
Open Universiteit
www.ou.nl

MASTER'S THESIS

Design Patterns

Supporting Design Process by Automatically Detecting Design Patterns and Giving
Some Feedback

van Doorn, Ed

Award date:
2016

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 19. Nov. 2022

https://research.ou.nl/en/studentTheses/e816341f-37da-4227-bf5b-28d16f69d348

Design Patterns
Supporting design process by automati-
cally detecting design patterns and giving
some feedback

E.M. van Doorn

St
ud

en
t:

85
08

83
52

5
D

at
e:

24
/0

8/
20

16

DESIGN PATTERNS
SUPPORTING DESIGN PROCESS BY AUTOMATICALLY
DETECTING DESIGN PATTERNS AND GIVING SOME

FEEDBACK

by

E.M. van Doorn

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Management, Science and Technology
Master Software Engineering

to be defended publicly on Wednesday August 24, 2016 at 14:00 PM.

Student number: 850883525
Course code: T9232B
Thesis committee: Prof. dr. M. C. J. D. van Eekelen (chairman), Open University

Dr. ir. S. Stuurman (supervisor), Open University

An electronic version of this thesis is available at http://dspace.ou.nl/.

http://dspace.ou.nl/

DEDICATION

This thesis is dedicated to my parents and my wife.
For my late parents, whose support I still experience.
For my wife, who listened endlessly to my struggles.

ii

ACKNOWLEDGEMENT

First of all, I would like to thank Marko van Eekelen and Sylvia Stuurman. They have spent
so much time to my guidance. I am also very grateful for offering this research subject and
opportunity to me. This research is in line with my interests and talents. By their guidance,
I have worked with pleasure to this research.
Rene de Winter, my former teamleader, I am grateful for offering the opportunity to start
this study. I would like to thank Matthieu Karel, former coordinator of OU activities of De
Haagse Hogeschool. He pointed out to me that, I could also choose a software engineering
subject. My colleagues Rene Vogels and Okan Zor, I am grateful for their advices and inter-
est.
For offering the LATEXtemplate, I thank former OU student Patrick Molijn.
For moral support and patience, I am grateful to my wife. She missed me.

iii

CONTENTS

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Research question . 1
1.2 Scope . 2
1.3 Research method . 2
1.4 Thesis overview . 2

2 State of the art 3
2.1 What is a design pattern . 3
2.2 Design pattern characteristics . 4
2.3 Design pattern detection. 4

2.3.1 Template matching . 4
2.3.2 Sum Of Products Expressions . 10
2.3.3 Rule based / Prolog . 11
2.3.4 4-tuples . 12

3 Selection detection method 14

4 Matching algorithm: Implementing and experimenting 18
4.1 Plan . 18
4.2 Implementing a matching algorithm . 19
4.3 Experiments . 21
4.4 Improvements for practical usage . 30

5 Comparing to related work 33
5.1 Aggregate Comparison . 33

6 Conclusions and Future work 37
6.1 Conclusions . 37
6.2 New results . 38
6.3 Future work. 39

A Appendix Approaches to find submatrices 40

B Appendix Tutorial for detection software 44

C Appendix Deliverables 47
C.1 quickstart.zip. 47
C.2 netbeansproject.zip . 48
C.3 xmi.zip and zargo.zip . 48

iv

CONTENTS v

D Appendix Legend UML class diagram 50

Bibliography 52
Books . 52
In Books . 52
Academic Articles . 52
In Proceedings . 53
Technical Documentation . 54

LIST OF FIGURES

2.1 Example class diagram –> graph . 5
2.2 Blondel’s algorithm . 7
2.3 Similarity between graphs; copied from [DSZ08] 8
2.4 Example Ba-Brahem . 12

4.1 Example Ba-Brahem . 22
4.2 Bridge pattern . 23
4.3 Bridge pattern . 24
4.4 Abstract Factory template and an implementation 25
4.5 13 design patterns . 29
4.6 Class diagram used for pattern detection and performance 32

D.1 Legend of UML symbols in class diagrams . 50
D.2 Legend of UML symbols in class diagrams . 51

vi

LIST OF TABLES

2.1 Generalization matrix . 5
2.2 Realization vector for interface Interf1 . 5
2.3 Similarities according Blondel . 10
2.4 Node similarities according Zager . 10
2.5 Edge similarities according Zager . 10
2.6 SOP-expressions of the system under consideration of figure 2.4 11
2.7 SOP-expressions of the Prototype pattern of figure 2.4 11
2.8 Corresponding relationships . 13

3.1 Evaluation detection methods . 17
3.2 Explanation of table 3.1 . 17

4.1 Permutation of prototype in the example of Ba-Brahem 22
4.2 Match between the Bridge pattern with one missing relationship and the ex-

ample of Ba-Brahem . 23
4.3 Frequencies of design patterns in example of Ba-Brahem 24
4.4 Gang of Four Patterns . 27
4.5 Summarized results of the detection algorithm 27
4.6 Frequencies of detected design patterns in figure 4.6 31

5.1 Software comparison . 36

B.1 Possible values of typeRelationship . 45

C.1 Content of quickstart.zip . 47

vii

SUMMARY

Since the nineties, design patterns are of interest. Since the beginning of this century, re-
search is done to the possibilities of recognizing design patterns in source code. There is
little research to recognizing design patterns in UML diagrams and possibilities to provide
feedback on those designs. This has led to the following research question: Are design pat-
terns in a UML class diagram automatically detectable, and can one automatically supply
some feedback? The research question is answered by a literature review followed by creat-
ing and testing a prototype, which recognizes design patterns and provides some feedback.

In literature UML class diagrams and design patterns are modelled using matrices, deci-
sion trees, boolean expressions, Prolog clauses and 4-tuples. Dong describes a method,
by which the various types of relationship can be denoted in one matrix. In his article,
however, there is no description of the algorithm by which a design pattern can be de-
tected.[DSZ08]

Unsuccessfully attempt has been made to write a detection algorithm by applying the steep-
est descent method and Richardson iteration to the method of Dong.

Next, four methods for detecting design patterns are compared. The corresponding arti-
cles, including the article of Ba-Brahem, contain no description of an algorithm by which
design patterns can be detected. The method of Ba-Brahem, which is based on the use of
4-tuples, seemed most promising. This method also offers the possibility to detect design
patterns, which are only partially present. It can also used to give feedback on missing re-
lationships.

For the method of Ba-Brahem I have designed and implemented an algorithm, which is
able to detect design patterns. The prototype, which implements the method of Ba-Brahem
is able to detect 17 of the 23 Gang of Four patterns. Within one second 13 different design
patterns are detected in a class diagram, which contains 57 classes en 61 relationships. See
figure 4.5 at page 29. In a second experiment a class diagram represented by a XMI files,
which contains 33 classes and 49 associations, was used. The XMI file orginates from Ar-
goUML. This tool is used to design class diagrams. Within one second 17 different design
patterns were detected. See figure 4.6 at page 32. The prototype is also able to detect design
patterns, which are partially present in a class diagram. When a class diagram includes a
number of classes and interfaces, which form a design pattern, feedback is specified about
the relationships between these classes and interfaces, which are not part of the design pat-
tern.
The prototype has made it clear, that instead of a 4-tuple a 3-tuple can be used. One of the
attributes of a 4-tuple is intended to indicate whether a class has a self-reference. However,
this attribute provides no contribution for the recognition of the Singleton design pattern.
An essential characteristic is a self-reference of an object and not a self-reference of a class.
The prototype is compared with four programs, which are described in literature. Only one

viii

LIST OF TABLES ix

program provides feedback, which is more comprehensive than the feedback from my pro-
totype. Two programs have a graphical user interface, which displays the detected design
patterns. How a design patterns is read, is either not disclosed or less simple compared
to my prototype. For other issues, such as, recall, precision and performance, the score
my prototype is at least equal. The Open University considers to make my prototype user
friendly, such that it can be used for educational purposes.

SAMENVATTING

Vanaf de negentiger jaren staan design patterns in de belangstelling. Sinds het begin van
deze eeuw is onderzoek gedaan naar de mogelijkheden om design patterns in de code te
herkennen. Er is nog weinig onderzoek verricht naar het herkennen van design patterns in
UML diagrammen en de mogelijkheden om op een ontwerp feedback te geven. Dit heeft
geleid tot de volgende onderzoeksvraag: Zijn design patterns in een UML class diagram
automatisch detecteerbaar en kan op herkende design patterns automatisch enige feedback
worden gegeven? De vraag is beantwoord door een literatuurstudie gevolgd door het maken
en testen van een prototype, die design patterns herkent en feedback geeft.

In de literatuur worden UML class diagrammen en design patterns gemodelleerd met be-
hulp van matrices, beslissingsbomen, boolean expressies, Prolog clauses en 4-tuples. Dong
heeft een methode beschreven, waarmee de diverse relatietypes in één matrix kunnen
worden weergegeven. In zijn artikel ontbreekt echter een beschrijving van het algoritme,
waarmee een design pattern kan worden gedetecteerd.[DSZ08]

Zonder succes is getracht om met behulp van steepest descend methode en Richardson
iteration een detectie algoritme te schrijven, die op de methode van Dong toegepast kan
worden.

Vervolgens is een viertal methodes om design patterns te detecteren vergeleken. De be-
treffende artikelen, waaronder die van Ba-Brahem, bevatten geen beschrijving van een
algoritme waarmee design patterns gedetecteerd kunnen worden. De methode van Ba-
Brahem, die gebaseerd is op het gebruik van 4-tuples, leek het meest kansrijk. Deze methode
biedt ook de mogelijkheid om design patterns, die slechts gedeeltelijk aanwezig zijn, te
herkennen. Als feedback kunnen de ontbrekende relaties eenvoudig worden weergegeven.

Voor de methode van Ba-Brahem heb ik een algoritme beschreven en geïmplementeerd
waarmee design patterns kunnen worden gedetecteerd. Het prototype, die de implemen-
tatie van de methode van Ba-Brahem bevat, kan 17 van de 23 Gang of Four patterns herken-
nen. In een class diagram met 57 classes en 61 relaties zijn 13 verschillende design patterns
binnen één seconde herkend. Zie figuur 4.5 op blz. 29. In een tweede experiment is een
class diagram met 33 classess en 49 associaties als XMI file ingelezen. Deze file is afkomstig
van ArgoUML, een tool die gebruikt wordt om class diagrammen te ontwerpen. Hierin zijn
binnen één seconde 17 verschillende design patterns herkend. Zie figuur 4.6 op blz. 32.
Tevens kunnen design patterns, die gedeeltelijk aanwezig zijn in een class diagram, wor-
den herkend. Als een class diagram een aantal classes en interfaces bevat die een design
pattern vormen, kan als feedback worden aangegeven, welke relaties tussen deze classes
en interfaces geen onderdeel zijn van het design pattern.
Het prototype heeft duidelijk gemaakt dat in plaats van een 4-tuple een 3-tuple gebruikt
kan worden. Een van de attributen van een 4-tuple is bestemd voor het aangeven of een

x

LIST OF TABLES xi

class een self-reference heeft. Dit attribuut levert echter aan het herkennen van het Single-
ton design pattern geen bijdrage. Het is namelijk essentieel voor dit design pattern, dat een
object een self-reference heeft.

Het prototype is vergeleken met een viertal programma’s die in de literatuur zijn beschreven.
Slechts één programma kan feedback geven die bovendien uitgebreider is dan de feedback
van mijn prototype. Twee programma’s hebben een grafische user interface, waarmee de
resultaten worden getoond. Het invoeren van design patterns is óf niet beschreven óf min-
der eenvoudig dan met mijn prototype. Op de overige punten, zoals recall, precision en
performance scoort mijn prototype minstens gelijkwaardig. De Open Universiteit over-
weegt mijn prototype gebruikersvriendelijk te maken en voor het onderwijs in te zetten.

1
INTRODUCTION

This chapter introduces the research and gives an overview of the next chapters.
Simula is probably the first object oriented language, which was introduced in the sixties.
Object oriented programming became popular after introduction C++ during the late 80’s.
After introduction of OMT by Rumbaugh, object oriented analysis and design became an
important modelling technique. UML was introduced about 1995 and is widely accepted
as a general object modelling language.
Caused by the popularity of object orientation, recurrent design problems occurred. Recy-
cling the answers to this problems improved the quality of analysis and design. In the 90’s
a well known book about recurrent design problems and answers is published [Gam+95].
This book is still the standard book about the design patterns. Professionals frequently use
design patterns and therefore design patterns are an educational subject.
This thesis is about detecting design patterns in UML class diagrams and also about giving
feedback on UML class diagrams, which comprise design patterns.

1.1. RESEARCH QUESTION
The research goal is to conduct a survey of possibilities to

• automatically detect design patterns in an UML class diagram

• give feedback on possible presence of design patterns in an UML class diagram

If feasible, this will result in a proof of concept written in Java.

The research question is:

Are design patterns in a UML class diagram automatically detectable, and can one au-
tomatically supply some feedback?

1

2 1. INTRODUCTION

Subquestions are:

• What is a design pattern?

• What are the characteristics of a design pattern in an UML class diagram?

• Which methods to detect design patterns are described in literature?

• Which and how feedback can be supplied, based on integral or partially existence of
a design pattern in an UML class diagram?

1.2. SCOPE
By using sequence diagrams or source code, the dynamic behaviour can be used for detect-
ing design patterns. This kind of research is, however already done [Wen03].
If feasible, a prototype will be made which is enable to detect design patterns, give feedback
and use class diagrams which originate from ArgoUML 1. This choice is made, because Ar-
goUML is used by the OU. The prototype may be used in future by the OU.

1.3. RESEARCH METHOD
The goal of this research is to deliver a prototype or a proposal for detecting design patterns
and giving feedback. This research is:

• a constructive research, when a prototype is made and tested [Crn10] –or–

• theoretical, when it ends with a proposal.
In this case the feasibility has to be justified on theoretical grounds.

The research method is therefore quite simple. After studying literature to answer the first
three subquestions, a choice has to be made between implementing a prototype or trying
to formulate a proposal, by which design patterns can be detected and feedback can be
given.
Depending on the choice, a plan for the next phase will be made. This second plan will be
about, implementing and testing, or continuing the search for literature and formulating a
feasible proposal.

1.4. THESIS OVERVIEW
This master thesis is organized as follows. Chapter 2 provides an overview of literature
about detecting design patterns. The chapter 3 describes how the detections are compared
and why the 4-tuple method is chosen to implement. Chapter 4 descibes the matching
algorithm and the results of the experiments. In chapter 5 my implementation is compared
to implementations of other researches. The last chapter contains the conclusions of this
research, some new insights and proposals for future work.

1http://argouml.tigris.org/

2
STATE OF THE ART

This chapter provides an overview of related work and answers to three research subques-
tions.

2.1. WHAT IS A DESIGN PATTERN
Many skills and disciplines have frequently recurring problems. Based on experience, well
known general solutions to each of those problems exist. Software design has also recur-
ring problems. The description of the problem and a well known general reusable solutions
is called a design pattern.

Design patterns are formally defined as:
’Design patterns are descriptions of communicating objects and classes that are customized
to solve a general design problem in a particular context.’ [Gam+95]

The book written by Gamma et al. may be seen as the standard work of design patterns.
It contains 23 design patterns, which are classified in three groups: creational, structural
and behavioural. In honour of the four authors, the 23 design patterns are called Gang of
Four (GoF) patterns. Nowadays, there are many more design patterns, which are used in
different levels of software engineering:

1. Architectural
These patterns are used to define fundamental structures of the software systems.

2. Design
These patterns are used to design subsystems and components.

3. Idiom
These patterns are used at programming level.

[Cop97]

This research focusses on the second level, to which all 23 design patterns belong.

3

4 2. STATE OF THE ART

2.2. DESIGN PATTERN CHARACTERISTICS

This section provides a number of measurable characteristics, which are denoted in litera-
ture to identify design patterns.

The characteristics are based on:

’The design pattern identifies the participating classes and instances, their roles and
collaborations, and distribution of responsibilities.’ [Gam+95]

Characteristics, which are named in research are class, abstract class, interface, associa-
tion, generalization, aggregation, creation, invoked and inherited method, similar method
invocation, method parameter reference [DSZ08] [YWG04] [Tsa+05]. The meaning of most
the characteristics is obvious. However, creation relates to the dependency in which an ob-
ject of the class is created within another class. If two classes have methods with the same
signature, then these methods are called similar methods. When a method has a parameter
from another class, it is called a method parameter reference, which is also a dependency.

It is unclear, whether these characteristics supply sufficient information to distinguish all
GoF patterns. Some researchers claim to detect all GoF patterns. However, the design pat-
terns, Strategy and State pattern are structurally identical, and vary only in their behaviour
[Nie+02]. To detect the Singleton, Flyweight, and Template Method patterns code specific
information is needed. The detection of the Facade pattern is impossible, because of its
abstract nature [Tsa+05].

Based on the above given framed quotation of design pattern characteristics, collabora-
tions, and distribution of responsibilities are partly covered by association, generalization,
and aggregation. Responsibility is also a matter of implementation, and therefore not ap-
plicable to this research.

2.3. DESIGN PATTERN DETECTION

For many years the problem of detecting design patterns is investigated. The first attempt
to automatically detect design patterns is performed by Kyle Brown [Bro96] in 1996. [Tsa+06]
[RG13] Still, a perfect solution is not found. In this section a number of approaches is given
to automatically detect design pattern in UML class diagrams.

2.3.1. TEMPLATE MATCHING

Template matching is a technique to find a part/template in an environment, which resem-
bles the given part/template. In computer vision, such techniques are used to find a part in
pictures. A similar problem is the search for a subgraph in a graph, which is equivalent to
the search for a submatrix in a matrix. A class diagram and therefore a design pattern may
be represented by matrices and vectors.

2.3. DESIGN PATTERN DETECTION 5

Super

Sub1 Sub2

Class1Interf1

Abstr

Class2

Figure 2.1: Example class diagram –> graph

A legend of the symbols of an UML class diagram is given in appendix D.

The characteristics: associations, aggregations, composites, dependencies, generalizations
between classes, may be represented by square matrices. An example is table 2.1 for figure
2.1. For every interface, a vector denotes for every class whether the class implements the
interface. An example is table 2.2 for figure 2.1. There is one vector, which describes for
every class whether the class is abstract.

The (non)existence of an edge in a graph corresponds to the value zero or one in the
matrix.

Abstr Class1 Class2 Interf1 Sub1 Sub2 Super
Abstr 0 0 0 0 0 0 0
Class1 0 0 0 0 0 0 0
Class2 0 0 0 0 0 0 0
Interf1 0 0 0 0 0 0 0
Sub1 0 0 0 0 0 0 1
Sub2 1 0 0 0 0 0 0
Super 0 0 0 0 0 0 0

Table 2.1: Generalization matrix

Interf1
Abstr 0
Class1 1
Class2 0
Interf1 0
Sub1 0
Sub2 0
Super 0

Table 2.2: Realization vector for interface Interf1

6 2. STATE OF THE ART

It is possible to combine these matrices and vectors into one overall matrix. Combining
is realized in two steps.

• The vectors are extended to square matrices.
The new columns only consist of zeroes.

• The overall matrix ovi , j = 2associ ati onM atr i xi , j ∗3ag g r eg ati onM ati xi , j ∗5...∗7...∗11... [DSZ08]

Such overall matrices may be constructed for the system under consideration and the
design pattern. So, finding a design pattern in a class diagram, is equivalent to finding a
submatrix in a matrix.

A design pattern, (template) may not exactly match a part of a class diagram. Therefore
a measure of similarity between the pattern and the part is needed. In computer vision
normalized cross validation is often used to determine similarity. Two matrices could be
compared by normalized cross validation

CC n =
∑

f (x) · g (x)∣∣ f (x)
∣∣ ∣∣g (x)

∣∣
where f (x) and g (x) are vectors.
However, this approach is only useful, if the order of rows and columns, and therefore the
classes and interfaces correspond. Otherwise, every permutation of the order of rows and
columns has to be compared, which is time consuming. There are several ways to circum-
vent the problem.

Dong et al. preprocessed the overall matrix to limit the space search. For instance, all
rows and columns which consist only of one’s are removed. This follows from: if an ele-
ment in the overall matrix ovi , j = 1 then all the exponents are zero. Therefore, there are no
relationships between the classes and interfaces.
The method is applied to the sources of JUnit, JHotDraw, JRefactory and Log4j. Multiple
instances, and variants of four design patterns are recognized.[DSZ08].

Tsantalis et al. build a huge decision tree, containing 20 GoF design patterns, decision
points and conclusions (a design pattern). To make a decision, nine characteristics are
available.[Tsa+05].

Another way to circumvent the problem of comparing many permutations of rows and
columns, is to use Blondel’s algorithm. This algorithm is only applicable to adjacency ma-
trices, which contains only one’s en zeroes, and not for the overall matrix. Blondel’s algo-
rithm calculates the similarity for every pair of classes.

BLONDEL’S ALGORITHM

Blondel’s algorithm is based on the concepts of authorities and hubs in one graph, which
represents websites. An authority is the origin of information, and a hub points to authori-
ties. The quality or score of an authority is defined as the sum of the scores of hubs pointing
to the authority. And vice versa: the quality or score of a hub is defined as the sum of the
scores of the authorities to which it points. This leads to a recurrence relation between the

2.3. DESIGN PATTERN DETECTION 7

scores of hubs and authorities.
This idea may be generalized. See figure 2.2

Figure 2.2: Blondel’s algorithm

In this figure G A and GB corresponds to a design pattern and a system under consider-
ation. The similarity between every pair of vertices have to be determined.

Instead of websites pointing to each other, now the vertices of graph G A point to GB : if
there is an edge (ai , a j) in G A, and there is an edge (bi ,b j) in GB then, there is an edge be-
tween (ai ,bi) and (a j ,b j) in {G A ×GB }.
For every element of the adjacency matrix {G A ×GB }i j a score xi j is defined as: sum of the
scores of the incoming and outgoing scores of the vertices i and j .

In this example: The similarity between vertices i and j can be calculated by:
xi j = (xcr +xcs +xdr +xd s)+ (xap +xaq +xbp +xbq)
The formulas for the similarities between the other vertices can be calculated in a similar
way.

In general this results in the following recurrent equation:

Xk+1 = B Xk AT + B T Xk A,

where A and B are the adjacency matrices of G A and GB and X = {xi j }.
The normalized equation is:

Zk+1 = B Zk AT + B T Zk A∥∥B Zk AT + B T Zk A
∥∥

F

The symbol F indicates the Frobenius norm:
∥∥A

∥∥
F =

√√√√ n∑
i=1

m∑
j=1

a2
i j

8 2. STATE OF THE ART

zi j is defined as the similarity of vertex i of A and j of B.

The similarities are approximated by the algorithm:

1. Z0 = 1 (a matrix which contains only ones)

2. Calculate an even number of times:

Zk+1 = B Zk AT + B T Zk A∥∥B Zk AT + B T Zk A
∥∥

F

until Z has sufficiently converged.

This approach is used by two groups of researchers [GD12] [DSZ08].

Figure 2.3 shows the idea in a very simplified version. The first matrix represents a design
pattern: graph A. The second matrix represents the system under consideration: graph B.

Figure 2.3: Similarity between graphs; copied from [DSZ08]

Instead of the Frobenius norm Dong, uses the 1-norm for every column (
∥∥X

∥∥
1 =

n∑
i=1

|xi |).

Therefore, if a column has only one number greater than zero, its value is one. In the next
paragraph the results are given for the Frobenius norm.
Two perfect matches between {X, Y} and a subset of {1, 2, 3, 4, 5} can be made: (X, Y) → (1,

2.3. DESIGN PATTERN DETECTION 9

2) and (X, Y) → (1, 3). The third match: (X, Y) → (4, 5) however is not discovered. My im-
plementation of the algorithm confirms this fault. Brief experiments give reason to suspect
that the fault may only occur, if B is not a connected graph.
Making the match between {X, Y} and a subset of {1, 2, 3, 4, 5} is not described by the two
groups of researchers [GD12] [DSZ08]. Making the match is an example of the assignment
problem, which belongs to the field of Operation Research, and can be solved by a standard
algorithm: the Hungarian method [Tah92].

This approach is able to detect more instances of a design pattern in a class diagram. It
is also able to detect variants of design patterns. Like humans, the approach has difficulties
to detect design patterns if they intersect [DSZ08].

Tsantalis et al. apply this approach to the Java frameworks JHotDraw, JRefactory and JUnit.
The methods efficiency is improved by reducing the size of the graphs, based on the idea
that many design patterns involve class hierarchies which communicate. The hierarchies
are separated for individual investigation. The approach is able to detect 10 design patterns
within the frameworks. It is not clear, whether 10 is the maximum number of detectable
patterns [Tsa+06].

ZAGER’S ALGORITHM

An extension of Blondel’s algorithm is described by Laura Zager [ZV08]. Blondel’s algorithm
is based only on the similarity of nodes and the initial 1−matrix. Besides similarity of nodes,
Zager also uses the similarity of edges. An edge in G A is similar to an edge in GB , if their
source and terminal nodes are similar.
Before the algorithm can be defined, I will first give some necessary definitions.

For the adjacency matrix A, AS and AT are defined by:

[AS]i j =
{

1 if j is the source node of edge i

0 otherwise

[AT]i j =
{

1 if j is the target node of edge i

0 otherwise

Like Blondel’s algorithm, xi j defines the similarity score of node i in G A and node j in GB .
The similarity score for the edge with node i in G A and node j in GB is denoted as yi j . The
iterative values of xi j and yi j are calculated by:

Yk+1 = B T
S Xk AS + B T

T Xk AT∥∥∥B T
S Xk AS + B T

T Xk AT

∥∥∥
F

Xk+1 = BS Yk AT
S + BT Yk AT

T∥∥∥BSYk AT
S + BT Yk AT

T

∥∥∥
F

where X = {xi j } and Y = {yi j }

The similarity scores are approximated by the algorithm:

10 2. STATE OF THE ART

1. Choose an arbitrary initial matrix X0, and an arbitrary positive value α.

2. Calculate Y0 = α X0

3. Iterate Yk+1 and Xk+1, until they has sufficiently converged.

When the algorithms of Blondel (with the Frobenius norm) and Zager are applied to
figure 2.3, the similarity matrices are:

1 2 3 4 5
X 0.57735 0.00000 0.00000 0.00000 0.00000
Y 0.00000 0.57735 0.57735 0.00000 0.00000

Table 2.3: Similarities according Blondel

1 2 3 4 5
X 0.81650 0.00000 0.00000 0.00000 0.00000
Y 0.00000 0.40825 0.40825 0.00000 0.00000

Table 2.4: Node similarities according Zager

2 → 1 3 → 1 5 → 4
Y → X 0.70711 0.70711 0.00000

Table 2.5: Edge similarities according Zager

Like the algorithm of Blondel, the matrices according to Zager’s algorithm, do not show
any similarity at all between the nodes and edges (X, Y) and (4, 5).

2.3.2. SUM OF PRODUCTS EXPRESSIONS
This approach is based on the representation of relationships by means of Sum Of Products.
A Sum of products is a number of boolean terms, which are OR-ed. Each term has boolean
values, which are AND-ed.
Example of SOP-expression:

f (A,B ,C) = (A∧B ∧C)∨ (Ā∧B ∧ C̄)

= (111∨010)

=∑
(111,010)

Instead of the boolean operations ∧ and ∨ the operations . and + may be used. So
f (A,B ,C) = A.B.C +B.C

Manjari Gupta proposed the following approach [GPT11]. For the types of relation inher-
itance, association, aggregation, dependency SOP-expression can be made. This types of
relation are transitive. Which means in example for inheritance: if A inherits from B, and B

2.3. DESIGN PATTERN DETECTION 11

inherits from C, then A inherits from C.
For figure 2.4 the SOP-expressions of the system under consideration are denoted as:

System under consideration
SOP(directed association) = A.B + A.C.B
SOP(generalisation_1) = D.B
SOP(generalisation_2) = D.E
SOP(dependency) = E.C

Table 2.6: SOP-expressions of the system under consideration of figure 2.4

Prototype pattern
SOP(directed association) = P.Q
SOP(generalisation) = R.Q

Table 2.7: SOP-expressions of the Prototype pattern of figure 2.4

Detecting a design pattern in a class diagram implicates that all the SOP-expressions of
the design pattern should occur in the SOP-expressions of the class diagram.

Algorithms to systematically search for corresponding SOP-expressions and to match the
results of the search are not given. This approach is not implemented, through which ex-
perimental results are missing. Another limitation is the impossibility to represent a rela-
tionship for a class to itself. As a result, the Singleton pattern cannot be discovered.

The approach is able to detect multiple occurrences and variants of design patterns.

Manjari Gupta also wrote an article of Product Of Sums, which is almost identical to her
article about Sum Of Products. The conclusion in her second article even contains the
phrase ’into sum of product (POS)’ instead of ’into product of sums (POS)’
The difference is the interchange of sums and products.

This second article does not describe the search and matching algorithm either. [GR14]

2.3.3. RULE BASED / PROLOG
Searching for a pattern is difficult and elaborate to implement. To circumvent this problem,
one can use Prolog, because a general depth first searching algorithm is part of a compiled
Prolog program. Prolog is a declarative language. A design pattern is declared by facts and
rules. The participating classes are facts and the several types of relationships are repre-
sented by rules. This is done by Prechelt for the design patterns Adapter, Bridge, Compos-
ite, Decorator and Proxy [PK98]. Four benchmarks with 9 - 343 classes are conducted. Due
to soft rules to describe patterns, a recall of 100% is realized, but the precision is at most
50%. The biggest benchmark has a precision of 41%, which took 36 seconds in 1998.

The research of Bergenti may be seen as a continuation of the aforementioned research.
Besides, a class diagram Bergenti also uses collaboration diagram, which he uses to refine

12 2. STATE OF THE ART

the Prolog rules. His software could detect: Factory Method, Prototype, Abstract Factory,
Composite, Decorator, Adapter, Bridge, Proxy, Observer, and Iterator.
When a pattern is detected, the software verifies a set of design rules. The rules produces
feedback to improve the design. The software is integrated with ArgoUML so that real time
feedback is given.[BP00]

2.3.4. 4-TUPLES
In this section a proposal of Ba-Brahem et al. is described to detect (incomplete) occur-
rences of design patterns [BQ14]. The concepts class and relationship correspond to vertex
and edge. The terms vertex and edge are used in the environment of mathematics and al-
gorithms. The terms class and relationship are used in the environment of design.

Instead of using adjacency matrices for representing all sorts of relationships, this approach
uses 4-tuples. The tuple (A, B, C, D) stands for a relationship between the classes/interfaces
A en B. C stands for the type of the relationship and D indicates a self-loop existence. Based
on an example of Ba-Brahem, see figure 2.4, an outline of the proposal is given.

A

B C

D E

P Q

R

System under consideration Prototype pattern

Figure 2.4: Example Ba-Brahem

The first step is building two sets of 4-tuples: SE an DPE, which represent the system
under consideration and the design pattern.
SE = { (A, B, 1, 0), (C, B, 1, 0), (A, C, 1, 0), (D, B, 3, 0), (E, C, 3, 0),(D, E, 2, 0) }
DPE = {(P, Q, 1, 0), (R, Q, 3, 0)}
The number of edges of DPE is set to n: n = |DPE |.

The second step is iterative:
while n > 0
build a table, see table 2.8, which contains n edges of SE corresponding to edges in DPE.
In this example SE contains three occurrences of the design pattern. The algorithms con-
tinues with step 3.
If there is no row with n corresponding 4-tuples, n is decremented and step 2 is repeated.

2.3. DESIGN PATTERN DETECTION 13

Solution design pattern: (P, Q, 1, 0) (R, Q, 3, 0)
1 system: (A, B, 1, 0) (D, B, 3, 0)
2 system: (A, C, 1, 0) (E, C, 3, 0)
3 system: (C, B, 1, 0) (D, B, 3, 0)

Table 2.8: Corresponding relationships

Step 3 gives the conclusion:

• If all elements of DPE exist in SE (n = |DPE |), then the system under consideration
contains the design pattern. The number of rows equals the number of occurrences
of the design pattern.

• if not all elements of DPE appear in SE (0 < n < |DPE |), the design pattern exists
partially in the system under consideration.

• If n = 0 then the design pattern does not exist in the system under consideration at
all.

They claim that 20 GoF patterns and multiple existences of patterns will be detected.

Their proposal has a weakness. If a very small number of elements of DPE appear in SE,
which usually will be, a partially occurrence will be given. This correspondence may not be
useful.

3
SELECTION DETECTION METHOD

In this chapter a choice is made between the methods for design pattern detection. First,
the uncertainty of all data is described. Second, the criteria and the weight of the criteria
for comparing detection methods are described. Third, implementable methods are cho-
sen. Fourth, the values of implementable methods are given. At last, a choice is made.

Many articles which describe a method for detecting design pattern, have a lack of informa-
tion. Some articles are merely a proposal for a method and therefore lack of experimental
results. Some authors left behind an essential part of the detecting algorithm, by which the
algorithm is hard to implement. In those cases, the evaluated value of the criterion is an
educated guess.

The criteria for comparing detection methods, which are used in table 3.1 at page 17 are:

• Is the method implementable?
A method may be hard to implement for several reasons. The description of the algo-
rithm may be incomplete or very elaborate to implement. For instance, the algorithm
described by Gupta is incomplete and Tsantalis uses a huge handmade decision tree.
It is obvious, a method should be implementable to be of any use. Therefore, non-
implemental methods will be rejected.

• Recall en precision
These concepts are defined as:

Recal l = tp

tp + fn

Pr eci si on = tp

tp + fp

where tp , fp and fn are the numbers of true positives, false positives and false nega-
tives
Existence of a design pattern should be detected when possible. Incorrect recogni-
tion shall prejudice the confidence in the software. Therefore, the weight of recall and
precision is high.

14

15

• Number of recognizable patterns
Only a few authors mention the number of design patterns, which are recognized
in their experiments. On before hand, some authors confined the number of design
patterns in their research.
Opposed to the number of recognizable design patterns, a high recall and precision
is preferable, therefore the weight of this criterion is low.

• Variants of design patterns are detectable.
A variant of a design pattern is a lookalike of the given template. For instance, a ordi-
nary association may be used in stead of an aggregate association. To be of any use
in educational and professional environments, variants have to be detectable and
therefore the weight is high.

• Usable for feedback
A follow-up of this research may be the elaboration of feedback messages. Giving
feedback was not an issue in the discussed articles. In some cases, it is not clear
whether feedback can easily be given or not. For instance, rule based methods will
need for every deviation of a design pattern a separate rule. The number of rules will
therefore increase multiple times.
Taking into account the follow-up of this research, the criterion has a high weight.

To realize a usable system, only methods which are implementable in reasonable time
should be considered.

Not implementable

• Template matching as described by Dong
This method takes into account many characteristics of a design pattern. The occur-
rence of the characteristics are combined into one matrix. Although, this is a useful
approach, the detection algorithm is unclear.
Instead of using the sketched detection algorithm in one or another way, I briefly
investigated three algorithms, which use the combined characteristics. These ap-
proaches are described in appendix A. At first, I tried the steepest descend approach.
Sadly, this approach did not result in a useful solution. Secondly, the Richardson iter-
ative approach was investigated, without success. At last the brute force search was
investigated. Very soon it became clear that runtime would be unacceptable long.

• Template matching as described by Tsantalis
A huge handmade decision tree have to be made, which is time consuming to con-
struct.

• Sum Of Products Expressions
After representing the design pattern and the system under consideration, it is un-
clear which steps have precisely to be made to determine the existence of the design
pattern.

Implementable
Some methods are implementable, but need an extension to be useful.

16 3. SELECTION DETECTION METHOD

• Blondel and Zager
Although, calculating the similarity between nodes of a design pattern and the system
under consideration is straightforward, an extension is needed to determine which
nodes of the system under consideration are to be assigned to a design pattern. This
problem is equivalent to the assignment problem in the field of Operation Research.
The Hungarian method is the appropriate algorithm to solve the problem. Imple-
mentation of the algorithm is available on the internet.

A simple example (see also figure 2.3 at page 8):

Similarity matrix S =

(1 2 3 4 5

X 1 0 0 0.00097 0
Y 0 1 1 0 0.00097

)
Making a match by hand is quite simple: X is matched by 1 and Y is matched by 2 or
3. In more complicated cases the Hungarian method is needed to make the matches.

Regrettably, the methods are only applicable to adjacency matrices. These matri-
ces only contains ones and zeros. Therefore, only one type of relationships between
classes can be denoted. An alternative is to make no differences between the several
types of relationships. The occurrence of every type of relationship will therefore be
denoted by a one.
After applying the Hungarian method, it has to be checked whether every pair of cor-
responding relationships are of equal type. When not every pair of edges are of equal
type then the Hungarian method has to deliver another solution, which maybe hard
to implement.
In table 3.1 these extensions are denoted as Extended Blondel and Extended Zager.

• Rule based
Design patterns only have to be denoted by Prolog clauses. It encompasses the names
of the classes and their relationships including their type.

• 4-tuples
This method has just one problem: matching the relationships of the design pattern
and the system under consideration. A backtracking search algorithm should solve
this problem.

Some criteria are related. The ability to recognize many variants of design pattern may
cause to lower precision, because some related classes are incorrectly recognized as a de-
sign pattern. The recall will be high, because only a very few design patterns will not be
recognized.
The methods Extended Blondel and Extended Zager have the ability to recognize variants of
design patterns, because the similarity between nodes does not have to be one. Nodes do
not have to match completely. Therefore, these methods score highest for recall and just
acceptable for precision.
The 4-tuple method will only match edges, if they fully match and not like Extended Blon-
del partially match. Variants of design patterns will be detected, as these do not diverge
significantly from the template, or a variant is given as a template. Compared to Extended

17

Blondel, recall is lower, but precision is highest. It is easy to give feedback, because it is easy
to detect, which edges of the template do not occur in the system under consideration.
Therefore the score of usable for feedback is highest
The several low values for Rule based are motivated by the describing article [PK98].

In table 3.1 the values of the criteria are shown. The weight are low, high and highest. The

im
p

le
m

en
ta

bl
e

N
u

m
be

r
of

re
co

g-

n
iz

ab
le

p
at

te
rn

s

Va
ri

an
ts

ar
e

de
te

ct
ab

le

R
ec

al
l

Pr
ec

is
io

n

U
sa

bl
e

fo
r

fe
ed

ba
ck

To
ta

l

Weight 3 1 2 3 3 2

Extended Blondel 0 + + ++ 0 - 9
Extended Zager 0 + + ++ 0 - 9
Rule based + + - - - - - -8
4-tuples + + + + + + 14

Table 3.1: Evaluation detection methods

meaning and the value of the tokens in table 3.1 are described in table 3.2

Token Description Value

- - Not possible, very hard or
very elaborate to realize.

-2

- Hard or elaborate to realize.
Modest

-1

0 Just acceptable. 0
+ Realizable, acceptable. 1

++ Easy realizable. 2

Table 3.2: Explanation of table 3.1

The total in table 3.1 is calculated by
∑

wei g ht ∗ value.

Conclusion
Table 3.1 leads to the conclusion that 4-tuples is a reasonable choice for the remainder of
this research.

4
MATCHING ALGORITHM: IMPLEMENTING

AND EXPERIMENTING

This chapter starts with the basic algorithm of Ba-Brahem, which lacks a matching algo-
rithm. Next, I formulate in pseudo code a matching algorithm. A prototype which con-
tains the matching algorithm is used to experiment. Two series of experiments made clear
that the prototype is able to identify 17 out of GoF 23 patterns within acceptable time. It
is explained why four patterns cannot be identified. Issues for the remaining two design
patterns are discussed. The chapter ends with the description of some practical improve-
ments.

4.1. PLAN
Experiments should make clear, whether the proposal of Ba-Brahem contributes to detect-
ing design patterns. The essential part of his proposal comprises the code beneath (see also
figure 2.4 and table 2.8 at page 13).

n = number of relationships which comprise the design pattern.

while n > 0 do
{

Fill a table with relationships of the system under consideration,
which match the relationships of the design pattern.
/*
* How this table is filled, is unexplained.
*/

if (the table contains rows with n filled columns) then
print solutions
exit

else
n--

}

18

4.2. IMPLEMENTING A MATCHING ALGORITHM 19

There are two major issues:

• How to implement an algorithm which fills the table? To fill the table, matches be-
tween the relationships of the design pattern and the relationships of the system un-
der consideration have to be made.

• Will the algorithm detect design patterns within reasonable time?

If the answers would be disappointing, another detection algorithm had to be chosen.
Other issues, such as how read the templates and the transformation of the system un-
der consideration to 4-tuples are seen as less important. These issues would not lead to
failure of the experiments.
These considerations lead to the following steps:

1. Start with the greatest risk: implement a matching algorithm.

2. Test the implementation with the example of Ba-Brahem, figure 2.4, which contains
inheritance, associations and dependency.

3. Test the implementation with the Bridge pattern with an extra relationship. This ex-
ample contains an aggregate, inheritance and associations.

4. Iterative add GoF design patterns to the set of already detectable patterns.
The goals of this last step are:

• Determine detectable design patterns.

• Determine the performance of the algorithm, when the system under consider-
ation grows.
During this step, all design patterns and the system under consideration are
hard coded.
During the last step, design patterns and the system under consideration will be
read from file i.c. from the commandline and the tests will be repeated

• Improve the algorithm when necessary.

5. Improvements for practical usage
The templates of the design patterns and the system under consideration will be read
from disk. Reading the system under consideration as a XMI-file is preferred. In fu-
ture, results of educational exercises may be delivered as a XMI-file. This type of file
can be produced by the UML modelling tool ArgoUML.

4.2. IMPLEMENTING A MATCHING ALGORITHM
The algorithm which matches the relationships of a design pattern with a part of the system
under consideration, was not described by the proposal of Ba-Brahem. A natural approach
is to match as many relationships of a design pattern as possible, until all are matched or
a relationship of the design pattern cannot be matched. If a relationship of the design pat-
tern cannot be matched, the forgoing match has to be undone and replaced by another
match. Because of this backtracking nature, a recursive algorithm is appropriate.

The algorithm was first written in mainly natural language and Java. In several steps the

20 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

natural language were replaced by Java code. One these steps is given below.
This mix of Java and structured language clarifies the algorithm, which matches, if possible,
the relationships of a design pattern with the relationships of the system under considera-
tion.
The recursive method is part of a class, which represents the design pattern. The relation-
ships of the system under consideration are represented by the parameter fta, which is an
array of fourtuples 1

The main line of the recursive method: Try to match a fourtuple of the design pattern with
a fourtuple of the system under consideration. Starting by startIndex = 0 until startIndex
equals the number fourtuples of the design pattern.

Ba-Brahem proposal enables detecting a design pattern partially. To realize this feature,
the parameter maxNotMatchableEdges is used. If in the initial call maxNotMatchableEdges
is set to zero then the complete design pattern has to be matched.

boolean findMatch(FourTupleArray fta, int startIndex,
MatchesNames matchedClassNames,
int maxNotMatchableEges)

{
boolean found;
// if a recursive call has found a complete match, its value is true.

if (allFourtuplesAreMatched(startIndex))
{

if (isUniqSolution())
showSolution();

return true;
}

found = false;
// No complete match is found yet.

dpFt = getFourtuple(startIndex);
// The current fourtuple of the design pattern,
// which has to be matched.

for every fourTuple ft of fta do
// ft is a fourtuple of the system under consideration,
// which may be matched already.
{

if (areMatchable(ft, dpFt, matchedClassNames))
{

updateMatchedClassNames(ft, dpFt, matchedClassNames);

boolean tmp = findMatch(fta, startindex + 1,

14-tuple refers to the concept used by Ba-Brahem.
fourtuple refers to an object of the class FourTuple.

4.3. EXPERIMENTS 21

matchedClassNames,
maxNotMatchableEdges);

// recursive call

found = found || tmp;
// These last two statements should not be combined to
// found = found || findMatch(....);
// Otherwise, if found == true, findMatch will not be called.

undoMatch(ft, dpFt, matchedClassNames);
// In final code this method does not exist.
// Its intention is realized by using a local variable.

}
}

if (!found)
// The edge of the design pattern dpFt is not matched with
// any edge of fta.
{

if (--maxNotMatchableEdges >= 0)
return findMatch(fta, startIndex + 1, matchedClassNames,

maxNotMatchableEdges);

return false;
}
else

return true;
}

4.3. EXPERIMENTS
The final versions of the systems under consideration are contained in the separated deliv-
ered zip-file in XMI-format. The file containing all the detectable templates templates.xml
is also located in the zip-file. To conduct an experiment call:

java -jar patterndetectionArgouml.jar -x xmifile
-t template file -n maxNumberOfMissingEges

This call should be written on one line.

Example:
java -jar patterndetectionArgouml.jar -x Ba_Brahem.xmi

-t Ba_Brahem.xml -n 1

Default values are input.xmi, templates.xml and 0

The software is improved during this stage, therefore, some imperfect results cannot be re-
called.

Example of Ba-Brahem
To test the algorithm, the example of Ba-Brahem was added to the software. Ba-Brahem

22 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

used as template the design pattern Prototype. Using this design pattern will be critized
later on.

A

B C

D E

P Q

R

System under consideration Prototype pattern

Figure 4.1: Example Ba-Brahem

The results are as expected: the template is three times detected.

Match with the system
under consideration
1 2 3

P C A A
Q B B C
R D D E

Table 4.1: Permutation of prototype in the example of Ba-Brahem

The prototype pattern, used by the example of Ba-Brahem, contains two types of relation-
ships:

• Directed association

• Inheritance

which were matched. This gives reasons to believe that all five types of relationships (di-
rected association, inheritance, aggregate, composite and dependency) are detectable in
general. This is confirmed in all experiments.

4.3. EXPERIMENTS 23

To test whether the algorithm can detect a design pattern, which occurs partially in the
system under consideration, the Bridge pattern was used. See figure 4.2.

Client Abstraction

RefinedAbstraction

Implementor

ConcreteImplementor

Figure 4.2: Bridge pattern

At first glance, it may be hard to see that the Bridge pattern which one relationship lacks,
does occur in the example of Ba-Brahem (see figure 4.1). The mapping in which the aggre-
gate is missing, is however:

Bridge pattern System under consideration
Client A
Abstraction B
Implementor C
RefinedAbstraction D
ConcreteImplementor E

Table 4.2: Match between the Bridge pattern with one missing relationship and the example of Ba-Brahem

The Bridge pattern is an example of a graph, which contains an isthmus, which is an edge
whose removal split a connected graph in two connected graphs. Leaving out an isthmus
may result in a singleton graph, a graph consisting of one node. Trying to detect a design
pattern in a great UML class diagram, may result in many disconnected components of a
design pattern. Even a small UML class diagram may contain many design patterns when
one relationship is left out. When one relationship is left out, the example of Ba-Brahem
contains several designs patterns as shown in table 4.3

24 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

Pattern Frequency
Adapter 3
Bridge 1
Chain of Responsibility 3
Factory method 1
Iterator 1
Memento 1
Observer 2
Strategy 2

Table 4.3: Frequencies of design patterns in example of Ba-Brahem

This exemplifies that leaving out relationships is a feature, which is hardly useful for giving
feedback.

Bridge pattern with an extra relationship
This test was conducted to test, whether the software could detect a design pattern, which
contains a extra relationship.

Ab Impl

ConcImpl1 ConcImpl2

Client

ConcImpl3ConcrAb1 ConcrAb2

Figure 4.3: Bridge pattern

The Bridge pattern as defined in figure 4.2 was detected in figure 4.3. The extra rela-
tionship: ConcrAb2 –> ConcImpl1 did not prevent detection, but the Bridge pattern was
multiple times detected, because some classes like concrAb1 and ConcrAb2 can be inter-
changed. This problem would also occur in e.g. the Strategy pattern.

This problem was solved by adding a new type of relationship and adapting the matching
algorithm. Beside INHERITANCE the relationship INHERITANCE_MULTI is introduced. As
defined in the file templates.xml: if node1 inherits from node2 then

node2 may have more subclasses than the template defines,
and none of them may have relations to other classes/interfaces.

In example: ConcrAb1 inherits from Ab and ConcrAb2 also inherits from Ab. ConcrAb1 and
ConcrAb2 have no relations to other classes/interfaces

4.3. EXPERIMENTS 25

The software was also adopted for notifying for extra relationships. This feature may be
seen as giving feedback.

Test all Gang of Four patterns

These tests were conducted to determine:

• which design patterns are detectable;

• the performance of the algorithm.

One by one the templates of the design pattern were added to the code and the code of the
system under consideration was expanded.

Adding templates to code made clear that some design patterns have essential implemen-
tal characteristics. For example, the Singleton pattern has a static attribute and for the
Prototype the clone() method is essential. These implemental characteristics cannot be
modelled by a 4-tuple.
Some patterns contain repeatable subgraphs e.g. Abstract Factory, Bridge and Mediator.
See example 4.4. For the Bridge pattern this problem is solved as stated earlier (see page
24). For the Mediator this problem cannot be solved by only using 4-tuples. Tailor made
matching algorithms for those design patterns have to be added to the code.

AbstractFactory

ConcreteFact1 ConcreteFact2

AbstrProdA AbstrProdB

Prod1A Prod2A Prod1B Prod2B

AbstractFactory

ConcreteFact1 ConcreteFact2

AbstrProdA AbstrProdB

Prod1A Prod2A Prod1B Prod2B Prod2CProd1C

AbstrProdC

Client
Client

Abstract factory pattern Abstract factory: 2 factories, 3 products

Figure 4.4: Abstract Factory template and an implementation

The result of adding templates to the code is denoted in the next table (table 4.4).

26 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

Name Detectable Comment Has
repeat-

able
sub-

graphs

Creational Patterns
Abstract Factory J The template has 2 factories and 2

products. Therefore the pattern
was 2*2 times detected.

J

Builder J N
Factory Method J Is detected as part of the Abstract

Factory
N

Prototype N The method clone() is essential
Singleton N Essential are a static attribute and

a static method, which returns the
static attribute. Ba-Brahem et al.
claim that one of the elements of
the 4-tuple, the self reference,
could be used for this purpose. A
static method can be modelled by
an UML class diagram. However,
a class diagram cannot specify the
statements within the static
methods. This is specified by a
sequence diagram, or it is an
implementation issue. There is
another reason: Self reference
does not imply a static attribute. A
married couple is an example of a
self reference class, but I cannot
marry myself.

Adapter J N
Bridge J N
Composite J N
Decorator J N
Facade N A class structure A - B - C would

be a Facade pattern in which B is
the facade. In general, every set of
classes, which contains one class
which is connected to every other
class, would be a Facade pattern.
This cannot be modelled by
4-tuples.

Flyweight J N
Proxy J N

4.3. EXPERIMENTS 27

Behavioral Patterns
Chain of Responsibility J N
Command J N
Interpreter J N
Iterator J N
Mediator J J
Memento J N
Observer J N
State N The structure is identical to the

structure of the Strategy pattern
Strategy J N
Template Method J The structure is very simple: just

one inheritance of an abstract
class. This would result in many
false positives. The pattern is
therefore not added to the file
templates.xml

N

Visitor N Implemental characteristic: The
number of methods in the
interface Visitor equals the
number of classes which
implements the interface
element.

Table 4.4: Gang of Four Patterns

The summarized results are:

Category Frequency
Detectable, without reservation 14
Detectable, but has repeating parts 2
Identical detectable patterns 2
Unuseful detectable patterns 1
Not detectable 4

Table 4.5: Summarized results of the detection algorithm

One of the attributes of a 4-tuple indicates the presence of a self reference. This at-
tribute is not necessary to detect any of the 17 detectable design patterns. Therefore, this
attribute is redundant.

During this experiments two problems are solved. As shown in figure 4.3 some design pat-
terns have repeatable parts. Figure 4.4 shows an implementation of the Abstract Factory.
The template of the Abstract Factory may be six times matched, but only three matches are
uniq. The resting three are permutations of already detected matches.

28 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

The final version of the software only shows uniq matches.

Performance
There are searching problems which are time-consuming, caused by their nature. A well
known category of these problems is the set of NP-complete problems, such as the travel-
ling salesman problem and the clique problem (for a given graph, find a subset of vertices,
which constitutes a complete subgraph).

It is not easy to derive the time-complexity of the matching algorithm, because of its back-
tracking nature. The time-complexity is also determined by the number of possible matches.
If the number of possible matches is high then recursive calls will be executed many times,
which will result in a high order time-complexity. The number of possible matches is hard
to guess. However, it is easy to derive the upper bound of the time complexity of a brute
force algorithm. For a specific design pattern with k relationships and a system under con-
sideration with n relationships, one has to find a specific permutation. The number of
permutations is P (n,k) = n!/(n −k)!

While adding templates of design patterns to the code and letting grow the system under
consideration, no increase of the runtime was noticeable.

Of this series of experiments, figure 4.5 shows the last class diagram of the system under
consideration. This experiment searched for 13 design pattern, among which the Abstract
Factory. This figure has 61 relationships and the Abstract Factory template has 13 relation-
ships. In the worst case the brute force algorithm would P (61,13) > 1022 times try to match
the design pattern with the system under consideration. However, within one second all
detected patterns were shown.

The code of this system under consideration is given in the method void example_complex()
in the class DetectPattern, but some modifications are necessary to use the method void ex-
ample_complex(). In the next section (page 30) a similar experiment is described.

4.3. EXPERIMENTS 29

Ab Impl

ConcAb1 ConcAb2

Client

ConcImpl3P_Subject

P_ProxyP_RealSubject

DecInterface

DecBasis DecWrapper

DecOption1

F_ProdInterface

F_Factory

F_Product F_ConcreteFactory

Maintainer Status

T_Interface

Aanpasser NietPassend

Leaflet

Union

Med

ConcMed

DecOption2

Opdracht Aanroeper

Ontvanger

User

Behandelaar

ConcreteBehandelaar_1 ConcreteBehandelaar_2

AbstrFact

ConcrFact1 ConcrFact2

AbstrProA AbstrProB

Pro1A Pro2A Pro1B Pro2B

Flyw

FW_Cl

UnsharedConcFlyw

ConcFlyw

Figure 4.5: 13 design patterns

30 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

4.4. IMPROVEMENTS FOR PRACTICAL USAGE

To be of practical use, the software has to be able to read input files from the command line.
One input file has to be the output file of a design tool.

• Reading input files
The templates and the system under consideration were hard coded in the software.
Templates are now defined in the default XML-file templates.xml, which has a straight
forward structure. The structure is defined the template file.
The template file is processed by a top down parser, which uses the standard avail-
able Java SAX-parser. The top down parser implements the design pattern Chain of
Responsibility.

The system under consideration can also be supplied at the command line.

• ArgoUML
The Open University uses ArgoUML as UML modelling tool. This tool is able to gener-
ate XMI-file. XMI stands for XML Metadata Interchange. The format of XMI is main-
tained by the Object Management Group. XMI describes a XML-format, which can
be used to exchange data of UML-diagrams between tools. Although XMI is a stan-
dard, a XMI-file generated by ArgoUML cannot be read by the UML modelling tool
Visual Paradigm.

To process XMI-files, the XML-structure has to be clear. The structure which is used
by ArgoUML does not resemble the structure defined by the Object Management
Group at all, nor is the structure described by documentation of ArgoUML. The Java
source of ArgoUML is searched for useful classes, without success.
I analysed the structure of XMI-files by studying generated XMI-files by ArgoUML of
small designs. I focused on only those tags, which are necessary to create fourtuples.
Like the template file, the XMI-file is processed by a top down parser, which uses the
standard available Java SAX-parser.

• Command line version
Default the software uses templates.xml and input.xmi as input files. A tiny tutorial,
see appendix B gives detailed information about using the software.

Speed again
After improving the code a second experiment has been conducted to test the speed of
the algorithm and its ability to detect design patterns. With ArgoUML a design (see figure
4.4) was made, which contains 33 classes, 49 relationships and 17 partially overlapping
design patterns. The generated XMI-file was processed within 0.8 seconds on average. The
summarized results are:

4.4. IMPROVEMENTS FOR PRACTICAL USAGE 31

Pattern Frequency
AbstractFactory 1
Adapter 7
Bridge 1
Builder 1
Chain of Responsibility 1
Command 1
Composite 2
Decorator 1
Factory Method 5
Flyweight 1
Interpreter 2
Iterator 1
Mediator 1
Memento 1
Observer 1
Proxy 1
State - Strategy 4

Table 4.6: Frequencies of detected design patterns in figure 4.6

32 4. MATCHING ALGORITHM: IMPLEMENTING AND EXPERIMENTING

ConcImp1

Pr

ConcImp2

Impl User_AF ConcCom Com

AdTee

RefAbs1

RefAbs2

AFPr2APr1A Pr1B Pr2B ConDec

AbPrA AbPrB Invok

Ch1 Ch2 CF1
CF2

UnshConFw

ConcMed

FlywFact ConcFW

ConcCol1 ConcCol2

Cl

ConcAgConcIt

CareT

Figure 4.6: Class diagram used for pattern detection and performance

In the next chapter the results of these tests are compared to tests described in literature.

5
COMPARING TO RELATED WORK

In this chapter the test results, shown in chapter 4, are compared to results of experiments
conducted by Bergenti, Dong, Tsantalis and Prechelt, which are described in chapter 2.
Other authors write about their approaches and experiments without showing any result
i.e. Gautam [GD12] and Tsantalis [Tsa+05]. Of course their articles are not included in com-
parison.
As stated in chapter 2, the problem of finding a design pattern is equivalent to subgraph iso-
morphism problem. Wikipedia states, based on work of Stephan Cook: Subgraph isomor-
phism is a generalization of both the maximum clique problem and the problem of testing
whether a graph contains a Hamiltonian cycle, and is therefore NP-complete. [Coo71] 1 The
above cited authors do not mention this relationship, nor do they describe their matching
algorithm in detail.

5.1. AGGREGATE COMPARISON
The comparison between the related work of Bergenti, Dong, Tsantalis, Prechelt and my
software is summarized in table 5.1 at page 36. Their work is not fully described, so for
some criteria an educated guess is made.

Template format
The design patterns, which are searched in the system under consideration, may be given
as input in several ways. I use an XML-file, therefore the input file and the program source
are separated. The source does not need do be recompiled for every change of the input.
Only Bergenti describes his method of input. He uses Prolog clauses, which have to be re-
compiled.

Number of recognized patterns
My software is able to detect 17 GoF design patterns. As described in chapter 2, a greater
number is not possible. All authors tested smaller numbers, but it is very likely that a higher
number can be detected, because other design patterns may be defined as well by their
characteristics.

1https://en.wikipedia.org/wiki/Subgraph_isomorphism_problem#cite_note-1

33

34 5. COMPARING TO RELATED WORK

Recall: does detect variants
The definitions of recall and precision are given at page 14.
Only Bergenti did notice the existence of variants. His software is able to detect permuta-
tions of design patterns. Detecting permutations is not straight forward and therefore, for
other authors this criterion is denoted as probably not.
My software is able to detect design patterns, which contains inheritance with variable
number of subclasses, which do not have any other relationships. For instance a Bridge
pattern with variable number of abstractions will be detected. However an Abstract factory
with three products and two factories will be detected twice as Abstract Factory with two
products an two factories.
The number of false negatives, which is necessary to determine the recall, is hard to deter-
mine. For instance, in some cases an abstract class may be replaced by an interface. For
those cases an expert is needed to determine the number of false negatives. Therefore, I
cannot give an estimate of the recall of my software.

Precision
My software only detects a design pattern, if it structure fully corresponds a defined tem-
plate. So, the number of false positives is zero and therefore the precision is 100%.
Dong uses open source software, which is not documented. He manually checked the re-
sults, which depends on interpretation.

Does detect permutations
My software does detect permutations of a design pattern. For instance, a Abstract Factory
with two products and two factories will be detected once. Two products and two factories
would lead to 4 permutations. Other authors do not discuss this criterion.

Acceptable speed
My experiments are conducted on a PC with the characteristics: AMD Athlon (tm) 64 x 2
Dual Core Processor 5000+, 2.6 GHz and 4 Gb RAM. The 33 classes in figure 4.6 were pro-
cessed in 0.8 seconds on the average. This is slower than the software of Dong, but my
software is able to detect 17 design patterns in one test.
Although some time is spend to reveal the relation between the size of the system under
consideration and time to process the data, no clear relation could be established.
The conversion of C++ headers to Prolog clauses by Bergenti took up to two hours.

Uses XMI input
Only the XMI output file of ArgoUML can be parsed.

Easy to define a template
None of the authors give detailed information about the format of their template. A tem-
plate may be read from a file or be incorporated in code, therefore I denote this criterion as
unknown.

Gives feedback
Only the Prolog implementation of Bergenti gives detailed feedback. When a design pat-
tern is detected in the system under consideration, the classes may have more associations

5.1. AGGREGATE COMPARISON 35

than the design pattern. This is shown in figure 4.3 at page 24. My software shows extra
relationships. It also is able to detect patterns if some relationships are missing, but as ex-
plained in section 4.3, this is not very useful in practice.

Uses a user friendly tool
I made a command line and not a GUI based implementation. In a Windows environment
this is not seen as user friendly.

Final remark
The Open University considers to add graphical user interfaces to my software, so that it
can be used in an educational environment.

36 5. COMPARING TO RELATED WORK

C
riteria

Tem
p

late
m

atch
in

g
R

u
le

b
ased

A
u

th
o

r
E

.M
.van

D
o

o
rn

J.D
o

n
g

etal.
N

.Tsan
talis

etal.
L.P

rech
eltetal.

F.B
ergen

tietal.

B
ased

o
n

U
M

L
class

d
iagram

Java
so

u
rces

Java
so

u
rces

C
++

so
u

rces
U

M
L

class
an

d
co

llab
o

ratio
n

d
iagram

s
Tem

p
late

fo
rm

at
X

M
L

X
M

L
u

n
kn

ow
n

u
n

kn
ow

n
P

ro
lo

g
clau

ses
N

u
m

b
er

o
freco

gn
ized

p
attern

s
17

w
ith

o
u

t
im

p
lem

en
tal

issu
es

4
10

5
10

R
ecall:d

o
es

d
etectvarian

ts
yes

yes
100%

w
ith

a
few

excep
tio

n
s

100%
u

n
kn

ow
n

P
recisio

n
100%

avo
id

false
p

o
sitives

100%
14-51%

u
n

kn
ow

n

D
o

es
d

etectp
erm

u
tatio

n
s

yes
p

ro
b

ab
ly

n
o

t
p

ro
b

ab
ly

n
o

t
p

ro
b

ab
ly

n
o

t
n

o,exp
licitly

stated
A

ccep
tab

le
p

erfo
rm

an
ce

yes
p

ro
b

ab
ly

p
ro

b
ab

ly
n

o
p

ro
b

ab
ly

U
ses

X
M

I
in

p
u

t
yes

yes
n

o
n

o
im

p
licitb

y
u

sin
g

A
rgo

U
M

L
E

asy
to

d
efi

n
e

a
tem

p
late

yes
u

n
kn

ow
n

u
n

kn
ow

n
u

n
kn

ow
n

u
n

kn
ow

n
G

ives
feed

b
ack

a
little

n
o

n
o

n
o

yes
U

ses
a

u
ser

frien
d

ly
to

o
l

n
o

yes
u

n
kn

ow
n

u
n

kn
ow

n
yes,A

rgo
U

M
L

Tab
le

5.1:So
ftw

are
co

m
p

ariso
n

6
CONCLUSIONS AND FUTURE WORK

This chapter describes the conclusions of this research, some new insights and proposals
for future work.

6.1. CONCLUSIONS
First, the subquestions formulated in section 1.1 and second, the research question are an-
swered.

1. What is a design pattern?
The formal answer is: ’Design patterns are descriptions of communicating objects
and classes that are customized to solve a general design problem in a particular con-
text.’ [Gam+95]

2. What are the characteristics of a design pattern in an UML class diagram?
I found the following characteristics: class, abstract class, interface, association, gen-
eralization, aggregation, composite, dependency.

3. Which methods to detect design patterns are described in literature?
The following methods are found:

• Use matrices to represent class diagrams and also design patterns.
To determine whether a matrix contains a submatrix, one can use cross-vali-
dation. However, this approach is only useful if the order of rows and columns
of the matrix which represents the design pattern corresponds to the bigger ma-
trix, which represents the system under consideration. Otherwise, every per-
mutation of the order of rows and columns has to be compared, which is time
consuming. To prevent a brute force search, preprocessing the matrix of the
system under consideration is necessary, as discussed at page 6.
To determine the similarity between a submatrix and a bigger matrix, one can
use two algorithms: the algorithm of Blondel and the algorithm of Zager.

• Decision trees
One can represent the decisions that control the search for a design pattern in
the form of a decision tree.

37

38 6. CONCLUSIONS AND FUTURE WORK

• 4-tuples
Relationships and classes can be represented by 4-tuples.

• Prolog is used to represent classes and relationships. The classes and interfaces
are represented as facts and the several types of relationships are represented
by rules.

• Sum of products are used to represent classes and relationships.
Relationships including classes and interfaces are described as strings, which
contains boolean expressions.
For instance: SOP(directed association) = A.B.C + A.D. This means A –> B –> C
and A –> D.

4. Based on the (partial) existence of a design pattern in a UML class diagram, can feed-
back be supplied, and if so, how?
To answer this question, I have limited myself to the method of Ba-Brahem. His
method shows how missing 4-tuples can be detected. However, many disconnected
parts of the system under consideration may be connected, whereby they constitute
an unintentionally and meaningless design pattern.
My research demonstrates a way to show the 4-tuples not belonging to a detected
pattern. They designer may use this information in case he has made a mistake.

The research question: Are design patterns in a UML class diagram automatically detectable,
and can one automatically supply some feedback? can be answered now. In practice it is
shown that design patterns can automatically be detected by representing the system un-
der consideration and the design pattern as matrices, decision trees and Prolog clauses
when also dedicated algorithms are used. In practice only the Prolog implementation is
able to give feedback. I have shown that 4-tuple method can used to automatically detect
17 GoF design patterns. However, my software only gives limited feedback.

6.2. NEW RESULTS
My research provides some new results:

• The concept of 4-tuples to represent design patterns is implementable.

• Ba-Brahem’s idea to detect design pattern that are only partially present, is not useful.

• 4-tuples can be replaced by 3-tuple, because the self reference attribute is not useful.

• Only the characteristics: class, (directed) association, aggregate, composite, inheri-
tance and dependency are necessary to detect 17 GoF design patterns. However, the
answer to subquestion 2 also contains abstract class and interface.

• Only very simple feedback can be generated.

The limitations of my method are the following:

• Not all GoF design patterns can be detected.
See table 4.4

6.3. FUTURE WORK 39

• Recall and precision are not measured. For these measurements, one needs examples
and opinions of experts.

• Only very simple feedback can be generated.

6.3. FUTURE WORK
This section contains proposals for future work, starting with scientific topics and ending
with practical proposals.

• Insight in effective learning
A thorough investigation is needed to determine, which feedback is appropriate and
feasible.

• Insight in modelling

– Three design patterns: Prototype, Singleton and Visitor have characteristics,
which cannot be modelled by a 4-tuple.
The Prototype pattern contains a class, which calls the clone-method of another
class. The existences of methods is not modelled by 4-tuples.
The Singleton design pattern contains an object, which needs to have a self ref-
erence. A 4-tuple contains identifiers of classes and/or interfaces, but no identi-
fiers of objects. Therefore a 4-tuple cannot be used to model a Singleton pattern.
The Visitor pattern contains for every class it visits a corresponding class. This
correspondence cannot be modelled by 4-tuples.
It may be possible to extend the 4-tuple, so that objects and method calls can be
modelled. To model the Visitor pattern, the correspondences have to be mod-
elled.
It may be possible to detect a Facade pattern by marking the Facade class by
means of an extra attribute. It will also be necessary to expand the matching
algorithm.

– To detect the Abstract Factory with more than two factories and/or products,
the matching algorithm should be improved.

• Insight in the algorithm
Determine the relation between the runtime and the size of the system under con-
sideration and the design pattern.

• What is needed to make the software applicable?
For instance:

– Make the software suitable for various versions of XMI.

– Make the software GUI-based.

A
APPROACHES TO FIND SUBMATRICES

Problem introduction
Jing Dong describes in subsection 3 an approach for detecting a design pattern in an UML
class diagram. The design pattern and the class diagram are represented by two matrices A
and B. Whether the class diagram contains the design pattern is reduced to the question:
Which rows and columns of B have to be deleted and how to permute the locations of the
remaining rows and columns of B such that the final result is matrix A?

I tried, without success, three approaches:

• Steepest descend

• Richardson Iteration

• Brute force

These approaches are demonstrated with the next example.

Let A =

(
1 2
3 4

)
and B =

5 6 7
8 4 3
9 2 1

To answer the question, matrices R and C are used to permute rows and columns of B and

to project B such that
∥∥RBC − A

∥∥2
2 is minimal, preferably zero, in which case RBC = A. Be-

cause the matrices R and C permute rows or columns and project, they may only consist of
zeroes and ones and every row and column may contain atmost a one.
If a class is not relevant for a detecting a design pattern then a row and the corresponding
column of matrix B have to be deleted. Even so, if two rows are interchanged then the cor-
responding columns of matrix B have to be interchanged. Therefore C = RT , the transposed
matrix of R.

The answer is:(
1 2
3 4

)
=

(
0 0 1
0 1 0

)5 6 7
8 4 3
9 2 1

0 0
0 1
1 0

40

41

Steepest descend
Problem formulated in general terms:

If A is a (n x n) and B a (m x m) matrix, find matrix R which minimizes

Q(R) = ∥∥RBRT − A
∥∥2

2 =
n∑

i=1

n∑
j=1

((RBRT)i j − Ai j)2 (A.1)

The idea behind the steepest descend method is quite simple. If Q is not equal to zero then
R has to be changed. In what direction has R to be changed? It can be proven that the
gradient of Q: ∇Q is perpendicular to the error surface, in this case Q(R). Therefore, if the
elements of R are changed in the direction of ∇Q then this change is most effective.

To implement the steepest descend method, a vector x is needed, which contains all ri j :
x = (r11,r12, · · · ,rmn). To find the minimum the next formula is used.

xn+1 = xn −γ∇Q (A.2)

x0 may be arbitrary chosen, i.e. 1 and 0 < γ¿ 1.

Adding the vector m, will prevent the iteration process to end in a local minimum. This
will also result in a higher convergence speed.

xn+1 = xn −γ∇Q −αmn

mn+1 = γ∇Q +αmn

m0 = 0

(A.3)

Step by step the gradient will be derived:

∇Q = (∂Q/∂r11, . . .∂Q/∂rnm) (A.4)

Define G = RBRT hence

Gi j =
m∑

k=1

m∑
l=1

ri k bkl r j l (note r t
l j = r j l) (A.5)

Using A.1 and A.5 results

∂Q/∂rv w =
n∑

i=1

n∑
j=1
∂Qi j /∂rv w = 2

∥∥RBRT − A
∥∥

2

n∑
i=1

n∑
j=1
∂Gi j /∂rv w (A.6)

42 A. APPROACHES TO FIND SUBMATRICES

For calculating ∂Gi j /∂rv w there are four distinct cases:

∂Gi j /∂rv w = 0 (v 6= i ∧ v 6= j) (A.7a)

∂Gi j /∂ri w =
m∑

k=1
bwk r j k = (BRT)w j (i 6= j) (A.7b)

∂Gi j /∂r j w =
m∑

k=1
ri k bkw = (RB)i w (i 6= j) (A.7c)

∂Gi i /∂ri w = (BRT)wi + (RB)i w (A.7d)

Substitute formulas A.7 into A.6 and A.4 to calculate A.3.

43

Richardson Iteration [Kel95]
This approach is based on the following idea:
Let D be a square matrix an b a vector. Find a vector x such that Dx = b.
It is easy to see: x = (I −D)x+b.
The Richardson iteration is defined as xk+1 = (I −D)xk +b.
It can be proven that, if

∥∥I −D
∥∥< 1 then {xk}converges.

Applied to the problem: find R such that RBRT = A.
Is easy to see that RB(I −RT)+ A = RB .
But, rows and columns have to be added to R,RT and A to make this equation valid.
If B is nonsingular then: Rk+1 = (Rk B(I −RT

k)+ A)B−1

The results of this method are not useful.

Brute force
The question is how to permute the rows and columns of B such that

∥∥RBRT − A
∥∥2

2 is min-

imal, preferably zero, in which case RBRT = A.

In practice this will result in long runtimes.
If A is a (n x n) and B a (m x m) matrix and n <= m, then the number of permutations is
m ∗ (m −1)∗ (m −2)∗ (m −3)∗·· · (m −n +1).

if m = 20 and n = 4 the number of permutations is greater than 105.

B
TUTORIAL FOR DETECTION SOFTWARE

This a tiny tutorial for using the detection software.

The application needs two input files:

1. An XMI-file generated by ArgoUML, which contains the system under consideration.

2. An XML-file which contains a design patterns.

The overall structure of the XML is informally defined by:

<?xml version="1.0" encoding="UTF-8"?>
<templates>

<template name="name">
<edge node1="fromA" node2="toB" type="typeRelationship"/>
<edge />
.......

</template>

<template >
......

</template>
.......
.......

</templates>

The design pattern is defined by 4-tuples. A 4-tuple is used to define a relationship, an
edge, between two nodes. A node is class, an abstract class, or an interface. To define a
4-tuple, only 3 attributes are necessary! The fourth attribute get its value automatically by
the application.

44

45

typeRelationship meaning
ASSOCIATION bidirectional association.
ASSOCIATION_DIRECTED unidirectional association from node1 to node 2.
AGGREGATE node2 is the aggregate.
COMPOSITE node2 is the composite.

INHERITANCE
node2 is the superclass or (super)interface.
node1 is a subclass or subinterface which may have rela-
tions to other classes/interfaces.

INHERITANCE_MULTI

node2 is the superclass or (super)interface.
node1 is the subclass.
node2 may have more subclasses than the template de-
fines, but none of them may have relations to other class-
es/interfaces.

DEPENDENCY node1 depends on node2.

Table B.1: Possible values of typeRelationship

example

<templates>
<template name ="Memento">

<edge node1="Memento" node2="Caretaker" type="AGGREGATE"/>
<edge node1="Originator" node2="Memento" type="DEPENDENCY"/>

</template>

<template name ="Proxy">
<edge node1="Client" node2="Subject"

type="ASSOCIATION_DIRECTED"/>
<edge node1="Proxy" node2="Subject" type="INHERITANCE"/>
<edge node1="RealSubject" node2="Subject" type="INHERITANCE"/>
<edge node1="Proxy" node2="RealSubject"

type="ASSOCIATION_DIRECTED"/>
</template>

</templates>

46 B. TUTORIAL FOR DETECTION SOFTWARE

command to start the application

java -jar patterndetectionArgouml.jar -x xmifile
-t templatefile -n maxNumberOfMissingEges

This call should be written on one line.

Example:
java -jar patterndetectionArgouml.jar -x Ba_Brahem.xmi

-t Ba_Brahem.xml -n 1

Default values are input.xmi, templates.xml and 0

C
DELIVERABLES

All files are made under Linux. To use under Windows, conversion of the character \n to
the characters \r\n, also known als CR/LF conversion, may be necessary to make text files
easy readable. The command zip -l zipfile will do this job. However, do not apply zip -l to
binary files.

Binary files: *.zargo and jar-file
Text files: *.java, *.xmi and *.xml files

For convenience one zip-file is delivered: deliverables.zip. This files contains:
patterndetectionargouml.jar, quickstart.zip, netbeansproject.zip, xmi.zip and zargo.zip

C.1. QUICKSTART.ZIP
These files can be used for a first and quick start.
Start by: java -jar patterndetectionargouml.jar -t Ba_Brahem.xml and the result for figure
4.1 at page 22 will be shown.

Figure 4.1 contains a Factory method with one extra edge.
This will be shown by: java -jar patterndetectionargouml.jar

Figure 4.1 contains 13 design patterns with at most one association missing.
This will be shown by: java -jar patterndetectionargouml.jar n 1

Ba_Brahem.xml
input.xmi
template.xml

Table C.1: Content of quickstart.zip

The file template.xml contains all 17 detectable GoF design patterns.

47

48 C. DELIVERABLES

C.2. NETBEANSPROJECT.ZIP
netbeansproject.zip contains a map/directory to be used with Netbeans 8.0.2. No binairy
files are included. The zip-files contains several packages:

Package: patterndetectionargouml
Purpose: main program
PatterndetectionArgouml.java

Package: argoxmi
Purpose: parsing XMI-files, which are generated by ArgoUML
AbstractionElement.java
ArgoXMI.java
AssociationElement.java
ClassElement.java
Constants.java
GeneralizationElement.java
SAXHandler.java
VerwerkSAXTags.java

Package: fourTuples
Purpose: matching between design pattern(s) and the system under consideration.
DetectPatterns.java
FourTupleArray.java
FourTuple.java
FT_constants.java
MatchedNames.java
Solution.java
Solutions.java
TagValue.java

Package: fourTuple.template
Purpose: parsing XML template file
EdgeElement.java
SAXHandler.java
TemplateElement.java
Templates.java
VerwerkSAXTags.java

C.3. XMI.ZIP AND ZARGO.ZIP
xmi.zip and zargo.zip contain corresponding files. A zargo-file can be used to produce the
corresponding XMI-file. For convenience are the XMI-files added.

C.3. XMI.ZIP AND ZARGO.ZIP 49

zargo.zip xmi.zip
AbstractFactory.zargo AbstractFactory.xmi
Ba_Brahem.zargo Ba_Brahem.xmi
Bridge.zargo Bridge.xmi
Builder.zargo Builder.xmi
ChainOfResponsibility.zargo ChainOfResponsibility.xmi
Command.zargo Command.xmi
Composite.zargo Composite.xmi
Decorator.zargo Decorator.xmi
Flyweight.zargo Flyweight.xmi
Interpreter.zargo Interpreter.xmi
Iterator.zargo Iterator.xmi
Mediator.zargo Mediator.xmi
Memento.zargo Memento.xmi
Observer.zargo Observer.xmi
Proxy.zargo Proxy.xmi
runtimeComplexity.zargo runtimeComplexity.xmi
Strategy.zargo Strategy.xmi

runtimeComplexity is used to measure the runtime of a complex example. See figure 4.5 at
page 29.

D
LEGEND UML CLASS DIAGRAM

This appendix gives the legend of UML symbols used in the class diagrams in this thesis.

Classname Classname Interfacename

Class Abstract class Interface

A

B

A B

Classes A and B have a

bidirectional association.

Classes A and B have an

unidirectional association.

Figure D.1: Legend of UML symbols in class diagrams

50

51

A

B

A

B

Interfacename

B

A

B

Class B inherits from class A. Class B realizes Interfacename.

Classes A and B have a whole/part

relation i.c. a aggregation.

A

B

Classes A and B have a whole/part

relation i.c. a composition.

Class B depends on class A.

Figure D.2: Legend of UML symbols in class diagrams

BIBLIOGRAPHY

BOOKS
[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-oriented Software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995. ISBN: 0-201-63361-2.

[Kel95] C. T. Kelley. Iterative methods for linear and nonlinear equations. Frontiers in
applied mathematics. Philadelphia: Society for Industrial and Applied Mathe-
matics, 1995. ISBN: 0-89871-352-8.

[Tah92] H.A. Taha. Operations research: an introduction. v. 1. Macmillan, 1992. ISBN:
9780024189752.

IN BOOKS
[Crn10] Gordana Dodig Crnkovic. “Model-Based Reasoning in Science and Technol-

ogy: Abduction, Logic, and Computational Discovery”. In: ed. by Lorenzo Mag-
nani, Walter Carnielli, and Claudio Pizzi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010. Chap. Constructive Research and Info-computational Knowl-
edge Generation, pp. 359–380. ISBN: 978-3-642-15223-8. DOI: 10.1007/978-
3-642-15223-8_20. URL: http://dx.doi.org/10.1007/978-3-642-
15223-8_20.

ACADEMIC ARTICLES
[BQ14] Afnan Salem Ba-Brahem and M. Rizwan Jameel Qureshi. “The proposal of im-

proved inexact isomorphic graph algorithm to detect design patterns”. In: CoRR
abs/1408.6147 (2014). URL: http://arxiv.org/pdf/1408.6147v1.pdf.

[Cop97] J. Coplien. “Idioms and patterns as architectural literature”. In: Software, IEEE
14.1 (Jan. 1997), pp. 36–42. ISSN: 0740-7459. DOI: 10.1109/52.566426.

[GD12] Amit Kumar Gautam and Saurabh Diwaker. “Automatic Detection of Software
Design Patterns from Reverse Engineering”. In: IJCA Special Issue on Issues and
Challenges in Networking, Intelligence and Computing Technologies ICNICT.1
(Nov. 2012), pp. 17–12. URL: http://research.ijcaonline.org/icnict/
number1/icnict1013.pdf.

[GPT11] Manjari Gupta, Akshara Pande, and A. K. Tripathi. “Design Patterns Detection
Using SOP Expressions for Graphs”. In: SIGSOFT Softw. Eng. Notes 36.1 (Jan.
2011), pp. 1–5. ISSN: 0163-5948. DOI: 10.1145/1921532.1921541. URL: http:
//doi.acm.org/10.1145/1921532.1921541.

[GR14] Manjari Gupta and Rajwant Singh Rao. “Article: Design Pattern Mining by Prod-
uct of Sum (POS) Expression for Graphs”. In: International Journal of Computer
Applications 85.7 (Jan. 2014), pp. 38–42.

52

http://dx.doi.org/10.1007/978-3-642-15223-8_20
http://dx.doi.org/10.1007/978-3-642-15223-8_20
http://dx.doi.org/10.1007/978-3-642-15223-8_20
http://dx.doi.org/10.1007/978-3-642-15223-8_20
http://arxiv.org/pdf/1408.6147v1.pdf
http://dx.doi.org/10.1109/52.566426
http://research.ijcaonline.org/icnict/number1/icnict1013.pdf
http://research.ijcaonline.org/icnict/number1/icnict1013.pdf
http://dx.doi.org/10.1145/1921532.1921541
http://doi.acm.org/10.1145/1921532.1921541
http://doi.acm.org/10.1145/1921532.1921541

IN PROCEEDINGS 53

[PK98] Lutz Prechelt and Christian Kramer. “Functionality versus Practicality: Em-
ploying Existing Tools for Recovering Structural Design Patterns”. In: j-jucs 4.12
(Dec. 1998), pp. 866–882. URL: http://www.jucs.org/jucs_4_12/func-
tionality_versus_practicality_employing.

[Tsa+06] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis. “Design Pat-
tern Detection Using Similarity Scoring”. In: Software Engineering, IEEE Trans-
actions on 32.11 (Nov. 2006), pp. 896–909. ISSN: 0098-5589. DOI: 10.1109/TSE.
2006.112.

[YWG04] Tong Yi, Fangjun Wu, and Chengzhi Gan. “A Comparison of Metrics for UML
Class Diagrams”. In: SIGSOFT Softw. Eng. Notes 29.5 (Sept. 2004), pp. 1–6. ISSN:
0163-5948. DOI: 10.1145/1022494.1022523. URL: http://doi.acm.org/
10.1145/1022494.1022523.

[ZV08] Laura A. Zager and George C. Verghese. “Graph similarity scoring and match-
ing”. In: Applied Mathematics Letters 21.1 (2008), pp. 86 –94. ISSN: 0893-9659.
DOI: http://dx.doi.org/10.1016/j.aml.2007.01.006. URL: http:
//www.sciencedirect.com/science/article/pii/S0893965907001012.

IN PROCEEDINGS
[BP00] F. Bergenti and A. Poggi. “IDEA: A design assistant based on automatic design

pattern detection”. In: Proceedings of 12th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE 2000). PHD in 2001. 2000,
pp. 336–343. URL: https://www.sics.se/~nilsf/SEKE.pdf.

[Coo71] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: In STOC.
ACM, 1971, pp. 151–158.

[DSZ08] Jing Dong, Yongtao Sun, and Yajing Zhao. “Design Pattern Detection by Tem-
plate Matching”. In: Proceedings of the 2008 ACM Symposium on Applied Com-
puting. SAC ’08. New York, NY, USA: ACM, 2008, pp. 765–769. ISBN: 978-1-59593-
753-7. DOI: 10.1145/1363686.1363864. URL: http://doi.acm.org/10.
1145/1363686.1363864.

[Nie+02] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh.
“Towards Pattern-based Design Recovery”. In: Proceedings of the 24th Interna-
tional Conference on Software Engineering. ICSE ’02. New York, NY, USA: ACM,
2002, pp. 338–348. ISBN: 1-58113-472-X. DOI: 10.1145/581339.581382. URL:
http://doi.acm.org/10.1145/581339.581382.

[RG13] Rajwant Singh Rao and Manjari Gupta. “Design Pattern Detection by Greedy
Algorithm Using Inexact Graph Matching”. In: International Journal of Engi-
neering Research and Technology. Vol. 2. 10 (October-2013). ESRSA Publica-
tions. 2013. URL: http : / / www . ijert . org / view - pdf / 6029 / design -
pattern- detection- by- greedy- algorithm- using- inexact- graph-
matching.

[Wen03] Lothar Wendehals. “Improving Design Pattern Instance Recognition by Dy-
namic Analysis”. In: Proc. of the ICSE 2003 Workshop on Dynamic Analysis (WODA),
Portland, USA. May 2003.

http://www.jucs.org/jucs_4_12/func-tionality_versus_practicality_employing
http://www.jucs.org/jucs_4_12/func-tionality_versus_practicality_employing
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.1145/1022494.1022523
http://doi.acm.org/10.1145/1022494.1022523
http://doi.acm.org/10.1145/1022494.1022523
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2007.01.006
http://www.sciencedirect.com/science/article/pii/S0893965907001012
http://www.sciencedirect.com/science/article/pii/S0893965907001012
https://www.sics.se/~nilsf/SEKE.pdf
http://dx.doi.org/10.1145/1363686.1363864
http://doi.acm.org/10.1145/1363686.1363864
http://doi.acm.org/10.1145/1363686.1363864
http://dx.doi.org/10.1145/581339.581382
http://doi.acm.org/10.1145/581339.581382
http://www.ijert.org/view-pdf/6029/design-pattern-detection-by-greedy-algorithm-using-inexact-graph-matching
http://www.ijert.org/view-pdf/6029/design-pattern-detection-by-greedy-algorithm-using-inexact-graph-matching
http://www.ijert.org/view-pdf/6029/design-pattern-detection-by-greedy-algorithm-using-inexact-graph-matching

54 BIBLIOGRAPHY

TECHNICAL DOCUMENTATION
[Bro96] Kyle Brown. Design Reverse-engineering and Automated Design-pattern Detec-

tion in Smalltalk. Tech. rep. Raleigh, NC, USA, 1996.

[Tsa+05] Nikolaos Tsantalis, Alexander Chatzigeorgiou, Spyros T. Halkidis, and George
Stephanides. A Novel Approach to Automated Design Pattern Detection. 2005.
URL: https://users.uom.gr/~achat/papers/PCI2005.pdf.

https://users.uom.gr/~achat/papers/PCI2005.pdf

	List of Figures
	List of Tables
	Introduction
	Research question
	Scope
	Research method
	Thesis overview

	State of the art
	What is a design pattern
	Design pattern characteristics
	Design pattern detection
	Template matching
	Sum Of Products Expressions
	Rule based / Prolog
	4-tuples

	Selection detection method
	Matching algorithm: Implementing and experimenting
	Plan
	Implementing a matching algorithm
	Experiments
	Improvements for practical usage

	Comparing to related work
	Aggregate Comparison

	Conclusions and Future work
	Conclusions
	New results
	Future work

	Appendix Approaches to find submatrices
	Appendix Tutorial for detection software
	Appendix Deliverables
	quickstart.zip
	netbeansproject.zip
	xmi.zip and zargo.zip

	Appendix Legend UML class diagram
	Bibliography
	Books
	In Books
	Academic Articles
	In Proceedings
	Technical Documentation

