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To maximize the lift and to reduce the drag of an object placed under Stokes flow, a 

3D shape optimization system based on the adjoint variable method was developed by using 

HEC-MW. The adjoint variable method is based on the Lagrange multiplier method (a 

conditional variational principle), and consists of the state equation, the adjoint equation and 

the sensitivity equation. In this context, the equations for increasing the lift, under a constant 

volume condition, are formulated. By deforming from the initial shape to the optimal shape, 

the lift coefficient of the object has been increased and the drag coefficient has been decreased. 
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1. INTRODUCTION 

 

The literature has discussed the minimizing drag and the maximizing lift for the 

airplane wing since the 1970's (Hicks, 1974; Jameson, 1988). When a wing moves in the air, 

the lift of the wing increases in proportion to the square of the speed. However, as the speed 

for the wing increases, the drag on the wing increases as well. Therefore, if the wing is not 

properly designed, the airplane can't obtain enough lift to counteract the drag. The optimal 

wing shape should provide both maximum lift and minimum drag, and not only one of them. 

Also, in most practical engineering problems, a device has to be designed to satisfy not one 

but more goals. Therefore the issue of multipurpose optimization becomes important. In this 

study we propose a multipurpose optimization method based on the adjoint variable method, 

which is a type of sensitivity analysis, and is based on the calculus of variations (Gelfand, 

1963; Robert, 1974). The constrained optimization problem of the cost functional is converted 

into an unconstrained optimization of the Lagrange function by introducing Lagrange 

multipliers called adjoint variables. As an application of the proposed multipurpose 

optimization system using the adjoint variable method, we present a method for 

simultaneously minimizing drag and maximum lift. 

 

2. ADJOINT VARIABLE METHOD 

 

To minimize the cost function under constraints, we formulated the Lagrange function 

by introducing the adjoint variables. The adjoint variable method is based on the variational 

method. By introducing Lagrange multipliers called adjoint variables, the constrained 

optimization of the cost function is transformed to the unconstrained optimization of the 

Lagrange function. A circular cylinder is placed in the computational domain Ω, as shown in 

Fig.1. Γ is the N-S-E-W boundary at north, south, east and west. γ represents the surface of the 

object under optimization. A fluid flows in on the boundary Γw and flows out on the boundary 

ΓE. The origin of coordinates is at the centre of the cylinder. In this paper, as the cost function, 

the traction force on the surface γ is defined as: 
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where t, x, χ, n, u, T and w represents the time, the special coordinate, the coordinates 

in the integrand, the unit normal vector, the velocity vector, the traction vector and the state 

variable vector, respectively. The domain γ(x) depends on x. The constant ts and te show the 

start of the test time and the end of the test time in the optimization. The constant Re 

represents the Reynolds number as follows: 

 

µ

ρLU
= 1Re    (2) 

 

The constant L, U1, ρ and µ denote the representative length and the representative 

flow, the density and the viscosity coefficient, respectively. In this paper, the equations are 

dimensionless. We formulated the Lagrange function by introducing the adjoint variable as 

follows: 
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where λ1 shows the adjoint pressure corresponding to the pressure p and (λ2, λ3, λ4) 

show the adjoint velocity corresponding to the flow vector (u1, u2, u3). The control variables 

to deform the shape are the coordinates of the nodal points on the surface in the analytical 

model. The objective function consists of the cost function (J) and the function (V) 

representing the constant volume constraint imposed on the object. The shape is deformed to 

minimize this objective function. The variables λ5-λ19 represents the undetermined adjoint 

variables. The function f(t,x,w(t,x)) consists of the continuity equation f1(t,x,w(t,x))，the 

Stokes equation f2(t,x,w(t,x)), f3(t,x,w(t,x)), f4(t,x,w(t,x)). The Lagrange function is formulated 



as follows:  
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The integral domain depends on spatial coordinates. However, the domain γ(x) etc. 

are often abbreviated to γ etc. The stationary conditions (the state equations, the adjoint 

equations and the sensitivity equations) are derived by using the first variation. 
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Fig.1 Computational domain. 

 

3. ALGORITHM 

 

In the first phase of the adjoint algorithm, the state equations are solved until the flow 

field reaches a steady state. The state variables are calculated by using the state equations, 

which are solved from the start-time to the end-time. All the nodal values of the state 

variables are stored at every time step. In the second phase, the adjoint variables are 

calculated by the adjoint equations from the end-time to the start-time. The adjoint equations 

are also advanced in time until the adjoint flow field reaches the steady state. All the nodal 

values of the adjoint variables are saved in files at every time step. In the third phase, the 

sensitivity at every time step is calculated by using the data saved in files containing the 

adjoint and state variables. This sensitivity represents the displacement of the nodes on the 

surface of the object. In the fourth phase, the shape is modified by using the sensitivity. The 



optimization method used here is the gradient method. Afterwards, the nodes of the mesh are 

relocated according to the sensitivity. The node relocation is performed by using the 

biharmonic equation. In the fifth phase, the shape is modified such that the constraint of 

constant volume is satisfied  

To overcome such difficulties as heavy computational burden and large memory 

requirements, the present system was implemented with the data compression technology 

supplied with the parallel software library HEC Middleware (Ito and Okuda, 2007). The 

HEC-MW is a hardware-independent platform, which includes patterns of calculation 

processes and common interfaces of unstructured grid simulations. By plugging-in HEC-MW, 

a program developed on a PC is automatically optimized for each high-end machine. Also, by 

utilizing HEC-MW, the program can be efficiently parallelized, and the number of program 

lines can be dramatically reduced. In connection to the shape optimization method, a mesh 

smoothing method, crucial to realizing the 3D shape optimization of the body surface, is 

developed. Based on the proposed method, a parallel 3D shape optimization algorithm is 

constructed and implemented using HEC-MW. For increased performance, a method that 

reduces the communication overhead is developed.  
 

4. SHAPE OPTIMIZATION OF OBJECTS IN FLOW 

 

The mesh is shown in Fig. 2. The mesh resolution is 15009 nodes and 67855 elements. 

The element type is 4-node tetrahedron element. The height of the cylinder is 0.3. In Fig.3 

and Fig.4, the velocity vector and the pressure contour are shown. The flow speed (the state 

variable) decreases behind the downstream cylinder. The fluid flows from the inlet Γw to the 

outlet ΓE. The adjoint velocity vector is shown in Fig.5. The boundary condition γ in the 

adjoint analysis is set to (λ2,λ3,λ4)=(1,1,0). This condition is naturally derived from the 

Lagrange function (Eq.(7)). In the artificial adjoint inflow on the cylinder, the adjoint flow 

vector has 45 degree with respect x1 axis. The adjoint flow turns in the computational domain 

and finally reached the outlet where is the position in 225 degree with respect to x1 axis. 

 

 
Fig.2 Mesh 

 



 
Fig.3 The velocity (the initial shape) 

 

 

 
Fig.4 The pressure (the initial shape) 

 



 
Fig.5 The adjoint velocity (the initial shape) 

 

 
Fig.6 The adjoint pressure (the initial shape) 



The sensitivity distributions and shapes with respect to the shape step are shown in 

Fig.7. As the shape advances form the initial shape to the optimal shape, the sensitivity 

becomes smaller and smaller. By making a slant with respect to the Pironneau results 

(Pironneau, 1973; Katamine and Azegami, 1995; Yagi and Kawahara, 2005), the initial 

shape converge to the optimal shape.  

The adjoint velocity and pressure in the optimal shape are shown in Fig.8 and Fig.9 

respectively. 
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Fig. 7 The sensitivity distribution and the shape deformation with respect to shape steps 

 



 

 
Fig.8. The velocity (the optimal shape) 

 

 
Fig.9 The pressure (the optimal shape) 
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Fig 10 The history of the drag (the cost function) 
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Fig 11 The history of the lift (the cost function) 

 
 

The history of the drag is shown in Fig.10. The horizontal axis shows the shape step. 

The vertical axis shows the normalized cost function with respect to the cost function of the 

initial shape. The drag coefficient in the initial shape is 13.65. Comparing to the drag in the 

initial shape, the drag in the optimal shape is reduced by about 8%. The lift force is shown in 

Fig.11. The horizontal axis shows the shape step. The vertical axis shows the normalized cost 

function with respect to the cost function of the optimal shape. The lift coefficient increases 



from the lift coefficient 0.0 in the initial shape to the lift coefficient 6.37 in the optimal shape.  

 

5. CONCLUSIONS 

 

To simultaneously maximize the lift and to decrease the drag of an object placed under 

Stokes flow, a shape optimization system based on the adjoint variable method was developed 

by using HEC-MW. The automatic parallel library HEC-MW used on a PC cluster made 

possible the computation of the optimal shape. By using the improved shape optimization 

system, the optimal shape under steady flow could be obtained. This method can be widely 

applied to both simple and complex shapes. We believe to be more efficient and robust than 

the conventional techniques currently used in shape optimization.  
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