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ABSTRACT  

 

Reviewed is the hydrodynamics of turbidity currents, which constitute a special case 

of density (or gravity) currents. Caused essentially by density differences resulting from the 

presence of sediments in the current, turbidity currents generally plunge in ambient water and 

flow over the bottom topography. The entrainment of sediments from the bed, and the 

entrainment of ambient water from above the current both play an important role. Certain 

turbidity currents can achieve high velocities and become auto-accelerative, if sediment 

entrainment from the bed continues. 

The current is described as being made up of a front followed by a body. The 

hydrodynamic equations are derived taking into account the entrainment of sediment and 

ambient water. The equation of the interface is developed and explained for various special 

cases. The empirical equations required for closing the system of governing equations are 

presented. The shape and the velocity of the front of the current is discussed, and the 

distribution of velocity and concentration in the body are briefly presented. 
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1. DESCRIPTION OF TURBIDITY CURRENT 

 

 
Figure 1 Sketch of a turbidity current (Graf and Altinakar, 1998). 

 

A density or gravity current is a (two-phase) flow of a fluid of density tρ , which is 

caused essentially by the influence of a density difference, ρΔ , on the gravity, g . It is as if 

the gravity were reduced by the ratio of aρρ /Δ , where aρ  is the density of the ambient 

fluid. The reduced gravity, which is the driving force of a density current, is expressed as: 

 ( ) aaat ggg ρρρρρ //' Δ=−=  (1) 

The density difference may be caused by the difference in temperature, 3/2 mkg≅Δρ , 

salinity, 3/20 mkg≅Δρ , or turbidity, 3/20020 mkgto≅Δρ . 

A turbidity current is thus a density current where the heavy (turbulent) fluid is a 



mixture of light ambient fluid of density aρ , and of granular (non-cohesive) material of 

density sρ , in suspension. Such a current must generate enough turbulence to carry the 

granular material in suspension. The average density of a turbidity current is given by: 

 ( ) ( ) sasaassst CCC ρρρρρρ −+=−+= 1  (2) 

where sC  is the volume concentration of the granular solid material averaged over the height 

of the current; if at ρρ > , the turbidity current is a bottom current. The depth-averaged 

reduced gravity, Eq. 1, can also be written as: 

 ( )[ ] ssaat CRgCgg =−= ρρρ /'  (3) 

where R  is the specific density of suspended granular material. Considering that sc  is the 

local concentration within the current at the height z  from the bottom, the local reduced 

gravity can be written as: 

 sz cRgg ='  (4) 

If the suspension of sediments in the current is sufficiently diluted, 1.0/ <<Δ aρρ , one can 

simplify equations using Boussinesq approximation (see Turner, 1973), which implies that 

0/ ≅Δ aρρ  when it multiplies the inertia terms, and 0/ ≠Δ aρρ  when it multiplies the 

gravitational acceleration g . 

The densimetric Froude number, which expresses the ratio of inertia forces to 

reduced-gravity forces, is an important dimensionless number: 

 αcos'/ hgUFrD =  (5) 

where α  is the bottom slope angle and U the depth-averaged velocity. However, the 

following form, which is called global Richardson number, is more commonly used: 

 22
/cos'/1 UhgFrRi D α==  (6) 

Letting u  and ρ represent the velocity and density at the height z , respectively, 

One can also define a local or gradient Richardson number at the height z  from the bottom 

as follows (Turner, 1973):. 

 ( ) ( )[ ]2
/// zuzgRiz ∂∂∂∂−= ρρ  (7) 

As it will be discussed later in detail, the movement of the turbidity current depends on 

the entrainment of the ambient fluid from its upper boundary, which is parameterized by the 

entrainment coefficient, wE . This coefficient is dependent on the global Richardson number: 

 ( )RifEw =  (8) 

Another important parameter that needs to be defined is the buoyancy flux, or reduced 

sediment flux, per unit width, defined as: 

 ( ) qgUhCgRhUgB s '' ===  (9) 

where q  is the discharge per unit width. One distinguishes now between conservative 

turbidity currents with 0/ =dxdB , and non-conservative turbidity currents with 0/ ≠dxdB . 

In the latter ones the change in the buoyancy flux occurs due to entrainment of the eroded bed 

material into the current and/or deposition of the transported sediment on the bed. Turbidity 

currents are often non-conservative ones. 

Turbidity current (see Figure 1) is made up of a front or head advancing into the 

ambient fluid, being followed by the body. The driving force for the front is the pressure 

gradient due to the density difference between the current and the ambient fluid. The flow in 

the front is three dimensional and unsteady. The driving force for the body is the gravitational 

force of the heavier fluid. The flow is often considered to be a steady. The flow duration of a 

turbidity current, thus its length, will depend upon the incoming reduced sediment flux, B . 



The interface between the turbidity current and the ambient fluid (Figure 1) is usually 

not easy to distinguish. For this reason, the average current height, th , and average current 

velocity, U , are defined as integral scales (see Turner, 1973, p. 179): 
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where )(zu  is the point velocity, which becomes zero at thz = , and uβ  is a shape 

coefficient (Boussinesq) depending on the velocity distribution. Once U  and th  are known, 

the average concentration, sC , is determined from: 
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2. PLUNGE POINT 

 

When a stream 

transporting large quantities of 

sediments enters a stagnant 

reservoir of reasonably clear 

water, the larger particles 

deposit immediately at the 

beginning of the reservoir by 

forming a delta. The flow with 

fine sediments advances further 

into the reservoir, and at some 

point plunges to the bottom and 

establishes a bottom turbidity 

current (Figure 2). 

U

 
 

Figure 2 Plunge zone of a sediment laden river entering a 

reservoir (Graf and Altinakar, 1998) 

The plunge zone is often clearly visible. The water depth at the plunge point, ph , can 

be calculated by considering that the momentum of the flow (in channel and in reservoir) is 

conserved. By taking oq  as the unit discharge entering a reservoir, Akiyama and Stefan, 

1985, provide an approximate relation for the densimetric Froude number at the plunge point: 

 ( ) 68.0'// ≅= ppop hghqFr  (13) 

which is valid for a wide range of bed slopes: 123.0017.0 << fS . 

A turbidity current, when it passes along a reservoir, lake or ocean, has a tendency to 

deposit its granular material, causing rather important sedimentation (see Graf, 1983). 

Spectacular sedimentation was observed behind Hoover Dam and Elephant Butte Dam, but 

also in the delta formed by the Rhone River entering Lake Geneva or in the submarine 

Scripps Canyon of the Pacific Ocean. However, turbidity currents can also be beneficial for 

the life of artificial reservoirs. During floods, the deposited sediments can possibly create 

turbidity currents, which in turn transport the sediments downstream towards the dam. By 

clever manipulation of the bottom outlets, turbidity currents can be used to evacuate the 

sediments accumulated in the reservoir. 

 

 

3. HYDRODYNAMIC EQUATIONS 



Consider the body of a turbidity current, two-

dimensional and plane, with the flow, ( )wu ,0, , being 

turbulent and incompressible (Figures 1 and 3). The 

height, h , the velocity, U , and the concentration, 

sC , are average values, defined by the integral scales 

(Eqs. 10, 11, and 12). The current moves in the 

longitudinal direction, x , over a bottom slope, fS , 

with an angle, α , under a deep layer, hH >> , of 

ambient stagnant fluid of density, aρ , being slightly 

smaller than the density of the turbidity current, 

at ρρ > . 

x

 

Figure 3 Definition sketch of the 

body of a turbidity current 

The flow is well established, continuous, steady and gradually varied. The equation of 

continuity and of motion for the fluid phase (mixture of water/sediment) and for the solid 

phase, may be established (Figure 3). This current, being relatively thin, Hh << , is taken to 

be a boundary-layer flow, where the conditions of wu >>  and xz ∂∂>>∂∂ //  are valid. 

The continuity for the fluid phase is written as: 

 0// =∂∂+∂∂ zwxu  (14) 

Upon integration of Eq. 14 over the depth, thh <<0 , one obtains: 
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By definition, the horizontal velocity at the interface and the vertical velocity at the bed are 

zero : 0=
thu  and 0=bw . The vertical velocity at the interface, UEWw whht

== , is 

defined as the velocity of entrainment of the ambient fluid into the current. It is assumed to be 

proportional to the velocity of the current through an entrainment coefficient, wE , which 

depends on the global Richardson number, Ri.  

The equation of continuity for the solid phase is given by the equation of diffusion of 

granular material (see Graf, 1971, chap. 8.3) or : 
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where ( )αcosssss vv ≅  is the settling velocity and sε  is the diffusion coefficient of granular 

material. Elder's relation ( ) ( )''// 22 wczzc sss ∂∂−≅∂∂ε , where ( )''wcs  is the Reynolds flux 

of the solid phase (sediments), can be used to replace the diffusion term in Eq. 16. Integrating 

Eq. 16 over the depth, thh <<0 , one obtains: 
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The terms ( ) )('' bEEvwc sss
bz

s ==
=

 and )(bDcvcv bssbzsss ==−
=

represent the erosion of 

the sediments from the bed and deposition of the sediment on the bed, respectively (Parker et 

al., 1987). In these relationships sE  is the sediment entrainment coefficient and bc  the 

local concentration near the bed. Inserting these relations in Eq. 17, yields the final form of 

the equation of continuity for the solid phase: 
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One can identify the following cases: 1) when )()( bDbE >  the turbidity current is non-



conservative and erosive; 2) when )()( bDbE <  the current is non-conservative and 

depositive; 3) when )()( bDbE =  the current is conservative and/or in equilibrium. 

The equation of motion of the turbidity current can be written by combining equation 

boundary layer flow with the equation of continuity: 
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The shear stress for turbulent flow is expressed as ( )''wutzx ρτ −=  and Boussinesq 

approximation is used. The pressure in the turbidity current can be decomposed into the 

pressure due to ambient fluid, ap , and the pressure due to excess density, ( )ats pp −=ρ , 

resulting from the presence of suspended fine sediments. Assuming also that the pressure in 

the ambient fluid to be hydrostatic, ( ) constgzp aa =+ 'ρ , one can write: 
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where zs ggRc '= , αcos' zz = , αsin/' =− dxdz , and '' ggg ta ρρρ ≅=Δ . Integration of Eq. 

19 over the depth, thh <<0 , gives: 
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in which ( )dzzu
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o

zxtb ∫ ∂∂=− //
2

* τρ . Introducing integral scales Eqs. 10, 11, and 12, into Eq. 

21, one obtains: 
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where the shape coefficients, 1S  and 2S , are defined as: 
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One can reasonably well assume that 11 ≅S  and 12 ≅S  (Parker et al., 1987, and Altinakar 

et al, 1993). When pressure and resistance forces are negligible, a simple form of the equation 

of motion, Eq. 22, can be written as: 
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4. INTERFACE PROFILE CURVES 

 

By combining equations of continuity, Eqs. 15 and 18, with the equation of motion, Eq. 

22, one obtains an equation of the interface between the current and the ambient fluid: 
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The global Richardson number, Eq. 6, is taken as 22 /cos/cos' UhgRCUhgRi s αα == . By 



using the global Richardson number to parameterize the reduced sediment flux (i.e. buoyancy 

flux), 33 /cos/cos' UBUhUgRi αα == , one can also obtain an equation for the variation 

of Richardson number: 
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For conservative currents, the terms underlined in Eqs. 25 and 26 become zero. A 

conservative current for which 0/ =dxdRi  is in equilibrium. Solving Eqs 25 and 26 

together, one obtains wEdxdh =/ , which expresses a linear growth for the current height, i.e. 

oow hxxEh +−= )( , where oh  is the initial depth at the origin ox . In this case the velocity 

of the current is given by ( ) 3/1
/cos RiBU α= . For a conservative turbidity current over a 

weak slope, thus with negligible entrainment of ambient fluid, 0≅wE , Eq. 25 becomes: 

 
( )

( )Ri

SRiUu

x

h fb

−

−
=

∂
∂

1

/
2

*
 (27) 

This equation is similar to the equation of gradually varied flow in open channels, indicating 

the analogy between a conservative turbidity current and free-surface flow in a channel. 

Similar to the open-channel flow, one can also make a distinction between subcritical flow, 

1>Ri  (or 1<DFr ), and supercritical flow, 1<Ri  (or 1>DFr ). 

Under certain conditions, the flow of a conservative turbidity current can be expressed 

as a uniform flow. Imposing 0/ =dxdh  in Eq. 27, making use of the Eq. 6 and by taking 

αsin≅fS , one obtains 
2

*' bf uhSg ≅ . Defining a friction coefficient as 2

* )/(8 Uuf bCT ≅ , 

one can obtain a Chezy-like uniform flow equation: 

 fCT hSgfU '/8=  (28) 

Turbidity currents are subject to friction both at the bed and at the interface with the 

ambient fluid. Harleman suggests to use ( )HCT ff α+= 1 , in which f  is the friction 

coefficient due to the bed, for free surface flow and 43.0≅Hα  for turbulent flow. 

 

 

5. ENTRAINMENT COEFFICIENTS 

 

The system of equations describing the dynamics of turbidity currents, i.e., Eqs. 15, 18 

and 22, can only be closed by specifying empirical relationships for the entrainment 

coefficients for water, wE , and sediment, sE , the sediment concentration near the bed, bc , 

the fall velocity of sediments, ssv , and the bed shear velocity, bu* . 

The entrainment coefficient, wE  relating the entrainment velocity at the interface, 

hW , to the average current velocity, U , is a function of the Richardson number, Ri . The 

experimental data from different types of density and turbidity currents are plotted in Figure 

4a. Despite the obvious experimental dispersion, the following empirical relationship given 

by Parker et al., 1987, represents the entire data range quite well: 

 ( ) 5.04.27181075.0
−

+= RiEw  (29) 

It is interesting to note the rapid decrease of wE  with increasing Ri . In fact, Ri, thus wE , 

depends on bed slope. For large slopes ( °> 12α ), one can write αtanRiEw = . Referring to 

Figure 4a, for 0→Ri  we have 075.0→wE , which is the entrainment coefficient of a fluid 



jet in an ambient fluid of same density; for 1→Ri  we have 003.0≅wE , which 

corresponds to negligible entrainment. Across a stable interface with 1>Ri , there is almost 

no mixing, but internal gravity waves can form. These internal waves break and contribute to 

mixing, i.e. entrainment if the criterion of Keulegan is fulfilled: 

 33 18.0/'Re/ <= UgRi ν  

where Re  is the Reynolds number and ν  is the kinematic viscosity of the current. 

 

(a)
 

(b) 

(c)
 

Fig. 4 a) Water entrainment 

coefficient, wE ; b) sediment 

entrainment coefficient, sE ; 

and c) near bed concentration, 

bc  (Graf and Altinakar, 1998) 

 

Sediment entrainment coefficient data obtained by Akiyama and Stefan, 1985, from 

open channel experiments, and by Altinakar et al., 1993, from turbidity current experiments 

are plotted in Figure 4b. The following empirical relationship proposed by Parker et al, 1987, 

can be used to calculate the sediment entrainment coefficient: 

 ( ) ( )710711 101/103 ζζ +×= −
sE  (30) 

In which the parameter ζ  depends on the particle Reynolds number, pRe : 
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In the above equations 50d  is the median sediment size. It is important to note that Eq. 30 

describes a very steep curve which converges to a maximum value of 3.0≅sE . 

The near bed concentration is generally evaluated at the height thb 05.0≅  and has a 

functional form given as ( )ssbsb vufCc // *= . The data from turbidity current experiments 

by Parker et al, 1987, and Altinakar et al., 1993, are plotted in Figure 4c. This plot shows that, 

for the range 50/1 * << ssb vu  one can take 2/ ≅sb Cc . 

The settling velocity of the sediment particles can be calculated using different 

methods found in the literature (Graf, 1971). For very fine particles one can use Stokes’ law: 

 ( )ν18/2 Rgdvss =  (31) 

As discussed in the previous section, the bed shear velocity can be calculated from: 

 ( ) 2

* 8/ Ufu b =  (32) 

 

 



6. FRONT OF THE CURRENT 

 

The front of the current 

preceding the quasi-uniform body 

flow is a three-dimensional 

unsteady flow region with intense 

mixing with the ambient fluid. The 

driving force is the gradient of 

pressure resulting from the density 

difference between the front and the 

ambient fluid. The shape of the 

front (Figure 5) is characterized by 

its height, fH , and the nose which 

is situated at the height, fh , 

slightly above the bed. 

h
f
/H

f

 
Figure 5 Characteristic shape of the turbidity current 

non-dimensionalized by the height of the front, fH  

(Graf and Altinakar, 1998). 

The velocity of the front can be calculated using simple hydraulic considerations (see 

Turner, 1973, p.73). Assuming a quasi-uniform flow moving on a frictionless surface with 

zero slope and neglecting the mixing, one obtains hgU f '2= . Using a large number of 

experiments of density and turbidity currents on a large range of slopes, Altinakar et al., 1990, 

proposed the following relationship: 

 ff HgU '75.0=  (33) 

 

 
 

Figure 6 Dimensionless velocity of the front, ( ) 3/1
'/ oof qgU , as a function of the bottom 

slope, α  (Graf and Altinakar, 1998). 

 

Britter and Linden, 1980, and Altinakar et al, 1990, have observed that, for a 

continuously fed conservative current, the velocity of the front remains more or less constant 

independent of the distance covered. This implies that the reduced gravity compensates the 



frictional force. However, for turbidity currents over small slopes, °< 5.0α , and for 

depositing currents, the front decelerates slightly and the height of the front increases with 

distance, which can be attributed to entrainment of ambient fluid. It should also be noted that 

the front velocity is always smaller than the velocity of the trailing body. This is necessary in 

order to compensate the fluid lost into the ambient environment through intensive mixing. 

The velocity of the front, fU , can also be related to the reduced sediment flux of the 

entering current, ooo qgB '= , and to the bed slope, α , or: 

 ( ) ( )αfqgU oof

3/1
'=  (34) 

The roughness of the bed, f , the entrainment coefficient, wE , and the Reynolds 

number, ν/Re Uh= , could also play a role. In Figure 6, the dimensionless head velocity 

( ) 3/1
'/ oof qgU  is plotted as a function of the angle of inclination α . The dimensionless 

velocity increases with increasing slope up to °≅ 35α , then decreases due to increased 

friction and mixing at the interface. For practical purposes one can assume 

( ) 2.05.1'/
3/1 ±=oof qgU  for large slopes °<<° 905 α . For small slopes, °< 5α , the 

dimensionless head velocity varies in the range  and ( )( ) 5.1'/7.0
3/1 << oof qgU . 

 

 

7. DISTRIBUTION OF VELOCITY AND CONCENTRATION 

 

 
 

Figure 7 Non-dimensional distribution of velocity, )(zu , and concentration, )(zcs , measured 

by Altinakar (1988) for different types of gravity currents - turbidity current and saline 

density currents (Graf and Altinakar, 1998). 

 

Referring to Figure 7, the flow in the body of the turbidity current may be assimilated 

to a turbulent wall jet composed of two regions separated at the height mh , where the local 

time averaged velocity is maximum, mUu = . In the wall region, mhz < , the turbulence is 

created at the wall, and the entrainment or deposition of sediments takes place. The velocity 

distribution in this region is logarithmic and given by: 

 ( ) Constzuzu b += ln/1/)( * κ  (35) 



In the jet region, mhz > , the turbulence is created by friction and by entrainment. The 

velocity profile is Gaussian. Altinakar et al., 1996, proposes the following relationship: 

 ( ) ( )[ ]{ }2
/exp/)( mmcm hhhzUzu −−−= α  with 4.1=cα  (36) 

Based on laboratory experiments, they also found that: 

 3.0/ ≈hhm  3.1/ ≈UU m  3.1/ ≈hht  3.1/ ≈UU  (37) 

The concentration distribution in the wall region, mhz < , is similar to the 

concentration profile of suspended sediments in open channel flow. It is given by: 

 ( ) ( )[ ]z)/(/)(/)( bhbzzhczc mmbs −−=  (38) 

where bc  is the near bed concentration and the Rouse exponent is defined as bss uv */κ=z  

In the jet region, mhz > , the distribution of concentration is Gaussian. Altinakar et 

al., 1996, proposes the expression: 

 ( ) ( )[ ]{ }3/4
/exp/)( mmcms hhhzCzc −−−= β  (39) 

in which one takes 1.47.1 << cβ . The value of cβ  increases with the distance x . The 

concentration evaluated at mhz =  is denoted as mC . Altinakar et al., 1996, experimentally 

found that: 

 2/ ≈sb Cc  and 4.1/ ≈mb Cc  (40) 
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