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Abstract

In literature about mathematical modeling a diwgrsan be seen in ways of presenting the modeling
cycle. Every year, students in the Bachelor's pmogrApplied Mathematics of the Eindhoven
University of Technology, after having completedaxies of mathematical modeling projects, have
been prompted with a simple three-step representatf the modeling cycle. This representation
consisted out of 1) problem translation into a raatatical model, 2) the solution to mathematical
problem, and 3) interpretation of the solutionha tontext of the original problem. The studerdskt
was to detail and complete this representationirTie@resentations also showed a great diversity.
This diversity is investigated and compared with tlpresentations of the students’ teachers. The
representations with written explanations of 7#lstus and 20 teachers are analyzed with respect to
the presence of content aspects such as probletgssnavorlds/models/knowledge other than
mathematical, verification, validation, communioatiand reflection at the end of the modeling
process. Also form aspects such as iteration amiplexity are analyzed. The results show much
diversity within both groups concerning the preseocabsence of aspects. Validation is present,most
reflection least. Only iteration (one is passing thodeling cycle) more than once is significantly
more present in the teachers’ group than in thaestis’ group. While accepting diversity as a ndtura
phenomenon, the authors plea for incorporatingasiects mentioned into mathematical modeling
education.

Keywor ds: mathematical modeling cycle, representatidmgher education.
1 Introduction

From experience, supported by research (see faanos Galbraith & Stillman, 2006), it is
well-known that learning mathematical modeling idifficult task for students both in secondary and
higher education. The problems that students lsat t@achers, are confronted with are: 1) the ldck o
unanimity about the essence and the vision of theeting process; 2) the almost inherent complexity
of the modeling process and, consequently, the ity of teaching; 3) the fact that mathematical
modeling is in the first place always about sommghia situation and a problem arising from that
situation, and that mathematics is ‘only’ a paritlod whole process. In this article we focus on the
diversity of the representations of the modelirgdiicle, whereby all three problems play a role.

1.1 Representations of the mathematical modeling cycle; some examplesfrom literature

In the research literature about teaching matheadatiodeling it is agreed that the modeling
process is a sort of cycle that starts and ends wiproblem situation in real life or in a non-
mathematical discipline, and that there is a tetiet of the problem into mathematical terms and a
mathematical solution. However one can find a fotmodifications, extensions and improvements
regarding this cycle. Examples can be found in Bigin& Hoff Kjeldsen (2006), Borromeo Ferri
(2006) and Kaiser & Schwartz (2006). These autbfien refer to the didactical representation of the
modeling process by Kaiser (1995) and Blum (1996 Figure 1. This representation is based upon
cognitive psychological research on the behaviduipupils and students working on modeling
assignments (Borromeo Ferri, 2006).
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Real world model Mathematical model
\ 2
Real Situati - Mathematical
eal Situation results
Reality Mathematics

Figure 1. The Modeling cycle according to Kaiser (1995) &haim (1996)

More recently, Blum & Leil3 (2006) constructed a endetailed representation; see Figure 2.

3 1 Understandihg
mathematical Constructing
real model model and 2 Simplifyirig
and problem problem Structuring
1 2 3 Mathematising
real situation ,ﬂ 4 Workin,
and problem Z/\\:l ﬂsimation model matherglatically
' S/ 4
7 5interpreting
8 6 Validating
mathematical FExpoaing
real results K/ results
rest of the 3
mathematics

world

Figure 2. The modeling cycle according to Blum and Leil3 @00

In literature, many alternative representationsnofieling can be found. Various aspects are
emphasized, depending on the perspective usecheAend of the 1970s Berry and Davies (1996),
developed the representation of Figure 3, based thmmodeling cycle for introductory engineering
education. See also Haines & Crouch (2010). Wecadkiat for these engineering students ‘reporting’
has been given an explicit position in this cyblat, outside the continuing cycle.

1. Real world 2. Formulating 3. Solving
problem »| amodel mathematics
statement
2
h 4

6. Refining the 5. Evaluating a 4. Interpreting
model < solution < solutions

Y

v

7. Reporting

Figure 3. Modeling cycle according to Berry and Davies (2006
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The following, more recent examples indicate that set of variations has not yet stabilized.
See the representations of Carreira, Amado & L20641), Figure 4, and Girnat & Eichler (2011),
Figure 5. And see the representations with speatfention for the role of information technology b
Greefrath (2011), Figure 6 (an extension of Fig)teand by Geiger (2011), Figure 7.

PERCEIVED
REALITY

\/alidatior

ion of task

DOMAIN OF
INQUIRY

Mathematical
analvsi:

MATHEMATICAL
MODFI

Figure 4. Modeling cycle according to Carreira et al. (2011)

Reality Mathematics

control

Figure 6. Modeling cycle according to Greefrath (2011)
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MATHEMATICS LEARNING CONTEXTS

MATHEMATICAL MODELLING

Specify problem [——» Assumpions————)» Formulate

T 4

Evaluated Report <= Interpret <= Solve

i e

Mathematical processes
& Routines

Figure 7. Modeling cycle according to Geiger (2011)

As a last example, we present a representation fnamown educational context. It has been
developed within the context of explaining secogdaducation mathematics students and
mathematics freshmen about the role of mathematizadeling in the study program of Applied
Mathematics of the Eindhoven University of TechigglqTU/e) (Adan, Perrenet & Sterk, 2004),
Figure 8. We see special attention for the phagwalflem analysis with use of common sense. Also,
similar to the representation of Geiger (2011) igufFe 7, the role of technology (the computer) is
explicitly mentioned.

Practical problem

Few \p:oblem analysis using common sense

Practical solution Key questions

Retranslation l translation into mathematics
Computer program Mathematical model
Implertegion mathematical analysis

Mathematical solution

Figure 8. The modeling cycle according to Adan, PerrenetStedk (2004)

1.2 Diversdity in representations

From this explorative review one can conclude timatre or less common to all these
representations (and underlying visions) is tha&t stiarts with a notion of a problem. This probless h
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to be translated into a mathematical model of gigblem, from non-mathematical language into
mathematics. Then the mathematical problem ha%teobved by some kind of calculation and the
mathematical solution has to be interpreted in seafthe original problem. However, there are so
many diverse detailed representations of the moglaycle that there is apparently not one overall
accepted vision on modeling and the teaching of afingl (Spandaw & Zwaneveld, 2009). The
following two questions illustrate this; firstiywvhy should students learn to mod&@e for instance
Bonotto (2007) who refers to the tension betweeschimmg the core business of mathematics
(abstraction and generalization) and teaching moglevhich depends critically on the characteristics
of the problem situation. See also Kaiser and M#&2887) who point out the disposition among
teachers and students that the mathematics cumicshould be devoted to pure mathematics and not
to handling non-mathematical situations and probleAnd secondly, as a consequence of all this:
what is the best way to teach modelifgi# lack of agreement about what is the ‘best'asgntation

of the modeling cycle has at least one advantdg&tiniulates the debate and serves as a topic for
research (Kaiser, Blongf) and Sriraman, 2006). These authors stresshkatpresentation of course
depends on the function in the teaching processy Tiscern six functions: retrospectively analyzing
authentic mathematical modeling processes; idengfjkey elements in mathematical modeling
competences; retrospectively analyzing studentsletiog work; supporting students’ modeling work
and their related metacognition; as a didacticall fiar planning modeling courses or projects; asic a
way of defining and analyzing a curricular elemienthathematics teaching.

Many researchers of mathematical modeling educatia or have been, mathematical
modelers themselves. Therefore, one could assuateatdiversity of representations would also be
present in the community of mathematicians. Itrisopen question whether such a diversity would
also be present in students’ representations. fsaeher of a modeling course within the Applied
Mathematics program at the TU/e, the first authoth@ article noticed a large diversity also withi
the population of students concluding their Bachgloogram. After describing this educational
context, we will come back to the research questabout this representation diversity in more dletai

1.3 Mathematical modeling in the Eindhoven program of Applied Mathematics

Mathematical modeling education at the TU/e, withive Bachelor program of Applied
Mathematics, is spread over three years and certfist series of modeling projects. See also Petren
and Adan (2010, 2011). The goal of this progranth& the students learn to apply mathematical
knowledge and skills in order to solve problemsegbin non-mathematical terms. The modeling
courses constitute about ten percent of the Baclpetgram. The students work in pairs or threes on
the modeling problems. Three domains of applicati@involved: technology, digital communication
and operational management. Every small groupthasiin coach, a member of faculty, and on top of
that, sometimes there is an external client, someiona real company with a real problem.
Throughout the years of the program, the projeetgehgradually become more open, more time
consuming and more complex. Also the students’ wié@ecy on the coach should decrease. The
educational goal of the program is that studentsilsinot apply mathematical skills and knowledge
that they have learned before. Rather, the studdoisld use whatever skills and knowledge that they
have or even try to master new skills and knowletthget are useful for the problem at hand. Until
recently there was only a short elementary intrtidocto the modeling process (Figure 8) without
detailed and formalized instruction.

Within the same cohort, every group gets anotheblpm. Following are examples of
problems used:

Operational management: Roundabouts

Nowadays, everywhere in the Netherlands, junctamesbeing replaced by roundabouts. The
claim is that traffic flows faster through roundabs Is that true?

Digital communication: Blogs
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Blogs have become a common way to present (any kihishformation on the web. Looking
at the various characteristics of any recently sgibée blog, would there be a systematic way to
predict its future popularity (for instance, inrtex of number of visits) and thus to classify a rdeg
as potentially popular?

Technology: Tsunami

Tsunamis are extremely high waves (caused by a@mkeg) with sometimes disastrous
consequences. Mathematical models play an importéatin modern warning systems for tsunamis.
Investigate the causes and damaging consequencesiridmis and develop a simple model to
describe the propagation of tsunamis. By making afsavailable geophysical data, try to use this
model to predict whether tsunamis are a potengkifor the Netherlands.

Projects involve training in diverse communicatgkills. Connected to the series of projects
is a reflection portfolio which contains a smalfileetion assignment after each project and a sefies
larger reflection assignments at the end of thel thear. The first author of this article is resgibie
for the reflection assignments as discussed below.

L anguage
step

Problem Model

Calculation
Inter pretation step

step

Solution

Figure 9. Elementary modeling cycle used as a stimulus ferésearch in this paper

The research reported in this paper is inspired Bpecific reflection assignment in the third
year. The students are presented with Figure Qtendtatement that this would be the essence of the
mathematical modeling process. They are asked tommmt and to construct a more detailed
representation.

The reason for asking the students to construehiitete) a representation of such a complex
process as modeling is, that it will help them taprove their understanding. From the study of
Zwaneveld (1999) it appears that, in the conteximathematics education, concept mapping is a
suitable tool for the visualization of cognitivewgttures concerning mathematical knowledge. Concept
maps have been developed in the seventies of teatisth century with the aim to visualize
developing knowledge of students in the beta doms@e e.g. Novak (1977) and Sowa (1984).
Concepts and their mutual relations are graphicalyesented, normally with the concepts placed in
rectangles and the relations by means of labelbethecting arrows. Such a graphical representation
maps how a student or an expert ‘sees’ a subjembst@icting such a graph, concept mapping,
stimulates meaningful learning (Novak and Gowin849 It is based upon the cognitive theories of
Ausubel (1968) who, among other things, pointedhat importance of prior knowledge for the
learning of new concepts. See also Novak and C@f#36). Many scholars have investigated the
benefits of constructing concept maps by studdrds. example, McAleese (1998) found that the
process of making knowledge explicit using knots doncepts and arrows for relations enables the
student to become conscious of what he or she kramwsto give it a meaning and to adapt and
expand that knowledge.

1.4 Research questions

As mentioned before, the first author of this deticas repeatedly observed that, at the end of
the Bachelor program, there are great differenoethé way mathematics students represent the
modeling cycle when asked to do so. Curiosity albleatdegree of the differences and interest in the
educational consequences of these differences thwerenotives for systematic research into these
differences. Our perspective is focused on thetlfiofumction of the representation of the modeling
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cycle, as mentioned by Kaiser et al. (2006) abawgaporting students’ modeling work and their
related metacognition. It was decided that it wdokdinteresting to also involve the modeling cycle
representations of the teachers. In what follows, wge for short the term ‘teacher’ instead of
‘coaching staff member’. Globally formulated, tlesearch question is:

What diversity exists in the representations of mh&hematical modeling cycle by students and
teachers?

Sub questions are:

1. What differences and similarities concerning cotgemd form of modeling cycle representations
exist between mathematics students at the en@ @abhelor program Applied Mathematics.

2. What differences and similarities concerning cotdeand form of modeling cycle representations
exist between mathematics teachers involved iB#ohelor program Applied Mathema®ic

3. What differences and similarities concerning cotgeand form of modeling cycle representations
exist between the teachers’ group and the studgntsip involved in the Bachelor program Applied
Mathematic8

2 Methods
2.1 Respondentsand stimulustask

Our respondents were students and teachers of edbpllathematics of the TU/e. The
participants consisted of 77 students and 30 teschde students were seven cohorts near their
completion of the Bachelor program; teachers wdirenathematicians connected to the study year
2009/2010 in modeling education as a coach or entcliAll were presented with the elementary
representation of the modeling cycle (Figure 9) ased to give comment and expand this
representation. Not all of the teachers reacted;r@eeived 20 useful reactions (almost 70%). In
contrast, the students gave a 100% response gtewas a compulsory assignment. The drawings
and the explaining texts have been collected inerori look for systematic differences and
similarities.

2.2 Selection of variables

The explorative analysis of literature (see secfidl) suggests interesting aspects to look at,
concerning the content as well as the form of tyeresentation. As for content, we started with
problem analysisthe presence of oth&vorlds than the mathematical world, the presence of other
models than the mathematical model, and the presencettadr nowledgethan mathematical
knowledge. These four aspects can be seen asimgttik first (language) step of translating the
problem into the mathematical model. For detailthg second (calculation) step, the role of the
computerwas chosen. Detailing the third (interpretationg@psled to the aspects ofalidation
(confrontation of the solution with what was asked andcommunicatior{with teachers), keeping in
mind that their presence could also be possibi¢rer locations in the cycle.

From our own experience, we addegtification (confrontation of the mathematical solution
with the mathematical limits and intuitions), a® tbounterpart of validation within the calculation
step. Also, we added the aspect of reflection wheds reflectionon the modeling process as a whole.
Turning to the form of the representation we fyrsthoseiteration, referring to the aspect of repetence
in going around the cycle as a whole. Secondly¢cinase counting the numbers of nodes and edges as
a measure afomplexityof the representation

With these aspects the two authors did a firstyasisl(independently) of all 20 teachers’
representations and texts and a sample of 20 ggldepresentations and texts. We discussed the
outcomes with each other and consulted two expartmathematical modeling and mathematical
modeling education: Dr.Eng. Kees van Overveld amd.Br.Eng. Ivo Adan, the first being a physicist
and design methodologist, who has been teachingdisaiplinary modeling courses at the TU/e for
many years, and the second being a mathematicidnvéio has been coordinating the modeling
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education in the Bachelor program of Applied Math&os for many years. With their help the set of
variables and their definitions were refined fartifier analysis. The main changes were the remdval o
the aspect concerning the role of dmnputerand the choice for another measureahplexity

The presence of the role of tlewmputerappeared to be manifold: for calculation, for
simulation, or as a means for finding informatibforeover, its role was often more or less implicit,
leading to long discussions whether to score firasent or not. Finally, because of this ambiguity,
was decided to remove it from the variable lisalirating on the aspect cbmplexity it should be
noted that literature offers all kinds of measuresharacterize the complexity of graphs, alreauy f
graphs with singular undirected edges (for an ailles first impression, see Orrison and Yong
(2006)). Our first exploration showed that in owntal the representations mostly have the form of
directed graphs and often with multiple edges betweodes. Also it appeared from our data that
edges and nodes could differ much in charactercandequently, the representations as a whole. We
noticed process schemes (representations withsstatd actions to represent transitions between
states), communication schemes (representations agtiors and streams of information) and even
combinations of both. Because of this diversitg thoice for a manageable complexity measure was
difficult. In consultancy with both experts mentash before, we finally chose for another scoring
method, first looking at the complexity of everydeoand then using the maximum of these local
complexities as a measure of the complexity ofdpeesentation as a whole. The chosen measure also
appeared to suit those cases where no representadi® present but only explanatory text data. We
will explain this measure of complexity furthertime next sextion, along with definitions and scgrin
rules for the other variables.

At this point we want to emphasize that our wayooking at the data was with descriptive
perspective. We were not judging the deliveredes@ntations, as in principle, for students at tiek e
of the Bachelor program and certainly for teachrs,representations delivered should be correct by
definition.

2.3 Operationalization of variablesand analysis

- Problem Analysids it mentioned (score 1) or not (score 0) in theresentation or explanatory text
that in the beginning of the process the problemniglyzed? Here it does not concern mathematical
assumptions, rather it does concern a non-mathemhatnalysis of the problem, such as the answer to
the questionwhat is really relevant®r: what is really the problem?

- Worldsis it mentioned (score 1) or not (score 0) in tyeresentation or in the explanatory text that
the modeling cycle not only takes place in the mathtical world, but also in several other worlds?
And if so, which ones?

-Modelsis it mentioned (score 1) or not (score 0) in thpresentation or in the explanatory text that
in the modeling cycle several types of models (othedels than the mathematical model only) are
used? If so, which ones?

- Knowledgels it mentioned (score 1) or not (score 0) in thpresentation or in the explanatory text
that other than only mathematical knowledge is used, more specifically, domain specific
knowledge? If so, what kind?

- Verificationis it mentioned (score 1) or not (score 0) in thgresentation or in the explanatory text
that the mathematical model has to be tested ampted against mathematical logic and consistency?

- Validationis mentioned (score 1) or not (score 0) in theas@ntation or in the explanatory text that
a mathematical model has to be tested and adagéeusathe requirements of practice?

-Communications mutual interaction with the coach or client menéd (score 1) or not (score 0) in
the representation or explanatory text?
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- Reflectionts it mentioned (score 1) or not (score 0) in tlepresentation or in the
explanatory text that after finding a satisfyingusion one should look back at the process as
a whole, reflecting on what could be used or imptbfor the next time?

-Iteration:Is it mentioned (score 1) or not (score 0) in thperesentation or in the explanatory
text that generally it is necessary to go throlghrhodeling cycle more than once?

- ComplexityfFor every node of a representation we counted timber of incoming and outgoing
edges (relations); the so-called local complexityaanode. Next, we computed the maximal local
complexity for every representation. Since all othariables were measured in a binary way, it was
decided to dichotomize this one as well. Represiensawith a maximal local complexity above the
median of all maximal local complexities were catéred as representations with a ‘high degree of
complexity’ (score 1); the other representationsewzategorized as representations with a ‘low degre
of complexity’ (score 0).

In the analysis only the representation deliverad always used at first and after that
the clarifying text (if present). In some caseg@garesentation had been constructed, but only
described in relation to the stimulus representatim those cases, we constructed a
representation based upon the text. During theysisalthe other aspects that also caught the
eye have been registered.

In order to ensure the reliability of our methaddstfy, all data has been scored independently
by both researchers. Secondly, all scores have timapared and discussed. In the great majority of
cases (90 %) agreement in scores existed with@gusision; for the remaining 10% only minimal
discussion was needed to reach consensus. In trdeirther ensure the validity concerning our
selection of variables, we discussed it afterwavills a sub group of fifteen teachers involved ie th
modeling projects. They agreed that the variabtesiun the study were the relevant ones (except for
reflection).

3 Results
3.1 Examples of diversity

To give an impression of the degree of diversitg, fiwst give a series of examples from the
students’ group as well as from the teachers’ grgst examples, because of the Dutch language or
because they were delivered handwritten had toditecea little for reasons of readability. Such
editing only concerned the clarity of the repreagah, never the content or the form of the
representation.

Translation
step
Problem M odel
M athematical
I nter pretation calculation step
st
® Solution

Figure 10. Example of the simplest teacher representation

The simplest teachers’ representation is almossdinee as the representation of Figure 9, the
only difference being that ‘language step’ has beg@taced by ‘translation step’ and ‘calculatioy’ b
‘mathematical calculation’. See Figure 10.



12 Jacob Perrenet, Bert Zwaneveld

A complex teacher representation can be foundgnrgill, with a maximal local complexity
of 6 (at the node ‘model’). In this example we sedidation and verification clearly present,
approximative and simplified model are specific égpof models, and refinement is inherent to
problem analysis and scored accordingly.

language step

model evaluation of complexity

validation

verification
approximative/

feedback simplified V\\

y model R
refinement both
optional

calculation

tep

/

approximative/
validation | adaptation simplified
solution

interpretation

implementation translation step

solution

Figure 11. Example of a complex teacher representation

The simplest student representation is the onégiar& 12. We can notice ‘Problem Analysis
and ‘Quantities and Relations’ as a specific matiteral model.

v

Problem

Problem Analysis

\ 4

Relevant Aspects
Schematise
\4
Quantities and
Relations
| Analysis of results
¢ Simplify
Model
Implementation and
interpretation
Results

Figure 12. Example of the simplest student representation
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In Figure 13 a student representation is shown @hehe client plays a central role, making

this representation scores at communication (notvehhere are the student's explanations of the
figures 1 to 5 in his representation).

Client
77N
PR R
ST N
I NN
. . ! N -
- y N -
f" e ] \\ \\\
.- - ! . .~
.- . ! . -
PR ’ | N Sso
_-" 14 | N ~o
-7 -7 | AN RIS
=1 a 2 ! 3 R 4 -
Problem Orientation o Deepening o Model >
d > Solution

Figure 13. Example of a student representation with an eitptite for the client

In Figure 14 a student representation exampledg/siwith distinction between the real world
and the mathematical world, which therefore scorethe variable worlds.

1. ldentification
of the problem

Communication
with client

| 2. Translation step 4. Translation step |

| Mathematics | \
. Mathematical
Mathematical solution
problem 3. Solve 4
e

Mathematical world

Figure 14. Example of a complex student representation witinttion between the real world and the
mathematical world

Especially some teachers only delivered a textauitta drawing. We give two examples; the
first one contains a lot of text (we summarizegthg second one contains only a little text.

Example of a reaction (from a teacher) withoutanding but with a lot of text:
1. Informal description of the problem
2. Mathematization

3. Hierarchy of important — unimportant effects anthtens
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4. Analysis of potential models
— lower bound and upper bound within an ordered set
- simplest models
- small parameters/asymptotics/perturbation methods
5. Definition of the Minimal Model
— simplicity against requirements
6. Continuing interaction with reality
— if necessary more or less steps back
7. Possibly multiple cascades of models
— partially ordered

Example of a teacher’s reaction without a repredamt and with little textFew thoughts
arise and | am OK with the triangle.

After this first impression of the diversity we Wijive an overview of the results.
3.2 Frequenciesin both groups and associations between variables

Table 1 shows an overview of the frequency perggstén both groups. Regardinghe result of
the aspect of complexity we can tell that some esgmtation were so complex that we could not
compute the precise maximal local complexity. Waraed these as ‘high’ (score 1). The median value
of all maximal local complexities appeared to baado 4.

We see in Table 1 that only at the aspedteshtion there is a clearly significant difference
between both groups: iteration is more often presethe teachers’ representations. In both groups
validationscores more than 50% akilowledgeandreflectionless than 20%.

aspect % presence at teachers | % presence at students
(N=20) (N=77)
problem analysis 40 60
worlds 25 16
models 35 20
knowledge 15 10
verification 30 47
validation 65 81
communication 25 31
reflection 5 1
iteration 70%* 39**
high complexity 50 53

** = difference significant at 0.05 (t-test, twodsid)

Table 1. Frequency percentages per aspect in the teagrerg) and the students’ group

To explore patterns, we investigated associati@t&den variables within the groups by use
of the phi coéfficiént (Field, 2009, p. 791), whioleasures the degree of association between two
dichotomous variables (with only values 1 and @y. the following pairs of variables in the teachers
goup,p was at least 0.4 at a level of significance ofa@%wer:communicatiorandproblem analysis
(p = 0.471 at significance level .03%yprlds andknowledge(p = 0.467 at significance level .037),
worldsandproblem analysigp = 0.471 at significance level .03®yoblem analysisindvalidation (¢
= 0.599 at significance level .007), aiteration andvalidation (p = 0.435 at significance level 0.052).
However, the teachers’ group is too small for fartanalysis into clusters. In the students’ graunby
some association exists betwemmplexityandverification (p = 0.309 at significance level .007).

3.3 Qualitative analysis of the use of terms

For the aspect dfnowledge(other knowledge than mathematical knowledge)téines used
fell into a few categories such as literature ad ttomain, common knowledge and knowledge of
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physics. The aspects wbrlds andmodelsrevealed much more diversity in the use of terimsyefore
further (qualitative) analysis was perform&dorlds refers to whether modeling not only takes place
in the mathematical world, but also in one or nmtteer worldsmodelsrefers to whether in modeling
other types of models than mathematical modelsised.

In Table 2 we give an overview of terms used fdreotworlds than the mathematical world
and the frequency of occurrence (between bracKegseater than 1). The majority of the teachers
(75%, 15 out of 20, Table 1) and the majority af gtudents (84%, 65 out of 77, Table 1)hdbrefer
to other worlds. In both groups a minority useseotterms indeed. Most of them use one other term,
whereas some use several other terms. Only sonee tims are used by several students and/or
teachers: reality, practice and real world. Mogtglity is mentioned as another world, but somesim
also the non-mathematical outer world or the irmerld is denoted (in the teachers’ group as well as
in the students’ group).

Students Teachers

reality (4) real world (2)

practice (3) non-mathematical world

original world physical world

real world playground with attributes (e.g. of an astrononrea plumber
genuine world conceptual world

non-mathematical side ‘world in-between’ (unlabeled)

world where the problem takes place

perceptions of the problem situatign

Table 2. Frequency of terms for other worlds than the nrattecal world

In Table 3 we give an overview of terms used féreotmodels than the mathematical model
and the frequency of occurrence (between brackegseater than 1). We did not make a separate list
for terms like ‘model’ (when mathematical modehigant) and ‘sub model’ (when the mathematical
model of a sub problem is meant). The majority téechers (65%, 13 out of 20, Table 1) and the
majority of students (80%, 62 out of 77, Table b)rbt refer to other models. In both groups a
minority uses other terms indeed. Most of themarse other term, some use several other terms. Only
some other terms are used by several studentsramaéchers: simplified model, stochastic model.
Mostly general terms, such as simplified model @sgible model, are used; sometimes terms have a
specific mathematical background, such as a sttichasdel; sometimes the background is another
domain, such as a physical model.

Students Teachers

simple model simplified model

simplified models (4) simplest model

analyzable model approaching model
computable model stochastic model (2)
manageable model metaphor

unusable model first principle model
uncomputable model empirical data model
adapted model right model

frozen model possible model

conceptual model ordered set of potential models
mental model more complete, but less transparant mogels
concept model minimal model = The Model
final model deterministic model
specified problem continuous model

head model discretisized model

intuitive model computable model

physical model minimal physical model
model (if distinct from mathematical model) detailed model

scheme with quantities and relations model versions

extended model

Table 3. Frequency of terms for other models than a mathieatanodel
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3.4 Miscelleneous

Finally, the following other interesting aspectagit the eye in individual cases during the
analysis.

* project approach: mentioning that time and moneyalevant

e mixing up verification/validation: in some casess@ain the teachers’ group) the term
‘verification’ was used to refer to validation (weored these cases as ‘validation’)

» decision nodes (see Figure 15 for an example)

» parallel processing (see Figure 16 for an example)

Trans- Does -
Problem lation Model(s) the Numenically
model solving of
" approach the model/
ol the real simulation
Simulation problem? /- Yes »

Interpretation

A

Is this
solution
nearthe
expected
value?

4— Analysisofthe |q—

Are there any solution(s)

limitations
left?

Figure 15. Example of a student representation with decisimes

Filtering out the
mathematicaproblem

Articulated problem Mathematical problem

Gathering information
Making assumptions
Splitting up into sub problems

Language step

Analyzing the solution

For example investigating
applicability, use, reality value of
the solution and investigating I |
points for improvement Sub problems

Solving sub problem

Solutions to sub problems
| Il I 1 |

Language step

- - Solution to problem as a
Articulated solution |&———1 \Whole

Figure 16. Example of a student representation with paraliél processes
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4 Conclusions and discussion

From our analysis of the data of teachers and stadeindeed appears that there is a large
diversity in the representation of the modelingleydrom a marginal extension of the sober cycle
until rather complex representations. This is tfoethe teachers as well as for the students. The
occurrence oproblem analysisndvalidation scores in the top three in both groups; the rafardo
other knowledgethan mathematical knowledge anreflection scores in the bottom three in both
groups.

Teachers use the term iteration significantly maften than students. A possible explanation
is that the students may sometimes have to soleklems where going through the cycle once is
enough or it could be that there is no time lefyaathrough the cycle once more.

In the teachers’ group the strongest associatitwdmn aspects in representation is between
problem analysisand validation An explanation is that in problem analysis wisaessential in the
problem, is investigated. This logically asks fovalidated connection between solutions and these
essential elements.

Although it was not the objective to evaluate thpresentations on correctness, the fact that
even in the teachers’ group, validation and veatfan were confused was remarkable.

We can distinguish three factors that could expldia observed diversity. 1) From a
constructivistic perspective (Cobb, Yackel, & Waqodl992) of mathematical knowledge,
representational diversity is to be expected bynd&fn. 2) Mathematical modeling is not the same i
various mathematical domains. Not only were thectiees that took part in our investigation
specialists within a domain, but also the studehisng the conclusion of their BSC program had
already chosen a mathematical specialization amt dmmne specific knowledge of a unique sub
domain. 3) Until recently, the mathematical modgleducation track in the Applied Mathematics
program in Eindhoven, comprised very little modgltheory for all students, but much guidance by a
unique series of coaches and clients in modelingepts with unique content. For the teachers’ group
a fourth factor could be thought of, namely, thahe teachers answered the question more seriously
than others. In the students’ group, that couldb®othe case, as it was a compulsory assignment for
them.

A critique of our method could be that the elicitegbresentation may not mirror the real
modeling behavior of students in practice. Closseoation of students and the comparison of
behavior with given representations would resuinieresting questions for further research. Anothe
critical remark could be that starting from scraticistead of starting from the elementary threg-ste
representation, would have been an even bettertwayeasure diversity. We agree that possible
diversity would have been greater, but that woulsp®rt our main finding. Our result, concerning the
difference of presence of iteration, was not pradpby the three-step elemenatry representation.
From all our the operationalizations, the most dare and therefore the hardest choice was at the
aspect otomplexity We are convinced that our choice was a rational bowever we cannot exclude
that other choices with possibly somewhat differesults are thinkable.

Would we have the courage to generalize our resuitsdiversity to other contexts of
mathematics education? We think that an importactbf would be the diversity in the theoretical and
the practical experience of the modellers. Withengive explicit instruction of the modeling cycle,
with more closed assignments and similar assigrsrfentall students, representation diversity would
probably decrease. However, using the construntivesrgument the (first explanation factor
mentioned above) we expect that even at the seppielel and even under conditions with less
freedom, some diversity can be expected. Blum andoBheo Ferri (2009, p. 48), referring to
Borromeo Ferri (2007), reported that secondary alchmathematical modellers used the steps of
(Blum and Borromeo Ferri’s) modeling cycle unsystéinally. Could it not be that students used their
own diverse cycle systematically?

Looking back at our investigation, we realize thet started with a descriptive perspective.
Students at the end of the Bachelor program artdioBr their teachers are expert modellers, sa thei
representation of the modeling cycle is right bjirdigon. Seeing our results concerning the mix-up
by some students and even by some teacheralidation andverification triggered a change to the
prescriptive perspective. We will now answer thesjion:what aspects of the modeling cycle should
be present in teaching modeling?
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Of course, we require the aspects of the elemetiaeg-step cycle presented before (Figure
9). Looking back we now prefer slightly differestins, leading tgoroblem situationmathematizing
mathematical modgsolving mathematical solutigrandinterpreting

This study lead us to the following extra aspects:

- Problem Analysidn the beginning of the process the problem isyaeal, looking for answers to
such questions as: ‘What is really relevant?’ @rhat is really the problem?”’

- Worlds, ModelsandKnowledgeThis cluster of aspects refers to the fact thatemaatical modeling

is much more than modeling alone. The modeller dusswork in the mathematical world only:
problems come from other domains with relevant n@athematical knowledge and relevant non-
mathematical models. A specific non-mathematicadlehds the result of thproblem analysisvhich
could be called theonceptual modelas problem analysis is in facbnceptualizingthe problem
situation

- VerificationThe mathematical model and the solution have totested and adapted against
mathematical logic and consistency.

- Validation:The mathematical model and the solution have tdelseed and adapted against the
requirements of practice.

- Communicatioriviutual interaction with the coach or client (prabl®wner) is necessary.

- Iteration:Students should receive problems that are compiexigh to realize that generally it is
necessary to go through the modeling cycle mone tinae.

- ReflectionAlthough hardly mentioned by the modellers of owpgation, we emphasize that
mathematical modeling — just as problem solvinge,(®g. Schoenfeld, 1985, 1992) — cannot do
without metacognitive activity. Reflection, espdlgiaafterwards, should not be forgotten at the
moment that students, teachers and clients arequashen an acceptable solution has been found for
the problem at hand. Answering questions suchcasld the methods used be applied in other
context® could the models used be applied to other modgiimdplem® what improvements were
necessary after verification and validation and ®hwould strengthen the capacities of the
mathematical modeller for the future.

Finally, we show in Figure 17 an example of a repngation of the modelling cycle with all
these aspects.

reflecting on the modeling process
________________________________________ e,
/

/
conceptual mode}/

non-mathematical world mathematical world

1

1

1

1

1

:

: conceptualizing
i or problem analysis
i domain models 4o
1

i problem situation
: domain knowledc
:

1

1

1

1

1

1

1

1

1

1

1

1

1

1

interpreting
domain knowledg

____________________________________________________________

communicatin

Figure 17. Modelling cycle with all aspects found in our sgud
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