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ABSTRACT

The free surface flow of an incompressible fluid through a porous medium is a physical
phenomenon of great importance in many practical situations. In this paper, we deal with the
unsteady lateral intrusion of water into porous media consisting of large grain size, which can
be applied to simulate the storm water storage into granular road sub-base from a side drain
channel, under prescribed upstream boundary conditions. The common fundamental
equations for solid-liquid multiphase flows with the inertia and porous resistance terms are
used as the basic model. The fundamental characteristics of the intrusion process are firstly
investigated theoretically using the depth averaged equations with the inertia term and the
porous resistance terms in momentum equations. It is pointed out that there are two distinct
power law regimes with respect to time in the unsteady intrusion process. The theoretical
results are verified by carrying out the two dimensional numerical simulation and hydraulic
experiment. The analytical solutions obtained for the assumed similarity distribution of flow
depth and velocity are found to be in good agreement with the numerical and experimental
results. The gradual transition from early inertia-pressure (IP) to pressure-drag (PD) regime is
also reproduced in the simulation.

Keywords: porous drag, similarity solution, granular sub-base, power law.

1. INTRODUCTION

The free surface flow of an incompressible fluid through a porous medium is a physical
phenomenon of great importance in many practical situations. An important branch of porous
media research involves the modelling of flow within the soil. The viscous, laminar
incompressible flow in the porous media having small porosity is represented by Darcy
equation (Beavers, G. S. and Joseph, D. D., 1967). In this paper, we deal with the unsteady
lateral intrusion of water into porous media consisting of large grain size, which can be
applied to simulate the storm water storage into granular road sub-base from a side drain
channel, under prescribed upstream boundary conditions as shown in figure 1.

The common fundamental equations for solid-liquid multiphase flows with the inertia
force term, which is generally neglected in the normal underground flows, are used as the
basic model of this study because the pervious and granular road sub-base material consists of
large grain size material. The fundamental characteristics of lateral intrusion process are
firstly investigated theoretically using the depth averaged equations with the inertia term and
the porous drag resistance terms in the momentum equation. Assuming the self-similarity
distributions of depth and velocity, we derived the similarity solutions of intrusion process
with the propagation of front position and the depth distribution under two boundary
conditions. It is pointed out that there are distinct two power law regimes with respect to time



in the intrusion process.
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Figure 1 Schematic diagram showing the intrusion of storm water into porous sub-base from
the side drain in a typical road section.

The theoretical results derived in this study are verified by carrying out the numerical
simulations and a hydraulic experiment. The vertical 2-D numerical simulation is done
applying the finite volume method with volume of fluid (VOF) technique. It is pointed out
that the power law of propagation of front position, the distribution of depth, etc. can be
reproduced in the results of simulations and hydraulic experiments.

2. FLOW DOMAIN AND BOUNDARY CONDITIONS OF INTRUSION PROCESS

Two types of flow domains are considered for the study of intrusion dynamics of fluid
into the porous media. The two conditions defined in this paper as Case A and Case B (see
figure 2) represent the domains subjected to constant upstream water level and constant
upstream discharge boundary conditions, respectively. The front propagation speed, the
velocity and the depth distribution of free surface flow in the porous media are studied where
similarity solutions for each of the cases are derived as well.
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Figure 2 Schematic diagrams showing flow domains subjected to constant upstream
(a) water level hy (Case A) and (b) inflow discharge qo (Case B)

3. THEORETICAL CONSIDERATIONS

The governing equations for the conservation of mass and momentum as given in the
section 4 are taken as the basic equations. In order to investigate fundamental characteristics
of intrusion process, the simplified depth averaged equations are used. The depth averaged
continuity and momentum equations for one dimensional flow with inertia and drag
resistance terms can be written as:
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ot ox
_ -CO)hU? )z
o{(1 C)hU}+6{(l C)hu }:_(1_c)ghas+i{(1—C)T—“h}—Tﬂ—&h )
ot Ox ox Ox P P P

where 7 is time, x the spatial coordinate, 4 the flow depth, U the depth averaged velocity, z
the free surface elevation, 7, the viscous stress, 7, the bottom shear stress and p the density of
water. For the analytical study, the volumetric concentration of solid particles C is taken



constant for the rigid porous media. The last term with R, of eq. 2 represents the porous
resistance term. Hence for the conventional laminar and non-inertial flow in porous media if
we neglect the shear stress and inertia terms in eq. 2, we get the expression of the Darcy’s
Law in which the term R, is defined as,

_ 2
R _g-Cy

s X 3)

where K is the hydraulic conductivity of the porous medium. The resistance law for turbulent
flow is also considered later, where porous resistance is assumed to be proportional to the
squared power of velocity. Taking (1-C) and K to be constant and neglecting the shear stress
terms in eq. 1 and eq. 2 we get the following set of continuity and momentum equation for the
analytical study subjected to various boundary conditions.
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where Cp is given by Cp=g(1-C)/K.

The approximate solutions for depth and velocity distributions are derived based on the
similarity of depth and velocity to clarify the fundamental characteristics of lateral intrusion
of water under two boundary conditions. The method based on similarity was applied to the
dam break flow of viscous fluid where temporal and spatial distribution of depth, velocity and
front position were derived analytically balancing the pressure gradient and viscous terms
(Herbert, E. H., 1982; Hosoda, T., Kokado, T. and Miyagawa, T., 2000).
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Figure 3 Definition of similarity distribution for flow depth
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Figure 3 shows the similarity distribution of depth in free surface flow in terms of
characteristic depth /y(¢) and front length /(t). In this paper we derive the similarity solutions
for different flow regimes where Inertia-Pressure terms and Pressure-Drag terms are balanced
in the flow under two different boundary conditions. The distribution of inflow velocity U,
depth at origin A, and the front position / are expressed in terms of temporal powers a, b and

c as given by
a b c
Uy=aVy| |, ho=pL,| | and 1=y1,| - 6)
0 ol | Mo o\ 7 VLo T

0 0 0
where a, B and y are constant coefficients; Vy, Lo and Ty are the characteristic velocity , length
and time respectively. These characteristic parameters are explained for each of the cases
considered in its respective section. It will be shown that the power laws with respect to time
given by eq. 6 are valid for the dominance of the combination of two terms of Inertia-Pressure
and Pressure-Drag regimes. Also the analytical solutions based on assumed similarity
distributions are derived. The similarity distributions of the depth A(x,f) and velocity U(x.t)
are defined as
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where the functions F and G are the distribution functions for depth and velocity, respectively.
In the subsequent sections, we derive the temporal powers a, b and ¢ and the expressions for
flow depth 4, flow velocity U and front position /.

3.1 Derivation of similarity solution for Case A

This is the condition where upstream boundary is set at a constant water depth /¢. The
characteristic time, length and velocity in this case are defined as

1 1
T,=(hy/g)2, Ly=h, and ¥V, =(gh,)> (®)
Using eq. 6 and eq. 7, the equations for continuity and momentum as expressed by eq. 4 and
eq. 5 are reduced to eq. 9 and eq. 10 as below,
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where ¢ is the non-dimensional time defined as ¢ = #7T, and & the ratio x/l(¢). Due to the
constant water level boundary condition, /4 is constant i.e.

b=0 (11)
And from eq. 9, we can write
c—a=1 (12)

For the determination of the values of temporal power coefficients a, b and ¢, each
combination of eq. 10 such as Inertia-Pressure terms and Pressure-Drag terms are taken and
solved for the coefficients. The results are as given below.

(1) Inertia-Pressure regime:
a=0, b=0 and c=1 (13)
(i1) Pressure-Drag regime:
a=-1/2, b=0 and c¢=1/2 (14)
(iii) Inertia-Drag regime:
No solution is obtained for this regime.
The similarity solutions, for the assumed distribution of depth and velocity along with the

derived powers, are found for both regimes as depicted above by the transformed continuity
and momentum equations are presented below

(i) Inertia-Pressure regime

The sets of equations for this regime will then be given by

e, =0 (15)
dé dg
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Also the velocity of front Ur can be derived by taking the time derivative of /(¢) as below
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Assuming G and F as the function of ¢ as below,
G = 1-4¢, A = const. (18)
F = 1< (19)
Using these values of G and F in eq. 15 and eq. 16 and after some simplification we get,
aV,=.Jgh,, PL,=h, and yL,=2T,\[gh, (20)

The velocity and depth at origin and the front position are derived as
U,=\gh,, hy=h, and [=2t/(gh,) (21)

The flow depth and velocity are then derived as
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(ii) Pressure-Drag regime

The governing equations for this regime can be written as
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Thus using the same functional form of flow depth and velocity, eq. 23 and eq. 24 yield
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Now using eq. 8 and eq. 25, Velocity and depth at origin and the front positions are derived as
l
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Similarly the overall flow depth and velociy can be written as
1
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3.2 Derivation of similarity solution for Case B

This is the condition where upstream boundary is set at a constant flux i.e. there is a
constant value of inflow discharge go. The characteristic time, length and velocity in this case

are defined as
1

I
3 23 1
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Using eq. 6 and eq. 7, the equations for continuity and momentum as expressed by eq. 4 and
eq. 5 are reduced to eq. 29 and eq. 30 as below
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The upstream constant flux boundary i.e. constant discharge condition is given by

U,h, = q,(= const.)
e aBV,L, (1) =g, 31)
With the use of eq. 28 through eq. 31, the temporal powers are obtained and are shown in
table 1. Also the similarity solutions for various hydraulic variables are obtained and shown in
eq. 32 and eq. 33, in which the use of powers and the assumed distribution functions are made

along with transformed governing equations for the case considered.
(i) Inertia-Pressure regime

@ P _x S
h= hF(l(t)] (g} (1 l(t)j and U = UG(I( )] (g9,) [lJrl(t)J (32)

(ii) Pressure-Drag regime

U= UG[ xj (%Nl jzs and h= hF( j [2%2(;}3 [1——) (33)
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3.3 Power law derivation for turbulent flows

Theoretical derivation of temporal powers a, b and c¢ for the turbulent flow in highly
permeable porous media is also made here. When the Darcy law breaks owing to high
velocity of flow, the linear resistance law is no longer valid (Harry, R.C. 1989). Thus the
momentum sink term contributing to the pressure gradient due to porous media is assumed to
be proportional to the fluid velocity squared. Hence the resistance term used in eq. 3 can be
written as

R /p=CU" (34)
where Cr is the coefficient used for the resistance law of turbulent flow in porous media. In
this study, the effect of Reynold’s number is not considered on C7 so that the coefficient Cr is
assumed to be dependent only on the porous media characteristics. The temporal powers are
derived for such turbulent flows in the porous media having large permeability. A summary
of the theoretical results obtained for both linear and squared power resistance law for all the
cases are given in table 1.

Table 1 Summary of power law derivations

Assumed power law Resistance, Case A Case B |[Explanation
distribution law [ [p| PD | IP| PD |Uy, ho: velocity and

) .\’ |linear a=0la=-12la=0la=-1/3 depth at origin.

U, :aV"(TJ > hy :'BL”[T_J lpowerof |b=0[b=0 |b=0|b=1/3 |I:length of front.
N *7 velocity |e=1lc=1/2 |c=1|c=2/3 |Vo, Loand Ty:

/= 7L0{ t J ; where o, B and ylsquared  |a = 0|a =-1/3|a = 0|a = -1/4 |characteristic velocity,

Ty powerof [b=0[b=0 |b=0[b=1/4 |lengthand time,
are constant coefficients. velocity |c=1|c=2/3 |c=1|c=3/4 |respectively.




4. OUTLINE OF EXPERIMENTAL SETUP

A hydraulic experiment was carried out for the evaluation of the proposed model. A
transparent perspex flume filled with glass bead was used. In the experiment glass beads of
Imm diameter was used as porous media and a constant water level of 85 mm was maintained
at the left boundary so as to simulate Case A. The velocity and depth of flow with free surface
were taken using digital movie camera placed near the side of the flume. The position of front
and depth of flow for different time is tracked by the image interpretation with the help of
graduations made on the perspex plate of the flume facing the camera. The time dependence
and the flow profile of the intrusion behaviour observed during the experiment are compared
with the analytical solution and numerical simulation as well.

Figure 4 Flow profile during the experiment at time (a) 5s (b) 10s

The experiment was carried out until it attained a steady state condition. The permeability
was also calculated using the hydraulic gradient when the system attained steady state. The
measured steady state discharge and the flow depths have been used for the calculation of the
value of permeability of the media. A couple of snapshots showing the spatial and temporal
change of flow profile during the experiment is also given in figure 4.

5. NUMERICAL SIMULATION

5.1 Basic equations

The governing equations in vertical two-dimension for the flow in porous media are
formulated below for the incompressible fluid. The equation for the phase continuity of the
fluid is given by

o(1-C) N o(1-C)u N o1-Cyv
ot ox oy

and the momentum equations in x and y directions extended with the porous media drag
resistance terms can be written as

0 (35)
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where, R,=pg(1-C)’u/K and RyZpg(l-C)zv/K. In above equations u and v are the velocity
components of fluid in x and y directions respectively; p is fluid density and v the kinematic
viscosity. K and C are the hydraulic conductivity and solid phase concentration of the media
so the term (1-C) represents the porosity of the media. The Darcy’s velocity and the pore
space velocity are related as
U=(1-C)V (38)
where, U is Darcy’s velocity or Darcy’s flux and V is the pore velocity vector (u,v). The
hydraulic conductivity for laminar flow in porous media can be found by Kozeny-Carman
formula in which K is given by
372
K = &2 (39)
180v(l—¢)
where ¢ and d are the porosity and particle diameter respectively.
A number of numerical calculations are made for different values of hydraulic
parameters and the boundary conditions as well which are listed in Table 2.

Table 2 List of Numerical Run

Numerical Run | Case |[Parameters
RUNI1 A K=0.250m/s, C=0.6, hg =0.050m
RUN2 A K=0.010m/s, C=0.6, hg =0.085m
RUN3 B K=0.005m/s, C=0.5, Up=0.01m/s
RUN4 B K=0.010m/s, C=0.6, Uy=0.05m/s

5.2 Numerical methods

The governing flow equations 35 to 37 are solved by finite volume method in a
staggered computational grid where velocities are defined at the cell faces and all other scalar
variables are at the cell centre. The pressure is iteratively adjusted using Highly Simplified
Marker and Cell (HSMAC) method (Hirt, C.W. and Cook, J.L., 1972). The velocity changes
induced by each pressure change are added to the velocities computed before, enforcing
thereby to satisfy the continuity equation. The free surface kinematics is traced using VOF
technique (Hirt, C.W. and Nichols, B.D., 1981). For the flow in porous domain the time
evolution of the fraction of fluid function (1-C)F is governed by the following relation

o1-C)F ou(l1-C)F ov(1-C)F
+ + =0
ot Ox oy

where (1-C)F represents the portion of cell occupied by the fluid i.e. cell saturation
(Jacimovic et al., 2005).

(40)

6. RESULTS AND DISCUSSIONS

The theoretical results are verified using the results of simulations. The velocity profiles
obtained by numerical runs are shown in Figures 5 and 6 for Case A and Case B, respectively.
The result of numerical simulation for Case B also shows that there is an increase in the depth
near the origin in the Pressure-Drag regime as depicted by the theory with a temporal power
1/3. Figure 7 shows front position vs. time for both cases. Thus the results of the numerical
runs presented here clearly show the existence of distinct two regimes: Inertia-Pressure and
Pressure-Drag for both cases. The results are in close agreement with the analytical solution
derived with similarity assumption. All the results presented here correspond to the linear
resistance law. The value of permeability for the numerical simulation of the experiment has
been calculated by Kozeny-Carman formula and it was compared with the values obtained
from both the experiment and analytical formula as obtained in eq. 26.
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Figure 6 Velocity Profiles for Case B at time (a) 5s and (b) 10s (RUN3)
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The flow profiles are reproduced in the numerical run (RUN2) which is in close
agreement with that of the experiment (Figure 8). The experimental depths are slightly greater
than that of the analytical and numerically simulated values. The reason may be due to the
continuous rise of capillary fringe which was also observed in the experiment. Figure 9 in the
next page shows the comparison among the experimental, numerical and analytic results. We
can point out the dominance of the Pressure-Drag regime for low permeable media as

expectected.
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7. CONCLUSIONS

In this paper, the lateral unsteady intrusion processes of water into porous media under
two boundary conditions are studied using inertia term and porous resistance term in the
equation of motion. If we assume similarity distributions of depth and velocity and the
dominance of the two terms of inertia-pressure and pressure-drag, the temporal power
solutions for characteristic depth, length and velocity can be derived for inertia-pressure(IP)
regime and pressure-drag(PD) regime respectively under two boundary conditions. The
similarity solutions are also derived analytically. The vertical 2D numerical simulations of
porous media flows were carried out using VOF method. The numerical results showed that
IP regime appeared first with the higher temporal power followed by PD regime with lower
temporal power. The dominance of PD regime was observed in the hydraulic experiment with
the glass beads of diameter Imm. The spatial and temporal distribution of the depth profile of
simulation is in good agreement with the experiments.

This research will be continued to make clear the regime of the turbulent flow where
non-darcy effect should be taken into account with the non-dimensional parameter Cr .
Further experiments with large size glass beads will be carried out to verify the existence of
clear inertial- pressure regime.
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