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ABSTRACT  

 

Relevant geomorphic changes in water bodies often occur in relatively short time 

intervals. For instance, river bed evolution is mainly driven by the few flood events occurring 

in a season, during which most of the annual sediment volume is eroded somewhere and 

deposited elsewhere. Moreover, some catastrophic events like dam-break or levee breaching 

evolve as fast transients both for water and sediment transport, usually with strong interaction 

between flow and bottom evolution. Under the above circumstances, the classical textbooks 

approach for solid transport modelling, which invokes the immediate adaptation of solid 

transport to hydrodynamics and adopts therefore equilibrium (i.e. uniform flow) formulas, 

may furnish unsatisfactory (and unrealistic) results. A fully unsteady transport model with 

strong coupling between water and sediment is then required. 

Mainly in the last two decades several models matching the above requirements have 

been presented and reported in the literature, making use of additional differential equations 

to represent sediment dynamics. 

Within the above framework, a novel fully conservative model for sediment transport 

and bed evolution in river flow has been derived by a two-phase approach, and it is illustrated 

in the present paper. Referring to a two-dimensional depth-averaged framework, two scalar 

mass conservation equations and two vectorial momentum conservation equations are written 

for water and sediment separately, and coupled with bottom evolution equation due to 

erosion/deposition. Sediment inertia, momentum exchange between phases by drag forces and 

tangential stresses opposing motion are taken into account in a fully coupled formulation for 

solid transport under non-stationary conditions.  

  

Keywords: numerical modelling, river hydraulics, sediment transport. 
 

 

1. INTRODUCTION 

 

Prediction of river evolution in alluvial channels by numerical models requires the 

estimation of bed load transport. According to classical textbooks’ approach, solid discharge 

is assumed to depend on flow variables as in corresponding uniform flows. Yet for non-

uniform and unsteady flows the instantaneous adaptation of sediment transport to 

hydrodynamics is therefore postulated. However such hypotheses may lead to unrealistic 

results, especially when dealing with fast transients. 

In past literature several models overcoming these limitations (Nakagawa & Tsujimoto, 



1980, Armanini & Di Silvio, 1988, Phillips & Sutherland, 1989, Di Cristo et. Al., 2002, 

Fraccarollo & Capart, 2002) have been presented. A common feature for most of them is the 

introduction of additional equations which aim to simulate the sediment adaptation to flow 

conditions. Armanini and Di Silvio (1988) proposed a conceptual model built up introducing 

multiple adaptation lengths. More recently, models based either on sediment dynamics 

descritpion (Di Cristo et al., 2002), or on two-layer schematisation (Fraccarollo & Capart, 

2002) have been proposed.  

In the present work a two-phase model for unsteady river flows is presented. The 

hyperbolic nature of the model is demonstrated, independently on the flow condition. The 

above feature, which is thought to be relevant for numerical simulation, may be lost, at least 

in certain flow conditions, for models based on two-layer flow. (e.g. Savary and Zech, 2007; 

Greco et al., 2008b). At the end of the paper, results of numerical simulation of one- and two-

dimensional dam-break are shown.  

 

 

2. MATHEMATICAL MODEL 

 

2.1 Modelling hypotheses  

 

The flow is regarded as a two-phase (solid/liquid) mixture: in the lower part of the 

flow depth the two phases share the same space, so that in each point both water or solid 

particles simultaneously exist. Model equations reflect mass and momentum conservation 

principle for water and sediments separately. The following hypotheses are assumed: 

1) solid transport occurs as bed-load with constant sediment volume 

concentration (C); interaction between phases is represented by momentum exchanged 

through the drag forces; 

2) both phases exchange mass with the standing bed; 

3) cross-sectional surface concentration is equal to the volume concentration. 

4) hydrostatic pressure distribution is postulated for the water/sediment mixture, 

while Terzaghi’s principle is invoked to evaluate the pressure acting on each phase. 

 

2.2 Model equations 

 

Control volume is a rectangular prism of base area dx x dy and height equal to the total 

flow depth h. Under classical shallow-water assumption, conservation of mass and 

momentum leads to: 
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in which t is the time, x and y the two spatial coordinates, h is the total flow depth, δ the 

sediment volume for unit base area, Qx and Qy (Qsx and Qsy) are the two components of liquid 

(solid) discharge along x and y and Z denotes the bottom elevation. p is bottom porosity, g the 

gravity and ∆+1 the ratio of sediment to water density. It is worth of note in the proposed 

model conservation of momentum of both water and sediments is enforced, while in the 

classical textbook approach the latter is not considered. Source terms for water (solid) 

momentum are denoted as Sfx and Sfy (Ssx and Ssy), while eb is the bottom erosion/deposition 

velocity. 

The source term for water is the total resistance force acting per unit weight fS
r

. It is 

computed as the sum of the contribute of bottom friction (computed using a Chezy-like 

formula with constant friction factor) and of the drag exchanged between the two phases: 
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where d is the sediment diameter, wU
r

 and pU
r

 the average water and sediment velocities, 

and Ch is the non-dimensional Chezy coefficient. Finally, CD denotes the drag coefficient, 

with form factors and constants lumped in. In evaluating drag term, a reduced local fluid 

velocity is considered trough the coefficient η<1. 

The corresponding solid source term sS
r

 accounts for drag exchange and the 

collisional shear stress computed, after Bagnold, as a coefficient a multiplied by the square of 

the particle velocity: 
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A closure relation for the entrainment/deposition term eb is then required. A novel 

formulation for this term is proposed herein, which is based on the interpretation of the river 

bottom as a shock surface. Across the bottom, in fact, both phases experiment a jump in mass 

and momentum flux. A fluid-like stress model is assumed also for solid phase, so that the 

stress tensor reduces to a pressure and a tangential stress. For both liquid and solid phase local 

flow conditions are computed by Reynolds equations. Again, Terzaghi’s principle is invoked 

to express the pressure on both phases below the bottom surface (at rest), while the tangential 

stress is assumed in the form of a Mohr-Coulomb law. 

By the above hypotheses, Rankine-Hugoniot conditions for the local flow equations 

may be written. Such conditions express the congruence between the values of mass and 

momentum flux of each phase on both sides of the bed surface. The latter is assumed to move 

with velocity eb. Similarly to Fraccarollo and Capart (2004), this allows to relate the velocity 

of the bottom surface to the shear stresses exerted on the two sides of the bottom surface. On 

the upper side of bottom surface, these are represented by water friction and solid collisional 

shear and Mohr-Coulomb friction, while on the lower one (augmented with the value needed 

to dislocate the first particle of the bed, as in Savary and Zech, 2007). The following relation 

is obtained for eb: 
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In (10), ϕ  denotes the friction angle of bed material and ϑ  is the local bottom slope. 

It is worth of remark that while Terzaghi’s principle is a common assumption in Soil 

Mechanics for pressure repartition within the quiescent bed, its application to bed load 

transport constitutes is here simply postulated, being its verification well beyond the scope of 

present note. We just note that due to this assumption, no discontinuity in the phase pressure 

distribution exists across the bottom surface.  

Finally, it has to be observed that pressure repartition mainly affects the expression of 

the normal surface forces in the dynamical equation of both phases, and in turn the model 

eigenstructure.  

 

2.3 Eigenstructure analysis 

 

Analysis of mathematical nature of the PDEs system is discussed herein, owing to its 

relevance from both theoretical and practical point of view. For hyperbolic-type models, the 

analysis of characteristic celerities allows to fully define the boundary conditions to define a 

well-posed problem.  

For sake of simplicity, the 1-D version of the model is considered in the following. The 

resulting five-equation model has four real and non-null eigenvalues. Assuming the following 

peculiar definitions for Froude number, namely: 
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It is interesting to note that (11) defines an unusual group number given by the ratio between 

water average velocity and celerity corresponding to the total flow depth. The Froude number 

(12) on the other hand represents the ratio of solid-phase average velocity to the celerity of a 

mass of liquid of height δ /C and density (∆ /∆+1) times smaller than water. 

Despite model hyperbolicity would appear on intuitive basis as a obvious property for a 

model aimed to simulate processes with strictly time-marching propagation of information 

starting from initial condition, it has recently been observed that in the context of 

morphological models for fast transients, the above properties is not always matched. (Savary 

and Zech, 2007; Greco et al., 2008b)  

 

 



3. NUMERICAL IMPLEMENTATION  

 

 

Numerical solution of the equations deduced in the previous section is achieved trough 

the following numerical scheme. The numerical method is based on the finite-volume 

predictor-corrector explicit scheme proposed in Leopardi (2001), with second order accuracy 

both in space and time. Spurious oscillations are damped trough the addition, after each 

temporal predictor-corrector step, of a diffusive term, implemented according to Jameson et al. 

(1981).  

A special treatment is applied to the slope terms appearing in water momentum 

equations. The bed slope source term is discretised according to the procedure outlined by 

Greco et al. (2008a), therefore including an original wet/dry correction. 

 

 

4. SAMPLE APPLICATIONS 

 

 

4.1 Dam-break over horizontal and stepped erodible bed  

 

Propagation of dam-break induced waves over an erodible bed is characterised by fast 

and severe erosion both upstream and downstream of the original position of the dam, and by 

some special features without any corresponding counterpart in the fixed-bed case. 

Spinewine & Zech (2007) have published a considerable set of experimental data on 

small scale dam break over erodible bed. Publication of these data in electronic format allows 

accurate comparisons with the results from numerical models.  

Among the investigated experimental conditions, only the runs with sand particles in the 

configurations named (a) and (b) will be considered herein. The former configuration is 

characterised by flat erodible bed with 35 cm water height upstream the dam; the latter one 

presents a downward -facing bottom step of height 5 cm, and water height upstream the dam 

is 35 cm. The sand has the following mechanical properties: particle sizes ranging from 1.2 to 

2.4 mm, with  mean diameter d50 = 1.82 mm,  density ρs = 2683 kg/m
3
, friction angle 

ϕ=30◦ and negligible cohesion. Bottom solid packing concentration is cb = 53%. 

Tests (a) and (b) with sand were reproduced using the following values of model 

parameter values were assumed based on best-fitting of experimental data: 

• α=0.25 

• η = 0.7; 

• Ch = 20; 

• Cd = 0.03. 

Figures 1 and 2 report the comparison between simulation and experiments test at 

different times, for the flat bed and for the upward step test, respectively. Figures 1 show that 

flat-bed configuration experiment is reasonably reproduced by the model. Wavefront celerity 

is significantly affected by erosion and deposition, with time-depending values. Bed scour and 

friction both result in a notable deceleration of the wavefront respect to the rigid bed case, as 

discussed in detail by Spinewine and Zech (2007). Wavefront positions for experiment (a) are 

plotted in figure 3: it is easy to observe that the computed wavefront is initially faster than the 

experimental one but after a little it becomes slightly slower. 
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Figure 1 – Dam break over initially flat bed (t=0.25, 0.5, 0.75, 1, 1.25, 1.5 s) 

 

Configuration (b) is also reproduced in a globally reasonable manner, despite 

simulated profiles significantly differ from experimental ones in the region close to the 

original dam position: indeed, erosion of the bottom step is less intense than observed. 

Nevertheless, while in the absence of any ad-hoc treatment aimed to represent the collapse of 

the step based on some friction angle evaluation, the initial slope gradually reduces with a 

qualitatively reasonable shape, due to the special expression assumed for the erosion term in 

(10) acting as a triggering mechanism for solid transport. 
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Figure 2 – Dam break over initially stepped bed (t=0.25, 0.5, 0.75, 1, 1.25, 1.5 s) 

 

Also in simulating these tests the computed wavefront is initially slightly faster than 

the experimental one and it becomes slower after a little. 

The Authors of the experiments observed that the classical pivot point of the shallow 

water theory, at which the flow is supposed to undergo a transition from subcritical to 

supercritical regime, is preserved in the experiments. It stands almost exactly at the predicted 

depth of 4/9 of the initial height, but is located slightly downstream of the initial gate position, 

at x ≈ 9 cm. The above feature is reasonably reproduced in the numerical simulations 

 

4.2 2-D Dam break 

 

The scheme considered for two dimensional dam break over mobile bed is the one 

recently discussed by Spinewine (2005). The flow domain consists of a narrow channel 

followed by an idealized floodplain generated by the sudden increase of the width on one side. 

The same scheme was reproduced by the authors (Greco et al., 2006) using a previous version 

of the present model.  

The same values of model parameter of the previous 1-dimensional examples have 

been used.: 

Figure 3 reports some top view of bottom surface 1, 2, 3 and 5 s after dam removal. 

The model reproduces qualitatively the principal features of the phenomenon, with a 



maximum scour location lose to the floodplain enlargement and an oblique deposit just 

downstream. 
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Figure 3. Top view of bottom surface close to the floodplain widening (t=1,2,3,5 s). The iso-

contour relative to initial bed level is superposed as a solid line. 

 

 

5 CONCLUSION 

 

In present paper a two-phase morphodynamical model is presented. Model equations 

are presented in their two-dimensional dept-averaged formulation, based on mass and 

momentum conservation for each of the two phases. An argument based on Rankine-

Hugoniot conditions is used to express the erosion/deposition rate eb. The analysis of the 

t = 1 s

t = 2 s 

t = 3 s 

t = 5 s 

z (m) 



characteristic celerities of the one-dimensional version of the model is performed, and the 

differential problem is shown to be unconditionately hyperbolic. 
Preliminary application of the model is performed by simulation of some of the 

experiments reported in Spinewine & Zech (2007). Computed results reasonably agree with 
observed data. In particular, wavefront celerity is reproduced with an enough accuracy degree 
and the pivot point in water profiles, observed by the Authors, appears also in simulated 
results. 
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