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Choreographic languages describe possible sequences of interactions among a set of agents. Typical
models are based on languages or automata over sending and receiving actions. Pomsets provide a
more compact alternative by using a partial order over these actions and by not making explicit the
possible interleaving of concurrent actions. However, pomsets offer no compact representation of
choices. For example, if an agent Alice can send one of two possible messages to Bob three times, one
would need a set of 2×2×2 distinct pomsets to represent all possible branches of Alice’s behaviour.
This paper proposes an extension of pomsets, named branching pomsets, with a branching structure
that can represent Alice’s behaviour using 2+ 2+ 2 ordered actions. We encode choreographies as
branching pomsets and show that the pomset semantics of the encoded choreographies are bisimilar
to their operational semantics.

1 Introduction

Choreographic languages describe possible sequences of interactions, or communication protocols,
among a set of agents. Their use is well established [10, 1, 8, 9, 2, 6], and it typically includes:

1. reasoning statically over interaction properties;

2. generating code that facilitates the implementation of the concurrent protocols.

Regarding 1, static properties include deadlock absence or the equivalence between global protocols
and the parallel composition of local protocols for each agent. Regarding 2, the code generated from
choreographic languages include skeleton code for concurrent code, generated behavioural types that
can be used to type-check agents, or dedicated orchestrators that dictate how the agents can interact.
In this work we focus on how to analyse choreographies by proposing a new structure to compactly
represent their behaviour, based on partial-ordered multisets (pomsets).

We foresee applications of this work in both aforementioned areas. Regarding 1, in static analysis, a
more compact model of choreographies could reduce the complexity of the analysis of protocols featur-
ing both concurrency and choices. Our work in progress in this area focuses on realisability. Regarding
2, our recent work includes API generation using an approach based on traditional sets of pomsets [5].
We are keen to extend it to take full advantage of the branching structure presented in this paper.

We use two simple running examples to motivate our approach.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Figure 1: An automaton (left) and a pomset (right) representing the master-workers protocol.

1. Master-workers (MW) protocol [12]. A master (m) concurrently sends tasks (t) to a number of
workers (w1, . . . ,wn). Once workers finish their task, they inform the master that they are done (d).
This protocol is expressed in our choreographic language as follows for the case of two workers.

(m�w1:t ;w1�m:d) ‖ (m�w2:t ;w2�m:d).

Here, m�w1:t represents an asynchronous communication from m to w1 of a message of type t,
‘;’ represents sequential composition and ‘‖’ represents parallel composition.

2. Distributed voting (DV) protocol. Three participants – Alice (a), Bob (b) and Carol (c) – send
their vote (yes (y) or no (n)) to every other participant in parallel. This is expressed as follows,
where + indicates nondeterministic choice.(

(a�b:y ‖ a�c:y)+
(a�b:n ‖ a�c:n)

)
‖
(
(b�a:y ‖ b�c:y)+
(b�a:n ‖ b�c:n)

)
‖
(
(c�a:y ‖ c�b:y)+
(c�a:n ‖ c�b:n)

)
A protocol can evolve by performing sequences of sending and receiving actions. E.g., ab!x denotes

a sending action from a to b with a message of type x, and ab?x denotes the dual receiving action on
b. Protocols with parallel interactions can have an explosion of states, such as our MW protocol, whose
full state machine can be found on the left of Figure 1. To avoid this explosion, the state space can
be represented more compactly using so-called partially ordered multisets, or simply pomsets [11, 7].
The right of Figure 1 shows a graphical pomset representation of the same MW protocol. The pomset
contains eight events, whose labels are shown. The arrows visualise the partial order: an event precedes
any other event to which it has an outgoing arrow, either directly or transitively. In this example, the
event with label mw1!t precedes the event with label mw1?t directly and the events with labels w1m!d
and w1m?d transitively. However, it is independent of the events involving w2.

The behaviour represented by a pomset is the set of all its linearisations, i.e., all sequences of the la-
bels of its events that respect their partial order. The set of linearisations of the pomset in Figure 1 consists
of all interleavings of the two threads mw1!tmw1?t w1m!d w1m?d and mw2!tmw2?t w2m!d w2m?d.
This explicit concurrency yields a compact representation of the possible interleavings using just 4+ 4
events, whereas the state machine needs 5× 5 states to represent all interleavings. If we were to add a
third worker, the automaton would grow by another factor 5, while the pomset would expand by just four
additional events.
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Figure 2: A set of pomsets (left) and a branching pomset (right) representing a three-participant dis-
tributed vote.

While pomsets can compactly represent concurrent behaviour, choices need to be represented as sets
of pomsets: one for every branch. As a consequence, one might need an exponential number of pomsets
to represent a protocol with many choices. The exponential growth is visible in our DV protocol with
three participants, depicted on the left side of Figure 2. This diagram represents a set of pomsets that
capture the protocol’s possible behaviour, counting 2× 2× 2 different pomsets. If we were to add a
fourth participant, the set would grow by another factor 2.

This paper proposes an extension to pomsets, named branching pomsets, with a branching structure
that can compactly represent choices. A branching pomset initially contains all branches of choices,
and discards non-chosen branches when firing events that require resolving a choice. The right side of
Figure 2 depicts an example of a branching pomset for our DV protocol: where we would traditionally
need 2×2×2 pomsets (with six pairs of events each), we can represent the same behaviour as a single
branching pomset with 2+2+2 choices (with four pairs of events each). Adding an additional participant
would double the number of pomsets in the set of pomsets, while it would add a single choice to the
branching pomset.

To aid in the understanding of branching pomsets and their semantics, we provide a prototype tool
to visualise them, available at https://arca.di.uminho.pt/b-pomset/. The tool provides a web
interface where one can submit an input choreography, which is then visualised as a branching pomset
and can be simulated. The examples and figures in the paper are already available as preset inputs. We
note that the pomset simulation in our prototype currently does not support loops, for reasons which will
become apparent later in the paper; however, all other operators are supported and we are most interested
in (combinations of) choice and parallel composition.

Contribution This paper provides three core contributions: (1) an extension of pomsets with a branch-
ing structure, named branching pomsets, (2) an encoding from a choreographic language into branching
pomsets, and (3) a formal proof that the operational semantics of a choreography and of its encoded
branching pomset are equivalent, i.e., bisimilar.

https://arca.di.uminho.pt/b-pomset/


4 Branching pomsets for choreographies

c ::= 0 | a�b:x | ab?x | c ; c | c+ c | c ‖ c | c∗

Figure 3: Syntax of choreographies, where a and b are participants (a 6= b) and x is a message type.

Structure of the paper Section 2 presents the syntax of our choreography language and its operational
semantics. Section 3 formalises branching pomsets and their semantics. Section 4 formalises how to
obtain a branching pomset from a choreography and shows that a choreography and its derived branching
pomset are behaviourally equivalent. Finally, Section 5 presents our conclusions and a brief discussion
about future work and related work.

2 Choreographies

In this section, we formally define the syntax and semantics of our choreographic language, examples of
which have been shown in the previous section.

Let A be the set of all participants a,b, . . .. Let X be the set of all message types x,y, . . .. Let
L =

⋃
a,b∈A,x∈X {ab!x,ab?x} be the set of actions {ab!x,ab?x} for all participants a 6= b and message

types x. For all actions the subject of the action is its active participant: the subject of a send action ab!x
is a, written subj(ab!x) = a, and the subject of a receive action ab?x is b.

The syntax is formally defined in Figure 3. Its components are standard: ‘0’ is the empty chore-
ography; ‘a�b:x’ is the asynchronous communication from a to b of a message of type x; the boxed
term ‘ab?x’ represents a pending receive on b from a of a message of type x (it is boxed in Figure 3
to indicate that it is only used internally to formalise behaviour but the box is not part of the syntax);
‘c1 ; c2’, ‘c1 +c2’ and ‘c1 ‖ c2’ are respectively the weak sequential composition, nondeterministic choice
and parallel composition of choreographies c1 and c2; finally, ‘c∗’ is the finite repetition (or, more infor-
mally, loop) of choreography c. The semantics for choice, parallel composition and loop are standard.
We note that our sequential composition is weak. More traditionally, when sequencing c1 and c2, the
choreography c1 must fully terminate before proceeding to c2. With weak sequential composition, how-
ever, actions in c2 can already be executed as long as they do not interfere with c1. For example, in
a�b:x ; c�d:x we can execute the action cd!x as it does not affect the participants of a�b:x: there is no
dependency and thus no need to wait for a�b:x to go first. However, in a�b:x ; a�c:x the action ac!x
cannot be executed first as its subject (a) must first execute ab!x. This is the common interpretation of
sequential composition in the context of message sequence charts [11], multiparty session types [8] and
choreographic programming [2].

The reduction rules of our choreographic language are formally defined in Figure 4a and its termina-
tion rules in Figure 4b. To formalise the reduction of weak sequential composition, we follow Rensink
and Wehrheim [14], who define a notion of partial termination.

Partial termination In a weak sequential composition c1 ; c2, an action ` in c2 can be executed if c1
can partially terminate for the subject of `. Conceptually, a choreography c1 can partially terminate for
the subject of ` by discarding all branches of its behaviour which would conflict with it, i.e., in which the
subject of ` occurs. This is written c1

X̀−→ c′1, where c′1 is the remainder of c1 after discarding all branches
involving the subject of `. For example, if c1 = a�b:x+ a�c:x then c1

Xcd!x−−−→ a�b:x, as this branch does
not contain c. An exception is when the subject of ` occurs in every branch of c1, in which case c1 cannot
partially terminate for the subject of `, i.e., c1 6

X̀−→. In the above example, c1 6
Xad!x−−−→.
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a�b:x ab!x−−→ ab?x ab?x ab?x−−→ 0

c1
`−→ c′1

c1 ; c2
`−→ c′1 ; c2

c1
X̀−→ c′1 c2

`−→ c′2
c1 ; c2

`−→ c′1 ; c′2

c1
`−→ c′1

c1 ‖ c2
`−→ c′1 ‖ c2

c2
`−→ c′2

c1 ‖ c2
`−→ c1 ‖ c′2

c1
`−→ c′1

c1 + c2
`−→ c′1

c2
`−→ c′2

c1 + c2
`−→ c′2

c `−→ c′

c∗ `−→ c′ ; c∗

(a) Reduction rules.

0↓ c∗↓
c1↓ c2↓ † ∈ {;,‖}

c1 † c2↓
ci↓ i ∈ {1,2}

c1 + c2↓

(b) Termination rules.

0 X̀−→ 0

c
X̀−→ c

c∗
X̀−→ c∗

c 6 X̀−→ c

c∗
X̀−→ 0

c1
X̀−→ c′1 c2

X̀−→ c′2 † ∈ {;,‖,+}

c1 † c2
X̀−→ c′1 † c′2

c1
X̀−→ c′1 c2 6

X̀−→

c1 + c2
X̀−→ c′1

c1 6
X̀−→ c2

X̀−→ c′2
c1 + c2

X̀−→ c′2

subj(`) /∈ {a,b}

a�b:x
X̀−→ a�b:x

subj(`) 6= b

ab?x
X̀−→ ab?x

(c) Partial termination rules.

Figure 4: Operational semantics of choreographies.

The rules for partial termination are deterministic and only discard the absolutely necessary. In the
example above, c1

Xda!x−−−→ c1 since the subject d does not occur in either branch: dropping one of the
branches would be unnecessary and is thus not allowed. The rules for partial termination are defined in
Figure 4c. We highlight the rules for operators:

• Sequential composition c1 ; c2 and parallel composition c1 ‖ c2 can partially terminate if both c1
and c2 can.

• A choice c1 + c2 can partially terminate if at least one of its branches can. If both branches can
partially terminate then both are kept, otherwise only the partially terminated one is kept.

• Following Rensink and Wehrheim, a loop c∗ can partially terminate if its body (c) can partially
terminate without discarding any branches, i.e., if c

X̀−→ c. In that case also c∗
X̀−→ c∗. Otherwise

we allow c∗ to be skipped entirely, represented as partial termination to 0, i.e., c∗
X̀−→ 0. This can

happen either if c can partially terminate to c′ but c′ 6= c, or if c cannot partially terminate at all.
We use c 6 X̀−→ c as a shorthand to cover both these cases. Skipping a loop is necessary, for example,
in a modified master-workers protocol where the master can send an arbitrary number of tasks to
the workers, followed by an end message to indicate termination. With one worker, this protocol
is expressed as (m�w1:t ;w1�m:d)∗ ;m�w1:end. In this choreography, the loop has to eventually
partially terminate to 0 to allow for the action mw1!end.
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Example 1. Let c1 = (a�b:x+a�c:x) ; (d�b:x+d�e:x). Let c2 = (a�b:x+c�b:x)∗ ‖ (c�a:x+c�b:x).

• c1
Xbe!x−−−→ a�c:x ;d�e:x. The subject b of be!x occurs in one branch of each of both choices. While

the recipient e also occurs in the second branch of the second choice, since it is not the actual
subject it does not create a conflict.

• c1 6
Xab!x−−−→. While the second choice can partially terminate without reducing, the first choice con-

tains the subject a of ab!x in both of its branches. Since one of the choices cannot reduce, neither
can their sequential composition.

• c2
Xad!x−−−→ 0 ‖ c�b:x. The subject a of ad!x only occurs in one branch of the loop body, but the loop

can only reduce to 0. On the right hand side of the parallel composition, a occurs only in the first
branch.

• c2 6
Xcd!x−−−→. While the loop can again reduce to 0, the subject c of cd!x occurs in both branches of

the right hand side of the parallel composition. Since its right hand side cannot partially terminate,
neither can it as a whole.

As already discovered by Rensink and Wehrheim [14], an unwanted consequence of these rules for
partial termination is that unfolding iterations of loops no longer preserves behaviour. We would like
c∗ and (c ; c∗)+ 0 to behave the same, but this is not the case. For example, if c = a�b:x+ c�d:x, then
c∗

Xab!x−−−→ 0 but (c ; c∗) + 0 Xab!x−−−→ (c�d:x ; 0) + 0. Then c∗ ; c ab!x−−→ ab?x by skipping the loop; however,
((c ;c∗)+0) ;c has no way to match this as it can skip the loop but it can only reduce the already unfolded
iteration c to c�d:x — it cannot discard it entirely. We borrow the solution that Rensink and Wehrheim
offer, which is the concept dependent guardedness.

Dependent guardedness A loop c∗ is dependently guarded if, for all actions `, the loop body c can
only partially terminate for the subject of ` if it does not occur in c at all. In other words: any participant
that occurs in some branch of c must also occur in every other branch of c. It then follows that c can
either partially terminate for the subject of ` without having to reduce, or it cannot partially terminate at
all. Formally: if c

X̀−→ c′ then c′ = c. A choreography ĉ is then dependently guarded if all of its loops are.
As a consequence, we avoid the problem above: if c∗

X̀−→ 0 then c 6 X̀−→ and (c ; c∗)+0 is also forced to
reduce to the second branch of the choice, which is 0. More precisely, let c∗ be some dependently guarded
expression. If c

X̀−→ c′ for some `,c′, then c′ = c. It follows that c∗
X̀−→ c∗ and (c ; c∗)+ 0 X̀−→ (c ; c∗)+ 0.

Similarly, if c 6 X̀−→ then c∗
X̀−→ 0 and (c ; c∗)+0 X̀−→ 0.

Example 2. Let c1 = a�b:x+a�c:x. Let c2 = a�b:x+b�a:x.

• c∗1 is not dependently guarded as c1
Xcd!x−−−→ a�b:x 6= c1. However, c1 itself is dependently guarded

as it does not contain any loop.

• c∗2 is dependently guarded since both a and b occur in both branches of c2. However, (c∗2)
∗ is not

dependently guarded, since c∗2
Xab!x−−−→ 0.

3 Branching pomsets

In this section, we formally define the syntax and semantics of branching pomsets. Additionally, we de-
fine a pomset interpretation of expressions in our choreographic language and we show this interpretation
to be faithful by proving that it is bisimilar to the original choreography.
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ab!x ab?x
bc!x bc?x

bd!x bd?x
cd!x cd?x

Figure 5: A branching pomset representing the choreography a�b:x ; (b�c:x+b�d:x) ; c�d:x.

A partially ordered multiset [13], or pomset for short, consists of a set of nodes E (events), a labelling
function λ to map events to some set of labels (e.g., send and receive actions), and a partial order ≤ to
define dependencies between pairs of events (e.g., an event, or rather its corresponding action, can only
fire if all events preceding it in the partial order have already fired). Its behaviour is the set of all
sequences of the labels of its events that abide by ≤.

For example, for the pomset in Figure 1, E = {e1, . . . ,e8}, λ = {e1 7→ mw1!t,e2 7→ mw1?t,e3 7→
w1m!d,e4 7→ w1m?d,e5 7→mw2!t,e6 7→mw2?t,e7 7→ w2m!d,e8 7→ w2m?d}, and ≤= {(ei,e j) | (i, j ∈
[1,4]∨ i, j ∈ [5,8])∧ i ≤ j}. Its behaviour consists of all interleavings of mw1!t mw1?t w1m!d w1m?d
and mw2!tmw2?t w2m!d w2m?d.

As illustrated in Figure 2, however, traditional pomsets suffer from the same problem when represent-
ing choices that automata suffer from when representing concurrency: there is no explicit representation
of choices in pomsets, and they are represented only implicitly as a set of possible pomsets. We tackle
this by extending pomsets with an explicit representation of choices: a branching structure on events.

Branching structure The general idea of a branching pomset is that all possible events are initially part
of the pomset, but some are defined as being part of a choice. To fire these, all relevant choices must first
be resolved by replacing the choice with one of its branches, thereby discarding the other branch. This
same idea governs the operational semantics of choreographies (Figure 4): both branches of a choice are
initially part of the choreography but, to proceed in one of them, the other must be dropped.

The branching structure does not interrupt the partial order and all events still participate in it, as
shown in Figure 5, where arrows flow both into and out of the branches of the choice. As such, a choice
can also be resolved to fire an event which is only preceded by one of the branches, reminiscent of
the partial termination of choices (Figure 4c). For example, in Figure 5 the upper branch (b�c:x) can
be discarded to fire the event labelled cd!x, as it is not dependent on the lower branch. As shown in
Figure 6, nested choices are supported as well.

Formally, the branching structure is defined below as a tree with root node B, whose children are
either a single event e or a choice node C with children (branches) B1,B2. All leaves are events.

B ::= {C1, . . . ,Cn}
C ::= e | {B1,B2}

For example, for the pomset in Figure 5, if E = {e1, . . . ,e8} and λ = {e1 7→ ab!x,e2 7→ ab?x,e3 7→
cd!x,e4 7→ cd?x,e5 7→ bc!x,e6 7→ bc?x,e7 7→ bd!x,e8 7→ bd?x}, then its branching structure is {e1,e2,e3,
e4,{{e5,e6},{e7,e8}}}. For the pomset in Figure 6, if E = {e1, . . . ,e14} and λ = {e1 7→ ab!x,e2 7→
ab?x,e3 7→ ba!x,e4 7→ ba?x,e5 7→ bd!x,e6 7→ bd?x,e7 7→ ac!x,e8 7→ ac?x,e9 7→ ca!x,e10 7→ ca?x,e11 7→
cd!x,e12 7→ cd?x,e13 7→ da!x,e14 7→ da?x}, then its branching structure is {e13,e14,{{e1,e2,{{e3,e4},
{e5,e6}}},{e7,e8,{{e9,e10},{e11,e12}}}}}. By resolving the outer choice and picking its upper branch
(a�b:x), we drop events e7, . . . ,e12 and obtain the middle branching pomset in Figure 8, with events
e1, . . . ,e6,e13,e14 and branching structure {e1,e2,e13,e14,{{e3,e4},{e5,e6}}}.
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CHOICE

CHOICE

CHOICE

ab!x ab?x

ac!x ac?x

ba!x ba?x

bd!x bd?x

ca!x ca?x

cd!x cd?x

da!x da?x

Figure 6: A branching pomset representing the choreography ((a�b:x ; (b�a:x + b�d:x)) + (a�c:x ;
(c�a:x+ c�d:x))) ;d�a:x.

We now formally define branching pomsets.

Definition 1 (Branching pomset). A branching pomset is a four-tuple R = 〈E,≤,λ ,B〉, where E is a set
of events, ≤⊆ E×E is such that ≤? (the transitive closure of ≤) is a partial order on events, λ : E 7→ L
is a labelling function assigning an action to every event, and B is a branching structure such that the set
of leaves of B is E and no event in E occurs in B more than once. We use R.E, R.≤, R.λ and R.B to refer
to the components of R.

Semantics To fire an event in a branching pomset, on top of being minimal it must also be active, i.e.,
it must not be inside any choice. In other words: it must be a child of the branching structure’s root
node. We thus define a set of refinement rules in Figure 7a, written Rw R′, which can be used to resolve
choices and move events upwards in the branching structure.

The first two rules, REFL and TRANS, are straightforward. The third rule, CHOICE, resolves choices.
It states that we can replace a choice with one of its branches. This rule serves a dual purpose: by
applying it to the outer choice of the pomset in Figure 6 we can fire the event ab!x in its first branch;
alternatively, by applying it to the pomset in Figure 5 we can discard one branch of the choice and then
fire the event cd!x, which is now minimal. The latter use corresponds with the partial termination rules for
choreographies. The fourth rule, CONGR is used for more fine-grained partial termination. To make the
event da!x minimal in Figure 6 we could resolve two choices with CHOICE (and TRANS). However, as
the rules for partial termination tell us, it is unnecessary to resolve the outer choice. Instead, we can apply
CHOICE to both inner choices and apply CONGR to the outer choice to update it without unnecessarily
resolving it. Finally, the fifth rule overloads the refinement notation to also apply to branching pomsets
themselves: if R.B can refine to some B′, then R itself can refine to a derived branching pomset with
branching structure B′, whose events are restricted to those occurring in B′ and likewise for ≤ and λ .

The reduction and termination rules are defined in Figure 7b. The first rule simply states that a
pomset can terminate if its branching structure can reduce to the empty set. The second rule defines the
conditions for enabling an event e, written R Xe−→ R′. A branching pomset R can enable e by refining to
R′ if e is both minimal and active in R′ (e ∈ a-min(R′)), and if there is no other refinement in between
in which e is already minimal and active. In other words, R may only refine as far as strictly necessary
to enable e. This rule implements the same idea as partial termination, with the subtle difference that,
whereas partial termination tries to remove any occurrence of a participant, in this case e is actually
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B w B
[REFL]

B w B′ w B′′

B w B′′
[TRANS]

i ∈ {1,2}
{{B1,B2}}∪B w Bi∪B

[CHOICE]

B1 w B′1 B2 w B′2
{{B1,B2}}∪B w {{B′1,B′2}}∪B

[CONGR]
R.B w B′

Rw R[B′]

(a) Refinement rules, where we assume for CHOICE and CONGR that {B1,B2} /∈ B.

R.B w /0
R↓

Rw R′ e ∈ a-min(R′)

∀R′′ : Rw R′′ A R′⇒ e /∈ a-min(R′′)

R Xe−→ R′
R Xe−→ R′

R e−→ R′− e

R e−→ R′

R
λ (e)−−→ R′

(b) Reduction and termination rules.

〈E,≤,λ ,B〉[B′] = 〈E|B′ ,≤|B′ ,λ |B′ ,B′〉
X |B = restricts X only to the events in B

a-min(R) = {e ∈ R.E | @e′ ∈ R.E : e′ < e}∧ e ∈ R.B
ê− e = ê

{C1, . . . ,Cn}− e =

{
{C1, . . . ,Ci−1,Ci+1, . . . ,Cn} if Ci = e
{C1− e, . . . ,Cn− e} otherwise

{B1,B2}− e = {B1− e,B2− e}
R− e = R[R.B− e]

(c) Operations on branching pomsets.

Figure 7: Semantics of branching pomsets.

an event in R itself. As the two notions are very similar, we use the same notation for enabling events
in branching pomsets as for partial termination. Finally, the last two rules state that, if R can enable e
by refining to R′, then it can fire e by reducing to R′− e, which is the branching pomset obtained by
removing e from R′ (Figure 7c). This reduction is defined both on e’s label and on the event itself, the
latter for internal use in proofs since λ (e) is typically not unique but e is.

Example 3.

• R Xe−→ R′, where R is the branching pomset in Figure 5, R′ is the topmost branching pomset in
Figure 8 and e is the event with label cd!x.

• R Xe−→ R′, where R is the branching pomset in Figure 6, R′ is the middle branching pomset in
Figure 8 and e is the event with label ab!x.

• R Xe−→ R′, where R is the branching pomset in Figure 6, R′ is the middle branching pomset in
Figure 8 and e is the event with label da!x.
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ab!x ab?x
bd!x bd?x

cd!x cd?x

Obtained by applying CHOICE to the pomset in Figure 5.

CHOICE

ab!x ab?x
ba!x ba?x

bd!x bd?x

da!x da?x

Obtained by applying CHOICE to the outer choice of the pomset in Figure 6.

CHOICE

ab!x ab?x

ac!x ac?x

ba!x ba?x

ca!x ca?x

da!x da?x

Obtained by applying CONGR to the outer and CHOICE to both inner choices of the pomset in Figure 6.

Figure 8: Three refined pomsets.

4 Branching pomsets for choreographies

In this section we formalise the construction of a branching pomset for a choreography c and we show
that the pomset semantics for the branching pomset are bisimilar to the operational semantics for c.

We have given examples of choreographies and corresponding branching pomsets in Figures 5 and 6.
Formally, the rules for the construction of a branching pomset for a choreography c, written JcK, are
defined in Figure 9. Most rules are as expected. We highlight the rules for operators.

• The rule for parallel composition (Jc1 ‖ c2K) takes the pairwise union of all components.

• The rule for sequential composition (Jc1 ; c2K) also adds dependencies to ensure that, for every
a, all events with subject a in Jc1K (denoted E1a) must precede all events with subject a in Jc2K.
This matches the reduction rule for weak sequential composition of choreographies (Figure 4a), as
events in Jc2K are only required to wait for events in Jc1K whose subject is the same.

• The rule for choice (Jc1 + c2K) adds a single top-level choice in the branching structure to choose
between the pomsets for c1 and c2.

• The rule for loops (Jc∗K) encodes a loop as a choice between terminating (0) and unfolding one
iteration of the loop (c ; c∗). This results in a pomset of infinite size. We note that our theoretical
results still hold even on infinite pomsets, but that any analysis of an infinite pomset will have to
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J0K= 〈 /0, /0, /0, /0〉
Ja�b:xK= 〈{e1,e2},{e1 ≤ e1,e1 ≤ e2,e2 ≤ e2},{e1 7→ ab!x,e2 7→ ab?x},{e1,e2}〉
Jab?xK= 〈{e},{e≤ e},{e 7→ ab?x},{e}〉
Jc1 † c2K= Jc1K† Jc2K for † ∈ {;,+,‖}

Jc∗K= J(c ; c∗)+0K

R1 ‖ R2 = 〈E1∪E2,≤1∪≤2,λ1∪λ2,B1∪B2〉
R1 ; R2 = 〈E1∪E2,≤1∪≤2∪

⋃
a∈A E1a×E2a ,λ1∪λ2,B1∪B2〉

R1 +R2 = 〈E1∪E2,≤1∪≤2,λ1∪λ2,{{B1,B2}}〉

Figure 9: Pomset interpretation of choreographies, where Ri = 〈Ei,≤i,λi,Bi〉 for i ∈ {1,2}, A is the set
of all participants (a,b, . . .) and Eia is the subset of events in Ei with subject a.

be symbolic. However, since the focus of this paper is on supporting choices, we do not discuss
this further and leave symbolic analyses for loops for future work.

As an example, we construct part of the branching pomset in Figure 5: (b�c:x + b�d:x) ; c�d:x
(thus omitting a�b:x). Let Jb�c:xK = 〈{e1,e2},≤1,λ1,{e1,e2}〉, Jb�d:xK = 〈{e3,e4},≤2,λ2,{e3,e4}〉
and Jc�d:xK = 〈{e5,e6},≤3,λ3,{e5,e6}〉 as in Figure 9. First, Jb�c:x + b�d:xK = 〈{e1, . . . ,e4},≤1 ∪
≤2,λ1 ∪ λ2,{{{e1,e2},{e3,e4}}}〉; this is the pairwise union of the first three components, with the
branching structure adding a choice between the two branches. Then J(b�c:x + b�d:x) ; c�d:xK =
〈{e1, . . . ,e6},≤1 ∪≤2 ∪≤3 ∪{e2 ≤ e5,e4 ≤ e6},λ1 ∪ λ2 ∪ λ2,{e5,e6,{{e1,e2},{e3,e4}}}〉; again, this
is the pairwise union of all components, with the addition of two dependencies: e2 ≤ e5 represents the
arrow in Figure 5 from bc?x to cd!x as they both have subject c, e4 ≤ e6 represents the arrow from bd?x
to cd?x as they both have subject d. There are no direct dependencies between e1 (bc!x) or e3 (bd!x) and
either e5 or e6, as the latter two do not have subject b.

Bisimulation For any given a choreography c we can derive two labelled transition systems: one from
the operational semantics in Figure 4 over c, and one from the pomset semantics in Figure 7 over the
branching pomset JcK produced by the rules in Figure 9. In the remainder of this section we show that
the two transition systems are bisimilar.

Two systems are language equivalent (or trace equivalent) if their languages are the same, i.e., if they
accept the same set of words (or traces). Two systems are bisimilar if each of them can simulate the
other, i.e., if they cannot be distinguished from each other just by looking at their behaviour. This is a
stronger notion of equivalence than language equivalence: if two systems are bisimilar then they are also
language equivalent, but the inverse is not necessarily true.

Example 4.

• a�b:x ; (b�a:x + b�a:y) is language equivalent but not bisimilar to (a�b:x ; b�a:x) + (a�b:x ;
b�a:y). In the former the choice between b�a:x and b�a:y is made only after a�b:x, while in the
latter the choice is made up front. As a result, it is possible in the latter system to fire ab!x ; ab?x
and then end up in a state where ba!x cannot be fired because the branch with b�a:y was chosen
— or the other way around; in the former system it is always possible to fire both ba!x and ba!y.
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• a�b:x is bisimilar to a�b:x+ a�b:x. While the latter contains a choice, the two systems cannot
be distinguished by their behaviour. In both cases, the only allowed action is ab!x and then ab?x.

Formally, two transition systems A1,A2 are bisimilar, written A1 ∼ A2, if there exists a bisimulation
relation R relating the states of A1 and A2 which relates their initial states [15]. The relation R is a
bisimulation relation if, for every pair of states 〈p,q〉 ∈ R:

• If p `−→ p′ then q `−→ q′ and 〈p′,q′〉 ∈ R for some q′, and vice-versa.

• If p↓ then q↓, and vice-versa.

In other words: if one of the two can perform a step, then the other can perform a matching step such
that the resulting states are again in the bisimulation relation.

This is also the approach we follow when proving that c ∼ JcK for all (dependently guarded) chore-
ographies c: we define a relation R = {〈c,JcK〉 | c is a dependently guarded choreography} relating all
dependently guarded choreographies with their interpretation as branching pomset by the rules in Fig-
ure 9. We then show that:

• If c `−→ c′ then JcK `−→ Jc′K (Lemma 2).

• If JcK `−→ R′ then c `−→ c′ such that R′ = Jc′K (Lemma 3).

• If c↓ then JcK↓ (Lemma 4).

• If JcK↓ then c↓ (Lemma 5).

Together these lemmas prove that c ∼ JcK for all dependently guarded c (Theorem 6). Most of the
proofs are straightforward by structural induction on c. Of particular interest, however, are the two
reduction lemmas in the case of weak sequential composition, i.e., if c1 ; c2

`−→ c′1 ; c′2 in Lemma 2 and if
Jc1 ; c2K

e−→ R′ where e is an event in Jc2K in Lemma 3. To prove these specific cases we need to show
a correspondence between partial termination and enabling events. We do this with Lemma 1, in which
we show two directions simultaneously. If the choreography c1 can partially terminate for the subject of
an action ` in c2 then the branching pomset Jc1 ; c2K can enable the corresponding event. Conversely, if
Jc1 ; c2K can enable some event in Jc2K then the choreography c1 can partially terminate for the subject of
its label. When proving these cases in Lemmas 2 and 3, we then only have to show that the preconditions
of Lemma 1 hold.

In the following, a number of technical lemmas and most of the proofs are omitted in favour of
informal proof sketches or highlights. The omitted proofs and technical lemmas can be found in the
appendix.

Lemma 1. Let c1 and c2 be dependently guarded choreographies. Let c2
`−→ c′2 and Jc2K

Xe−→ R′2 such that
λ (e) = ` and Jc′2K= R′2− e.

(a) If c1
X̀−→ c′1 then Jc1 ; c2K

Xe−→ Jc′1K ; R′2.

(b) If Jc1 ; c2K
Xe−→ R′1 ; R′2 then c1

Xλ (e)−−−→ c′1 and Jc′1K= R′1.

Proof sketch. This proof is by structural induction on c1. Although the details require careful considera-
tion, it is conceptually straightforward: every case in (a) consists of showing that e is minimal and active
in Jc′1K ; R′2 and that Jc′1K ; R′2 is the first refinement for which this is true, and then applying the second
rule in Figure 7b; every case in (b) consists of showing that Jc3 ; c2K

Xe−→ Jc′3K ; R′2 for some subexpression
c3 of c1 and similarly for c4 (e.g., when c1 = c3 +c4), then applying the induction hypothesis (b) to obtain
c3

X̀−→ c′3 and c4
X̀−→ c′4, and finally applying the partial termination rules in Figure 4c.
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Lemma 2. Let c be a dependently guarded choreography. If c `−→ c′ then JcK `−→ Jc′K.

Proof sketch. This proof is by structural induction on c. We note that, if c = c1 ; c2 and c′ = c′1 ; c′2, i.e.,
when partial termination is applied, then the premises of Lemma 1 hold by the induction hypothesis and
the result swiftly follows. All other cases are straightforward.

Lemma 3. Let c be a dependently guarded choreography. If JcK `−→ R′ for some R′ then c `−→ c′ such that
R′ = Jc′K.

Proof sketch. This proof is by structural induction on c. We highlight two cases:

• If c = c∗1 then we use a technical lemma to show that R′ = R′1 ; Jc∗1K such that Jc1K
`−→ R′1. It

then follows from the induction hypothesis that c1
`−→ c′1 such that Jc′1K = R′1. The remainder is

straightforward.

• If c = c1 ; c2 then JcK= Jc1K ; Jc2K. If e is an event in Jc2K then we proceed to show that Jc2K
`−→ R′2,

at which point we can apply the induction hypothesis. We have then satisfied the premises of
Lemma 1. The remainder is straightforward.

All other cases are straightforward.

Lemma 4. Let c be a dependently guarded choreography. If c↓ then JcK↓.

Proof sketch. This proof is by structural induction on c. All cases are straightforward.

Lemma 5. Let c be a dependently guarded choreography. If JcK↓ then c↓.

Proof sketch. This proof is by structural induction on c. All cases are straightforward.

Theorem 6. Let c be a dependently guarded choreography. Then c∼ JcK.

Proof. Recall the relationR= {〈c,JcK〉 | c is a dependently guarded choreography}. Let 〈c,R〉 ∈ R.

• If c `−→ c′ then R `−→ R′ and 〈c′,R′〉 ∈ R (Lemma 2).

• If R `−→ R′ then c `−→ c′ and 〈c′,R′〉 ∈ R (Lemma 3).

• If c↓ then R↓ (Lemma 4).

• If R↓ then c↓ (Lemma 5).

ThenR is a bisimulation relation and c∼ JcK ([15]).

5 Conclusion

We have defined a choreography language and its operational semantics (Figures 3 and 4) using the
weak sequential composition and partial termination of Rensink and Wehrheim [14], which is novel in
the context of choreographies. We have defined a model, branching pomsets (Definition 1), which can
compactly represent both concurrency and choices, and have defined its semantics (Figure 7). We have
shown that we can use branching pomsets to model choreographies (Figure 9) and that this model is
behaviourally equivalent to the operational semantics (Theorem 6).

We believe that branching pomsets can be further improved. We mention three points in particular
and then discuss related work.
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Binary choices Our branching structure B only supports binary choices. This matches the structure of
choreographies, but it would be more natural to represent c1 + (c2 + c3) as a single choice between the
pomsets Jc1K, Jc2K and Jc3K instead of as two nested binary choices. However, supporting arbitrary n-ary
choices also requires some thought about how to change the rules for refinement (Figure 7a), in particular
CHOICE. A naive change would be to simply have this rule use i ∈ {1, . . . ,n} and {{B1, . . . ,Bn}} instead
of its current binary rules, but this is not sufficient as this naive n-ary choice would not be equivalent to
the same branches composed as nested binary choices. For example, c1 + (c2 +c3) can partially terminate
to c1 + c2 and its interpretation as a branching pomset can refine to Jc1 + c2K, but a branching pomset
whose branching structure consists of a single ternary choice {{B1,B2,B3}} would not be able to refine
to {{B1,B2}} as the rules would only allow it to refine all of its branches or discard all but one of them.
Properly supporting n-ary choices would thus also require a new rule that allows {{B1, . . . ,Bm}} to refine
to choice between an arbitrary (non-empty) subset of its branches.

Partial order In Definition 1, ≤ is defined as a relation on events such that its transitive closure is
a partial order, rather than ≤ being a partial order itself as it is in traditional pomsets. The need for
this change arises from the update rule R[B] (Figure 7c) in our use case as choreographies. Consider
the branching pomset in Figure 5. To match the operational semantics, we should be able to refine this
pomset by discarding the b�c:x branch of the choice, after which cd!x should be minimal. In our current
rules the events bc!x and bc?x are removed along with their entries in ≤ and then cd!x is minimal.
However, if ≤ is a partial order, then since a partial order is transitive ≤ would also contain the entries
ab!x ≤ cd!x and ab?x ≤ cd!x and, since these entries do not contain bc!x or bc?x but are obtained by
transitivity, they are not removed. Consequently, there would be no refinement that enables cd!x.

In general, if R1wR′1 and R2wR′2 then it would not necessarily be true that R1 ;R2wR′1 ;R′2, as R1 ;R2
may contain dependencies obtained by transitivity which would still be present in its updated version but
which cannot be derived in R′1 ; R′2. We have no ready alternative. In the case of choreographies it may
suffice to provide a more sophisticated update rule which properly trims these unwanted dependencies,
but since this relies on knowledge of how these dependencies were derived from choreographies it is
difficult to see how this could be applied to branching pomsets in general.

Loops In Figure 9 a loop c∗ is encoded by infinitely unfolding it. As such, branching pomsets do not
currently provide a finite representation of infinite choreographies. This remains a topic for future work,
for which we envision two possible directions. One possibility would be to add an explicit repetition
construct to the branching structure (e.g., change the second grammatical rule to C = e | {B1,B2} | B∗)
and expand the semantics and proofs accordingly. Another possibility would be to explore the approach
used in message sequence chart graphs [1] and add a graph structure on top of the branching structure.

Related work Choreographies are typically used in a top-down workflow: the developer writes a global
view C and decomposes it into its projections, such that the behaviour of C is behaviourally equivalent
to the parallel composition of its projections. Examples of this approach include workflows based on
message sequence charts [10, 1], multiparty session types [8, 9], and choreographic programs [2, 6]. The
choreographic language used in this paper assumes asynchronous communication between agents and
includes a finite loop operator, borrowing from this literature the same notion of actions as interactions
and their (parallel, sequential, and choice) composition.

Pomsets were initially introduced by Pratt [13] for concurrent models and have been widely used,
e.g., in the context of message sequence charts by Katoen and Lambert [11]. Recently Guanciale and
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Tuosto proposed two semantic frameworks for choreographies, one of which uses sets of pomsets [16].
They also note that the pomset framework exhibits exponential growth in the number of choices in a
choreography, and they propose an alternative semantic framework using hypergraphs, which can com-
pactly represent choices. While the hypergraph framework is more compact, their pomset framework is
simpler and, they believe, more elegant. We agree with this analysis, and we aim to preserve the sim-
plicity and elegance of the pomset framework by proposing a framework that avoids exponential growth
in the number of choices while still being based on pomsets. In another recent paper Guanciale and Tu-
osto use pomsets to reason over choreography realisability [7]. This demonstrates the potential of using
pomsets for semantic analysis, and we are investigating how to use our framework for similar analysis.

Other related work includes the usage of event structures in the context of binary session types by
Castellan and Yoshida [3] and multiparty by Castellani et al. [4]. Event structures and branching pomsets
both feature a set of events with a causality relation and a choice mechanism. The main difference
between the two approaches is in the latter. Choices in event structures are based on a conflict relation
on events, where two events in conflict cannot occur together in an execution and one of the two must be
chosen. In contrast, we structure events in branching pomsets hierarchically. In the latter work, Castellani
et al. use prime event structures to encode global types. The conflict heredity property of prime event
structures leads to event duplication, which is avoided in flow event structures and branching pomsets.
We leave a detailed comparison between flow event structures and branching pomsets for future work.
We note that, given a branching pomset, one may construct an event structure by defining its conflict
relation as all pairs of events that belong to different branches of some choice in the branching structure.
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A Proofs from the paper

Lemma 1. Let c1 and c2 be dependently guarded choreographies. Let c2
`−→ c′2 and Jc2K

Xe−→ R′2 such that
λ (e) = ` and Jc′2K= R′2− e.

(a) If c1
X̀−→ c′1 then Jc1 ; c2K

Xe−→ Jc′1K ; R′2.

(b) If Jc1 ; c2K
Xe−→ R′1 ; R′2 then c1

Xλ (e)−−−→ c′1 and Jc′1K= R′1.

Proof. This is a proof by induction on the structure of c1. We assume both (a) and (b) to hold for all
subexpressions of c1.

(a) • If c1 = 0 then Jc1K= Jc′1K= 〈 /0, /0, /0, /0〉 and Jc1 ; c2K= Jc2K so the result holds trivially.
• If c1 = a�b:x then by Fig. 4 subj(`) /∈ {a,b} and c′1 = c1. By Fig. 9 the construction of
Jc1 ;c2K adds no dependencies between events in Jc1K and e, so Jc1 ;c2K

Xe−→ Jc1K ;R′2 = Jc′1K ;R′2.
• If c1 = ab?x then we proceed analogously to the previous case.
• If c1 = c3 † c4 for † ∈ {;,‖} then by Fig. 4 c3

X̀−→ c′3 and c4
X̀−→ c′4 and c′1 = c′3 † c′4. By the

induction hypothesis (a) Jc3 ; c2K
Xe−→ Jc′3K ; R′2 and Jc4 ; c2K

Xe−→ Jc′4K ; R′2. By Fig. 7 Jc2Kw R′2,
Jc3K w Jc′3K and Jc4K w Jc′4K. By Lemma 8(i,iii) J(c3 † c4) ; c2K w (Jc′3K † Jc′4K) ; R′2. Since
e ∈ a-min(R′2), e ∈ a-min(Jc′3K ;R′2) and e ∈ a-min(Jc′4K ;R′2), it follows that e ∈ a-min((Jc′3K†
Jc′4K) ;R′2). Suppose there exists some R′′ such that (Jc3K†Jc4K) ;Jc2KwR′′A (Jc3K†Jc4K) ;R′2.
If e ∈ a-min(R′′) then it follows from Lemma 8(iv) that either Jc3K ; Jc2K w R′3 A Jc′3K ; R′2
and e ∈ a-min(R′3) or analogously for c4. This contradicts our observation that Jc3 ; c2K

Xe−→
Jc′3K ;R′2, or analogously for c4. We conclude that e /∈ a-min(R′′) and then by Fig. 7 Jc1 ;c2K

Xe−→
Jc′1K ; R′2.
• If c1 = c3 + c4, we can distinguish three cases:

– If c3
X̀−→ c′3 and c4

X̀−→ c′4 then c′1 = c′3 +c′4. We then proceed analogously to the previous
case, applying Lemma 8(ii,v) instead of Lemma 8(i,iii,iv).

– If c3
X̀−→ c′3 but c4 6

X̀−→ then c′1 = c′3. By the induction hypothesis (a) Jc3 ;c2K
Xe−→ Jc′3K ;R′2,

from which it follows that e ∈ a-min(Jc′3K ; R′2). By the induction hypothesis (b) Jc4 ;
c2K 6

Xe−→ since it would otherwise contradict the premise that c4 6
X̀−→. By Lemma 8(ii,iii)

Jc1 ;c2Kw Jc′3K ;R′2. Suppose that there exists some R′′ such that Jc1 ;c2Kw R′′A Jc′3K ;R′2.
By Lemma 8(iv) R′′ = R′′1 ; R′′2 for some Jc1K w R′′1 w Jc′3K and Jc2K w R′′2 w R′2. If R′′2 6=
R′2 then e /∈ a-min(R′′2) and e /∈ a-min(R′′). By Lemma 8(v) either R′′1 = R′′4 for some
Jc4Kw R′′4 w Jc′3K, which is clearly impossible, or R′′1 = R′′3 for some Jc3Kw R′′3 w Jc′3K, in
which case e /∈ a-min(R′′) since this would otherwise contradict Jc3 ; c2K

Xe−→ Jc′3K ; R′2, or
R′′1 =R′′3 +R′′4 , in which case either e /∈ a-min(R′′) or e∈ a-min(R′′4 ;R′′2), which contradicts
Jc4 ; c2K 6

Xe−→. Then by Fig. 7 Jc1 ; c2K
Xe−→ Jc′3K ; R′2 = Jc′1K ; R′2.

– If c3 6
X̀−→ and c4

X̀−→ c′4 then we proceed analogously to the previous case.
• If c1 = c∗3 for some c3 then by Fig. 4 we can distinguish two cases:

– If c3
X̀−→ c3 then c′1 = c1. Since c1 is dependently guarded, it follows that the subject of

` does not occur in c3 or in c1. Then by Fig. 9 there are no dependencies between any
event in Jc1K and e in Jc1 ;c2K. It follows that Jc1 ;c2Kw Jc1K ;R′2 and e∈ a-min(Jc1K ;R′2).
Since Jc2K

Xe−→ R′2 there exists no R′′2 such that Jc2Kw R′′2 A R′2 and e ∈ a-min(R′′2). It then
follows from Fig. 7 that Jc1 ; c2K

Xe−→ Jc′1K ; R′2.
– If c3 6

X̀−→ c3 then c′1 = 0. By Fig. 9 Jc1K = J(c3 ; c∗3)+ 0K. By Lemma 8(ii) Jc1K w J0K
and then by Lemma 8(iii) Jc1K ; Jc2K w J0K ; R′2 = R′2. Since Jc2K

Xe−→ R′2, by Fig. 7 e ∈
a-min(R′2).
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Suppose there exists some R′1 6= J0K such that Jc1 ; c2K
Xe−→ R′1 ; R′2. Then by the induction

hypothesis (b) c1
Xλ (e)−−−→ c′1 and Jc′1K = R′1 for some c′1. Since R′1 6= J0K, c′1 6= 0, which

contradicts our earlier statement that c1 = 0. We conclude that there exists no such R′1
and that by Fig. 7 Jc1 ; c2K

Xe−→ Jc′1K ; R′2.

(b) By Lemma 8(iv) Jc1Kw R′1.

• If c1 = 0 then Jc1K= Jc′1K= R′1 = 〈 /0, /0, /0, /0〉. By Fig. 4 0
Xλ (e)−−−→ 0 so the result holds trivially.

• If c1 = a�b:x then by Fig. 7 R′1 = Jc1K since there is no rule to refine it and subj(λ (e)) /∈
{a,b} since e ∈ a-min(R′1 ; R′2). Then by Fig. 4 c1

Xλ (e)−−−→ c1 = c′1.
• If c1 = ab?x then we proceed analogously to the previous case.
• If c1 = c3 † c4 for † ∈ {;,‖} then by Lemma 8(iv) R′1 = R′3 † R′4 for some Jc3K w R′3 and
Jc4K w R′4. Suppose there exists some R′′3 such that Jc3 ; c2K w R′′3 ; R′2 w R′3 ; R′2 and e ∈
a-min(R′′3 ; R′2). It would follow from Lemma 8(i,iii) that Jc1 ; c2K w (R′′3 † R′4) ; R′2 A R′1 ; R′2
and e ∈ a-min((R′′3 † R′4) ; R′2), which contradicts our premise that Jc1 ; c2K

Xe−→ R′1 ; R′2. It thus
follows from Fig. 7 that Jc3 ; c2K

Xe−→ R′3 ; R′2 and similarly for c4. By the induction hypothesis
(b) c3

Xλ (e)−−−→ c′3 such that Jc′3K= R′3 and similarly for c4. Then by Fig. 4 c3 † c4
Xλ (e)−−−→ c′3 † c′4.

• If c1 = c3 + c4 then by Lemma 8(v) we can distinguish three cases:
– If R′1 = R′3+R′4 for some R′3 w Jc3K and R′4 w Jc4K then by Lemma 8(iii) Jc3 ;c2Kw R′3 ;R′2

and similarly for c4. Analogously to the previous case it follows that Jc3 ; c2K
Xe−→ R′3 ; R′2

and by the induction hypothesis (b) that c3
Xλ (e)−−−→ c′3 and Jc′3K= R′3, and similarly for c4.

Then by Fig. 4 c3 + c4
Xλ (e)−−−→ c′3 + c′4 and by Fig. 9 Jc′3 + c′4K= R′3 +R′4.

– If R′1 w Jc3K then analogously to the previous case it follows that Jc3 ; c2K
Xe−→ R′1 ; R′2. By

the induction hypothesis (b) c3
Xλ (e)−−−→ c′3 and R′1 = Jc′3K.

Suppose that c4
Xλ (e)−−−→ c′4 for some c′4. Then by the induction hypothesis (a) also Jc4 ;

c2K
Xe−→ Jc′4K ; R′2. It would follow from Fig. 7 that J(c3 + c4) ; c2K

Xe−→ (Jc′3K + Jc
′
4K) ; R′2.

However, since (Jc′3K+ Jc
′
4K) ; R′2 w Jc′3K ; R′2 this contradicts our premise that R′1 = Jc′3K.

We conclude that c4 6
Xλ (e)−−−→ and then by Fig. 4 c3 + c4

Xλ (e)−−−→ c′3.
– If R′1 w Jc4K then we proceed analogously to the previous case.

• If c1 = c∗3 then recall that by Fig. 9 Jc∗3K= J(c3 ; c∗3)+0K. We can distinguish two cases:
– If R′1 = Jc1K then analogously to the previous cases it follows that Jc3 ; c2K

Xe−→ Jc3K ; R′2
and by the induction hypothesis (b) c3

Xλ (e)−−−→ c3. Then by Fig. 4 c1
Xλ (e)−−−→ c1.

– If R′1 6= Jc1K then suppose that Jc3 ; c2K
Xe−→ R′3 ; R′2 for some Jc3K A R′3. It would follow

from the induction hypothesis (b) that c3
Xλ (e)−−−→ c′3 such that Jc′3K = R′3. Then c′3 6= c3,

which is contradictory since c1 = c∗3 is dependently guarded. It thus follows that Jc3 ;
c2K 6

Xe−→ and that R′1 = J0K. By the induction hypothesis (a) c3 6
Xλ (e)−−−→ and then by Fig. 4

c1
Xλ (e)−−−→ 0.

Lemma 2. Let c be a dependently guarded choreography. If c `−→ c′ then JcK `−→ Jc′K.

Proof. This is a proof by structural induction on c.

• Suppose c ∈ {0,a�b:x,ab?x}. Then the result holds trivially.

• Suppose c = c1 ‖ c2. If c `−→ c′, then without loss of generality c1
`−→ c′1 and c′ = c′1 ‖ c2 (the other

case is analogous). By the induction hypothesis Jc1K
`−→ Jc′1K, so by Fig. 7 Jc1K

Xe−→ R′ such that
Jc′1K= R′− e and λ (e) = `. It follows from Lemma 9(i) that Jc′1K ‖ Jc2K

Xe−→ R′ ‖ Jc2K and then by
Fig. 7 JcK= Jc1K ‖ Jc2K

`−→ (R′− e) ‖ Jc2K= Jc′1K ‖ Jc2K= Jc′K.
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• Suppose c = c1 +c2. If c `−→ c′, then without loss of generality c1
`−→ c′ (the other case if analogous).

By the induction hypothesis Jc1K
`−→ Jc′K, so by Fig. 7 Jc1K

Xe−→ R′ such that Jc′K = R′ − e and
λ (e) = `. It follows from Lemma 9(ii) that Jc1K+Jc2K

Xe−→ R′ and then by Fig. 7 JcK= Jc1K+Jc2K
`−→

R′− e = Jc′K.

• Suppose c = c∗1. If c `−→ c′, then c1
`−→ c′1 and c′ = c′1 ; c∗1. By the induction hypothesis Jc1K

`−→ Jc′1K,
so by Fig. 7 Jc1K

Xe−→ R′ such that Jc′1K= R′−e and λ (e) = `. Since Jc∗1K= J(c1 ; c∗1)+0K, it follows
from Lemma 9(ii–iii) that J(c1 ; c∗1) + 0K Xe−→ R′ ; Jc∗1K and then by Fig. 7 JcK = J(c1 ; c∗1) + 0K `−→
(R′− e) ; Jc∗1K= Jc′1K ; Jc∗1K= Jc′K.

• Finally, suppose c = c1 ; c2. If c `−→ c′, we can distinguish two cases:

– Suppose c1
`−→ c′1 and c′ = c′1;c2. By the induction hypothesis Jc1K

`−→ Jc′1K, so by Fig. 7
Jc1K

Xe−→ R′ such that Jc′1K = R′− e and λ (e) = `. It follows from Lemma 9(iii) that Jc1K ;
Jc2K

Xe−→ R′;Jc2K and then by Fig. 7 JcK= Jc1K ; Jc2K
`−→ (R′− e) ; Jc2K= Jc′1K ; Jc2K= Jc′K.

– Suppose c1
X̀−→ c′1, c2

`−→ c′2 and c′ = c′1 ;c′2. By the induction hypothesis Jc2K
`−→ Jc′2K and then

it follows from Lemma 1(a) that JcK= Jc1K ; Jc2K
Xe−→ Jc′1K ; R′2

`−→ Jc′1K ; Jc′2K= Jc′K.

Lemma 3. Let c be a dependently guarded choreography. If JcK `−→ R′ for some R′ then c `−→ c′ such that
R′ = Jc′K.

Proof. This is a proof by structural induction on c. Let R = JcK.

• Suppose c ∈ {0,a�b:x,ab?x}. Then the result holds trivially.

• Suppose c = c1 ‖ c2. If R `−→ R′, then without loss of generality Jc1K
`−→ R′1 and R′ = R′1 ‖ Jc2K (the

other case is analogous). By the induction hypothesis there exists some c′1 such that c1
`−→ c′1 such

that R′1 = Jc′1K. Then by Fig. 4 c1 ‖ c2
`−→ c′1 ‖ c2 = c′, and Jc′K= R′.

• Suppose c = c1 + c2. If R `−→ R′, then without loss of generality Jc1K
`−→ R′ (the other case is anal-

ogous). By the induction hypothesis there then exists some c′ such that c1
`−→ c′ and Jc′K= R′ and

then by Fig. 4 c1 + c2
`−→ c′.

• Suppose c = c∗1. If R `−→ R′, then it follows from Lemma 10 that Jc1K
`−→ R′1 and R′ = R′1 ; Jc∗1K. By

the induction hypothesis there exists some c′1 such that c1
`−→ c′1 and R′1 = Jc′1K. Then by Fig. 4

c∗1
`−→ c′1 ; c∗1 = c′, and R′ = Jc′K.

• Finally, suppose c = c1 ; c2. If R `−→ R′, then by Fig. 7 R Xe−→ R′′ such that R′ = R′′−e and λ (e) = `.
By Lemma 8(iv) R′′ = R′1 ; R′2 for some Jc1Kw R′1 and Jc2Kw R′2. We can distinguish two cases:

– Suppose e is an event in Jc1K. Suppose Jc1K w R′′1 A R′1 for some R′′1 . Then e /∈ a-min(R′′1).
If it were, then also Jc1K ; Jc2K w R′′1 ; R′2 A R′1 ; R′2 and e ∈ a-min(R′′1 ; R′2), which contradicts
Fig. 7. It follows from Fig. 7 that Jc1K

Xe−→ R′1 and Jc1K
`−→ R′1−e. By the induction hypothesis

there exists some c′1 such that c1
`−→ c′1 and Jc′1K= R′1− e. By Fig. 4 c1 ; c2

`−→ c′1 ; c2 = c′ and
then R′ = Jc′K.

– Suppose e is an event in Jc2K. Suppose Jc2K w R′′2 A R′2 for some R′′2 . Then e /∈ a-min(R′′2).
If it were, then also Jc1K ; Jc2K w R′1 ; R′′2 A R′1 ; R′2 and e ∈ a-min(R′1 ; R′′2), which contradicts
Fig. 7. It follows from Fig. 7 that Jc2K

Xe−→ R′2 and Jc2K
`−→ R′2−e. By the induction hypothesis

there exists some c′2 such that c2
`−→ c′2 and Jc′2K = R′2− e. It then follows from Lemma 1(b)

that c1
X̀−→ c′1 and Jc′1K= R′1. Then by Fig. 4, c1 ; c2

`−→ c′1 ; c′2 = c′ and Jc′K= R′.

Lemma 4. Let c be a dependently guarded choreography. If c↓ then JcK↓.
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Proof. This is a proof by structural induction on c.

• If c = 0 then both c and JcK can terminate.

• If c = a�b:x or c = ab?x then neither c or JcK can terminate.

• If c = c1 † c2 for † ∈ {;,‖} then by Fig. 4 c1↓ and c2↓. By the induction hypothesis Jc1K↓ and
Jc2K↓. By Fig. 7 Jc1K.B w /0 and Jc2K.B w /0. By Fig. 9 Jc1 † c2K.B = Jc1K.B∪ Jc2K.B and by Fig. 7
Jc1 † c2K.B w /0 and Jc1 † c2K↓.

• If c = c1 + c2 then by Fig. 4 either c1↓ or c2↓. Without loss of generality we assume c1↓; the
other case is analogous. By the induction hypothesis Jc1K↓ and by Fig. 7 Jc1K.B w /0. By Fig. 7
Jc1 + c2K.B w /0 and then Jc1 + c2K↓.

• If c = c∗1 then c↓ by Fig. 4. By Fig. 9 JcK= J(c1 ; c∗1)+0K. Since J0K.B = /0, it follows from Fig. 7
that JcK.B w /0 and then JcK↓.

Lemma 5. Let c be a dependently guarded choreography. If JcK↓ then c↓.

Proof. This is a proof by structural induction on c.

• If c = 0 then both c and JcK can terminate.

• If c = a�b:x or c = ab?x then neither c or JcK can terminate.

• If c = c1 † c2 for † ∈ {;,‖} and JcK↓ then by Fig. 7 Jc1 † c2K.B w /0. It follows from Lemma 7(ii)
that /0 =B′1∪B′2 such that Jc1K.B wB′1 and Jc2K.B wB′2. It follows that Jc1K.B w /0 and Jc2K.B w /0,
so by Fig. 7 Jc1K↓ and Jc2K↓. By the induction hypothesis c1↓ and c2↓ and then by Fig. 4 c1 † c2↓.

• If c = c1 +c2 and c↓ then by Fig. 7 Jc1 +c2K.B w /0. By Fig. 9 Jc1 +c2K.B = {{Jc1K.B,Jc2K.B}}. By
Lemma 7(iii) either:

– /0 = {{B′1,B′2}} for some Jc1K.B w B′1 and Jc2K.B w B′2, which is a clear contradiction; or
– Jc1K.B w /0, in which case Jc1K↓ and by the induction hypothesis c1↓ and then by Fig. 4

c1 + c2↓; or
– Jc2K.B w /0, which is analogous to the previous case.

• If c = c∗1 then, as in Lemma 4, both JcK↓ and c↓.

B Additional proofs

Lemma 7. Let B1,B2 be branching structures.

(i) If B1 w B‡
1 and B1]B2 is defined, then B1∪B2 w B‡

1 ∪B2.

(ii) If B1∪B2 w B‡, then B1 w B‡
1 and B2 w B‡

2 and B‡
1 ∪B

‡
2 = B‡, for some B‡

1,B
‡
2 .

(iii) If {{B1,B2}} w B‡, then either B1 w B‡
1 and B2 w B‡

2 and {{B‡
1,B

‡
2}} = B‡, for some B‡

1,B
‡
2 , or

B1 w B‡, or B2 w B‡.

Proof.

(i) Recall B1 w B‡
1 . Then, by the definition of refinement:

• Base: REFL, such that B1 = B‡
1 .

Recall B1]B2 is defined. Then, by REFL, B1∪B2 w B1∪B2. Then, B1∪B2 w B‡
1 ∪B2 .
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• Base: CHOICE, such that B1 = {{B̂1, . . . , B̂m}}] B̂ and B‡
1 = B̂i∪B̂ and 1≤ i≤ m, for

some B̂, B̂1, . . . , B̂m, i,m.

– Recall B1]B2 is defined. Then, ({{B̂1, . . . , B̂m}}] B̂)]B2 is defined. Then,
{{B̂1, . . . , B̂m}}] (B̂ ]B2) is defined.

– Recall {{B̂1, . . . , B̂m}}] (B̂ ]B2) is defined, and 1≤ i≤ m. Then, by CHOICE,
{{B̂1, . . . , B̂m}}] (B̂ ]B2)w B̂i∪ (B̂ ]B2). Then,
{{B̂1, . . . , B̂m}}∪ (B̂ ∪B2)w B̂i∪ (B̂ ∪B2). Then,
({{B̂1, . . . , B̂m}}∪ B̂)∪B2 w (B̂i∪B̂)∪B2. Then, B1∪B2 w B‡

1 ∪B2 .

• Step: TRANS, such that B1 w B†
1 w B‡

1 , for some B†
1 .

– Recall B1 w B†
1 and B1]B2 is defined. Then, by induction, B1∪B2 w B†

1 ∪B2.
– Recall B1∪B2 w B†

1 ∪B2. Then, B†
1 ∪B2 is defined.

– Recall B†
1 w B‡

1 and B†
1 ∪B2 is defined. Then, by induction, B†

1 ∪B2 w B‡
1 ∪B2.

– Recall B1∪B2 w B†
1 ∪B2 w B‡

1 ∪B2. Then, by TRANS, B1∪B2 w B‡
1 ∪B2 .

• Step: CONGR. Similar to case CHOICE.

(ii) Recall B1∪B2 w B‡. Then, by the definition of refinement:

• Base: REFL, such that B1∪B2 = B‡.

– By REFL, B1 w B1. Then, B‡
1 = B1 and B1 w B‡

1 , for some B‡
1 .

– By REFL, B2 w B2. Then, B‡
2 = B2 and B2 w B‡

2 , for some B‡
2 .

– Recall B1∪B2 = B‡. Then, B‡
1 ∪B‡

2 = B‡ .

• Base: CHOICE, such that B1∪B2 = {{B̂1, . . . , B̂m}}]B̂ and B‡ = B̂i∪B̂ and 1≤ i≤m, for
some B̂, B̂1, . . . , B̂m, i,m.
Recall B1∪B2 = {{B̂1, . . . , B̂m}}] B̂. Then:

– Case 1: B1 = {{B̂1, . . . , B̂m}}] B̂′ and B2 = B̂′′ and B̂ = B̂′∪B̂′′, for some B̂′, B̂′′.
∗ Recall 1≤ i≤ m. Then, by CHOICE, {{B̂1, . . . , B̂m}}] B̂′ w B̂i∪B̂′. Then,
B1 w B̂i∪B̂′. Then, B‡

1 = B̂i∪B̂′ and B1 w B‡
1 , for some B‡

1 .
∗ By REFL, B̂′′ w B̂′′. Then, B2 w B̂′′. Then, B‡

2 = B̂′′ and B2 w B‡
2 , for some B‡

2 .
∗ Recall B‡ = B̂i∪B̂. Then, B‡ = B̂i∪B̂′∪B̂′′. Then, B‡

1 ∪B‡
2 = B‡ .

– Case 2: B1 = B̂′ and B2 = {{B̂1, . . . , B̂m}}] B̂′′ and B̂ = B̂′∪B̂′′, for some B̂′, B̂′′.
Similar to case 1.

• Step: TRANS, such that B1∪B2 w B† w B‡, for some B†.

– Recall B1∪B2 w B†. Then, by induction, B1 w B†
1 and B2 w B†

2 and B† = B†
1 ∪B†

2 , for
some B†

1,B†
2 .

– Recall B† w B‡. Then, B†
1 ∪B†

2 w N‡. Then, by induction, B†
1 w B‡

1 and B†
2 w B‡

2 and
B‡ = B‡

1 ∪B‡
2 , for some B‡

1,B‡
2 .

– Recall B1 w B†
1 w B‡

1 . Then, by TRANS, B1 w B‡
1 .

– Recall B2 w B†
2 w B‡

2 . Then, by TRANS, B2 w B‡
2 .

• Step: CONGR. Similar to case CHOICE.

(iii) Recall {{B1,B2}} w B‡. Then, by the definition of refinement:

• Base: REFL, such that {{B1,B2}}= B‡.

– By REFL, B1 w B1. Then, B‡
1 = B1 and B1 w B‡

1 , for some B‡
1 .

– By REFL, B2 w B2. Then, B‡
2 = B2 and B2 w B‡

2 , for some B‡
2 .
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– Recall {{B1,B2}}= B‡. Then, {{B‡
1,B‡

2}}= B‡ .

• Base: CHOICE, such that B‡ = Bi and 1≤ i≤ 2.
Recall 1≤ i≤ 2. Then:

– Case: i = 1.
By REFL, B1 w B1. Then, B1 w Bi. Then, B1 w B‡ .

– Case: i = 2. Similar to case i = 1.
• Step: TRANS, such that {{B1,B2}} w B† w B‡, for some B†.

– Recall {{B1,B2}} w B†. Then, by induction:
∗ Case 1: B1 w B†

1 and B2 w B†
2 and {B†

1,B†
2}= B, for some B†

1,B†
2 .

Recall B† w B‡. Then, {B†
1,B†

2} w B‡. Then, by induction:

· Case 1a: B†
1 w B‡

1 and B†
2 w B‡

2 and {B‡
1,B‡

2}= B‡ , for some B‡
1,B‡

2 .
Recall B1 w B†

1 w B‡
1 and B2 w B†

2 w B‡
2 . Then, by TRANS, B1 w B‡

1 and
B2 w B‡

2 .
· Case 1b: B†

1 w B‡.
Recall B1 w B†

1 w B‡. Then, by TRANS, B1 w B‡ .
· Case 1c: B†

2 w B‡. Similar to case 1b.

∗ Case 2: B1 w B†.
Recall B1 w B† w B‡. Then, by TRANS, B1 w B‡ .
∗ Case 3: B2 w B†. Similar to case 2.

• Step: CONGR, such that B‡ = {{B‡
1,B‡

2}} and B1 w B‡
1 and B2 w B‡

2 ,
for some B‡

1,B‡
2 .

Lemma 8. Let R1,R2 be branching pomsets.

(i) If R1 w R′1 and R2 w R′2 then R1 ‖ R2 w R′1 ‖ R′2.

(ii) If R1 w R′1 and R2 w R′2 then R1 +R2 w R′1, R1 +R2 w R′2 and R1 +R2 w R′1 +R′2.

(iii) If R1 w R′1 and R2 w R′2 then R1;R2 w R′1 ; R′2.

(iv) If R1 † R2 w R3 for † ∈ {;,‖} then R3 = R′1 † R′2 for some R1 w R′1 and R2 w R′2.

(v) If R1 +R2 w R3 then either R3 = R′1 or R3 = R′2 or R3 = R′1 +R′2 for some R1 w R′1,R2 w R′2.

Proof. Let R1 = 〈E1,≤1,λ1,B1〉with≤1 =≤1
? and similarly for R2. By the rules in Fig. 7 R′1 =R1[B′1] =

〈E ′1,≤′1,λ ′1,B′1〉 for some B1 w B′1 and analogously for R′2.

(i) By the rules in Fig. 9 R1 ‖ R2 = 〈E1 ∪E2,≤1 ∪≤2,λ1 ∪λ2,B1 ∪B2〉. By Lemma 7(i) B1 ∪B2 w
B′1∪B2 wB′1∪B′2. It follows that R1 ‖ R2 w (R1 ‖ R2)[B′1∪B′2] = 〈E ′1∪E ′2,≤′1 ∪≤′2,λ ′1∪λ ′2,B′1∪
B′2〉= R′1 ‖ R′2.

(ii) By the rules in Fig. 9 R1 +R2 = 〈E1 ∪E2,≤1 ∪ ≤2,λ1 ∪ λ2,{{B1,B2}}〉. By the rules in Fig. 7
{{B1,B2}} w B′1. It follows that R1 +R2 w (R1 +R2)[B′1] = 〈E ′1,≤′1,λ ′1,B′1〉 = R′1. The case for
R′2 is analogous. By the rules in Fig. 7 {{B1,B2}} w {{B′1,B′2}}. It follows that R1 +R2 w (R1 +

R2)[{{B′1,B′2}}] = R′1 +R′2.

(iii) By the rules in Fig. 7 R1 ;R2 = 〈E1∪E2,≤1 ∪≤2 ∪
⋃

a∈A E1a×E2a ,λ1∪λ2,B1∪B2〉. By Lemma 7(i)
B1 ∪B2 w B′1 ∪B2 w B′1 ∪B′2. It follows that R1 ; R2 w (R1 ; R2)[B′1 ∪B′2] = 〈E ′1 ∪E ′2,≤′1 ∪ ≤′2
∪
⋃

a∈A E ′1a×E ′2a ,λ
′
1∪λ ′2,B′1∪B′2〉= R′1 ; R′2.
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(iv) By the rules in Fig. 7 (R1 † R2).B w B′ and R3 = (R1 † R2)[B′] for some B′. By the rules in Fig. 9
(R1 † R2).B = R1.B∪R2.B. It follows from Lemma 7(ii) that B′ = B′1 ∪B′2 for some R1.B w B′1
and R2.B w B′2. By the rules in Fig. 7 R1 w R1[B′1] = R′1 and R2 w R2[B′2] = R′2. Finally, by the
rules in Fig. 9 R3 = R′1 † R′2.

(v) By the rules in Fig. 7 (R1 + R2).B w B′ and R3 = (R1 + R2)[B′] for some B′. By the rules in
Fig. 9 (R1 +R2).B = {{B1,B2}}. It follows from Lemma 7(iii) that either B′ = {{B′1,B′2}} or
B′ = B′1 or B′ = B′2 for some R1.B w B′1,R2.B w B′2. By the rules in Fig. 7 R1 w R1[B′1] = R′1 and
R2 w R2[B′2] = R′2. If B′ = {{B′1,B′2}} then by the rules in Fig. 9 R3 = R′1 +R′2. The other two
cases are analogous.

Lemma 9. Let R1,R2 be branching pomsets. Let e be an event.

(i) If R1
Xe−→ R′1 then R1 ‖ R2

Xe−→ R′1 ‖ R2.

(ii) If R1
Xe−→ R′1 then R1 +R2

Xe−→ R′1.

(iii) If R1
Xe−→ R′1 then R1 ; R2

Xe−→ R′1 ; R2.

Proof.

(i) By Lemma 8(i) R1 ‖ R2 w R′1 ‖ R2. Since R1
Xe−→ R′1, e ∈ a-min(R′1) and then e ∈ a-min(R′1 ‖ R2).

Suppose that there exists some R′′ such that R1 ‖ R2 w R′′ A R′1 ‖ R2 and e ∈ a-min(R′′). Then
R′′ = R′′1 ‖ R2 for some R1 w R′′1 A R′1 such that e ∈ a-min(R′′1), but this contradicts our premise that
R1

Xe−→ R′1. We conclude that there exists no such R′′ and then by the rules in Fig. 7 R1 ‖ R2
Xe−→

R′1 ‖ R2.

(ii) By Lemma 8(ii) R1 +R2 w R′1. Since R1
Xe−→ R′1, e ∈ a-min(R′1).

Suppose that there exists some R′′ such that R1 +R2 w R′′ A R′1 and e ∈ a-min(R′′). For the latter
to be true we have to resolve the outer choice R1 +R2, so R1 w R′′ A R′1, but this contradicts our
premise that R1

Xe−→ R′1. We conclude that there exists no such R′′ and then by the rules in Fig. 7
R1 +R2

Xe−→ R′1.

(iii) By Lemma 8(iii) R1 ; R2 w R′1 ; R2. Since R1
Xe−→ R′1, e ∈ a-min(R′1) and then e ∈ a-min(R′1 ; R2).

Suppose that there exists some R′′ such that R1 ; R2 w R′′ A R′1 ; R2 such that e ∈ a-min(R′′). Then
R′′ = R′′1 ; R2 for some R1 w R′′1 A R′1 such that e ∈ a-min(R′′1), but this contradicts our premise that
R1

Xe−→ R′1. We conclude that there exists no such R′′ and then by the rules in Fig. 7 R1 ; R2
Xe−→

R′1 ; R2.

Lemma 10. Let c∗ be a dependently guarded choreograpy and let Jc∗K `−→ R′ for some R′. Then JcK `−→ R′′

and R′ = R′′ ; Jc∗K for some R′′.

Proof. Let R = Jc∗K. By Fig. 9 R = J(R1 ; R2) + 0K where R1 = JcK and R2 = Jc∗K. By Fig. 7 R Xe−→ R3
such that λ (e) = ` and R′ = R3− e. It follows that R1 ; R2

Xe−→ R3. By Fig. 7 R1 ; R2 w R3 and then by
Lemma 8(iv) R3 = R′1 ; R′2 for some R1 w R′1 and R2 w R′2, and either e ∈ a-min(R′1) or e ∈ a-min(R′2). If
e∈ a-min(R′1) then R1

Xe−→ R′1 and by Lemma 9(iii) R1 ;R2
Xe−→ R′1 ;R2. It follows that R3 = R′1 ;R2 and then

R′ = (R′1−e) ; Jc∗K. Otherwise, i.e. if e ∈ a-min(R′2), then R2
Xe−→ R′2 and by Lemma 1(b) c

X̀−→. However,
since c∗ is dependently guarded it follows that the subject of ` does not occur in c and then it also does
not occur in c∗. As this is contradictory, e cannot be an event in R2.
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