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Abstract 
In literature about mathematical modeling a diversity can be seen in ways of presenting the modeling 
cycle. Every year, students in the Bachelor’s program Applied Mathematics of the Eindhoven 
University of Technology, after having completed a series of mathematical modeling projects, have 
been prompted with a simple three-step representation of the modeling cycle.  This representation 
consisted out of 1) problem translation into a mathematical model, 2) the solution to mathematical 
problem, and 3) interpretation of the solution in the context of the original problem. The students’ task 
was to detail and complete this representation. Their representations also showed a great diversity. 
This diversity is investigated and compared with the representations of the students’ teachers. The 
representations with written explanations of 77 students and 20 teachers are analyzed with respect to 
the presence of content aspects such as problem analysis, worlds/models/knowledge other than 
mathematical, verification, validation, communication and reflection at the end of the modeling 
process. Also form aspects such as iteration and complexity are analyzed. The results show much 
diversity within both groups concerning the presence or absence of aspects. Validation is present most, 
reflection least. Only iteration (one is passing the modeling cycle) more than once is significantly 
more present in the teachers’ group than in the students’ group. While accepting diversity as a natural 
phenomenon, the authors plea for incorporating all aspects mentioned into mathematical modeling 
education. 
 
Keywords: mathematical modeling cycle, representations, higher education. 
 
1  Introduction 
 

From experience, supported by research (see for instance Galbraith & Stillman, 2006), it is 
well-known that learning mathematical modeling is a difficult task for students both in secondary and 
higher education. The problems that students but also teachers, are confronted with are: 1) the lack of 
unanimity about the essence and the vision of the modeling process; 2) the almost inherent complexity 
of the modeling process and, consequently, the complexity of teaching; 3) the fact that mathematical 
modeling is in the first place always about something, a situation and a problem arising from that 
situation, and that mathematics is ‘only’ a part of the whole process. In this article we focus on the 
diversity of the representations of the modeling the cycle, whereby all three problems play a role. 
 
1.1 Representations of the mathematical modeling cycle; some examples from literature 
 

In the research literature about teaching mathematical modeling it is agreed that the modeling 
process is a sort of cycle that starts and ends with a problem situation in real life or in a non-
mathematical discipline, and that there is a translation of the problem into mathematical terms and a 
mathematical solution. However one can find a lot of modifications, extensions and improvements 
regarding this cycle. Examples can be found in Blomhøj & Hoff Kjeldsen (2006), Borromeo Ferri 
(2006) and Kaiser & Schwartz (2006). These authors often refer to the didactical representation of the 
modeling process by Kaiser (1995) and Blum (1996), see Figure 1. This representation is based upon 
cognitive psychological research on the behaviour of pupils and students working on modeling 
assignments (Borromeo Ferri, 2006). 
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Figure 1. The Modeling cycle according to Kaiser (1995) and Blum (1996) 

 
More recently, Blum & Leiß (2006) constructed a more detailed representation; see Figure 2. 
 

 
Figure 2. The modeling cycle according to Blum and Leiß (2006) 

 
In literature, many alternative representations of modeling can be found. Various aspects are 

emphasized, depending on the perspective used. At the end of the 1970s Berry and Davies (1996), 
developed the representation of Figure 3, based upon the modeling cycle for introductory engineering 
education. See also Haines & Crouch (2010). We notice that for these engineering students ‘reporting’ 
has been given an explicit position in this cycle, but outside the continuing cycle. 

 

 
Figure 3. Modeling cycle according to Berry and Davies (2006) 
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The following, more recent examples indicate that the set of variations has not yet stabilized. 
See the representations of Carreira, Amado & Lecoq (2011), Figure 4, and Girnat & Eichler (2011), 
Figure 5. And see the representations with specific attention for the role of information technology by 
Greefrath (2011), Figure 6 (an extension of Figure 2), and by Geiger (2011), Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Modeling cycle according to Carreira et al. (2011) 
 

 
Figure 5. Modeling cycle according to Girnat and Eichler (2011) 

 

 
Figure 6. Modeling cycle according to Greefrath (2011) 
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Figure 7. Modeling cycle according to Geiger (2011) 

 
As a last example, we present a representation from our own educational context. It has been 

developed within the context of explaining secondary education mathematics students and 
mathematics freshmen about the role of mathematical modeling in the study program of Applied 
Mathematics of the Eindhoven University of Technology (TU/e) (Adan, Perrenet & Sterk, 2004), 
Figure 8. We see special attention for the phase of problem analysis with use of common sense. Also, 
similar to the representation of Geiger (2011) in Figure 7, the role of technology (the computer) is 
explicitly mentioned. 
 
 
 

                                      Feedback     problem analysis using common sense 

 

 

 

                                  Retranslation    translation into mathematics 

 

 

 

                                            Implementation    mathematical analysis 

 

 
Figure 8. The modeling cycle according to Adan, Perrenet and Sterk (2004) 

 
 
1.2 Diversity in representations 
 

From this explorative review one can conclude that more or less common to all these 
representations (and underlying visions) is that one starts with a notion of a problem. This problem has 

Mathematical model Computer program 

Mathematical solution 

Practical solution Key questions 

Practical problem 
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to be translated into a mathematical model of this problem, from non-mathematical language into 
mathematics. Then the mathematical problem has to be solved by some kind of calculation and the 
mathematical solution has to be interpreted in terms of the original problem. However, there are so 
many diverse detailed representations of the modeling cycle that there is apparently not one overall 
accepted vision on modeling and the teaching of modeling (Spandaw & Zwaneveld, 2009). The 
following two questions illustrate this; firstly: why should students learn to model? See for instance 
Bonotto (2007) who refers to the tension between teaching the core business of mathematics 
(abstraction and generalization) and teaching modeling which depends critically on the characteristics 
of the problem situation. See also Kaiser and Maass (2007) who point out the disposition among 
teachers and students that the mathematics curriculum should be devoted to pure mathematics and not 
to handling non-mathematical situations and problems. And secondly, as a consequence of all this: 
what is the best way to teach modeling? The lack of agreement about what is the ‘best’ representation 
of the modeling cycle has at least one advantage: it stimulates the debate and serves as a topic for 
research (Kaiser, Blomhǿj, and Sriraman, 2006). These authors stress that the representation of course 
depends on the function in the teaching process. They discern six functions: retrospectively analyzing 
authentic mathematical modeling processes; identifying key elements in mathematical modeling 
competences; retrospectively analyzing students’ modeling work; supporting students’ modeling work 
and their related metacognition; as a didactical tool for planning modeling courses or projects; and as a 
way of defining and analyzing a curricular element in mathematics teaching. 

Many researchers of mathematical modeling education are, or have been, mathematical 
modelers themselves. Therefore, one could assume that a diversity of representations would also be 
present in the community of mathematicians. It is an open question whether such a diversity would 
also be present in students’ representations. As a teacher of a modeling course within the Applied 
Mathematics program at the TU/e, the first author of this article noticed a large diversity also within 
the population of students concluding their Bachelor program. After describing this educational 
context, we will come back to the research questions about this representation diversity in more detail. 
 
1.3 Mathematical modeling in the Eindhoven program of Applied Mathematics 

 
Mathematical modeling education at the TU/e, within the Bachelor program of Applied 

Mathematics, is spread over three years and consists of a series of modeling projects. See also Perrenet 
and Adan (2010, 2011). The goal of this program is that the students learn to apply mathematical 
knowledge and skills in order to solve problems posed in non-mathematical terms. The modeling 
courses constitute about ten percent of the Bachelor program. The students work in pairs or threes on 
the modeling problems. Three domains of application are involved: technology, digital communication 
and operational management. Every small group has its own coach, a member of faculty, and on top of 
that, sometimes there is an external client, someone in a real company with a real problem. 
Throughout the years of the program, the projects have gradually become more open, more time 
consuming and more complex. Also the students’ dependency on the coach should decrease. The 
educational goal of the program is that students should not apply mathematical skills and knowledge 
that they have learned before. Rather, the students should use whatever skills and knowledge that they 
have or even try to master new skills and knowledge that are useful for the problem at hand. Until 
recently there was only a short elementary introduction to the modeling process (Figure 8) without 
detailed and formalized instruction.  

Within the same cohort, every group gets another problem. Following are examples of 
problems used: 
 
Operational management: Roundabouts 
 

Nowadays, everywhere in the Netherlands, junctions are being replaced by roundabouts. The 
claim is that traffic flows faster through roundabouts. Is that true?  

 
Digital communication: Blogs 
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Blogs have become a common way to present (any kind) of information on the web. Looking 
at the various characteristics of any recently accessible blog, would there be a systematic way to 
predict its future popularity (for instance, in terms of number of visits) and thus to classify a new blog 
as potentially popular?  
Technology: Tsunami 

Tsunamis are extremely high waves (caused by earthquakes) with sometimes disastrous 
consequences. Mathematical models play an important role in modern warning systems for tsunamis. 
Investigate the causes and damaging consequences of tsunamis and develop a simple model to 
describe the propagation of tsunamis. By making use of available geophysical data, try to use this 
model to predict whether tsunamis are a potential risk for the Netherlands. 

Projects involve training in diverse communication skills. Connected to the series of projects 
is a reflection portfolio which contains a small reflection assignment after each project and a series of 
larger reflection assignments at the end of the third year. The first author of this article is responsible 
for the reflection assignments as discussed below. 
 

 
Figure 9. Elementary modeling cycle used as a stimulus for the research in this paper 

 
The research reported in this paper is inspired by a specific reflection assignment in the third 

year. The students are presented with Figure 9 and the statement that this would be the essence of the 
mathematical modeling process. They are asked to comment and to construct a more detailed 
representation. 

The reason for asking the students to construct (complete) a representation of such a complex 
process as modeling is, that it will help them to improve their understanding. From the study of 
Zwaneveld (1999) it appears that, in the context of mathematics education, concept mapping is a 
suitable tool for the visualization of cognitive structures concerning mathematical knowledge. Concept 
maps have been developed in the seventies of the twentieth century with the aim to visualize 
developing knowledge of students in the beta domain, see e.g. Novak (1977) and Sowa (1984). 
Concepts and their mutual relations are graphically represented, normally with the concepts placed in 
rectangles and the relations by means of labelled connecting arrows. Such a graphical representation 
maps how a student or an expert ‘sees’ a subject. Constructing such a graph, concept mapping, 
stimulates meaningful learning (Novak and Gowin, 1984). It is based upon the cognitive theories of 
Ausubel (1968) who, among other things, pointed at the importance of prior knowledge for the 
learning of new concepts. See also Novak and Cañas (2006). Many scholars have investigated the 
benefits of constructing concept maps by students. For example, McAleese (1998) found that the 
process of making knowledge explicit using knots for concepts and arrows for relations enables the 
student to become conscious of what he or she knows and to give it a meaning and to adapt and 
expand that knowledge. 
 
1.4 Research questions 
 

As mentioned before, the first author of this article has repeatedly observed that, at the end of 
the Bachelor program, there are great differences in the way mathematics students represent the 
modeling cycle when asked to do so. Curiosity about the degree of the differences and interest in the 
educational consequences of these differences were the motives for systematic research into these 
differences. Our perspective is focused on the fourth function of the representation of the modeling 
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step Interpretation 

step 

Problem Model 
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Language 
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cycle, as mentioned by Kaiser et al. (2006) above: supporting students’ modeling work and their 
related metacognition. It was decided that it would be interesting to also involve the modeling cycle 
representations of the teachers. In what follows, we use for short the term ‘teacher’ instead of 
‘coaching staff member’. Globally formulated, the research question is: 
 
What diversity exists in the representations of the mathematical modeling cycle by students and 
teachers?  
 
Sub questions are: 
1. What differences and similarities concerning contents and form of modeling cycle representations 
exist between mathematics students at the end of the Bachelor program Applied Mathematics. 
2. What differences and similarities concerning contents and form of modeling cycle representations 
exist between mathematics teachers involved in the Bachelor program Applied Mathematic? 
3. What differences and similarities concerning contents and form of modeling cycle representations 
exist between the teachers’ group and the students’ group involved in the Bachelor program Applied 
Mathematics? 
 
2 Methods 
 
2.1  Respondents and stimulus task 

 
Our respondents were students and teachers of Applied Mathematics of the TU/e. The 

participants consisted of 77 students and 30 teachers. The students were seven cohorts near their 
completion of the Bachelor program; teachers were all mathematicians connected to the study year 
2009/2010 in modeling education as a coach or a client. All were presented with the elementary 
representation of the modeling cycle (Figure 9) and asked to give comment and expand this 
representation. Not all of the teachers reacted; we received 20 useful reactions (almost 70%). In 
contrast, the students gave a 100% response rate, as it was a compulsory assignment. The drawings 
and the explaining texts have been collected in order to look for systematic differences and 
similarities. 

 

2.2  Selection of variables 
 

The explorative analysis of literature (see section 1.1) suggests interesting aspects to look at, 
concerning the content as well as the form of the representation. As for content, we started with 
problem analysis, the presence of other worlds than the mathematical world, the presence of other 
models than the mathematical model, and the presence of other knowledge than mathematical 
knowledge. These four aspects can be seen as detailing the first (language) step of translating the 
problem into the mathematical model. For detailing the second (calculation) step, the role of the 
computer was chosen. Detailing the third (interpretation) step led to the aspects of validation 
(confrontation of the solution with what was asked for) and communication (with teachers), keeping in 
mind that their presence could also be possible at other locations in the cycle. 

From our own experience, we added verification (confrontation of the mathematical solution 
with the mathematical limits and intuitions), as the counterpart of validation within the calculation 
step. Also, we added the aspect of reflection afterwards, reflection on the modeling process as a whole. 
Turning to the form of the representation we firstly chose iteration, referring to the aspect of repetence 
in going around the cycle as a whole. Secondly, we chose counting the numbers of nodes and edges as 
a measure of complexity of the representation. 

With these aspects the two authors did a first analysis (independently) of all 20 teachers’ 
representations and texts and a sample of 20 students’ representations and texts. We discussed the 
outcomes with each other and consulted two experts in mathematical modeling and mathematical 
modeling education: Dr.Eng. Kees van Overveld and Prof.Dr.Eng. Ivo Adan, the first being a physicist 
and design methodologist, who has been teaching multidisciplinary modeling courses at the TU/e for 
many years, and the second being a mathematician and who has been coordinating the modeling 
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education in the Bachelor program of Applied Mathematics for many years. With their help the set of 
variables and their definitions were refined for further analysis. The main changes were the removal of 
the aspect concerning the role of the computer and the choice for another measure of complexity.  

The presence of the role of the computer appeared to be manifold: for calculation, for 
simulation, or as a means for finding information. Moreover, its role was often more or less implicit, 
leading to long discussions whether to score it at present or not. Finally, because of this ambiguity, it 
was decided to remove it from the variable list. Elaborating on the aspect of complexity, it should be 
noted that literature offers all kinds of measures to characterize the complexity of graphs, already for 
graphs with singular undirected edges (for an accessible first impression, see Orrison and Yong 
(2006)). Our first exploration showed that in our data the representations mostly have the form of 
directed graphs and often with multiple edges between nodes. Also it appeared from our data that 
edges and nodes could differ much in character and consequently, the representations as a whole. We 
noticed process schemes (representations with states and actions to represent transitions between 
states), communication schemes (representations with actors and streams of information) and even 
combinations of both. Because of this diversity, the choice for a manageable complexity measure was 
difficult. In consultancy with both experts mentioned before, we finally chose for another scoring 
method, first looking at the complexity of every node and then using the maximum of these local 
complexities as a measure of the complexity of the representation as a whole. The chosen measure also 
appeared to suit those cases where no representation was present but only explanatory text data. We 
will explain this measure of complexity further in the next sextion, along with definitions and scoring 
rules for the other variables. 

At this point we want to emphasize that our way of looking at the data was with descriptive 
perspective. We were not judging the delivered representations, as in principle, for students at the end 
of the Bachelor program and certainly for teachers, the representations delivered should be correct by 
definition. 
 
2.3  Operationalization of variables and analysis 
 
- Problem Analysis:Is it mentioned (score 1) or not (score 0) in the representation or explanatory text 
that in the beginning of the process the problem is analyzed? Here it does not concern mathematical 
assumptions, rather it does concern a non-mathematical analysis of the problem, such as the answer to 
the question: what is really relevant? Or: what is really the problem?  

 
- Worlds:Is it mentioned (score 1) or not (score 0) in the representation or in the explanatory text that 
the modeling cycle not only takes place in the mathematical world, but also in several other worlds? 
And if so, which ones? 
 
-Models:Is it mentioned (score 1) or not (score 0) in the representation or in the explanatory text that 
in the modeling cycle several types of models (other models than the mathematical model only) are 
used? If so, which ones? 
 
- Knowledge:Is it mentioned (score 1) or not (score 0) in the representation or in the explanatory text 
that other than only mathematical knowledge is used and, more specifically, domain specific 
knowledge? If so, what kind? 
 
- Verification:Is it mentioned (score 1) or not (score 0) in the representation or in the explanatory text 
that the mathematical model has to be tested and adapted against mathematical logic and consistency? 
 
- Validation:Is mentioned (score 1) or not (score 0) in the representation or in the explanatory text that 
a mathematical model has to be tested and adapted against the requirements of practice? 
 
-Communication:Is mutual interaction with the coach or client mentioned (score 1) or not (score 0) in 
the representation or explanatory text? 
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- Reflection:Is it mentioned (score 1) or not (score 0) in the representation or in the 
explanatory text that after finding a satisfying solution one should look back at the process as 
a whole, reflecting on what could be used or improved for the next time? 
 
-Iteration:Is it mentioned (score 1) or not (score 0) in the representation or in the explanatory 
text that generally it is necessary to go through the modeling cycle more than once? 
 
- Complexity:For every node of a representation we counted the number of incoming and outgoing 
edges (relations); the so-called local complexity of a node. Next, we computed the maximal local 
complexity for every representation. Since all other variables were measured in a binary way, it was 
decided to dichotomize this one as well. Representations with a maximal local complexity above the 
median of all maximal local complexities were categorized as representations with a ‘high degree of 
complexity’ (score 1); the other representations were categorized as representations with a ‘low degree 
of complexity’ (score 0).  
 

In the analysis only the representation delivered was always used at first and after that 
the clarifying text (if present). In some cases no representation had been constructed, but only 
described in relation to the stimulus representation. In those cases, we constructed a 
representation based upon the text. During the analysis, the other aspects that also caught the 
eye have been registered. 

In order to ensure the reliability of our method, firstly, all data has been scored independently 
by both researchers. Secondly, all scores have been compared and discussed. In the great majority of 
cases (90 %) agreement in scores existed without discussion; for the remaining 10% only minimal 
discussion was needed to reach consensus. In order to further ensure the validity concerning our 
selection of variables, we discussed it afterwards with a sub group of fifteen teachers involved in the 
modeling projects. They agreed that the variables used in the study were the relevant ones (except for 
reflection). 
 
3 Results 

 
3.1 Examples of diversity 

 
To give an impression of the degree of diversity, we first give a series of examples from the 

students’ group as well as from the teachers’ group. Most examples, because of the Dutch language or 
because they were delivered handwritten had to be edited a little for reasons of readability. Such 
editing only concerned the clarity of the representation, never the content or the form of the 
representation. 

 
Figure 10. Example of the simplest teacher representation 

 
The simplest teachers’ representation is almost the same as the representation of Figure 9, the 

only difference being that ‘language step’ has been replaced by ‘translation step’ and ‘calculation’ by 
‘mathematical calculation’. See Figure 10.  

Mathematical 
calculation step 

Interpretation 
step 

Problem Model 

Solution 

Translation 
step 
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A complex teacher representation can be found in Figure 11, with a maximal local complexity 
of 6 (at the node ‘model’). In this example we see validation and verification clearly present, 
approximative and simplified model are specific types of models, and refinement is inherent to 
problem analysis and scored accordingly.  
 
 

 

   language step 

  refinement evaluation of complexity 

 validation 
 verification 

 feedback 
 refinement both 
 optional 
 calculation 
 step  
   

 validation adaptation 
 evaluation   
  
 interpretation 
 implementation    translation step 

 
Figure 11. Example of a complex teacher representation 

 
The simplest student representation is the one in Figure 12. We can notice ‘Problem Analysis’ 

and ‘Quantities and Relations’ as a specific mathematical model.  
 

 
Figure 12. Example of the simplest student representation 
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In Figure 13 a student representation is shown wherein the client plays a central role, making 

this representation scores at communication (not shown here are the student’s explanations of the 
figures 1 to 5 in his representation).  

 
Figure 13. Example of a student representation with an explicit role for the client 

 
In Figure 14 a student representation example is shown with distinction between the real world 

and the mathematical world, which therefore scores on the variable worlds. 
 

 
Figure 14. Example of a complex student representation with distinction between the real world and the 

mathematical world 
 
Especially some teachers only delivered a text without a drawing. We give two examples; the 

first one contains a lot of text (we summarized it); the second one contains only a little text.  
Example of a reaction (from a teacher) without a drawing but with a lot of text: 

1. Informal description of the problem 
2. Mathematization 
3. Hierarchy of important – unimportant effects and relations 

5 

4 3 2 1 

Client 

Problem Orientation Deepening Model 
Solution 
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4. Analysis of potential models 
− lower bound and upper bound within an ordered set 
− simplest models 
− small parameters/asymptotics/perturbation methods 

5. Definition of the Minimal Model 
− simplicity against requirements 

6. Continuing interaction with reality  
− if necessary more or less steps back 

7. Possibly multiple cascades of models 
− partially ordered 

 
Example of a teacher’s reaction without a representation and with little text: Few thoughts 

arise and I am OK with the triangle. 
After this first impression of the diversity we will give an overview of the results. 
 

3.2  Frequencies in both groups and associations between variables 
 
Table 1 shows an overview of the frequency percentages in both groups. Regardinghe result of 

the aspect of complexity we can tell that some representation were so complex that we could not 
compute the precise maximal local complexity. We scored these as ‘high’ (score 1). The median value 
of all maximal local complexities appeared to be equal to 4. 

We see in Table 1 that only at the aspect of iteration there is a clearly significant difference 
between both groups: iteration is more often present in the teachers’ representations. In both groups 
validation scores more than 50% and knowledge and reflection less than 20%. 

 
aspect % presence at teachers 

(N=20) 
% presence at students 
(N=77) 

problem analysis  40 60 
worlds  25 16 
models  35 20 
knowledge  15 10 
verification 30 47 
validation  65 81 
communication  25 31 
reflection 5 1 
iteration  70** 39** 
high complexity 50 53 
** = difference significant at 0.05 (t-test, two-sided) 

 
Table 1. Frequency percentages per aspect in the teachers’ group and the students’ group 

 
To explore patterns, we investigated associations between variables within the groups by use 

of the phi coëfficiënt (Field, 2009, p. 791), which measures the degree of association between two 
dichotomous variables (with only values 1 and 0). For the following pairs of variables in the teachers’ 
goup, φ was at least 0.4 at a level of significance of .05 or lower: communication and problem analysis 
(φ = 0.471 at significance level .035), worlds and knowledge (φ = 0.467 at significance level .037), 
worlds and problem analysis (φ = 0.471 at significance level .035), problem analysis and validation (φ 
= 0.599 at significance level .007), and iteration and validation (φ = 0.435 at significance level 0.052). 
However, the teachers’ group is too small for further analysis into clusters. In the students’ group, only 
some association exists between complexity and verification (φ = 0.309 at significance level .007). 

 
3.3  Qualitative analysis of the use of terms 
 

For the aspect of knowledge (other knowledge than mathematical knowledge) the terms used 
fell into a few categories such as literature of the domain, common knowledge and knowledge of 
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physics. The aspects of worlds and models revealed much more diversity in the use of terms, therefore 
further (qualitative) analysis was performed. Worlds refers to whether modeling not only takes place 
in the mathematical world, but also in one or more other worlds; models refers to whether in modeling 
other types of models than mathematical models are used. 

In Table 2 we give an overview of terms used for other worlds than the mathematical world 
and the frequency of occurrence (between brackets, if greater than 1). The majority of the teachers 
(75%, 15 out of 20, Table 1) and the majority of the students (84%, 65 out of 77, Table 1) do not refer 
to other worlds. In both groups a minority uses other terms indeed. Most of them use one other term, 
whereas some use several other terms. Only some other terms are used by several students and/or 
teachers: reality, practice and real world. Mostly, reality is mentioned as another world, but sometimes 
also the non-mathematical outer world or the inner world is denoted (in the teachers’ group as well as 
in the students’ group).  

 
Students Teachers 
reality (4) 
practice (3) 
original world 
real world 
genuine world 
non-mathematical side 
world where the problem takes place 
perceptions of the problem situation 

real world (2)  
non-mathematical world 
physical world  
playground with attributes (e.g. of an astronomer or a plumber)  
conceptual world 
‘world in-between’ (unlabeled) 

 
Table 2. Frequency of terms for other worlds than the mathematical world 

 
In Table 3 we give an overview of terms used for other models than the mathematical model 

and the frequency of occurrence (between brackets, if greater than 1). We did not make a separate list 
for terms like ‘model’ (when mathematical model is meant) and ‘sub model’ (when the mathematical 
model of a sub problem is meant). The majority the teachers (65%, 13 out of 20, Table 1) and the 
majority of students (80%, 62 out of 77, Table 1) do not refer to other models. In both groups a 
minority uses other terms indeed. Most of them use one other term, some use several other terms. Only 
some other terms are used by several students and/or teachers: simplified model, stochastic model. 
Mostly general terms, such as simplified model or possible model, are used; sometimes terms have a 
specific mathematical background, such as a stochastic model; sometimes the background is another 
domain, such as a physical model. 
 

Students Teachers 
simple model 
simplified models (4) 
analyzable model 
computable model 
manageable model 
unusable model 
uncomputable model 
adapted model 
frozen model 
conceptual model 
mental model 
concept model 
final model 
specified problem 
head model 
intuitive model 
physical model 
model (if distinct from mathematical model)  
scheme with quantities and relations 
extended model 

simplified model 
simplest model 
approaching model 
stochastic model (2) 
metaphor 
first principle model 
empirical data model 
right model 
possible model 
ordered set of potential models 
more complete, but less transparant models 
minimal model = The Model 
deterministic model 
continuous model 
discretisized model 
computable model 
minimal physical model 
detailed model 
model versions 

Table 3. Frequency of terms for other models than a mathematical model 
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3.4  Miscelleneous 
 

Finally, the following other interesting aspects caught the eye in individual cases during the 
analysis. 

• project approach: mentioning that time and money are relevant 
• mixing up verification/validation: in some cases (also in the teachers’ group) the term 

‘verification’ was used to refer to validation (we scored these cases as ‘validation’) 
• decision nodes (see Figure 15 for an example) 
• parallel processing (see Figure 16 for an example) 
 

 
Figure 15. Example of a student representation with decision nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16. Example of a student representation with parallel sub processes 

Problem Articulated problem Mathematical problem 

Language step 
Filtering out the 
mathematical problem 

Sub problems 

Gathering information 
Making assumptions 
Splitting up into sub problems 

Solutions to sub problems 

Solving sub problem 

Solution to problem as a 
whole 

Language step 

Articulated solution 

Analyzing the solution 
For example investigating 
applicability, use, reality value of 
the solution and investigating 
points for improvement 
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4 Conclusions and discussion  
 

From our analysis of the data of teachers and students it indeed appears that there is a large 
diversity in the representation of the modeling cycle, from a marginal extension of the sober cycle 
until rather complex representations. This is true for the teachers as well as for the students. The 
occurrence of problem analysis and validation scores in the top three in both groups; the reference to 
other knowledge than mathematical knowledge and reflection scores in the bottom three in both 
groups.  

Teachers use the term iteration significantly more often than students. A possible explanation 
is that the students may sometimes have to solve problems where going through the cycle once is 
enough or it could be that there is no time left to go through the cycle once more. 

In the teachers’ group the strongest association between aspects in representation is between 
problem analysis and validation. An explanation is that in problem analysis what is essential in the 
problem, is investigated. This logically asks for a validated connection between solutions and these 
essential elements. 

Although it was not the objective to evaluate the representations on correctness, the fact that 
even in the teachers’ group, validation and verification were confused was remarkable. 

We can distinguish three factors that could explain the observed diversity. 1) From a 
constructivistic perspective (Cobb, Yackel, & Wood., 1992) of mathematical knowledge, 
representational diversity is to be expected by definition. 2) Mathematical modeling is not the same in 
various mathematical domains. Not only were the teachers that took part in our investigation 
specialists within a domain, but also the students during the conclusion of their BSC program had 
already chosen a mathematical specialization and had some specific knowledge of a unique sub 
domain. 3) Until recently, the mathematical modeling education track in the Applied Mathematics 
program in Eindhoven, comprised very little modeling theory for all students, but much guidance by a 
unique series of coaches and clients in modeling projects with unique content. For the teachers’ group, 
a fourth factor could be thought of, namely, that some teachers answered the question more seriously 
than others. In the students’ group, that could not be the case, as it was a compulsory assignment for 
them. 

A critique of our method could be that the elicited representation may not mirror the real 
modeling behavior of students in practice. Close observation of students and the comparison of 
behavior with given representations would result in interesting questions for further research. Another 
critical remark could be that starting from scratch, instead of starting from the elementary three-step 
representation, would have been an even better way to measure diversity. We agree that possible 
diversity would have been greater, but that would support our main finding. Our result, concerning the 
difference of presence of iteration, was not prompted by the three-step elemenatry representation. 
From all our the operationalizations, the most freedom and therefore the hardest choice was at the 
aspect of complexity. We are convinced that our choice was a rational one, however we cannot exclude 
that other choices with possibly somewhat different results are thinkable. 

Would we have the courage to generalize our results on diversity to other contexts of 
mathematics education? We think that an important factor would be the diversity in the theoretical and 
the practical experience of the modellers. With extensive explicit instruction of the modeling cycle, 
with more closed assignments and similar assignments for all students, representation diversity would 
probably decrease. However, using the constructivism argument the (first explanation factor 
mentioned above) we expect that even at the secondary level and even under conditions with less 
freedom, some diversity can be expected. Blum and Borromeo Ferri (2009, p. 48), referring to 
Borromeo Ferri (2007), reported that secondary school mathematical modellers used the steps of 
(Blum and Borromeo Ferri’s) modeling cycle unsystematically. Could it not be that students used their 
own diverse cycle systematically? 

Looking back at our investigation, we realize that we started with a descriptive perspective. 
Students at the end of the Bachelor program and certainly their teachers are expert modellers, so their 
representation of the modeling cycle is right by definition. Seeing our results concerning the mix-up 
by some students and even by some teachers of validation and verification, triggered a change to the 
prescriptive perspective. We will now answer the question: what aspects of the modeling cycle should 
be present in teaching modeling? 
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Of course, we require the aspects of the elementary three-step cycle presented before (Figure 
9). Looking back we now prefer slightly different terms, leading to: problem situation, mathematizing, 
mathematical model, solving, mathematical solution, and interpreting.  

 
This study lead us to the following extra aspects:  
 

- Problem Analysis:In the beginning of the process the problem is analyzed, looking for answers to 
such questions as: ‘What is really relevant?’ Or: ‘What is really the problem?’ 
 
- Worlds, Models, and Knowledge:This cluster of aspects refers to the fact that mathematical modeling 
is much more than modeling alone. The modeller does not work in the mathematical world only: 
problems come from other domains with relevant non-mathematical knowledge and relevant non-
mathematical models. A specific non-mathematical model is the result of the problem analysis which 
could be called the conceptual model, as problem analysis is in fact conceptualizing the problem 
situation. 
 
- Verification:The mathematical model and the solution have to be tested and adapted against 
mathematical logic and consistency. 
 
- Validation:The mathematical model and the solution have to be tested and adapted against the 
requirements of practice. 
 
- Communication:Mutual interaction with the coach or client (problem-owner) is necessary. 
 
- Iteration:Students should receive problems that are complex enough to realize that generally it is 
necessary to go through the modeling cycle more than once. 
 
- Reflection:Although hardly mentioned by the modellers of our population, we emphasize that 
mathematical modeling – just as problem solving (see, e.g. Schoenfeld, 1985, 1992) – cannot do 
without metacognitive activity. Reflection, especially afterwards, should not be forgotten at the 
moment that students, teachers and clients are pleased when an acceptable solution has been found for 
the problem at hand. Answering questions such as: could the methods used be applied in other 
contexts? could the models used be applied to other modeling problems? what improvements were 
necessary after verification and validation and why? would strengthen the capacities of the 
mathematical modeller for the future. 

Finally, we show in Figure 17 an example of a representation of the modelling cycle with all 
these aspects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. Modelling cycle with all aspects found in our study 
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