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WAVE BLOCKING 
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Abstract: Nonlinear dispersion effects are investigated in modeling of blocking of periodic 

waves. It is found that inclusion of these in the model results in a larger wave group velocity, as 

expected, and gives a better fit with experimental data as compared to the use of linear 

dispersion relation. 
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1. INTRODUCTION 

 

Water waves meeting an adverse current shorten and steepen as the current velocity increases in 

the upstream direction and wave blocking may occur, which can be accompanied with wave 

breaking (Chawla and Kirby, 1998; Suastika et al., 2000). In such a situation, nonlinear effects 

are expected to play an important role. The phenomenon of wave blocking has been studied 

extensively in recent years, particularly in connection with modeling of the wave evolution in 

coastal regions (Chawla and Kirby 2002; Suastika and Battjes, 2005; Suastika, 2009). Suastika 

and Battjes (2009) developed a linear model for modeling of the wave amplitude evolution in the 

case of blocking of periodic waves. Their model is able to reproduce the observed pattern of the 

wave amplitude variation well, although the predicted blocking point location lies about one 

wave length downstream from the observation, ascribed to the exclusion of nonlinear effects in 

the model. In the present study, nonlinear dispersion effects are investigated by applying 

respectively linear and Stokes third-order dispersion relations in the model of Suastika and 

Battjes (2009). Model results are compared with the experimental data of Suastika et al. (2000). 

 

2. DISPERSION RELATION 

 

The kinematics of wave-current interactions and of wave blocking are best illustrated by an 

investigation of the dispersion relation. A discussion of this for gravity waves propagating on an 

ambient current has been given in e.g. Peregrine (1976), Peregrine and Jonsson (1983) and 

Jonsson (1990). For the case of blocking of gravity-capillary waves, a discussion of the 

dispersion relation is given in Shyu and Phillips (1990) and Trulsen and Mei (1993). 
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Although a discussion of the kinematics of wave-current interactions and of wave blocking has 

been given in the above mentioned studies, here a discussion of these is presented for the sake of 

easy reference, in which particular attention is paid to nonlinear effects. For the general case of 

2-dimensional wave propagation, the wave frequency is Doppler-shifted due to the current, 

which is represented as 

 

Uk ⋅+=σω            (1) 

 

where ω is the wave frequency relative to the fixed bed, σ is the wave frequency relative to the 

water mass (the intrinsic wave frequency), k is the wave number vector and U is the current 

velocity relative to the bottom. The intrinsic linear dispersion relation of gravity waves in water 

of finite depth is represented as 

 

( )khgk tanh2 =σ           (2) 

 

where g is the gravitational acceleration, k = |k| is the magnitude of the wave number vector and 

h is the mean water depth. Equations (1) and (2) can be combined to give 

 

( ) ( ) 22
tanh σω ==⋅− khgkUk        (3) 

 

We consider the case where periodic gravity waves (with frequency ω relative to the fixed bed) 

generated in still water, collinearly meet an adverse current with velocity increasing in the 

upstream direction. For the purpose of a discussion of the phenomenon of wave blocking, we 

define k = k ex and U = U ex, where ex is the unit vector in the (incident) wave propagation 

direction. With these definitions, the solutions to Eq. (3) are given as 

 

( )[ ] 21
tanh khgkkU ±=−ω        (4) 

 

In the present case, U ≤ 0 so that k U ≤ 0 and only the positive branch of the r.h.s. of Eq. (4) can 

be taken. Figure 1 shows a schematic diagram of graphical solutions of Eq. (4) for this particular 

case. The intrinsic phase velocity c is given as c = σ/k and the intrinsic wave group velocity cg 

(or intrinsic wave energy transport velocity) as cg = ∂σ/∂k. 

 

In still water (U = 0), σ = ω and the wave number k is given by Eq. (2) (solution r0 of Eq. (4) in 

Fig. 1). In the region with an adverse current (U < 0), in which |U| < |UB|, where UB is the 

blocking velocity (UB < 0), there are two solutions for a wave train with frequency ω relative to 

the fixed bed in water of depth h, which are denoted by r1 and r2 in Fig. 1. Solution r1 represents 

waves with net phase and net energy transport velocities directed upstream (c + U > 0, cg + U > 

0)  
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Fig. 1. Solutions of the dispersion relation for given wave frequency ω relative to the 

fixed bottom, current velocity U and water depth h. 

 

and solution r2 represents waves with net phase velocity directed upstream (c + U > 0) but with 

net energy transport velocity directed downstream (cg + U < 0). In the case that |U| > |UB|, there is 

no (real) solution to the dispersion relation Eq. (4). 

 

In the case considered here, where gravity waves generated in still water meet an adverse current 

with velocity increasing in the upstream direction, the frequency ω has the same value at all 

positions. As the adverse current becomes stronger (the slope of the line σ = ω - k U in Fig. 1 

becomes larger) the incident waves become shorter (the wave number k corresponding to r1 is 

larger than that corresponding to r0). The maximum adverse current velocity that the incident 

waves can face is given by the condition that the line σ = ω - k U is tangent to the curve σ = 

[gktanh(kh)]
1/2

. This is the blocking condition where the intrinsic wave group velocity is equal to 

the local adverse current velocity: ∂σ/∂k + U = 0 or cg + U = 0. At the blocking point, the roots r1 

and r2 coincide (r1 = r2 = rB). Since the energy flux for waves r2 is directed downstream, these 

waves must be generated upstream from where they are present. They represent waves reflected 

at the blocking point, where they have the same wave length as the incident waves (r2 = r1 = rB). 

Going downstream the current weakens, so that r2 shifts to larger wave number (the reflected 

waves shorten). 

 

Having discussed the kinematics of blocking of linear gravity waves due to a counter current, we 

discuss now some implications of nonlinearity in the dispersion relation. For that purpose, we 

consider the Stokes third-order dispersion relation (the waves are in relatively deep water in the 

region with blocking) as also considered by Chawla and Kirby (2002) as follows: 
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where σ is the intrinsic wave frequency, g is the gravitational acceleration, k is the wave number, 

h is the water depth and a is the wave amplitude. The higher-order correction to the linear 

dispersion relation is represented by the factor in the squared brackets in Eq. (5). 

 

In laboratory experiments of wave blocking performed by Suastika et al. (2000), the water depth 

along the measurement section is about 0.5 m and the wave amplitude near the blocking point is 

about 1.5 cm. Figure 2 shows a comparison between the linear and Stokes third-order intrinsic 

dispersion relations for waves in water of depth h = 0.5 m and with wave amplitude a = 1.5 cm. 

Figure 2 shows that in this particular case the Stokes third-order dispersion relation diverts from 

the linear one for wave number k larger than about 10 rad/m. That is, nonlinear effects becomes 

to play a role for wave steepnes ak larger than about 0.15. Furthermore, as has been pointed out, 

the wave shorten and steepen as they propagate on a counter current with velocity increasing in 

the upstream direction. So, nonlinear effects are expected to play a role even in the region 

relatively far from the blocking point. We note that there is a limiting wave steepness ak of about 

0.3 where waves in a deep water start to break. 

 

As stated above, the intrinsic wave group velocity cg = ∂σ/∂k, that is the gradient of the σ(k)-

curve shown in Figs. 1 and 2. Figure 2 shows that ∂σ/∂k becomes larger with the inclusion of 

nonlinear effects, that is nonlinear effects increase the wave group velocity. This implies that the 

(model) blocking point will shift further upstream with the inclusion of nonlinear effects (as 

compared to the use of linear dispersion relation). This effect has been pointed out by Suastika 

and Battjes (2009). A quantitative comparison between experimental data and model results 

using the linear and Stokes third-order dispersion relations is presented in the following section. 

 

 
Fig. 2. Comparison between the linear and Stokes third-order intrinsic dispersion 

relations for waves in water of depth h = 0.5 m and wave amplitude a = 1.5 cm. 
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3. COMPARISON BETWEEN MODEL RESULTS AND EXPERIMENTAL DATA 

 

In this section, we present results of modeling of the wave amplitude evolution in the case of 

blocking of periodic waves for which the model of Suastika and Battjes (2009) has been used. 

The reader is referred to Suastika and Battjes (2009) for the details of the model. Model results 

are compared with the experimental results of Suastika et al. (2000). In the results presented 

below, periodic waves with period T = 1.1 s and target wave amplitude in still water of 1.0 cm are 

considered. The still water depth along the measurement section is h = 0.55 m and the maximum 

adverse current discharge is Qmax 
= 0.12 m

3
/s. For a description of the experimental arrangement, 

see Suastika et al. (2000) or Suastika and Battjes (2009). 

 

Figure 3 shows a comparison between the observed and modeled (fundamental) wave amplitudes 

in which linear (dash-dot line) and Stokes third-order (solid line) dispersion relations are utilized 

in the model, respectively. Figure 3 shows that utilizing either the linear or Stokes third-order 

dispersion relation, the model is able to reproduce the observed pattern of the wave amplitude 

variation along the flume well. However, the observed blocking-point position lies about 0.5 m 

(about one wave length) further upstream than the modeled one when using the linear dispersion 

relation (as reported by Suastika and Battjes, 2009). Using the Stokes third-order dispersion 

relation, the modeled blocking-point position shifts about one wave length further upstream, 

resulting in a better fit between the observed and modeled amplitude variations along the flume 

as compared to the use of the linear dispersion relation. 

 

 
Fig. 3. Comparison between observed and modeled wave amplitudes, utilizing linear 

and Stokes third-order dispersion relations in the model. 
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CONCLUSIONS 

 

Water waves meeting an adverse current and in situation of wave blocking tend to be very steep 

and may break on the current. In such a situation, nonlinear effects are expected to play an 

important role. In the present study, nonlinear dispersion effects are investigated in modeling of 

the wave amplitude evolution in the case of blocking of periodic waves. Model results are 

compared with experimental data. It is found that, the observed blocking-point position lies about 

one wave length further upstream than the modeled one when using the linear dispersion relation. 

Using the Stokes third-order dispersion relation, the modeled blocking-point position shifts about 

one wave length further upstream, resulting in a better fit between the observed and modeled 

amplitude variations along the flume as compared to the use of the linear dispersion relation. 
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