional insights that could not have
been obtained using a more traditional approach to gathering annotations. Fig-
ure 4.7 showed that there is almost universal disagreement about which comments
should be seen as helpful.

As discussed earlier, a possible explanation for this could be that in our sur-
vey we did not take the developer’s personal preferences and current software de-
velopment activity into account, i.e. the context in which the comment is used.
Taking all of these variables into account would likely require a higher number of
respondents and the use of multiple surveys that are tailored for specific activities,
with snippets that are appropriate within the context of the activity.

5.3.1 Resolving disagreements
The large amount of disagreement in our survey responses makes for a somewhat
noisy ground truth, which in turn leads to models that have to deal with a large
degree of ambiguity.

There are two commonly used solutions to resolve such disagreements. Both
work by combining or summarising annotations in order to get rid of noise. How-
ever, neither solution is ideal, as both solutions also discard valuable information
about the extent of disagreement about the perceived helpfulness of comments.

Averaging annotations is problematic, primarily because Likert scales are not
strictly interval scales, which means that arithmetic operations (like averaging)
could be seen as methodically unsound. Secondly, since virtually all comments
have their proponents and opponents, the average annotation value rarely corres-
ponds with ‘strongly agree’ or ‘strongly disagree’, i.e. clear signals of comment
quality. Using some kind of voting mechanism makes it more likely that the com-
bined annotation value is a clear signal (e.g. for C.33) that can be used to train
decisive models.

To stay on the safe side, we ultimately chose to combine annotations by coding
the Likert-scale responses as a scale from 1 to 5 and computing the mean value. We
acknowledge that this method has its drawbacks, as it causes our machine learning
models to make predictions that gravitate towards the mean (section 4.4.3). How-
ever, we also need to point out that its drawbacks would not have been known, had
we only obtained a very low number of annotations per code snippet. Moreover,
many studies have shown that even though Likert scales are not strictly interval
scales, treating them as such still results in meaningful findings [81].

5.4 A model for comment quality
Once we obtained the necessary ingredients for our training data – a set of com-
ment features and corresponding helpfulness ratings – we constructed and eval-
uated six predictive models for comment quality, of which three were based on
regression and three on classification.

Neither is entirely ideal for our use case. Regression is primarily intended for
predictions on an interval scales, which five-point Likert scales technically are not.
Classificationmodels workwell for predictions of categorical variables which have
no real relationship to each other, even though one clearly exists, e.g. ‘strongly
agree’ and ‘agree’ are more related to each other than ‘strongly agree’ and ‘strongly
disagree’. Nevertheless, such models can still produce useful results.
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5.4.1 Model performance
Our predictive models for comment quality do not perform as well as we had
hoped, which makes it harder to answer our third research question, ‘How do
comment features affect developers’ perceived comprehension of Java code?’.

Table 4.13 lists the features and their coefficients for the linear regressionmodel
that we constructed. Although this table provides some high-level insight into
what features are likely important, the low accuracy of the model means that we
cannot clearly deduce how each feature exactly affects how well a comment helps
developers understand code.

This was to be expected to some degree. Section 5.3 already discussed the lack
of universal agreement about the helpfulness of comments, which makes it harder
to produce well-performing models.

What also does not work in our favour, is the low number of training examples.
Because we computed the mean of all annotations per snippet, this means we train
our models with only 44 examples. Each example comes with a list of features that
– while much shorter than the full list of computed features (Table 4.8) – is quite
long relative to the limited number of unique training examples. Consequently,
trained models are more prone to overfit to the specific examples in our dataset
and thus become less capable of making accurate predictions for comments not
within our sample.

5.4.2 Improving the quality of predictions
There are severalways to improve the quality of predictions. Wepreviously already
discussed the inclusion of features, like Is correct (correct), that were currently
left out. Another very obvious solution is to gather more annotations for a larger
set of snippets, as this increases the size of the training dataset and thus the di-
versity and representativeness of training examples. A combination of technical,
time, and budgetary constraints made this an unviable solution for our study: The
LimeSurvey tool in our study works well for traditional surveys, but is cumber-
some to use when large numbers of code snippets need to be formatted. Moreover,
our currentmethod of survey distribution is costly and labour-intensive, especially
since we cannot promote the survey via traditional channels, e.g. survey panels or
by sharing direct links to the online survey.

Additionally, there are othermachine learning techniques thatmay achieve bet-
ter results. A well-known example is deep learning, where learning takes place in
a manner not entirely dissimilar from how networks of neurons function in the
human brain [62]. While deep learning does not appear to have been used yet for
prediction of comment quality, the technique has been applied within the context
of source code comments. For instance, Hu et al. [33] designed a model that can
predict natural language descriptions for code snippets that lack a comment.

Existing machine learning models can also be combined. We already provided
one method of doing so in section 4.4.3, but there are many others, which are all
known under the term ‘ensemble learning’ [63]. Ensemble learning works in a
manner akin to wisdom of the crowds; a single model can be flawed, e.g. be prone
to biases. However, when the outputs of several independent predictivemodels are
combined, each model can compensate for mistakes and biases from other models
and thus achieve better results than any of the individual models would have on
its own.
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5.5 Limitations
In this section we discuss possible limitations of our study. We also describe what
measures we have taken to mitigate them – or in cases where that is not possible,
how they may impact our conclusions.

5.5.1 Literature review on comments in source code
Our systematic literature review covers a wide array of publications about com-
ments in source code from a long period that ranges from 1981 to 2018. Neverthe-
less, there are several limitations.

Coverage of relevant publications

The keywords in our search query were chosen based on a preliminary, inform-
ally conducted literature review. It is possible that a different set of keyword (e.g.
some studies refer to comments as ‘summaries’) would have yielded a result that
provides different insights into what makes good comments. We believe that our
use of snowballing has sufficientlymitigated this threat, as it has helped us discover
papers that were not covered by the original search query. The large number of
discarded and still to be annotated papers suggests that our query may even have
been a bit too broad.

Given the large amount of results that our search query yielded in the four data-
bases, it was necessary to choose a subset that could be feasible annotated within
the time allocated for our review. Since we chose to annotate papers with a high
number of citations first, we believe our review covers the most important and
impactful findings in the field.

Generalisability

One possible issue that remains is that most of the papers – and hence findings –
in our review apply to C and C-like programming languages (e.g. C++ and Java).
Our findings could therefore be less applicable to comments in low-level assembly
languages, declarative languages (e.g. SQL) or functional languages (e.g. Haskell,
Idris, and Clean). However, since most software is nowadays written using C-like
programming languages this should not pose any problems in practice. According
to the tiobe index1, many of the most popular programming languages are C-like.
This suggests that our findings apply to most code that is in use and maintained
today.

Annotator fatigue

Finally, our literature review was conducted using only a single annotator. This
may have inadvertently introduced biases in determining what does and what does
not qualify as a feature. Moreover, the number of annotated papers per annotator
is relatively large. This could have resulted in annotator fatigue, and consequently
lower-quality annotations [38]. We have attempted to mitigate these effects by
only annotating a limited number of papers per day and annotating papers using
multiple passes. This lets us partially emulate the benefits of annotating with a
fresh pair of eyes.

1https://www.tiobe.com/tiobe-index/
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5.5.2 Comment features in practice
In the second phase of our study, we computed the features for a large number of
comments from several real-world software projects in order to learn more about
comment features in general.

Choice of projects

Mining features is computationally expensive. We have therefore chosen to limit
the scope of our study to comments in a sample of open-source software (oss)
projects. Of course, oss projects may have characteristics that differ from those
of closed-source, commercial projects. In practice the line between traditional oss
and commercially-developed software is somewhat vague, as a large share of con-
tributions to oss is actually made by employees at commercial organisations [82].
Instead, it is more important to ensure that comments are sampled from a diverse
range of projects [50]. While we acknowledge that we could have analysed a larger
set of projects, we believe that the projects in our sample are sufficiently hetero-
geneous and thus representative for most real-world projects.

Choice of features

Aside from our choice of projects, one might also question our choice of com-
puted comment features. Our literature review yielded 22 features, of which we
have only implemented a subset due to feasibility issues and practical consider-
ations. For instance, the correctness of a natural-language comment cannot be
automatically measured in a reliable way. Our analysis therefore paints an incom-
plete picture of what comments look like in practice. Regardless, what remains is
still a fairly comprehensive set of features that provides a wealth of information
about the state of comments in a software project.

Choice of interpretations

Moreover, in some cases we have implemented different interpretations of certain
features, e.g. the readability of a comment text. However, there are also features
where many different interpretations exist and for which we have provided only
one implementation, e.g. merely counting the number of physical lines of code.
It is infeasible to implement all possible interpretations of features, nor do we be-
lieve it is necessary to do so: while certain features can be interpreted using dif-
ferent methods, each of those methods aims to measure the same thing. Any dif-
ferences that arise from the choice of a specific interpretation are therefore minor
and only noticeable when different interpretations are compared directly between
each other.

5.5.3 Measuring the perceived helpfulness of comments
In the third phase of our study, we showed a selection of comments from real-
world projects to respondents and asked them to indicate to what extent they be-
lieved that the comments improved their understanding of the code.
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Chosen snippets

The set of comments that we included in our survey is very small relative to the
complete set of mined comments, let alone the set of all comments that have been
written for software projects. Given the large variety in comments, it is logical that
many types, shapes, and forms of comments did not appear in our survey in any
way. We have tried to select comments that are representative of the set as a whole
and have features that appear relatively often. Our results therefore still apply to
types, shapes, and forms of comments that appear frequently in software projects.

Measurement of perceived helpfulness

Our survey is essentially designed to measure the perceived effect of comments on
comprehension. Some studies [3] show that perceived comprehensibility might
not always coincide with actual comprehensibility. We could have administered
tests consisting of ‘fill in the blanks’ cloze tests or multiple choice questions to
measure the actual comprehensibility, but such an approach is not without its
problems: Firstly, badly worded questions may strongly affect comprehensibil-
ity measurements. Secondly, such an approach is much more time-consuming.
Börstler and Paech [3] for example only manage to include six snippets in their
survey. This did not suffice for our study, as we needed data for a larger number
of comments.

Another possible issue that may occur with surveys is social desirability bias,
the tendency for respondents to answer questions in a way that they believe would
put them in a more positive light with the person surveying them [6]. For example,
if a respondent is asked to rate a particular code snippet, they might rate it more
positively in an attempt to appear more intelligent or to please an interviewer. We
attempted to mitigate this bias by constantly reminding respondents that the pur-
pose of the survey is to measure the quality of comments rather than the ability of
the respondents to understand comments and that responses are anonymous. This
should have encouraged respondents to providemore honest answers, but we have
no way to confirm whether our reminder has had the intended effect.

Non-response bias

Participation in the survey was voluntary. This may have caused participation bias
(alternatively: non-response bias): respondents that are more inclined to complete
surveys might not be representative of the developer population as a whole. We
have tried tomitigate this risk by actively promoting the survey amongmembers of
demographic groups thatwould not have participated otherwise. Nevertheless, the
average level of education of our respondents is relatively high, particularly com-
pared to benchmarks like Stack Overflow’s annual developer surveys [55]. This
suggests that some degree of non-response bias is present.

5.5.4 Construction of models for comment quality
We combined our computed comment features with responses from our survey to
create a set of training data, which we then used to train several machine learning
models.

The largest limitation of our study is the limited size of the training dataset,
which contains a relatively large number of features and a modest number of com-
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ments that models can learn from. Ideally, we would have been able to collect
data about a larger variety of comments using our survey. Each comment would
then only require a few ratings per snippet, as is common in studies that are based
on machine learning techniques. However, due to ethical considerations we were
severely limited in our choice of tools and platforms via which we could distrib-
ute our survey, which made such an approach infeasible. Moreover, distribution
of a second survey with these limitations in place would have been prohibitively
expensive.

5.6 Future work
In this studywe have identified features of comments in source code that have been
described in scientific literature. We used machine learning to study the effect of
some of these features, with limited success.

One of the main limitations of our study is the relatively modest size of our
training dataset. A large-scale follow-up study is needed to further explore the
relation between each feature, and possible interaction effects between features on
the perceived quality of a comment.

Another limitation of our study is that not all features could be feasibly in-
corporated into our comment feature mining tool. Since some of these features
are mentioned often in scientific literature on comments in source code, their ex-
clusion from models for comment quality likely has a detrimental effect on their
predictive power. Further research is therefore needed to determine how these
features can be measured reliably, possibly by developing heuristics.

Despite its current limitations, our study has yielded several insights into com-
ment quality. For instance, our repository mining revealed that quality differences
exist between projects. A future study could explore the relationship between code
quality and comment quality, and comment quality and certain project character-
istics, like project type (framework, library or end-user application), by mining a
larger and even more diverse sample of software projects.

Moreover, our findings about the features, and their reported and confirmed ef-
fects can be easily reworded into recommendations forwriting comments in source
code. It would be interesting to see how these recommendations relate to those
from the professional handbooks listed in chapter 1, as many software developers
base their practices on the guidelines that are described in professional literature.
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Chapter 6

Conclusion

Although guidelines exist for writing good comments, they are not always valid-
ated empirically. Moreover, software developers do not have access to automated
tooling that allows them to evaluate the quality of comments in the source code
of their software project. The objective of our study therefore was to gain better
insight into the features that are associated with good comments.

We started our study by conducting a systematic literature review in which
we derived features of source code comments from scientific literature. Our re-
view has yielded a comprehensive overview of 22 features (Table 4.3), along with
their definitions, number of mentions, purported effect on code comprehension,
rationale, and information about the extent at which they have been validated (sec-
tion 4.1).

These findings from our literature review were confirmed using repository
mining. More specifically, we analysed the presence and values of features of
source code comments (Table 4.5) that occur in a representative sample of open-
source Java projects (Table 4.6). Our results show that comments are placed primar-
ily above methods and tend to be fairly succinct, while still being long enough to
provide information beyond what can be deduced from the name of commented
entities (section 4.2). Comments are not the same in every project however: librar-
ies and frameworks appear to be better commented and have higher-quality code
than end-user applications (section 4.2.3).

To study the effect that each of these comment features has on the perceived
comprehension of Java code, we conducted a survey among software developers.
In this survey, respondents were shown a randomised sequence of 44 snippets with
a comment and asked to what extent that comment improved their understanding
of the accompanying code. Our survey received 220 responses in total, of which
52 were usable for further analysis (section 4.3). The results suggest that for most
comments a large amount of disagreement exists about whether they are thought
to have a beneficial effect on comprehension (Figure 4.7). Moreover, it appears
that respondents’ demographic backgrounds have little effect on their perception
of the helpfulness of comments in source code.

The insights that we derived from our literature review, repository mining, and
survey on comments in source code finally led to the development of several pre-
dictive models that attempt to assess the quality of comments in a software project.
Although the models are capable of predicting comment quality to some extent,
further research is needed to improve their performance (section 4.4).
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Appendix B

Implementation of comment
features

This section provides detailed descriptions of the features that were implemented
for Coalaty. These descriptions should make it easier to validate or reproduce our
findings. Additionally, we have published the original source code for Coalaty on
Figshare at https://figshare.com/s/d10cf6030ec7de1ef258.

B.1 On the interpretation of Java source code
Programming languages conform to the rules of a formal grammar. One might
therefore expect that source code parsing is an exact science and that it can either be
done correctly or incorrectly. This is true to some extent: for machines, the source
of an application is unambiguous and can only be parsed and understood in a single
way. But for humans the less formal aspects of source code, like comments and
spacing, can sometimes be interpreted in different ways. Our tool must be capable
of conducting fully automated analyses of entire software repositories. This means
that we have to decide beforehand how we choose to interpret these less formally
defined aspects of source code.

First, it is important to consider what exactly constitutes a single comment.
Our JavaParser library distinguishes between two major types of comments: line
comments and block comments.

Definition 5 (Line comment). A single-line comment that is preceded by //

Definition 6 (Block comment). A multi-line comment that is enclosed /* and */

In theory, line comments consist of a single line and describe an adjacent line
of code, while block comments may – but do not have to – span multiple lines.
In practice, developers sometimes use several consecutive line comments that to-
gether form a larger comment. An example of such (mis)use of line comments can
be seen in Listing B.1.

Accurately determining which line comments possibly belong together and
which parts of the code they describe exactly, is non-trivial [16, 20]. We cur-
rently choose to simply parse such comments according to definitions 5 and 6.
This means that we treat consecutive line comments as separate line comments,
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Listing B.1: A Java comment that consists of multiple consecutive line comments.

// The SMOG grade is a measure of readability that estimates the years
// of education needed to understand a piece of writing. SMOG is an
// acronym for “Simple Measure Of Gobbledygook”.
1.0430 * Math.sqrt(30.0 * complexWords / sentences) + 3.1291;

Listing B.2: A Java comment in which its text has been highlighted

/**
* Check if a number is <b>odd</b>.
*
* * Examples include numbers like 1, 3, etc. (but not 2)
*
* <pre>
* if (isOdd(4)) {
* // do something
* }
* </pre>
*
* @param number A number
* @return True if the number is odd
*/

public boolean isOdd(int number) {
return number % 2 != 0;

}

where the last line comment only describes the line of code that directly follows
it.

Another non-trivial aspect of comment parsing concerns the text contained
within comments, which usually only has to conform to the rules of some natural
language. We call this the comment text.

Definition 7 (Comment text). Any free-format text that is part of a comment

In most cases, the comment text should be equal to any natural language text
that is contained within a comment. It includes html markup, but not Javadoc
tags or references, asterisks (*) that precede comment lines, or pre-formatted text
blocks (anything between and including <pre> tags), which contain example code1.
Listing B.2 provides an example of a code snippet that visually shows what we do
and do not consider to be part of the comment text.

Comment text can be split into character sequences, which we call tokens:
words, numbers, html markup, punctuation, whitespace, and other symbols, like
emoji. Some of these tokens are more useful than others. For most features that

1We currently make no attempt to detect comments that are actually code that has been commented
out. This is a non-trivial problem that is beyond the scope of our work.
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Listing B.3: A Java comment in which its tokens have been highlighted

/**
* Check if a number is <b>odd</b>.
*
* * Examples include numbers like 1, 3, etc. (but not 2)
*
* <pre>
* if (isOdd(4)) {
* // do something
* }
* </pre>
*
* @param number A number
* @return True if the number is odd
*/

public boolean isOdd(int number) {
return number % 2 != 0;

}

our tool computes, we only consider words, numbers, symbols, and character se-
quences that would be valid identifiers (e.g. BufferedReader and MAX_VALUE) as
tokens. We explicitly exclude markup tags as they are technically not part of the
content of the comment text. Listing B.3 shows the same code snippet as in the pre-
vious listing, except this time we have highlighted the tokens that our tool would
consider for its text-related features.

Definition 8 (Token). A consecutive sequence of symbols, alphanumeric, under-
score, or hyphen characters

Some features compare the contents of comment texts with those of the code
to determine to what extent they are related to each other. Such comparisons are
done using stems.

Definition 9 (Stem). The base form of a word, as obtained by using the Porter
stemming algorithm

For our tool it does not matter what these stems look like; comparing stems
rather than raw tokens helps our tool recognise that words like ‘read’, ‘reads’,
‘reading’, and ‘reader’ are related words that refer to roughly the same semantic
concepts.

Some researchers prefer to use the Levenshtein distance, which is the number
character edits (additions, modifications, deletions) that are needed to transform
one word into another. However, it is more expensive to compute and we believe
that it is more likely to lead to false positives. For instance, the words ‘read’ and
‘dead’ would have a Levenshtein distance of only 1, even though the words are not
actually related to each other.
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Listing B.4: A copyright comment that is completely detached

/*
* Copyright (C) 2009 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.google.inject;

Listing B.5: A comment that was generated automatically

import io.reactivex.subjects.PublishSubject;

/**
* Created by ukanth on 25/9/17.
*/

public class RxCommandEvent {

B.2 Excluded comments
Our tool requires that comments can be unambiguouslymatched to a specific piece
of code. This is not always possible. In virtually all cases, it is because a comment
does not immediately precede some code, but is separated by an empty line. Com-
mon examples include copyright notices (Listing B.4), comments that have been
generated by a code editor (Listing B.5), section comments (Listing B.6), and code
that has been commented out (Listing B.7).

Some comments are clearly scoped for human readers, but not for our parser
due to limitations of our current setup, which treats consecutive single-line com-
ments are separate comments that each have their own scope (Listing B.8). Other
comments are completely empty and excluded by our parser as they are not really
comments (Listing B.9). Finally, comments are sometimes also used as placehold-
ers for constructor andmethod bodies that still need to or will never be implemen-
ted (Listing B.10).
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Listing B.6: A comment that delimits sections of a source code file

DBWriter.clearAllFlattrStatus();
}

// ------------------------------------------------ DIALOGS

private static void showRevokeDialog(final Context context) {

Listing B.7: A method that has been commented out

/*@Override
protected void onProgressUpdate(Integer... progress) {

if (progress[0] == 0 || progress[0] == -1) {
//do nothing
} else {
loadDialog.incrementProgress(progress[0]);
}
}*/

@Override
protected void onPostExecute(Boolean logPresent) {

Listing B.8: A comment that spans multiple line comments

// Provide initial value in case the speed list has changed
// out from under us
// and our current speed isn't in the new list
String newSpeed;
if (availableSpeeds.length > 0) {

newSpeed = availableSpeeds[0];
} else {

newSpeed = "1.00";
}

Listing B.9: A comment that is completely empty

/**
*
*/

public class BuildCommand implements IBuildCommand {
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Listing B.10: A constructor whose body consists entirely of a comment

public RxEvent() {
// hidden constructor

}

B.3 Metric definitions
Here we explain each of the feature implementations (metrics) listed in Table 4.5.
In order to make it easier to compare related metrics with each other, the range of
output values follows these guidelines:

• Output values of formulas and commonmetrics are representedwithout any
transformation, even when there is reason to doubt their validity2;

• Counts of things, like tokens and number of lines, are also represented as is;

• Boolean values are always represented as either 0 or 1;

• Percentages are represented as values between 0 and 1;

• Ratios are presented in a similar way to percentages, except that values can
be higher than 1.

Note that some metrics are only applicable in specific situations; for instance,
the method_length (B.3.20) metric is only defined for methods.

B.3.1 overlap_percentage
The overlap percentage is defined as the number of tokens in the comment text that
also appear in the described unit of code, divided by the total number of stems of
meaningful (i.e. non-stop word) tokens in the comment text. For classes, we com-
pare textual tokens with all identifiers that appear somewhere in the class, while
for methods and constructors we look at identifiers and statements within their
body.

The computation is done using stemmed forms of textual tokens and identifiers
to allow approximate matches. This is necessary because code is usually always
written using an imperative mood, while comments can often also be written in
the third person.

B.3.2 cosine_similarity
The cosine similarity measure is a slightlymore sophisticatedmethod to determine
how much the comment text and code are alike. We compute this value using
Apache Commons Text’s3 CosineSimilarity class, with the same inputs as for our
calculation of overlap_percentage (B.3.1).

2Readability formulas in particular are designed for texts with specific characteristics, which com-
ment texts do not always meet.

3https://commons.apache.org/proper/commons-text/
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B.3.3 flesch_ease
The Flesch reading-ease test is a formula that produces a score between 100.0 (very
easy to read) to 0.0 (extremely difficult to read) for the readability of English texts.
The formula works by summarising some overall properties of a text as follows:

206.835 − 1.015 �
# tokens

# sentences�
− 84.6 �

# syllables
# tokens �

It is important to note that comment texts should be seen as a sublanguage of
English. For instance, camel-cased identifiers typically are compounds, i.e. they
consist of a combination of several words. Identifiers are much longer than most
English words and thus might be harder to read. On the other hand, they reduce
the number of tokens in the text. It is not clear how this affects the reliability of
readability formulas like the Flesch reading-ease test.

B.3.4 flesch_kincaid
The Flesch–Kincaid Grade Level Formula is based on the same principles as the
Flesch reading-ease score, but produces a score that is normally equivalent to a
US grade level, which can make it easier to interpret. This is possibly why it is
mentioned and used more often in software engineering literature. The feature is
calculated as follows:

0.39 �
# tokens

# sentences�
+ 11.8 �

# syllables
# tokens �

− 15.59

B.3.5 gunning_fog
The Gunning fog index is another readability test for English writing. Its goal is
to estimate the number of years of education that are needed to understand a text.
We calculate it as follows:

0.4 ��
# tokens

# sentences�
+ 100 �

# complex tokens
# tokens ��

where ‘complex tokens’ are tokens that consist of three ormore syllables. Some
descriptions of the formula also list exceptions to this rule, e.g. proper nouns
(names), familiar jargon, and compound words should not be treated as complex
words. Due to time constraints we have chosen to defer the implementation of
these exceptions to a later time.

One limitation of the Gunning fog index is that it should be used for passages
of around or at least 100 words. Comment texts often do not meet this criterion.

B.3.6 smog_index
The smog index (alternatively: smog grade) also tries to estimate the number of
years of education to understand an English text. The formula can be seen as an
improved version of the Gunning fog index and is widely used in medical fields.
We calculate the smog index using the following formula:

1.0430
�

# complex tokens ×
30

# sentences
+ 3.1291
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B.3.7 automated_readability
The automated readability index (ari) is the last readability test for English that
we have implemented in our tool. It is primarily easier to calculate than the other
formulas since it does not require any ‘understanding’ of how words are divided
into syllables:

4.71 �
# characters
# tokens � + 0.5 �

# tokens
# sentences�

− 21.43

The number of characters is sentence-based and therefore includes punctuation
characters that are excluded from token-based counts.

B.3.8 tokens
This value is equal to the number of tokens that are present in the comment text.
Punctuation and htmlmarkup tags are not included in this count. Periods that are
part of abbreviations are treated as part of the abbreviation, which is counted as a
single token. The tokens feature is also used in many of the readability formulas
that we have discussed above.

B.3.9 sentences
We use the Stanford CoreNLP library to detect sentences in our comment text.
The value of sentences shows the number of sentences that were identified using
CoreNLP, and is also used in the readability formulas. Intuitively, sentences are
delimited by punctuation like full stops, exclamation marks, question marks, and
(semi)colons. Additionally, token sequences that appear in Javadoc tags without
punctuation are also counted as sentences.

B.3.10 is_javadoc
This value is true if the comment is enclosed by /** and */ and appears in a place
that supports Javadoc comments.

B.3.11 is_block_comment
This value is true if the comment is enclosed by /* and */ and is not Javadoc.

B.3.12 is_line_comment
This value is true if the comment is preceded by // and not part of a multi-line
comment.

B.3.13 coverage
This calculates what percentage of a Javadoc comment is present. Each comment
should at least have a free-format description text. Comments may also describe
inputs and outputs using an appropriate Javadoc tag, like @param and @return,
when necessary. Inputs cover method and constructor parameters, while outputs
include return values and thrown exceptions.
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B.3.14 omitted_full_stops
For simplicity we assume that in most cases sentence-ending punctuation (‘.’, ‘?’
and ‘!’) can only be omitted in the last sentence of comments, as readers need some
way to determine where sentences terminate.

B.3.15 local_identifiers
This counts the number of tokens in the comment text that also appear as identifi-
ers within the scope of the comment. This is done using the original, unstemmed
tokens to avoid false positives when English words are similar to identifier names,
but do not actually refer an identifier.

B.3.16 math_symbols
We currently use a naive method that checks the comment text for the presence
of the following symbols: =, +, -, *, /, ̂. This value shows the number of distinct
symbols, but only if the number is greater than 1.

By requiring that at least two types of symbols are present, we can drastically
lower the number of false positives as some of these symbols (e.g. - and /) also
commonly occur as part of English texts.

B.3.17 is_english
Most code and comments are written in English. One could therefore argue that
a comment is more consistent if it is also written in English. This feature also
makes it easier to interpret the various readability scores, as all of the formulas are
specifically designed for the English language.

Accurately determining the language of a text is non-trivial, especially with a
limited language model. We therefore choose an alternative approach, where we
use a spelling checker on all words in the comment text, except those that appear
as an identifier, e.g. class, method, and variable names. This allows us to ‘classify’
words as English or non-English: texts with a high ratio of correctly spelled words
are very likely to be in English, while texts with a very low ratio are probably
written in some other language.

B.3.18 identifiers
The number of unique identifiers that appear within the scope of the comment.
We currently use a regular expression-based approach to extract these from ex-
pressions in the abstract syntax tree.

B.3.19 operators
The number of operators that appear in the described constructor or method. Ex-
amples of operators include assignment expressions (i.e. =), binary expressions
(e.g. +), and unary expressions (e.g. ++).
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B.3.20 method_length
The number of physical lines in a method is calculated by simply counting the
number of newline characters (\n). This value may therefore be affected by coding
styles, superfluouswhitespace and commentswithinmethods, and is therefore best
seen as a ballpark figure.

B.3.21 cyclomatic_complexity
McCabe’s cyclomatic complexity is computed for methods by counting the num-
ber of if, for(each), while, switch, throw, and catch statements, conditional ex-
pressions (ternaries), and || and && within statements that support them.

B.3.22 tasks
This value shows the number of occurrences of several commonly used keywords
for task comments: TODO, HACK, XXX, FIXME, and REVISIT. We count occurrences
using a case-insensitive search within the comment text.

B.3.23 method_name_similarity
This boolean value is true ifmore than 50%of the comment text is similar to tokens
in the method name. Similarity in this case means that a stemmed, lowercased
token appears both in the comment text and the method name as a token.

B.3.24 extra_info_score
Thismetric tries to capture several features about the extent that a comment provides
extra information about a method using a single linear variable.

Comment texts that have a length of at most 2 almost certainly do not provide
extra information and result in a score of 0. Comments texts with a length up
to and including 30 characters may contain extra information and get a score of 1.
Other comment texts receive a score that shows the length relative to theminimum
threshold of 30, e.g. a comment text with length 45 will have a score of 45/30 = 1.5.

B.3.25 global_identifiers
This metric is computed by counting the number of tokens in the comment text
that also appears elsewhere (i.e. not within the scope of the comment) as an iden-
tifier. This is done using the original, unstemmed tokens to avoid false positives
when English words are similar to identifier names, but do not actually refer to
some other place in the code. We also exclude stop words, as identifiers should
rarely be named after stop words.

B.3.26 mentions_parents
True if the comment text includes any form of the words ‘override’ or ‘overload’.

B.3.27 is_for_attribute
This value is true if the comment is placed directly above an attribute declaration.
Attributes are also known as class variables or members.
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B.3.28 is_for_class
This value is true if the comment is placed directly above a top-level class declara-
tion. Inner and anonymous classes are not included in our analysis.

B.3.29 is_for_constructor
This value is true if the comment is placed directly above a class constructor.

B.3.30 is_for_method
This value is true if the comment is placed directly above a method declaration.

B.3.31 is_for_package
This value is true if the comment is placed directly above a package declaration in
a package-info.java file.

B.3.32 is_for_enum
This value is true if the comment is placed directly above an enum declaration.

B.3.33 is_for_annotation
This value is true if the comment is placed directly above an annotation declaration.

B.3.34 is__for_interface
This value is true if the comment is placed directly above an interface declaration.
This only covers actual interfaces, not similar concepts like abstract classes.

B.3.35 control_structures
Counts all occurrences of the following control structures: break, continue, if,
return, or switch.

B.3.36 loop_structures
Counts all occurrences of the following loop structures: do, while, foreach4 or
for.

B.3.37 method_calls
The number of occurrences of method calls. For methods, we search the abstract
syntax tree for method call expressions. For attributes, we approximate this check
by detecting the presence of an opening parenthesis (().

4Loops that look like for (Type element : list), as opposed to loops that look like
for (int i = 0; i < someLimit; i++)
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B.3.38 variable_assignments
Counts all occurrences of variable assignments. For methods, we search the ab-
stract syntax tree for assignment operators. For attributes, we approximate this
check by detecting the presence of the assignment operator (=).

B.3.39 variable_declaration
Counts all occurrences of variable declarations.

B.3.40 try_catch_blocks
Counts all occurrences of try-catch-blocks. catch and finally are not counted
separately, but included in this count.

B.3.41 describes_inputs
This metric works in a similar way as coverage (B.3.13), but only covers the inputs
of a constructor or method, i.e. @param. Note that it does not include the free-
format description.

B.3.42 describes_output
This metric works in a similar way as coverage (B.3.13), but only covers the out-
puts of a constructor or method, i.e. @return and @throws. Note that it does not
include the free-format description.

B.3.43 hyperlinks
Number of hyperlinks in the comment text. For now, we use a naive implement-
ation that only looks at tokens that start with ‘http://’, ‘https://’ or ‘www.’.

B.3.44 issue_numbers
Count of possible issue numbers in the comment text. Based on our experience
with commonly used issue trackers like GitHub and jira, we assume that most
issue numbers look like ‘#12345’ or ‘ABC-12345’.

B.3.45 abbreviations
We detect abbreviations using a heuristic: an abbreviation is a token that includes
full stops (e.g. ‘e.g.’) or only includes uppercase characters (e.g. ‘mit’). Tokens that
include numbers (e.g. ‘3.14’ or look like email or internet addresses (e.g. ‘nos.nl’)
are not treated as abbreviations. Special keywords that are commonly used for
task comments (e.g. ‘todo’) are often written using uppercase characters; we do
not consider these to be abbreviations.

Our heuristic does not recognise some special abbreviations, like ‘Ph.D’, and
common abbreviations that are written without uppercase characters or full stops,
like ‘aka’.

To avoid false positives when the comment text is largely or completely written
in uppercase characters (e.g. ‘you must not…’), we only consider abbreviations
that are next to a non-abbreviated token.
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Appendix C

Survey design

In this appendix we describe the specifics of our survey design, which may be
helpful to those who wish to reproduce our results or conduct a follow-up study.

C.1 Recruitment text
While respondents for our survey were recruited in various ways, all were sent to
a web page that contained more information about the study. This web page is
published as an unlisted page (i.e., it is only reachable for those who were given its
url) under a publicly accessible domain, and contains the following recruitment
text:

Every software developer knows that source code can be hard to read,
especially if it was written by someone else – or yourself, but a very
long time ago. Adding comments to code can make it more under-
standable. But not always.

It is not entirely clear what makes some comments better than others.
We therefore wish to gain a better understanding of the factors that
make a comment more (or less) helpful to future software developers.

You can help us by answering some questions about comments in code
snippets in an online survey. The survey should only take about 20
minutes.

In return, we’ll raffle 3 $50 Amazon gift cards among respondents and
pledge to donate €1 to the Dutch Cancer Society (KWF Kankerbe-
strijding) for each of the first 100 respondents!

Are you just as excited about this study as we are? Send an email to
cf.lung@studie.ou.nl titled “Survey” and we’ll reply with the details!

Prospective respondents generally visit this page when they:

• were directly contacted by the researcher;

• see a short, informal advertisement for the survey; or

• were referred via someone who had already completed the survey.
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C.2 Information letter
The details and conditions of the study are outlined in the information letter that
prospective participants receive when they contact the researcher via the email ad-
dress listed in the recruitment text.

Participants are told and expected to have read this letter before they open the
link to the online survey.

Thank you for expressing your interest in our survey on comments in
Java source code. This survey is part of a research project at the Open
University of the Netherlands (Open Universiteit).

Please read the information below carefully. If you have any questions,
you can ask the researcher and principal investigator for additional in-
formation. Their contact details can be found at the end of this letter.

What the study is about

Every software developer knows that source code can be hard to read,
especially if it was written by someone else – or yourself, but a very
long time ago. Adding comments to code can make it more under-
standable. But not always.

It is not entirely clear what makes some comments better than others.
We therefore wish to gain a better understanding of the factors that
make a comment more (or less) helpful to future software developers.

What participation means and is expected of you

Our survey will show you Java code snippets with a comment. You
will be asked to read and rate the comments in these snippets. We ask
that you do this in a quiet environment that is free from distractions.
The survey should take about 20minutes. After completion of the sur-
vey, you get the opportunity to take part in a raffle for one of the three
$50 Amazon gift cards. We will also donate €1 to the Dutch Cancer
Society (KWFKankerbestrijding) for each of the first 100 respondents.

If you decide to participate in this study, you will be asked to indicate
that you understand the information in this letter and agree to par-
ticipate in the research by completing a consent form. You can find
this consent form and the survey at softwareengineering.limequery.
org/972851.

Participation is voluntary. If you do not want to participate, this does
not have any negative consequences for you. If you do participate, you
can always change your mind and quit, by not submitting your survey
responses. You do not have to explain why you quit.

What will happen afterwards

Your participation in the research ends when you submit your survey
responses. The entire research is finished when all participants have
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submitted their responses. If youwish to be informed about the results
of the research, you can send an email to cf.lung@studie.ou.nl.

Your privacy is important to us

The survey is anonymous. However, we do collect, use, and store a
small amount of data about your demographic background; specific-
ally, your level of education and (programming) language proficiency.
This is necessary to interpret your responses. We make sure that this
data cannot be traced back for you.

All survey data are stored anonymously by theOpenUniversity of the
Netherlands for 10 years, and may be shared with colleagues, e.g. for
auditing purposes.

Moreover, if you take part in the raffle, your email address will be
stored at least until the date of the raffle (1 October 2021).

For general information about your rights when processing personal
data, you can consult the website of the Dutch Data Protection Au-
thority (Autoriteit Persoonsgegevens). The privacy disclaimer of the
Open University of the Netherlands can be found at www.ou.nl/en/
persoonsgegevens-disclaimer.

Questions

If you have any questions about this study, please contact the researcher
via cf.lung@studie.ou.nl.

Contact details

Researcher Chun Fei Lung (cf.lung@studie.ou.nl)
Principal investigator Ebrahim Rahimi (Ebrahim.Rahimi@ou.nl)
Data protection officer Saskia van der Westen (FG@ou.nl)

C.3 Informed consent
As mentioned in the information letter, participants are required to complete a
consent form before they can participate in the study. Due to technical reasons we
present the informed consent form as the first page of the survey. Respondents can
only proceed with the survey after completing the consent form. Our study uses
the following template:
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� I give permission for the data that is collected during this study
to be used for this scientific research.

� I have read the information letter related to this study and I have
had the opportunity to ask questions to the researcher if certain
points were not clear.

� I understand that all the information that I supply in relation to
this study will be collected in a safe manner, will be published
anonymously (if applicable) and therefore will not lead back to
me.

� I understand that I can pull out of the study at any time by exit-
ing the survey. I do not have to provide a reason for doing so.

� I agree that collected data is stored for a period of 10 years, in
accordance with the guidelines for the Association of Universit-
ies in the Netherlands (VSNU).

If you have read the above points and agree to participate in the study,
please check all the boxes and enter today’s date in the box below:

2021-12-31

C.4 Snippets
In the survey respondents are asked to rate the helpfulness of 44 code snippets with
comments. Table C.1 lists the snippets that were included in our survey, alongwith
the secondary statement that accompanied each snippet and their provenance.

The snippets presented in the survey were identical to how they appeared in
the original source code. In this section, we have made a few small modifications
that make them more suitable for a printable representation:

• Superfluous left indentations have been removed;

• Long lines have been wrapped (denoted by ‘ë’);

• Long methods have been truncated (denoted by ‘...’).
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Table C.1: List of snippets

Snippet Statement Provenance

C.1 com.google.common.hash.AbstractByteHasher:51-53

C.2 org.eclipse.cdt.internal.ui.actions.IndentAction:457-461

C.3 com.owncloud.android.operations.SynchronizeFolderOperation:180-184

C.4 A main.java.de.danoeh.antennapod.core.service.download.DownloadService:467-472

C.5 A com.owncloud.android.utils.MimetypeIconUtil:180-185

C.6 A com.vaadin.server.JsonCodec:782-797

C.7 A org.eclipse.cdt.debug.ui.memory.floatingpoint.Rendering:1784-1792

C.8 A org.eclipse.cdt.utils.EFSExtensionManager:98-107

C.9 com.owncloud.android.files.services.FileDownloader:110-112

C.10 B org.eclipse.cdt.internal.ui.text.spelling.engine.ISpellChecker:37-41

C.11 B org.apache.hadoop.security.authentication.util.KerberosUtil:103-119

C.12 C com.stericson.roottools.RootTools:229-234

C.13 C org.wordpress.android.util.StringUtils:185-188

C.14 org.apache.hadoop.registry.client.types.ServiceRecord:130-134

C.15 B com.google.common.collect.ImmutableBiMap:71-75

C.16 B com.owncloud.android.files.services.TransferRequester:99-101

C.17 A org.apache.hadoop.io.compress.zlib.BuiltInZlibDeflater:57-64

C.18 A org.apache.hadoop.hdfs.server.namenode.FSNamesystem:1868-1872

C.19 org.wordpress.android.ui.stats.StatsWidgetProvider:282-286

C.20 com.google.inject.Key:290-292

C.21 D org.apache.hadoop.mapreduce.jobhistory.JobHistoryParser:773-773

C.22 D com.stericson.rootshell.RootShell:104-110

C.23 D org.apache.hadoop.util.ToolRunner:103-106

C.24 D org.eclipse.cdt.debug.core.CDebugUtils:585-596

C.25 de.danoeh.antennapod.core.service.playback.PlaybackService:190-192

C.26 org.eclipse.cdt.dsf.internal.LoggingUtils:85-92

C.27 B org.wordpress.android.util.StringUtils:100-104

C.28 B org.wordpress.android.models.ReaderPost:496-499

C.29 B org.wordpress.android.editor.EditorFragment:1547-1549

C.30 B com.vaadin.data.util.sqlcontainer.SQLContainer:887-890

C.31 B org.eclipse.cdt.internal.ui.editor.AddIncludeAction:175-177

C.32 org.apache.hadoop.hdfs.server.blockmanagement.BlockPlacementPolicy:216-226

C.33 org.apache.hadoop.hdfs.util.XMLUtils:65-75

C.34 de.danoeh.antennapod.core.storage.PodDBAdapter:557-560

C.35 org.apache.hadoop.hdfs.qjournal.server.Journal:179-184

C.36 org.wordpress.android.ui.posts.adapters.PostsListAdapter:796-799

C.37 org.wordpress.android.datasets.ReaderSearchTable:60-64

C.38 org.eclipse.cdt.internal.corext.util.Strings:86-92

C.39 com.amaze.filemanager.filesystem.FileUtil:637-642

C.40 B org.apache.hadoop.hdfs.protocol.datatransfer.PacketHeader:187-191

C.41 B org.eclipse.cdt.internal.corext.util.Strings:110-119

C.42 com.amaze.filemanager.utils.Utils:105-126

C.43 A org.apache.hadoop.hdfs.DFSUtil:712-722

C.44 A com.google.common.primitives.UnsignedLong:184-190

A = comment is easy to understand, B = contains right amount of information
C = just as easy to understand without the comment, D = comment meets expectations
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Listing C.1: Comment that describes what the code does

/**
* Updates this hasher with {@code len} bytes starting at {@code off} in

ë the given buffer.
*/

protected void update(byte[] b, int off, int len) {
for (int i = off; i < off + len; i++) {
update(b[i]);

}
}

Listing C.2: Comment that literally repeats the code

/**
* Returns the editor's selection provider.
*
* @return the editor's selection provider or <code>null</code>
*/

private ISelectionProvider getSelectionProvider() {
ITextEditor editor= getTextEditor();
if (editor != null) {

return editor.getSelectionProvider();
}
return null;

}
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Listing C.3: Comment that describes the purpose of the code

/**
* Performs the synchronization.
*
* {@inheritDoc}
*/

@Override
protected RemoteOperationResult run(OwnCloudClient client) {

RemoteOperationResult result;
mFailsInFileSyncsFound = 0;
mConflictsFound = 0;
mForgottenLocalFiles.clear();

try {
// get locally cached information about folder
mLocalFolder = getStorageManager().getFileByPath(mRemotePath);

if (mPushOnly) {
// assuming there is no update in the server side, still need

ë to handle local changes
Log_OC.i(TAG, "Push only sync of " + mAccount.name +

ë mRemotePath);
preparePushOfLocalChanges();
syncContents();
//pushOnlySync();
result = new RemoteOperationResult(ResultCode.OK);

} else {
// get list of files in folder from remote server
result = fetchRemoteFolder(client);

if (result.isSuccess()) {
// success - merge updates in server with local state
mergeRemoteFolder(result.getData());
syncContents();

} else {
// fail fetching the server
if (result.getCode() == ResultCode.FILE_NOT_FOUND) {

removeLocalFolder();
}
if (result.isException()) {

Log_OC.e(TAG, "Checked " + mAccount.name + mRemotePath
ë + " : " +
result.getLogMessage(), result.getException());

} else {
...
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Listing C.4: Comment that is written in easy-to-understand English (1)

/**
* Adds a new DownloadStatus object to the list of completed downloads and
* saves it in the database
*
* @param status the download that is going to be saved
*/

private void saveDownloadStatus(DownloadStatus status) {
reportQueue.add(status);
DBWriter.addDownloadStatus(status);

}

Listing C.5: Comment that is written in easy-to-understand English (2)

/**
* provides the file extension of a given filename.
*
* @param filename the filename
* @return the file extension
*/

private static String getExtension(String filename) {
String extension = filename.substring(filename.lastIndexOf(".") + 1).

ë toLowerCase();
return extension;

}
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Listing C.6: Comment with English for professionals

/**
* Compares two json values for deep equality.
*
* This is a helper for overcoming the fact that
* {@link JsonValue#equals(Object)} only does an identity check and
* {@link JsonValue#jsEquals(JsonValue)} is defined to use JavaScript
* semantics where arrays and objects are equals only based on identity.
*
* @since 7.4
* @param a
* the first json value to check, may not be null
* @param b
* the second json value to check, may not be null
* @return <code>true</code> if both json values are the same;
* <code>false</code> otherwise
*/

public static boolean jsonEquals(JsonValue a, JsonValue b) {
assert a != null;
assert b != null;

if (a == b) {
return true;

}

JsonType type = a.getType();
if (type != b.getType()) {

return false;
}

switch (type) {
case NULL:

return true;
case BOOLEAN:

return a.asBoolean() == b.asBoolean();
case NUMBER:

return a.asNumber() == b.asNumber();
case STRING:

return a.asString().equals(b.asString());
case OBJECT:

return jsonObjectEquals((JsonObject) a, (JsonObject) b);
case ARRAY:

return jsonArrayEquals((JsonArray) a, (JsonArray) b);
default:

throw new RuntimeException("Unsupported JsonType: " + type);
}

}
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Listing C.7: Comment with English that may be hard to understand (1)

/**
* The scroll range is limited by SWT. Because it can be less than the

ë number
* of rows (of memory) that we need to display, we need an arithmetic

ë mapping.
*
* @return ratio this function returns how many rows a scroll bar unit
* represents. The number will be some fractional value, up to but
* not exceeding the value 1. I.e., when the scroll range exceeds
* the row range, we use a 1:1 mapping.
*/

private final BigDecimal getScrollRatio()
{

BigInteger maxRange = getMaxScrollRange();
if (maxRange.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) > 0)
{

return new BigDecimal(maxRange).divide(BigDecimal.valueOf(Integer.
ë MAX_VALUE), SCROLL_CONVERSION_PRECISION);

}

return BigDecimal.ONE;
}
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Listing C.8: Comment with English that may be hard to understand (2)

/**
* If the EFS store represented by locationURI is backed by a physical file

ë , gets the path corresponding
* to the underlying file. The path returned is suitable for use in

ë constructing a {@link Path} object. This
* method will return the corresponding path regardless of whether or not

ë the EFS store actually exists.
*
*
* @param locationURI
* @return String representing the path, or <code>null</code> if there is

ë an error or if the store
* is not backed by a physical file.
*/

public String getPathFromURI(URI locationURI) {
EFSExtensionProvider provider = fSchemeToExtensionProviderMap.get(

ë locationURI.getScheme());

if (provider == null) {
provider = fDefaultProvider;

}

return provider.getPathFromURI(locationURI);

}
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Listing C.9: A very short comment

/**
* Service initialization
*/

@Override
public void onCreate() {

super.onCreate();
Log_OC.d(TAG, "Creating service");
mNotificationManager = (NotificationManager) getSystemService(

ë NOTIFICATION_SERVICE);

// Configure notification channel
if (android.os.Build.VERSION.SDK_INT >= android.os.Build.VERSION_CODES.

ë O) {
NotificationChannel mNotificationChannel;
// The user-visible name of the channel.
CharSequence name = getString(R.string.

ë download_notification_channel_name);
// The user-visible description of the channel.
String description = getString(R.string.

ë download_notification_channel_description);
// Set importance low: show the notification everywhere but with no

ë sound
int importance = NotificationManager.IMPORTANCE_LOW;
mNotificationChannel = new NotificationChannel(

ë DOWNLOAD_NOTIFICATION_CHANNEL_ID,
name, importance);

// Configure the notification channel.
mNotificationChannel.setDescription(description);
mNotificationManager.createNotificationChannel(mNotificationChannel

ë );
}

HandlerThread thread = new HandlerThread("FileDownloaderThread",
Process.THREAD_PRIORITY_BACKGROUND);

thread.start();
mServiceLooper = thread.getLooper();
mServiceHandler = new ServiceHandler(mServiceLooper, this);
mBinder = new FileDownloaderBinder();

// add AccountsUpdatedListener
AccountManager am = AccountManager.get(getApplicationContext());
am.addOnAccountsUpdatedListener(this, null, false);

// create manager for local broadcasts
mLocalBroadcastManager = LocalBroadcastManager.getInstance(this);

}
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Listing C.10: A comment with fewer than 30 words

/**
* Returns whether this spell checker accepts word additions.
*
* @return <code>true</code> if word additions are accepted, <code>false</

ë code> otherwise
*/

boolean acceptsWords();
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Listing C.11: A comment with more than 100 words

/*
* For a Service Host Principal specification, map the host's domain
* to kerberos realm, as specified by krb5.conf [domain_realm] mappings.
* Unfortunately the mapping routines are private to the security.krb5
* package, so have to construct a PrincipalName instance to derive the

ë realm.
*
* Many things can go wrong with Kerberos configuration, and this is not
* the place to be throwing exceptions to help debug them. Nor do we

ë choose
* to make potentially voluminous logs on every call to a communications

ë API.
* So we simply swallow all exceptions from the underlying libraries and
* return null if we can't get a good value for the realmString.
*
* @param shortprinc A service principal name with host fqdn as instance, e

ë .g.
* "HTTP/myhost.mydomain"
* @return String value of Kerberos realm, mapped from host fqdn
* May be default realm, or may be null.
*/

public static String getDomainRealm(String shortprinc) {
Class<?> classRef;
Object principalName; //of type sun.security.krb5.PrincipalName or IBM

ë equiv
String realmString = null;
try {
if (IBM_JAVA) {
classRef = Class.forName("com.ibm.security.krb5.PrincipalName");

} else {
classRef = Class.forName("sun.security.krb5.PrincipalName");

}
int tKrbNtSrvHst = classRef.getField("KRB_NT_SRV_HST").getInt(null);
principalName = classRef.getConstructor(String.class, int.class).

newInstance(shortprinc, tKrbNtSrvHst);
realmString = (String)classRef.getMethod("getRealmString", new Class

ë [0]).
invoke(principalName, new Object[0]);

} catch (RuntimeException rte) {
//silently catch everything

} catch (Exception e) {
//silently return default realm (which may itself be null)

}
if (null == realmString || realmString.equals("")) {
return getDefaultRealmProtected();

...
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Listing C.12: Comment that is formatted as Javadoc

/**
* @param binaryName String that represent the binary to find.
* @param singlePath boolean that represents whether to return a single

ë path or multiple.
*
* @return <code>List<String></code> containing the paths the binary was

ë found at.
*/

public static List<String> findBinary(String binaryName, boolean singlePath
ë ) {
return RootShell.findBinary(binaryName, singlePath);

}

Listing C.13: Comment that is written as a normal block comment

/*
* Wrap an image URL in a photon URL
* Check out http://developer.wordpress.com/docs/photon/
*/

public static String getPhotonUrl(String imageUrl, int size) {
imageUrl = imageUrl.replace("http://", "").replace("https://", "");
return "http://i0.wp.com/" + imageUrl + "?w=" + size;

}

Listing C.14: Javadoc comment that documents all attributes

/**
* Look up an internal endpoint
* @param api API
* @return the endpoint or null if there was no match
*/

public Endpoint getInternalEndpoint(String api) {
return findByAPI(internal, api);

}
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Listing C.15: Javadoc comment that documents some attributes

/**
* Returns an immutable map containing the given entries, in order.
*
* @throws IllegalArgumentException if duplicate keys or values are added
*/

public static <K, V> ImmutableBiMap<K, V> of(K k1, V v1, K k2, V v2, K k3,
ë V v3, K k4, V v4) {

return RegularImmutableBiMap.fromEntries(
entryOf(k1, v1), entryOf(k2, v2), entryOf(k3, v3), entryOf(k4, v4));

}

Listing C.16: Javadoc comment that does not document attributes

/**
* Call to upload a new single file
*/

public void uploadNewFile(Context context, Account account, String
ë localPath, String remotePath, int

behaviour, String mimeType, boolean createRemoteFile, int createdBy
ë ) {

uploadNewFiles(
context,
account,
new String[]{localPath},
new String[]{remotePath},
new String[]{mimeType},
behaviour,
createRemoteFile,
createdBy

);
}
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Listing C.17: Comment that reuses terms from code

/**
* reinit the compressor with the given configuration. It will reset the
* compressor's compression level and compression strategy. Different from
* <tt>ZlibCompressor</tt>, <tt>BuiltInZlibDeflater</tt> only support three
* kind of compression strategy: FILTERED, HUFFMAN_ONLY and

ë DEFAULT_STRATEGY.
* It will use DEFAULT_STRATEGY as default if the configured compression
* strategy is not supported.
*/

@Override
public void reinit(Configuration conf) {
reset();
if (conf == null) {
return;

}
setLevel(ZlibFactory.getCompressionLevel(conf).compressionLevel());
final ZlibCompressor.CompressionStrategy strategy =
ZlibFactory.getCompressionStrategy(conf);

try {
setStrategy(strategy.compressionStrategy());

} catch (IllegalArgumentException ill) {
LOG.warn(strategy + " not supported by BuiltInZlibDeflater.");
setStrategy(DEFAULT_STRATEGY);

}
if(LOG.isDebugEnabled()) {
LOG.debug("Reinit compressor with new compression configuration");

}
}
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Listing C.18: Comment that largely uses different terms than code

/**
* stores the modification and access time for this inode.
* The access time is precise up to an hour. The transaction, if needed, is
* written to the edits log but is not flushed.
*/

void setTimes(String src, long mtime, long atime) throws IOException {
HdfsFileStatus auditStat;
checkOperation(OperationCategory.WRITE);
writeLock();
try {
checkOperation(OperationCategory.WRITE);
checkNameNodeSafeMode("Cannot set times " + src);
auditStat = FSDirAttrOp.setTimes(dir, src, mtime, atime);

} catch (AccessControlException e) {
logAuditEvent(false, "setTimes", src);
throw e;

} finally {
writeUnlock();

}
getEditLog().logSync();
logAuditEvent(true, "setTimes", src, null, auditStat);

}

Listing C.19: Comment that contains full sentences

/**
* This is called every time an App Widget is deleted from the App Widget

ë host.
* @param context The Context in which this receiver is running.
* @param widgetIDs Widget IDs to set blank. We cannot remove widget from

ë home screen.
*/

@Override
public void onDeleted(Context context, int[] widgetIDs) {

setRemoteBlogIDForWidgetIDs(widgetIDs, 0);
}

135



Listing C.20: Comment that is written in telegraphic style

/**
* Gets a key for an injection type and an annotation type.
*/

public static <T> Key<T> get(TypeLiteral<T> typeLiteral,
Class<? extends Annotation> annotationType) {

return new Key<T>(typeLiteral, strategyFor(annotationType));
}

Listing C.21: Comment that describes trivial code (1)

/** @return the ApplicationAttemptId */
public ApplicationAttemptId getAppAttemptId() {
return appAttemptId;

}

Listing C.22: Comment that describes trivial code (2)

/**
* Use this to check whether or not a file exists on the filesystem.
*
* @param file String that represent the file, including the full path to

ë the
* file and its name.
* @return a boolean that will indicate whether or not the file exists.
*/

public static boolean exists(final String file) {
return exists(file, false);

}
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Listing C.23: Comment that describes complex code (1)

/**
* Print out a prompt to the user, and return true if the user
* responds with "y" or "yes". (case insensitive)
*/

public static boolean confirmPrompt(String prompt) throws IOException {
while (true) {
System.err.print(prompt + " (Y or N) ");
StringBuilder responseBuilder = new StringBuilder();
while (true) {
int c = System.in.read();
if (c == -1 || c == '\r' || c == '\n') {
break;

}
responseBuilder.append((char)c);

}

String response = responseBuilder.toString();
if (response.equalsIgnoreCase("y") ||

response.equalsIgnoreCase("yes")) {
return true;

} else if (response.equalsIgnoreCase("n") ||
response.equalsIgnoreCase("no")) {

return false;
}
System.err.println("Invalid input: " + response);
// else ask them again

}
}
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Listing C.24: Comment that describes complex code (2)

/**
* Returns the ICProject associated with the project setting in the Main

ë tab
* of a CDT launch configuration, or throws a CoreException providing a
* reason (e.g., the setting is empty, the project no longer exists, the
* isn't a CDT one, etc).
*
* @param config
* the launch configuration
* @return an ICProject; never null.
* @throws CoreException
* @since 7.0
*/

public static ICProject verifyCProject(ILaunchConfiguration config) throws
ë CoreException {
String name = CDebugUtils.getProjectName(config);
if (name == null) {

throwCoreException(DebugCoreMessages.getString("CDebugUtils.
ë C_Project_not_specified"), //$NON-NLS-1$

ICDTLaunchConfigurationConstants.ERR_UNSPECIFIED_PROJECT);
}
ICProject cproject = CDebugUtils.getCProject(config);
if (cproject == null) {

IProject proj = ResourcesPlugin.getWorkspace().getRoot().getProject
ë (name);

if (!proj.exists()) {
throwCoreException(DebugCoreMessages.getFormattedString("

ë CDebugUtils.Project_NAME_does_not_exist", name), //$NON
ë -NLS-1$

ICDTLaunchConfigurationConstants.ERR_NOT_A_C_PROJECT);
} else if (!proj.isOpen()) {

throwCoreException(DebugCoreMessages.getFormattedString("
ë CDebugUtils.Project_NAME_is_closed", name), //$NON-NLS-1
ë $

ICDTLaunchConfigurationConstants.ERR_NOT_A_C_PROJECT);
}
throwCoreException(DebugCoreMessages.getString("CDebugUtils.

ë Not_a_C_CPP_project"), //$NON-NLS-1$
ICDTLaunchConfigurationConstants.ERR_NOT_A_C_PROJECT);

}
return cproject;

}
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Listing C.25: Comment for code with many operators (1)

/**
* Returns true if the sleep timer is currently active.
*/

public synchronized boolean isSleepTimerActive() {
return sleepTimer != null

&& sleepTimerFuture != null
&& !sleepTimerFuture.isCancelled()
&& !sleepTimerFuture.isDone()
&& sleepTimer.getWaitingTime() > 0;

}

Listing C.26: Comment for code with many operators (2)

/**
* General string utility for removing newline and space character from the
* end of a string. Typically used when logging an object's toString()
*
* @param str
* the string
* @return the string without trailing newlines
*/

public static String trimTrailingNewlines(String str) {
final int strlen = str.length();
if (strlen == 0) {

return str;
}

int removeCount = 0;
for (int i = strlen - 1; i >= 0 && Character.isWhitespace(str.charAt(i)

ë ); i--) {
removeCount++;

}

return (removeCount == 0) ? str : str.substring(0, str.length() -
ë removeCount);

}

139



Listing C.27: Comment with an explicit ‘todo’

/*
* nbradbury - adapted from Html.escapeHtml(), which was added in API Level

ë 16
* TODO: not thoroughly tested yet, so marked as private - not sure I like

ë the way
* this replaces two spaces with "&nbsp;"
*/

private static String escapeHtml(final String text) {
if (text == null) {

return "";
}

StringBuilder out = new StringBuilder();
int length = text.length();

for (int i = 0; i < length; i++) {
char c = text.charAt(i);

if (c == '<') {
out.append("&lt;");

} else if (c == '>') {
out.append("&gt;");

} else if (c == '&') {
out.append("&amp;");

} else if (c > 0x7E || c < ' ') {
out.append("&#").append((int) c).append(";");

} else if (c == ' ') {
while (i + 1 < length && text.charAt(i + 1) == ' ') {

out.append("&nbsp;");
i++;

}

out.append(' ');
} else {

out.append(c);
}

}

return out.toString();
}
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Listing C.28: Comment with an implicit ‘todo’

/*
* attachments are stored as the actual JSON to avoid having a separate

ë table for
* them, may need to revisit this if/when attachments become more important
*/

public String getAttachmentsJson() {
return StringUtils.notNullStr(attachmentsJson);

}

Listing C.29: Comment that summarises code

/**
* Hide the action bar if needed.
*/

private void hideActionBarIfNeeded() {

ActionBar actionBar = getActionBar();
if (actionBar != null

&& !isHardwareKeyboardPresent()
&& mHideActionBarOnSoftKeyboardUp
&& mIsKeyboardOpen
&& actionBar.isShowing()) {

getActionBar().hide();
}

}

Listing C.30: Comment that provides summary and extra information

/**
* Refreshes the container - clears all caches and resets size and offset.
* Does NOT remove sorting or filtering rules!
*/

public void refresh() {
refresh(true);

}
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Listing C.31: Comment that only provides extra information

/**
* For tests only.
*/

public void setAmbiguityResolver(IElementSelector fAmbiguityResolver) {
this.fAmbiguityResolver = fAmbiguityResolver;

}
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Listing C.32: Comment that mentions related classes

/**
* Split data nodes into two sets, one set includes nodes on rack with
* more than one replica, the other set contains the remaining nodes.
*
* @param availableSet all the available DataNodes/storages of the block
* @param candidates DatanodeStorageInfo/DatanodeInfo to be split
* into two sets
* @param rackMap a map from rack to datanodes
* @param moreThanOne contains nodes on rack with more than one replica
* @param exactlyOne remains contains the remaining nodes
*/

public <T> void splitNodesWithRack(
final Iterable<T> availableSet,
final Collection<T> candidates,
final Map<String, List<T>> rackMap,
final List<T> moreThanOne,
final List<T> exactlyOne) {

for(T s: availableSet) {
final String rackName = getRack(getDatanodeInfo(s));
List<T> storageList = rackMap.get(rackName);
if (storageList == null) {
storageList = new ArrayList<>();
rackMap.put(rackName, storageList);

}
storageList.add(s);

}
for (T candidate : candidates) {
final String rackName = getRack(getDatanodeInfo(candidate));
if (rackMap.get(rackName).size() == 1) {
// exactlyOne contains nodes on rack with only one replica
exactlyOne.add(candidate);

} else {
// moreThanOne contains nodes on rack with more than one replica
moreThanOne.add(candidate);

}
}

}
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Listing C.33: Comment that is placed above if-else

/**
* Given a code point, determine if it should be mangled before being
* represented in an XML document.
*
* Any code point that isn't valid in XML must be mangled.
* See http://en.wikipedia.org/wiki/Valid_characters_in_XML for a
* quick reference, or the w3 standard for the authoritative reference.
*
* @param cp The code point
* @return True if the code point should be mangled
*/

private static boolean codePointMustBeMangled(int cp) {
if (cp < 0x20) {
return ((cp != 0x9) && (cp != 0xa) && (cp != 0xd));

} else if ((0xd7ff < cp) && (cp < 0xe000)) {
return true;

} else if ((cp == 0xfffe) || (cp == 0xffff)) {
return true;

} else if (cp == 0x5c) {
// we mangle backslash to simplify decoding... it's
// easier if backslashes always begin mangled sequences.
return true;

}
return false;

}
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Listing C.34: Comment that is placed above for-loop

/**
* Insert all FeedItems of a feed and the feed object itself in a single
* transaction
*/

public void setCompleteFeed(Feed... feeds) {
try {

db.beginTransactionNonExclusive();
for (Feed feed : feeds) {

setFeed(feed);
if (feed.getItems() != null) {

for (FeedItem item : feed.getItems()) {
setFeedItem(item, false);

}
}
if (feed.getPreferences() != null) {

setFeedPreferences(feed.getPreferences());
}

}
db.setTransactionSuccessful();

} catch (SQLException e) {
Log.e(TAG, Log.getStackTraceString(e));

} finally {
db.endTransaction();

}
}
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Listing C.35: Comment that is placed above while-loop

/**
* Scan the local storage directory, and return the segment containing
* the highest transaction.
* @return the EditLogFile with the highest transactions, or null
* if no files exist.
*/

private synchronized EditLogFile scanStorageForLatestEdits() throws
ë IOException {

if (!fjm.getStorageDirectory().getCurrentDir().exists()) {
return null;

}

LOG.info("Scanning storage " + fjm);
List<EditLogFile> files = fjm.getLogFiles(0);

while (!files.isEmpty()) {
EditLogFile latestLog = files.remove(files.size() - 1);
latestLog.scanLog(Long.MAX_VALUE, false);
LOG.info("Latest log is " + latestLog);
if (latestLog.getLastTxId() == HdfsServerConstants.INVALID_TXID) {
// the log contains no transactions
LOG.warn("Latest log " + latestLog + " has no transactions. " +

"moving it aside and looking for previous log");
latestLog.moveAsideEmptyFile();

} else {
return latestLog;

}
}

LOG.info("No files in " + fjm);
return null;

}
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Listing C.36: Comment that is placed above method calls

/*
* called after the media (featured image) for a post has been downloaded -

ë locate the post
* and set its featured image url to the passed url
*/

public void mediaChanged(MediaModel mediaModel) {
// Multiple posts could have the same featured image
List<Integer> indexList = PostUtils.indexesOfFeaturedMediaIdInList(

ë mediaModel.getMediaId(), mPosts);
for (int position : indexList) {

PostModel post = getItem(position);
if (post != null) {

String imageUrl = mediaModel.getUrl();
if (imageUrl != null) {

mFeaturedImageUrls.put(post.getId(), imageUrl);
} else {

mFeaturedImageUrls.remove(post.getId());
}
notifyItemChanged(position);

}
}

}
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Listing C.37: Comment for code with many assignments

/**
* Returns a cursor containing query strings previously typed by the user
* @param filter - filters the list using LIKE syntax (pass null for no

ë filter)
* @param max - limit the list to this many items (pass zero for no limit)
*/

public static Cursor getQueryStringCursor(String filter, int max) {
String sql;
String[] args;
if (TextUtils.isEmpty(filter)) {

sql = "SELECT * FROM tbl_search_suggestions";
args = null;

} else {
sql = "SELECT * FROM tbl_search_suggestions WHERE query_string LIKE

ë  ?";
args = new String[]{filter + "%"};

}

sql += " ORDER BY date_used DESC";

if (max > 0) {
sql += " LIMIT " + max;

}

return ReaderDatabase.getReadableDb().rawQuery(sql, args);
}
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Listing C.38: Comment for code with multiple declarations

/**
* Converts the given string into an array of lines. The lines
* don't contain any line delimiter characters.
*
* @return the string converted into an array of strings. Returns <code>
* null</code> if the input string can't be converted in an array of lines

ë .
*/

public static String[] convertIntoLines(String input) {
try {

ILineTracker tracker= new DefaultLineTracker();
tracker.set(input);
int size= tracker.getNumberOfLines();
String result[]= new String[size];
for (int i= 0; i < size; i++) {

IRegion region= tracker.getLineInformation(i);
int offset= region.getOffset();
result[i]= input.substring(offset, offset + region.getLength())

ë ;
}
return result;

} catch (BadLocationException e) {
return null;

}
}
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Listing C.39: Comment for code with try-catch block

/**
* Check if a file is writable. Detects write issues on external SD card.
*
* @param file The file
* @return true if the file is writable.
*/

public static boolean isWritable(final File file) {
if (file == null)

return false;
boolean isExisting = file.exists();

try {
FileOutputStream output = new FileOutputStream(file, true);
try {

output.close();
} catch (IOException e) {

// do nothing.
}

} catch (FileNotFoundException e) {
return false;

}
boolean result = file.canWrite();

// Ensure that file is not created during this process.
if (!isExisting) {

file.delete();
}

return result;
}
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Listing C.40: Comment whose Javadoc only describes input

/**
* Perform a sanity check on the packet, returning true if it is sane.
* @param lastSeqNo the previous sequence number received - we expect the
* current sequence number to be larger by 1.
*/

public boolean sanityCheck(long lastSeqNo) {
// We should only have a non-positive data length for the last packet
if (proto.getDataLen() <= 0 && !proto.getLastPacketInBlock()) return

ë false;
// The last packet should not contain data
if (proto.getLastPacketInBlock() && proto.getDataLen() != 0) return false

ë ;
// Seqnos should always increase by 1 with each packet received
return proto.getSeqno() == lastSeqNo + 1;

}

Listing C.41: Comment whose Javadoc only describes output

/**
* Returns <code>true</code> if the given string only consists of
* white spaces according to C. If the string is empty, <code>true
* </code> is returned.
*
* @return <code>true</code> if the string only consists of white
* spaces; otherwise <code>false</code> is returned
*
* @see java.lang.Character#isWhitespace(char)
*/

public static boolean containsOnlyWhitespaces(String s) {
int size= s.length();
for (int i= 0; i < size; i++) {

if (!Character.isWhitespace(s.charAt(i)))
return false;

}
return true;

}
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Listing C.42: Comment that refers to external documentation

/**
* Compares two Strings, and returns the portion where they differ. (

ë More precisely,
* return the remainder of the second String, starting from where it's

ë different from the first.)
*
* For example, difference("i am a machine", "i am a robot") -> "robot".
*
* StringUtils.difference(null, null) = null
* StringUtils.difference("", "") = ""
* StringUtils.difference("", "abc") = "abc"
* StringUtils.difference("abc", "") = ""
* StringUtils.difference("abc", "abc") = ""
* StringUtils.difference("ab", "abxyz") = "xyz"
* StringUtils.difference("abcde", "abxyz") = "xyz"
* StringUtils.difference("abcde", "xyz") = "xyz"
*
* @param str1 - the first String, may be null
* @param str2 - the second String, may be null
* @return the portion of str2 where it differs from str1; returns the

ë empty String if they are equal
*
* Stolen from Apache's StringUtils
* (https://commons.apache.org/proper/commons-lang/javadocs/api-2.6/org/

ë apache/commons/lang/StringUtils.html#difference(java.lang.String
ë ,%20java.lang.String))

*/
public static String differenceStrings(String str1, String str2) {

if (str1 == null) return str2;
if (str2 == null) return str1;

int at = indexOfDifferenceStrings(str1, str2);

if (at == INDEX_NOT_FOUND) return "";

return str2.substring(at);
}
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Listing C.43: Comment that uses multiple abbreviations

/**
* Get a URI for each configured nameservice. If a nameservice is
* HA-enabled, then the logical URI of the nameservice is returned. If the
* nameservice is not HA-enabled, then a URI corresponding to an RPC

ë address
* of the single NN for that nameservice is returned, preferring the

ë service
* RPC address over the client RPC address.
*
* @param conf configuration
* @return a collection of all configured NN URIs, preferring service
* addresses
*/

public static Collection<URI> getNsServiceRpcUris(Configuration conf) {
return getNameServiceUris(conf,

DFSConfigKeys.DFS_NAMENODE_SERVICE_RPC_ADDRESS_KEY,
DFSConfigKeys.DFS_NAMENODE_RPC_ADDRESS_KEY);

}

Listing C.44: Comment that includes math

/**
* Returns the value of this {@code UnsignedLong} as a {@code long}. This is

ë an inverse operation
* to {@link #fromLongBits}.
*
* <p>Note that if this {@code UnsignedLong} holds a value {@code >= 2^63},

ë the returned value
* will be equal to {@code this - 2^64}.
*/
@Override
public long longValue() {

return value;
}
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Appendix D

Project metrics

Tables D.1–D.11 in this appendix list the metrics whose mean values differ most
noticeably from the overall mean across all projects, i.e. they show a difference of
at least 50% relative to the overall mean. Features are sorted in order of ascending
relative difference from the overall mean across all projects.
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Table D.1: Large differences in comment metrics for AFWall+

Metric Mean Diff (%) Std. Min Max

mentions_parents 0.000000 -100.00 0.000000 0.000 0.000
is_for_package 0.000000 -100.00 0.000000 0.000 0.000
is_for_enum 0.000000 -100.00 0.000000 0.000 0.000
is_for_annotation 0.000000 -100.00 0.000000 0.000 0.000
is_for_interface 0.002433 -85.73 0.049326 0.000 1.000
hyperlinks 0.002433 -69.47 0.049326 0.000 1.000
is_block_comment 0.031630 -66.54 0.175227 0.000 1.000
variable_assignments 1.009732 56.95 3.045973 0.000 39.000
flesch_ease 63.401708 60.78 43.034664 -300.815 122.086
is_for_attribute 0.313869 68.91 0.464629 0.000 1.000
try_catch_blocks 0.145985 103.11 0.595186 0.000 8.000
is_line_comment 0.240876 113.76 0.428136 0.000 1.000

Table D.2: Large differences in comment metrics for Amaze File Manager

Metric Mean Diff (%) Std. Min Max

mentions_parents 0.000000 -100.00 0.000000 0.000 0.000
is_for_package 0.000000 -100.00 0.000000 0.000 0.000
is_for_annotation 0.000000 -100.00 0.000000 0.000 0.000
is_for_interface 0.000000 -100.00 0.000000 0.000 0.000
is_block_comment 0.014414 -84.75 0.119299 0.000 1.000
flesch_ease 59.999829 52.15 49.163316 -469.999 122.108
operators 2.987387 53.90 7.492826 0.000 125.000
control_structures 2.034234 54.93 4.057428 0.000 42.000
variable_declaration 1.333333 60.05 2.749248 0.000 24.000
loop_structures 0.174775 61.44 0.600912 0.000 5.000
method_length 10.450450 61.91 18.715782 0.000 159.000
variable_assignments 1.108108 72.24 2.756520 0.000 47.000
method_calls 6.162162 78.42 12.813816 0.000 131.000
is_line_comment 0.201802 79.08 0.401707 0.000 1.000
tasks 0.018018 114.18 0.146066 0.000 2.000
is_for_enum 0.003604 144.16 0.059976 0.000 1.000
try_catch_blocks 0.190991 165.72 0.575923 0.000 5.000
hyperlinks 0.021622 171.29 0.188766 0.000 2.000
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Table D.3: Large differences in comment metrics for AntennaPod

Metric Mean Diff (%) Std. Min Max

tasks 0.000000 -100.00 0.000000 0.0 0.0
mentions_parents 0.000000 -100.00 0.000000 0.0 0.0
is_for_package 0.000000 -100.00 0.000000 0.0 0.0
is_for_annotation 0.000000 -100.00 0.000000 0.0 0.0
is_block_comment 0.021569 -77.18 0.145341 0.0 1.0
is_line_comment 0.041176 -63.46 0.198796 0.0 1.0
is_for_class 0.171569 62.47 0.377190 0.0 1.0

Table D.4: Large differences in comment metrics for Apache Hadoop

Metric Mean Diff (%) Std. Min Max

is_for_annotation 0.000000 -100.00 0.000000 0.0 0.0
tasks 0.001631 -80.61 0.040363 0.0 1.0
is_block_comment 0.021533 -77.22 0.145178 0.0 1.0
hyperlinks 0.002610 -67.25 0.057069 0.0 2.0

Table D.5: Large differences in comment metrics for Apache Spark

Metric Mean Diff (%) Std. Min Max

mentions_parents 0.000000 -100.00 0.000000 0.000 0.000
is_for_constructor 0.000000 -100.00 0.000000 0.000 0.000
is_for_enum 0.000000 -100.00 0.000000 0.000 0.000
hyperlinks 0.000000 -100.00 0.000000 0.000 0.000
is_block_comment 0.009709 -89.73 0.098533 0.000 1.000
omitted_full_stops 0.067961 -87.94 0.240491 0.000 1.000
describes_inputs 0.140777 -66.16 0.345967 0.000 1.000
describes_output 0.184466 -56.15 0.389760 0.000 1.000
math_symbols 0.135922 56.62 0.714672 0.000 5.000
abbreviations 0.368932 73.05 1.481853 0.000 14.000
flesch_ease 71.663126 81.73 21.714331 1.265 122.004
is_for_interface 0.087379 412.58 0.283770 0.000 1.000
is_for_annotation 0.009709 839.74 0.098533 0.000 1.000
is_for_package 0.048544 4960.12 0.215963 0.000 1.000
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Table D.6: Large differences in comment metrics for Eclipse CDT

Metric Mean Diff (%) Std. Min Max

is_for_package 0.000000 -100.00 0.000000 0.000 0.000
flesch_ease 3.119397 -92.09 163.204541 -1096.027 122.154
is_for_annotation 0.000247 -76.11 0.015710 0.000 1.000
is_for_enum 0.000494 -66.56 0.022214 0.000 1.000
hyperlinks 0.002715 -65.94 0.052039 0.000 1.000
is_for_interface 0.032330 89.65 0.176896 0.000 1.000

Table D.7: Large differences in comment metrics for Google Guava

Metric Mean Diff (%) Std. Min Max

is_block_comment 0.007576 -91.99 0.086791 0.0 1.000
method_calls 1.547348 -55.20 2.664980 0.0 23.000
operators 0.903409 -53.46 3.167696 0.0 44.000
hyperlinks 0.003788 -52.47 0.061487 0.0 1.000
tokens 30.081439 52.67 43.494236 1.0 409.000
extra_info_score 3.650498 69.49 6.484463 0.0 54.733
tasks 0.015152 80.10 0.122271 0.0 1.000
is_for_package 0.001894 97.42 0.043519 0.0 1.000
math_symbols 0.200758 131.33 0.684221 0.0 4.000
is_for_enum 0.003788 156.65 0.061487 0.0 1.000
is_for_annotation 0.005682 449.96 0.075235 0.0 1.000
mentions_parents 0.005682 862.43 0.075235 0.0 1.000
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Table D.8: Large differences in comment metrics for Google Guice

Metric Mean Diff (%) Std. Min Max

is_block_comment 0.000000 -100.00 0.000000 0.0 0.0
tasks 0.000000 -100.00 0.000000 0.0 0.0
mentions_parents 0.000000 -100.00 0.000000 0.0 0.0
is_line_comment 0.013245 -88.25 0.114703 0.0 1.0
is_for_attribute 0.033113 -82.18 0.179526 0.0 1.0
try_catch_blocks 0.013245 -81.57 0.162758 0.0 2.0
describes_output 0.125828 -70.09 0.332759 0.0 1.0
math_symbols 0.026490 -69.48 0.229406 0.0 2.0
operators 0.609272 -68.61 1.478619 0.0 9.0
variable_assignments 0.231788 -63.97 0.778406 0.0 4.0
omitted_full_stops 0.215358 -61.80 0.309525 0.0 1.0
variable_declaration 0.331126 -60.25 0.991442 0.0 5.0
describes_inputs 0.165563 -60.21 0.372925 0.0 1.0
method_length 2.920530 -54.75 5.769487 0.0 40.0
method_calls 1.589404 -53.98 3.190134 0.0 21.0
abbreviations 0.099338 -53.41 0.443546 0.0 4.0
hyperlinks 0.013245 66.19 0.114703 0.0 1.0
is_for_enum 0.006623 348.71 0.081379 0.0 1.0
is_for_interface 0.079470 366.19 0.271371 0.0 1.0
is_for_package 0.033113 3351.60 0.179526 0.0 1.0
is_for_annotation 0.039735 3746.07 0.195986 0.0 1.0

Table D.9: Large differences in comment metrics for ownCloud

Metric Mean Diff (%) Std. Min Max

is_for_package 0.000000 -100.00 0.000000 0.0 0.0
is_for_enum 0.000000 -100.00 0.000000 0.0 0.0
is_for_annotation 0.000000 -100.00 0.000000 0.0 0.0
is_for_interface 0.000803 -95.29 0.028330 0.0 1.0
is_block_comment 0.008828 -90.66 0.093581 0.0 1.0
math_symbols 0.023274 -73.18 0.220122 0.0 3.0
method_length 9.694222 50.19 15.829577 0.0 163.0
operators 2.917335 50.29 6.002709 0.0 83.0
describes_output 0.638844 51.86 0.480528 0.0 1.0
variable_assignments 1.043339 62.17 2.565082 0.0 40.0
method_calls 6.247191 80.88 14.204017 0.0 324.0
tasks 0.031300 272.06 0.203936 0.0 3.0
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Table D.10: Large differences in comment metrics for Vaadin

Metric Mean Diff (%) Std. Min Max

mentions_parents 0.000000 -100.00 0.000000 0.0 0.0
is_for_package 0.000000 -100.00 0.000000 0.0 0.0
is_line_comment 0.009346 -91.71 0.096271 0.0 1.0
hyperlinks 0.001038 -86.97 0.032225 0.0 1.0
variable_declaration 0.398754 -52.13 1.601350 0.0 23.0
is_for_annotation 0.003115 201.54 0.055757 0.0 1.0

Table D.11: Large differences in comment metrics for WordPress

Metric Mean Diff (%) Std. Min Max

mentions_parents 0.000000 -100.00 0.000000 0.000 0.00
is_for_package 0.000000 -100.00 0.000000 0.000 0.00
is_for_annotation 0.000000 -100.00 0.000000 0.000 0.00
is_for_interface 0.001373 -91.95 0.037037 0.000 1.00
is_for_constructor 0.007550 -80.48 0.086590 0.000 1.00
describes_inputs 0.168725 -59.45 0.373043 0.000 1.00
coverage 0.202103 -51.17 0.348048 0.000 1.00
describes_output 0.207275 -50.73 0.405494 0.000 1.00
flesch_ease 61.193376 55.18 60.186056 -1315.976 122.09
control_structures 2.040494 55.41 3.190238 0.000 40.00
is_line_comment 0.203844 80.90 0.402992 0.000 1.00
is_for_enum 0.002745 86.01 0.052342 0.000 1.00
is_block_comment 0.367193 288.43 0.482205 0.000 1.00
hyperlinks 0.038435 382.25 0.228239 0.000 3.00
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