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ABSTRACT  

 

LiDAR (laser-induced direction and ranging) mounted on an airborne has been 

developed and used to measure the physical environment of rivers. However, it is still very 

difficult to obtain submerged river bed topography because of the presence of fluctuating 

water surface and weakly-laser-transmission of river water. This paper proposes a new and 

practical method to interpolate the submerged bed shape by water surface profiles in 

compensation for the weak points of LiDAR.  

First, we survey the complex bed topography of an experimental channel in details by 

terrestrial LiDAR. To discuss the feasibility to interpolate river bed profile from known water 

surface profile, we conduct numerical simulations of flows for various bed topographies by 

the shallow water model. This resulted that the least error of water surface leads to the least 

error of submerged bed topography. Then, we formulate the algorithm of a new 

hydrodynamic interpolation method to estimate the optimal submerged river bed topography 

using water surface profile. It is confirmed that the hydrodynamic interpolation can modify 

submerged river bed topography toward the measured one. Because longitudinal water level 

profiles can be obtained by LiDAR, the present method may be a powerful technique to 

interpolate the submerged bed topography in compensation for the weak point of LiDAR. 

 

Keywords: laser scanner, digital terrain model, submerged river bed topography, water surface, 

hydrodynamic interpolation method, shallow water numerical model, CIP scheme  
 

 

1. INTRODUCTION 

 

Recently airborne LiDAR (laser-induced direction and ranging) has been developed 

and used to measure the physical environment of rivers. It provides laser-based measurements 

of the distance between the sensor on an aircraft and the object. LiDAR has many advantages. 

The resulting measurements have high precision and can be post-processed to an accurate 

digital terrain model. Uchida et al. (2007) demonstrated that LiDAR mounted on a helicopter 

has potentials to detect longitudinal profiles of water edge and mean diameter of surface 

gravels. On the other hand, it has the limitation to detect river bed under thick vegetation or 

water surface. Especially, it is still very difficult to obtain submerged river bed topography 

because of the presence of fluctuating water surface and weakly-laser-transmission of river 

water. The examination of submerged river bed topography is important to estimate the 

amount of sediment transport in flood events. 

Actually, water surface profiles are controlled by discharge, bed roughness and bed 

profiles. This means that a water surface profile may be a guide for us to estimate the bed 

topography with reasonable magnitude of errors, if the discharge and bed roughness are 



known. This paper proposes a new practical method to interpolate the submerged bed shape 

by using a water surface profile and a shallow-water model in compensation for the weak 

point of LiDAR.  

First, we survey the complex bed topography of an experimental channel in details by 

terrestrial LiDAR. A geometric interpolation method, which solves the Laplace equations for 

bed elevation and its gradient along water edges, is applied to the bed profile submerged by a 

low-flow in the experimental channel. Then, we conduct numerical simulations of flows for 

various bed topographies, which are interpolated by the geometric method, by the shallow 

water model (Uchida, 2006) to discuss the feasibility to interpolate river bed profile from 

known water surface profile. Then we formulate the algorithm of a new hydrodynamic 

interpolation method to estimate the optimal submerged river bed topography using water 

surface profile.  

 

 

2. MEASUREMENT OF COMPARATIVE SUBMERGED BED TOPOGRAPHY 

AND ITS GEOMETRIC INTERPOLATION METHOD 

 

 To develop an estimation method, detail and accurate data of submerged river bed is 

necessary. We survey the complex bed topography of an experimental channel in details by 

terrestrial LiDAR (Leica Geosystems), because it is very difficult to obtain submersible bed 

profiles of rivers. Figure 1 (a) shows 3D spatial data of dry bed topography formed by water 

flow in the experimental channel of 10m length and 1.5m width. The surface of sand bed was 

packed by adhesion bonds. We also obtain the data with water flow (Q=3.5 *10
-3

m
3
). Then, 

 

 

(a) 3D spatial data of bed topography 
(b) Wet and dry region 

Blue: wet region, Yellow: dry region 

Figure 1 3D spatial data of bed topography and mesh data 

Bed elevation (m): 

(c) Comparative bed profile of mesh data (dx=0.10m, dy=0.05m) 



we separate the data into wet and dry region, as shown in Figure 1 (b). The comparative bed 

profile of mesh data (dx=0.10m, dy=0.05m) is generated by LiDAR data of Figure 1 (a), as 

shown in Figure 1 (c).  

To develop a hydrodynamic interpolation method of submerged bed profile, the 

geometric interpolation method with Laplace equations is applied. In this paper, submerged 

bed topography zw is represented by Eq. 1. 

( )010 zzzzw −+= α                           (1) 

in which, α is defined by correction coefficient of water depth in this paper. z0 and z1 are 

solutions of the Laplace equations for bed elevation and its gradient along water edges, 

respectively. Those solutions are obtained by Eq. 2 and 3. 

00

2 =∇ z                                 (2) 

( ) ( ) 0/,0/ 1

2

1

2

1

2

1

2 =∇=∂∂∇=∇=∂∂∇ yx zyzzxz               (3) 

 

 
 

To compute bed levels by Laplace equations of its gradient x,y of Eq. 3, variables at i, j are 

disposed as shown in Figure 2. Bed levels z1i, j by Laplace equations of its gradient are 

obtained by a iterative computation of Eq. 4 with solutions of Eq. 3.  
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Figure 3 (a) and (b) show interpolated bed profiles by Laplace equations of bed level 

and its gradients, respectively. The submerged bed level interpolated by Eq. 2 is higher than 

the real value of Figure 2 at any point, because it should be understood that the submerged 

bed level is under than that of the dry area. That is, the solution z0 by Eq. 2 is considered as 

the submerged bed level with zero water depth. In contrast, the submerged bed levels z1 

interpolated by Eq. 3 become lower with increasing distance from water edge.  

(b) z1 by Laplace equations of bed level slopes (a) z0 by Laplace equation of bed level 

Figure 3 Interpolated bed profiles by Laplace equations of bed level and its gradients 

Bed elevation (m):

i-1 i i+1 

j-1 

j 

j+1 

x 

y 

z0i,j, z1i,j

z1y i,j 

z1x i,j 

Figure 2 Arrangements of variables to compute Laplace equations of bed level slopes 

dx 

dy 



 
 

Figure 4 shows the error tendency of submerged bed level with constant correction 

coefficient of water depth α. Figure 5 (a) and (b) are the interpolated bed profile and the error 

distribution by the geometry interpolated method of Eq. 1 with the most probable value of 

constant α =0.2. The interpolated bed profile with α =0.2 captures the characteristics of the 

real profile of Figure 1. However, the root-mean-square deviation of bed level σZ cannot 

become zero for the constant value of α. This paper proposes how to determine the most 

probable value of α or its distribution dynamically by using water surface profile which can 

be obtain by bed level data at water edge. 

 

 

3. HYDRODYNAMIC INTERPOLATION METHOD FOR SUBMERGED RIVER 

BED TOPOGRAPHY BY WATER SURFACE PROFILE 

 

 Numerical model for flow 

 

The two-dimensional model (Uchida, 2006) is applied to simulation of water surface 

profiles of flows over undulating grounds for the hydrodynamic interpolation. The governing 

equations are continuity equation 5 and momentum equations 6:  
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(b) Error distribution (a) Interpolated bed profile 

Figure 5 Interpolated bed profile and error distribution by geometry interpolated 

method of Eq. 1 with α=0.2 

Bed elevation (m): Difference from real value (*10-2 m) 
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Figure 4 Error tendency of bed level with correction coefficient of water depth α 

Correction coefficient of water depth α 
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where, subscripts i,j follow the summation convention, indicating 1=x and 2=y, respectively; 

h=water depth; ui =velocity along xi direction; λ=occupancy ratio of fluid; g=acceleration due 

to gravity; ζ=water surface elevation (h+z); z=ground elevation; fi =external force except 

gravity; and τij =horizontal shear stress tensors due to molecular and turbulent motions of 

fluids. Although the occupancy ratio of fluid γ is adopted in governing equations to capture 

complex shapes of boundaries (Uchida, 2006), γ=1 at every point in this study. fi , which 

indicates bed shear stress in this study, is expressed by the logarithmic law with the equivalent 

sand roughness ks as follows: 
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The Reynolds stresses are represented by the Kinematic Eddy-Viscosity coefficient vt: 
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where κ=0.4, Karman’s constant, u*= friction velocity. 

 

 
 

The important points of the scheme are as follows (Uchida, 2006). For many 

numerical methods, interpolating algorisms are required to evaluate variables at several points 

of a control volume, which diminishes the computational accuracy and complicates the 

computational algorism. In this study, however, to directly capture the effect of distributed 

parameters in the Cartesian coordinate system, each control volume ij has three kinds of 

variables, i.e., the value at the intersection of the grid (Point Value, denoted by lower-case 

characters), the averaged value along the side of the grid (Line-averaged Value, denoted by 

capital letters with subscript of x or y) and the averaged value over the grid (Area-averaged 

Value, denoted by capital letters with subscript of xy). Those values are computed all together 

based on CIP-CSL scheme (Nakamura et al., 2001). All the variables in the governing 

equations are set on the same location as shown in Figure 6. The interpolating operation of the 

variables is not necessary in the present scheme. Any boundary conditions can be taken into 

account without difficulty, because all the variables and parameters are well-defined in a 

computational cell based on the Control Volume Approach. The utilization of multi-valuables 

on a computational cell enables us not only to capture complex geometry even on the 

Cartesian coordinate system, but also to compute flow transitions with high resolution and 

Figure 6 The arrangements of main variables on the computational control volume ij 
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accuracy. Details of numerical method and its performances are discussed in our previous 

paper (Uchida, 2006). 

The boundary conditions of the flow computations are the experimental discharge 

given at the upstream end of the channel and the experimental water level at the downstream 

end. The computational grid sizes are dx=0.10 m, dy=0.05 m. For the practical case, we 

cannot prepare an appropriate value of the roughness coefficient of the submerged bed before 

the computation. In this paper, to simplify the problem, the equivalent sand roughness 

ks=0.030 m is given for the computation of the bed shear stress by Eq. 7. Figure 7 shows 

longitudinal water level profiles at right and left water edges by measurement and 

computation with the real bed and ks=0.030 m. The computed results are in good agreement 

with those of the measurement. 

 

 
 

 Error correlation between water surface and bed level profiles 

 

To discuss the feasibility to interpolate river bed profile by known water surface 

profile, we conduct numerical simulations of flows for various bed topography (i.e., various 

value of α in Eq. 1) by the shallow water model, as shown in Figure 8. Figure 9 shows lateral 

averaged water level by the computations with various bed profiles. In this paper, true values 

of water levels are defined by the computed result with the true bed profile of Figure 7. The 

Figure 7  Longitudinal Water level profiles at water edge of right and left bank by 

the measurement and computation 

Measurement by LiDAR 

Right bank 

Left bank 

Computation by 2D model 

Right bank 

Left bank 
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Figure 8 Error tendency of water level 

with correction coefficient of 

water depth α 

Correction coefficient of water depth α 
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Figure 9 Computed water level profiles with 

various values of α 



error tendency of the water level σH of Figure 8 is not simple as that of the ground level of 

Figure 4. The error tendency of the water level σH does not display a symmetrical pattern, in 

which there are extreme values at α=0.2 and 0.4, although the error tendency of the ground 

level σZ produces a symmetrical pattern with α=0.2 as an axis, as shown in Figure 4. This 

asymmetry is attributed to the constant downstream water level of the boundary condition. 

The error of ground level produces obvious error of water level, when the bed level is higher 

than that of true value. Conversely, the underestimated ground level does not produce the 

reveal error of water level. However, we can see that the least error of water surface leads to 

the least error of bed level. The above indicates that submerged river bed profiles can be 

interpolated by minimizing the error of water surface profiles.  

 

 
 

Figure 10 shows the error distribution of water level computed with most probable 

value of α=0.2. The error distribution profile of the water level of Figure 10 is different from 

that of the bed level of Figure 5 (b). This indicates that it is difficult to estimate the 

submerged bed profiles (i.e., the distribution of α) directly by the error distribution of the 

water level.  

 

 Hydrodynamic interpolation method 

 

Here, a new hydrodynamic interpolation method is developed to estimate the optimal 

submerged river bed topography using water surface profile. The base principle of the 

interpolation method is as follows. The proposition of this study can be defined “ to obtain the 

bed elevation zn at the submerged point n with the minimal square sum of difference of water 

level Dm
2
 between measured and computed result”. The gradient vector dn is defined by the 

ratio of differential square sum of water level δ(Dm
2
) to differential bed elevation δzn: 

nnmn zDd δδ )(
2=                               (10) 

The modifying bed elevation vector δzn to decrease the square sum of difference of water 

level Dm
2
 by a small value of βDm

2
 is described by Eq. 11 with use of the gradient vector dn. 

Consequently, the proposition of this study can be redefined the nonlinear programming 

problem, in which the square sum of modified bed elevation vector δzn
2
 is minimised with 

constrained condition of Eq. (11) : 

constrained condition: 
2

mnn Dzd βδ −=⋅       (11) 

objective function: min
2 →nzδ       (12) 

The optimized solution of the differential bed elevation δzn, which decrease Dm
2
 by βDm

2
 with 

its own minimal square sum δzn
2
, is obtained by Lagrange's method of undetermined 

multipliers, as Eq. 13. 
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lnmn ddDz ⋅−= βδ       (13) 

Figure 10 Error distribution of the water level computed with most probable value of α=0.2 

Difference from real value (*10-2 m)



 
 

in which, dl
2
 is square sum of gradient vector dn.  

In this paper, the modifying vector of correction coefficient of water depth δαn is 

computed instead of δzn to reduce the computational load. The gradient vector dn of 

differential square sum of water level δ(Dm
2
) with respect to differential correction coefficient 

of water depth δαn: 

nnmn Dd δαδ )(
2=                               (14) 

The optimized solution of the differential correction coefficient of water depth δαn, which 

decrease Dm
2
 by βDm

2
 with its own minimal square sum δαn

2
, is obtained in the same manner 

Separating LiDAR data on dry bed from that of wet region  

Computing geometric interpolating bed profile of z0 and z1by Eq. 2 

and Eq. 3 

Setting initial submerged bed profile by Eq. 1 with α=0  

Computing water surface profile by Shallow water equations, Eq. 5 & 6 

Water discharge 

Water level at downstream end 

β<ε 
No 

Yes 

Output αn and interpolated submerged bed levels (Optimal submerged bed profile) 

Setting computational conditions 

Bed roughness coefficients Generating mesh data of dry bed except wet region  

Deriving water level profiles at water edge 

Given conditions for flow computations 

Computing square sum of difference of water level Dm
2 for a given α

Interpolating water level at dry bed by Laplace equations 

Computing square sum of difference of water level Dm
2

Sensibility analyses at representative points and the interpolations to obtain gradient vector 

dn defined by Eq. 14 

* Computing water surface profile by Shallow water equations, Eq. 5 & 6 

* Interpolating water level at dry bed by Laplace equations 

* Computing square sum of difference of water level Dm
2 and component n of 

gradient vector dn defined by Eq. 14 

Interpolating the other components of gradient vector dn by Laplace equations 

 Obtaining gradient vector dn for a given α 

* Similar procedures are computed for all representative points

Modifying correction coefficient of water depth αn by Eq. 15 and submerged bed level profile by Eq. 1 

Figure 11 Computational procedures of the hydrodynamic interpolation method to 

obtain optimal submerged river bed topography using water surface profile 



as described above. 
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lnmn ddD ⋅−= βδα       (15) 

The optimal value of correction coefficient of water depth αn is obtained by the following 

numerical integration of the differential correction coefficient of water depth δαn with a small 

vale of β and the gradient vector dn. 

The gradient vector dn is obtained by the sensibility analysis of the 2-D shallow water 

model indicated in the previous chapter. The sensibility analyses are conducted at 

representative points of submerged grids, and then the sensitivities at the other grids are 

interpolated by that of the representative points to reduce the computational load. Because the 

wet regions with half-interpolated submerged bed topography are different from the true wet 

region, virtual water levels at dry regions are interpolated by that of the wet regions, to 

compute square sum of difference of water level Dm
2
. The above interpolations are computed 

by the Laplace equations.  

Figure 11 shows the computational procedures of the hydrodynamic interpolation 

method for submerged river bed topography by water surface profile. The procedures are 

divided by setting computational conditions, computing square sum of difference of water 

level Dm
2
 for a given α and sensibility analyses by the 2-D shallow water model to obtain 

gradient vector dn. For setting computational conditions, in this study, computed water levels 

with the true bed topography measured by LiDAR are used instead of measured water level 

profiles at the water edges by LiDAR data. The initial values of αn=0 are given at every 

submerged grids, in which zero water depth is assumed, because it is difficult to modify 

overvalued α to its appropriate value, as noticed by Figure 8. Consequently, the locally 

optimal solution of submerged bed topography with the minimum water depth is computed by 

the present method. To procedure this method properly, it is noticed by the assumption of 

Equation 11 that a small vale of β should be used. In this paper, β is given by the ratio of 

reduced value of ΔDm
2 

at a last computational step to Dm
2
. The computation are continued 

until β becomes smaller than ε=10
-3

. 

 

 Results and discussions 

 

Figure 12 shows the root-mean-square deviation of water level σH with computational 

steps, and Figure 13 shows the distribution of the eventual water level deviation. Although, 

the eventual water level deviation does not become zero, the present method decrease the 

root-mean-square deviation of water level σH with computational step monotonically. 

 

 
 

Figure 13 Error distribution of the eventual 

water level by the present method 

Difference of water level from 

real value (*10-2 m):  

Figure 12 Root-mean-square deviation 

of water level σH with 

computational steps 
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Figure 14 shows the optimal solution of bed topography and the distribution of the 

deviation of the eventual bed level deviation. The eventual submerged bed topography still 

remains the deference from the real value as well as the water surface. However, the 

difference between the eventual and the actual bed levels are very small. So, it is significant 

results that the submerged bed shape can be hydrodynamically interpolated by reproducing 

water surface profiles by present model in compensation for the weak point of LiDAR. 

 

 

CONCLUSIONS 
 

Numerical simulations of flows for various bed topographies by the shallow water 

model are conducted to discuss the feasibility to interpolate river bed profile from known 

water surface profile. The results show that the least error of water surface leads to the least 

error of submerged bed to topography. The above indicates that submerged river bed profiles 

can be interpolated by minimizing the error of water surface profiles. The error of ground 

level produces obvious error of water level, when the bed level is higher than that of true 

value. Conversely, the underestimated ground level does not produce the reveal error of water 

level.  

This paper proposes a new hydrodynamic interpolation method, in which the locally 

optimal solution of submerged bed topography with the minimum water depth is computed. It 

is confirmed that the present method can modify the submerged bed toward the measured one. 

Because longitudinal water level profiles can be obtained by LiDAR, the present method may 

be a powerful technique to interpolate the submerged bed topography in compensation for the 

weak point of LiDAR. 
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Figure 14 The optimal solution of bed topography and error distribution by present 

hydrodynamic interpolated method of Fig. 11 
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