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Abstract:  This paper deals with the study of free surface flow near an abrupt expansion in an 

open-channel. A three dimensional free-surface numerical model is developed to simulate the 

phenomenon. The numerical model is based on the Volume of Fluid (VOF) method. Cubic-

Interpolated Propagation (CIP) scheme is used to solve the advection term in the Navier-

Stokes equation as well as the advection of the VOF density function, F. The numerical 

results are verified using the analytical solutions derived using the method of characteristics. 

Both numerical and analytical results are compared with the laboratory experiment results. 

 
Keywords: open-channel flow; free surface numerical model; VOF method; CIP schem; 

method of characteristic.  

 

INTRODUCTION 

 

The abrupt expansion flow is a ubiquitous and important phenomenon in open-channel flow 

that deserves rigorous study.  It occurs when flow is subjected to sudden or abrupt flow area 

change or transition due to the change in the geometry of the channel. The abrupt expansion 

flow phenomenon can be observed at the outlet of a channel discharging into a wider channel 

and also in the transition section of a spillway. The understanding of the attributes of the 

abrupt expansion flow phenomenon such as the flow expansion angle and the formation of 

show waves is vital for more efficient hydraulic structure design. 

 

Studies have shown that the phenomenon of abrupt expansion flow depends on the channel 

approach width �, the approach flow depth �� and the approach Froude number, �� (Ippen, 

1951, Hager, 1992, Hosoda, 1994).  The relation between Froude number and the change of 

flow direction for supercritical flow was derived by Ippen (1951) and Hosoda (1994) through 

different approach. In this study, a free-surface numerical model based on the VOF method is 

developed to simulate the abrupt expansion flow phenomenon. The advection term in the 

Navier-Stokes equation is solved using a higher order scheme, CIP. Instead of the donor-

acceptor scheme in the original VOF method, the advection of VOF density function, F is 

also solved with CIP scheme. Analytical solution for the flow expansion angle (angle of 

change in flow direction), θ is derived based on a steady state depth averaged model using 

method of characteristics. Both analytical and numerical findings are compared with 

laboratory experimental results. 
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ABRUPT EXPANSION FLOW CHARACTERISTIC 

 

 
 

Fig. 1. Flow configuration of super-critical flow near the abrupt expansion. 

 

The steady state abrupt expansion flow characteristics are shown in Figure 1 for super-critical 

flow. As the inflow passes through the section of abrupt expansion, the flow direction 

changes due to the abrupt change in the flow cross section area. However, there is a zone 

close to the abrupt expansion (zone ABC) where the flow velocity and depth are constant and 

equivalent to the approach flow depth �� and velocity 	�. This triangular zone is known as 

the zone of constant depth and velocity (Hosoda, 1994). The flow impinges the channel wall 

at point D and F at an angle 
.  The line AD and CF form the zero-depth line defining the 

boundary between the flow and the dry corner.  

 

At impingement points F and D, the flow direction is again subjected to change as the 

channel wall aligns the flow direction. The flow is aligned parallel to the channel walls. Due 

to the change of flow direction after impingement at point F and D, shock waves are formed. 

These shock waves propagate towards the opposite channel walls, indicated by line DE and 

FE and will meet at point E before changing its directions again after point E. Since the 

channel wall reflects the flow direction inwards at impingement points F and D, the shock 

wave is a positive disturbance in the form of a surge wave that causes the rise in flow depth 

in the area between line DE and the boundary wall (and also area between line FE and the 

boundary wall). The zone ADEFC is therefore the core-flow where the flow is undisturbed by 

shock waves FE and DE (Hager, 1992). 

                    
(a)                                                   (b) 

 

Fig. 2. (a) Abrupt expansion flow with � as width of the approach channel. (b) 

Schematic of section A-A 
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THEORETICAL ANALYSIS    

The abrupt expansion flow in steady state shown in Figure 2(a) and Figure 2(b) can be 

represented by the following steady state depth-averaged equations; 

Continuity equation: 

 ∂�
∂� � ∂��∂� � 0 (1)  

 Momentum equation: 

 ∂�
�
∂� � ∂�
�∂� � ��� ���� � �� sin � � ���ρ  

∂�
�∂� � ∂���
∂� � ��� ���� � �� !  

(2)  

where 
 and � are the depth-averaged velocity in � and � direction respectively, � is the flow 

depth, ��� and ��  are the bottom shear stress in � and � direction respectively, � is the slope 

of the channel and � is the gravity acceleration. Eq. 1 and Eq. 2 can be rearranged into matrix 

form as follows; 

 "# �$�� � "� �$�� � % (3)  

where $, "#, "� and % are defined as, 

 
 � '�
�( ,                        "# � '
 � 0� 
 00 0 
(  
"� � '� 0 �0 � 0� 0 �( , % � ' 0� )*+ � � ��� / -!�.��� / -!�. (  (4)  

The Eigen values for "#"� are /#, /� and /0 which easily determined as follows;  

 /# � 1�1� � �
  (5)  

 /# � 1�1� � 
� � 2��-
� � �� � ��.
� � ��  (6)  

 /� � 1�1� � 
� � 2��-
� � �� � ��.
� � ��  (7)  

The corresponding Eigen vectors for /#, /� and /0  are 3#, 3� and 30 , which are defined as 

follows; 

For /# 3# � 41, 
� , ��6 (8)  

For /� 3� � 72��-
� � �� � ��.�� , � �
 , 18 (9)  

For /0 30 � 7�2��-
� � �� � ��.�� , � �
 , 18 (10)  
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From Eq. 5 we can see that the characteristic line /# is a stream line. Eq. 6 and Eq. 7 indicate 

that the equations are hyperbolic if the flow is super-critical (√
� � ��/�� is over unity). By 

multiplying the basic equations in Eq. 3 with the eigen vectors 3#, 3� and 30 the equations 

that satisfy the characteristic lines are derived as follows; 

With * � 1,2,3 
3< =�$�� � "#>#"� �$�� ? � 3< =�$�� � /< �$�� ? � 3<"#>#% (11)  

or, 

For i=1 

��� @� � 
� � ��
2� A � �
 ��� @� � 
� � ��

2� A � )*+ � � ���!�� � �� !�� �
   (12)  

For i=2 

2��-
� � ��.�
 =�� �� � /� ����? � �
 =�
 �� � /� �
��? � =�� �� � /� ���� ? 
� =� )*+ � � ���!� ? 
� � 2��-
� � �� � ��.
-�� � 
�. � �� !�
  (13)  

If the bottom shear stresses of the channel are neglected (��� � �� � 0) and the channel 

slope is zero (� � 0), Eq. 12 and Eq. 13 can be reduced to following form, 

From Eq. 12 	�
2� � � � B� � CD+)EF+E (14)  

From Eq. 13 1	 1	1
 � 2B� � 	�/-2�.23	�/-2�. � B� (15)  

where 	 and 
 are defined as, 

 	 I 2
� � �� EF+ 
 � �/
 
(16)  

By introducing 	J � 	/22�B�, the dimensionless form of Eq. 14 and Eq. 15 can be written 

as follows, 

 	K� � �B� � 1 (17)  

 1	K 1	K1
 � √1 � 	J�
√3	K� � 1 (18)  

By integrating Eq. 18, the solution for 
 can be obtained as follows, 

 
 � √3  EF+># L 3�2B� / =1 � 3�2B�? � EF+># = 1√3? · L 3�2B� / =1 � 3�2B�? � 
# (19)  

with 
# is the integral constant defined by the condition that for 
 � 0 , the initial depth is � � �#. By using Eq. 17, the relation between Froude number, �� and �/B� can be defined 

as follows, 

 �B� � 1 � 	J� � 1 � �B�
12 ��� � 22 � ���  (20)  

The solution in Eq. 19 can therefore be expressed in �� number as follows; 
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 � √3 EF+># √3√��� � 1 � EF+># 1√��� � 1 � 
# (21)  

Ippen (1951) derived the same solution as in Eq. 19 and Eq. 21 by using different approach. It 

is worth to note that from Eq. 18 and Eq. 17, the solution in Eq. 19 and Eq. 21 are valid under 

the maximum and minimum conditions below; 

 	J � 1, 
 � 0�, �/B� � 0, N From Eq. 20 ,   �� �  ∞ (22)  
 	J � 1/√3, 
 � 65�53J, �/B� � 2/3, N From Eq. 20 ,   �� �  1.0 (23)  
The flow near the abrupt expansion can be regarded as flow subjected to continuous 

disturbances. The angle of the disturbance wave (shock wave) Y shown accompanied by the 

change of flow direction 
 is shown in Figure 3. In the case where the depth difference across 

the shock wave is small, angle Y is given in simplified form as follows (Ippen, 1951); 

 )*+ Y � 1�� (24)  

 

 
Figure 3. Flow with velocity Z[ (before flow direction change) and velocity Z\ (after flow 

direction change), with shock wave angle, ] and angle of change in flow direction, ^ 

 

NUMERICAL MODEL 

Governing Equations  

A free-surface three-dimensional model based on the SOLA-VOF algorithm (Hirt and 

Nicholas, 1981) is used to simulate the abrupt expansion flow. The governing equations used 

in the numerical model are as follows;  

Continuity equation, 

 �
�� � �_�` � ���� � 0 (25)  

Momentum equation, 

 �
�E � �
�
�� � �
_�` � �
��� � �� � �a�� � bc�
 

�_�E � �
_�� � �_�
�` � �_��� � �d � �a�` � bc�_ 

���E � �
��� � �_��` � ���
�� � � � �a�� � bc�� 

(26)  
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SOR (Successive Over Relaxation) method is used in the pressure iteration where pressure is 

adjusted iteratively to satisfy the continuity equation based on the SOLA-VOF algorithm. 

The VOF density function � is advected in its conservative form as follows, 

 ���E � �
��� � �_��` � ����� � 0 (27)  

The CIP Scheme 
The CIP method (Yabe, 1991) is a higher-order, less diffusive numerical scheme that solves 

the general hyperbolic equation as follows; 

 �e�E � -f · g.e � 0 (28)  

In the presence of non-advection term h, the hyperbolic equation in Eq. 28 becomes, 

 �e�E � -f · g.e � h (29)  

In CIP method, the spatial gradient of e is also advected. Based on Eq. 29, the equation for 

the advection of spatial gradient �ie is as follows, 

 j-jke.jl � -f · g.-�ie. � m   (30)  

with m � -∂nh. � o-∂nf. · gpq and � = x,y or z direction. In order to apply the CIP scheme 

to solve the hyperbolic equation with the presence of non-advection term as in Eq. 29 and Eq. 

30, time-splitting technique is applied where the equation is solved in two phases: the 

advection phase and the non-advection phase (Yabe, 1991). The procedure is summarized as 

follows; 

Solving non-advection phase:  

 �e�E � h (31)  

  
j-jke.jl � m  (32)  

Based on Eq. 30 and Eq. 31 the quantity e and its gradient �ie are advanced as follows; 

 er � es � htE (33)  
 �ier � �ies � δier � vies

tE � o-vif. · gpe (34)  

where vi and o-vif. · gpe are defined as follows; 

In � direction viq � q<w# � q<>#2t�  (35)  

 o-vif. · gpe � vi
-��e. � vi_x�dey � vi�-� e. (36)  

The sign + means the value at time step + while the sign r means the time after one time step 

in the non-advection phase.  

Solving advection phase: 

After the non-advection phase, the value of er and �ierare advected using CIP scheme to 

obtain the value at the next time step ezw# and �iesw#. 

The Navier-Stokes equation in Eq. 26 is solved based on the above procedure where, 
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 e � -
 _ �. (37)  
 

h �
{
|||
}�� � �a�� � bc�


�d � �a�` � bc�_
� � �a�� � bc��~

���
�

 (38)  

The h term in Eq. 37 containing the pressure and viscosity term is solved implicitly. For the 

advection of VOF density function � as in Eq. 27 using the CIP scheme, the e and h are 

defined as follows; 

 e � -�. (39)  
 h � =�� �
�� � � �_�` � � ���� ? (40)  

A digitizer of the following form is used in the advection of � using CIP scheme to avoid the 

smearing of function � which will contribute to the loss of sharp fluid interface (Yamada, 

1998). 

 �-�. � EF+o0.85�-� � 0.5.p (41)  
Numerical Simulation Set-up 

 

Table 1. Numerical simulation conditions 

Experiment number FR2 FR4 

Inflow Froude number, �� 2.78 4.0 

Boundary conditions Non-slip Slip 

Kinematic viscosity, ν (��)># ) 1.0 � 10>� 0.0 

Approach depth, �� (mm) 16 30 

Approach width, � (mm) 100 100 

Cell size, t� � t` � t� (mm) 2 5 

 

The abrupt expansion flow is simulated numerically in a rectangular channel shown in Figure 

2 in three dimensions. The dimension of the rectangular is 800mm in lateral x-direction, 

200mm in transverse y-direction and 400mm in vertical z-direction. Continuous inflow 

boundary condition is set at the upstream of the channel and continuous outflow with zero 

pressure gradient is set at the downstream. Initial time step, tE � 0.00005 ) is used and 

adjusted to satisfy Courant ratio 0.25 during the simulation. 

 

Two simulations with different conditions are carried out. The first simulation (FR2) is set up 

to simulate the condition in the laboratory experiment where the approach flow depth, h� is 

set to 16mm and approach velocity 	� is set based on Fr=2.78 which is the condition in the 

laboratory experiment. The value of kinematic viscosity of water is used, ν � 1.0 �10>���)>#. Non-slip condition is applied on all the boundary wall of the channel. In the 
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second simulation (FR1), inviscid fluid condition is used. Fr=4.0 is used and h� is increased 

to 30mm. The simulations conditions of FR1 and FR2 are summarized in Table.1 

 

LABORATORY EXPERIMENT 

Laboratory experiment set-up consists of a Perspex channel set up in the condition shown in 

Figure 2 with lateral length of 4000mm, transverse width of 200mm and approach width b of 

100mm. The slope of the channel is adjusted to obtain a desirable approach depth �� and 

Froude number. When the flow achieves steady state condition, the depth of the flow is 

measured in the interval of 10mm from the upstream of the channel to the point where the 

shock waves reflected from the channel side walls meet again at the middle of the channel 

(which is at the end of the core flow).  

 

RESULTS AND DISCUSSION 

Laboratory Experiment Result 

  

 
 

Fig.4. Laboratory experiments with Fr=2.78 and �� � [���  
 

 
Fig. 5. Flow depth contour from laboratory experiment with Fr=2.78 and �� � [��� 

 

Flow condition of FR2 in Table 1 is obtained in the laboratory experiment where the Fr=2.78 

and approach depth h� � 16mm. The flow in steady state is shown in Figure 4 while the 

depth-contour of the flow is plotted in Figure 5. The results shown in Figure 4 and Figure 5 

clearly show the formation of core-flow, zero depth line as well as the shock waves. The flow 

spreads almost linearly near the expansion before impinging the boundary wall. Formation of 

shock wave propagating from the point of impingement to the center of the channel can be 

seen clearly as well. The zone of constant depth and velocity (zone ABC in Figure 1) is 
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however hard to detect in the laboratory experiment due to the size to the set-up and flow 

condition such as Froude number. Therefore the angle Y is not measured for. 

 

Numerical Simulation Result 

The numerical simulation results are plotted in the form of depth-contour shown in Figure 6 

and Figure 7. In the case of numerical simulation, the angle of zero depth line (or the change 

of flow direction) 
 is determined by drawing a line connecting the point where the sudden 

expansion of flow starts at the inlet to the point of impingement at the boundary wall. This 

line is shown in Figure 1 as line CF. The value of 
 can be determined analytically in Eq. 19 

or Eq. 21. The value of  Y is determined by drawing a line connecting the upstream inlet 

where the sudden expansion of flow starts to the point at the center of the flow where the 

depth is equivalent to �� which is shown in Figure 1 as line CB. Due to the limitation of the 

contour plot, the contour line nearest to the value of �� is used to determine  Y. 

 

 
Fig. 6. Flow depth contour from numerical simulation with Fr=2.78 and �� � [��� 

 

 
Fig. 7. Flow depth contour from numerical simulation with Fr=4.0 and �� � ���� 

 

Discussion 

The value 
  and Y  from the laboratory experiment and numerical simulation results are 

compared with the analytical value obtained from Eq. 21 and summarized in Table 2. Based 

on Table 2, it can be seen that 
  from laboratory experiment (41.0� ) is larger than the 

numerical (34.0�) and analytical value (37.0�). It is thought that this is due to the effect of 

bottom shear stress in the laboratory flow channel. Since the flow depth at the zero-depth line 

is shallow, the effect of adhesion is thought to contribute to larger 
 value.  
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Table 2. Comparison of � and � values 

Angle in degree FR2 (Fr=2.78) FR4 (Fr=4.0) θ from numerial simulation 34.0 18.8 

θ from analytical 37.0 20.0 

θ from laboratory experiment 41.0 - 

β from numerial simulation 21.7 17.8 

β from analytical 21.1 14.5 

β from laboratory experiment not measurable - 

 

In the case of �  � \. ¡¢ , both the values of ^  and ] from the numerical model (^ ��£. ��, ] � \[. ¡�) have good agreement with the analytical value (^ � �¡. ��, ] � \[. [�). 

In the case of �  � £. � , the agreement of ^  value between the numerical model (^ �[¢. ¢�) and analytical value (^ � \�. ��) is also good. The agreement of ] value between 

the numerical model ( ] � [¡. ¢� ) and analytical value ( ] � [£. ¤� ) is satisfactory. 

Therefore, it can be said that the numerical model could reproduce the angle of flow 

expansion ^ and angle of shock wave ] with good accuracy. It is thought that the laboratory 

experiment result can be improved by using a larger set-up to reduce the effect contributed by 

the adhesion effect at the zero-depth line. 

 

CONCLUSIONS  

The abrupt expansion flow phenomenon is investigated qualitatively and quantitatively in this 

study. The formation of zero-depth line, core flow and shock waves are reproduced using 

numerical model. The performance of the numerical model is shown to be good as the values 

of flow expansion 
 and shock wave angle Y are in good agreement with the analytical values. 

However, more parameter such as the attenuation of flow along the center of the channel and 

the depth of flow at the channel wall after the impingement points are needed to further 

increase the reliability of the numerical model. The author plans to include the turbulence 

term in the model in the future.  
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