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ABSTRACT 

 

In curved channels, velocity distribution in the main flow direction is transformed by 

the secondary currents and the strength of secondary circulation is varied with the 

deformation of longitudinal velocity. Therefore, in order to predict such flows more 

accurately, it is necessary to include the effects caused by the interaction between main and 

secondary flows. In this study, a refinement of depth averaged flow model for the curved 

channels in generalized curvilinear coordinate system is examined by considering this 

interaction. The refined model is applied to simulate the flows of previous laboratory 

experiments for a uniformly curved channel conducted by Rozovskii (1961). The calculated 

results are compared with the experimental and 3D numerical results to verify the 

fundamental characteristics of this model. 
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1. INTRODUCTION 

 

A depth averaged flow model in generalized curvilinear coordinate system is 

commonly used to simulate flows in rivers. In some cases, 3D model is also applied to some 

parts of river sections, where the secondary currents are generated; and in these cases the 

depth averaged model cannot simulate the flow correctly. However, the application of 3D 

model is difficult and time consuming. In such sections, in order to apply depth averaged flow 

model, the effects of secondary circulation are necessary to be included to evaluate the 

momentum transport and bottom shear stress correctly. 

A number of attempts have been made to study and develop the model for secondary 

currents and include the effects of secondary flow into a depth averaged flow model. Ishikawa 

and Kim (1986) conducted the hydraulic experiments for the flow in a uniformly curved 

channel, and pointed out that interaction between the main and secondary flows affects the 

strength of secondary circulation. Blanckaert (2002) carried out the experiments for sharply 

curved channels and he observed the transformation of velocity distribution in the main flow 

direction due to the secondary currents. He pointed out that the linear model, in which the 

velocity distribution in streamwise direction is assumed to be uniform, overestimates the 

momentum transport. Furthermore, he compared the order of each terms in a momentum 

equation from the experimental results and examined the effective terms for the 

transformation of streamwise velocity. 



On the other hand, Ikeda and Nishimura (1986) and Johannesson and Parker (1989) 

pointed out that it is necessary to consider the development and attenuation of secondary 

currents (the lag between the curvature of stream line and secondary currents). Hosoda et al. 

(2001) developed the depth averaged flow model in generalized curvilinear coordinate system 

including the development and attenuation of secondary currents. But, to evaluate the 

momentum transport, they applied the model proposed by Engelund (1974), in which the 

velocity distribution in main flow direction is assumed to be uniform. 

Though some models are proposed which consider the interaction between the main 

and secondary flows, the redistribution modeling of velocity distribution in streamwise 

direction due to secondary currents is not incorporated into the depth averaged flow model. 

In this study, a depth averaged flow model for curved channels is refined by including 

the deformation of main flow velocity distribution due to secondary currents and introducing 

the development and attenuation of secondary currents. The refined model is applied to 

simulate the flows of previous laboratory experiments for a uniformly curved channel 

conducted by Rozovskii (1961). The calculated results are compared with the experimental 

and 3D numerical results. 

 

 

2. DEPTH AVERAGED FLOW MODEL 

 

2.1 Basic equations 

 

 A depth averaged flow model with the effect of transverse momentum transport due to 

secondary currents is described as follows (Hosoda et al., 2001): 

[Continuity equation] 
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[Momentum equation] 
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 (2b) 

where t = time; ξ, η = generalized curvilinear coordinates; J = Jacobian of coordinate 

transformation; Qξ, Qη = contravariant components of discharge flux vectors for unit width; M, 

N = Cartesian components of discharge flux vectors; U, V = contravariant components of 

velocity vectors; h = depth; zs = water surface elevation from datum plane; G = gravitational 



acceleration; τb
ξ, τb

η = contravariant components of bottom shear stress vectors; 
22 ,, vvuu ′−′′−′− = Cartesian components of Reynolds stress tensors. Sξ

1-S
η

4 are additional terms 

which include the effects of secondary currents defined as follows. 
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where su = depth averaged velocity in s-direction; An = representative velocity of secondary 

currents; s = spatial coordinate along the stream line, n = spatial coordinate perpendicular to s 

and z coordinates; csn and cn2 = momentum transport coefficients; ϕ = angle between a stream 

line and x-axis. We assume that the velocity distributions in s and n directions can be 

expressed by Equation (4), and then the momentum transport coefficients csn and cn2 are 

defined in Equation (5). 

( )ζsss fuu ⋅= , ( )ζnnn fAu ⋅=  (4) 
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where fs(ζ) and fn(ζ) = similarity functions of velocity distribution. In this case, cs2 is assumed 

to be 1. 

In previous studies (Ikeda and Nishimura, 1986; Johannesson and Parker, 1989), it 

was shown that it is necessary to include the lag between the curvature of stream line and the 

secondary currents. The development and attenuation process of secondary currents can be 

described by the following approximate expression of vorticities (Muramoto and Inoue, 1965; 

Hosoda et al., 2001). 
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where r = radius of curvature of a stream line. Subscripts s and b denote the variables at 

surface and bottom, respectively, and α is equal to 0.5. 

The term (un)s–(un)b in the left hand side of Equation (6) is related to An, in which the 

effects of lag between the curvature of stream line and secondary currents is also included. 

( ) ( ) nbnsn Auu ⋅=− λ  (7) 

 



2.2  Modeling of velocity distribution considering the interaction between the main 

and secondary flows 

 

 In order to evaluate the momentum transport coefficients and some terms in Equation 

(6), it is necessary to derive the velocity distributions. Hosoda et al. (2001) applied the model 

by Engelund (1974) (Equation (8)) to obtain the velocity distribution in s-direction. 
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where θ = bed slope; εe = eddy viscosity coefficient (= βhu*, β = 0.077). 

On the other hand, based on the experimental results, Blanckaert (2002) pointed out 

that the advection terms –(un∂us/∂n+usun/r) play an important role in redistribution of us. 

Furthermore, he assumed that the velocity distribution us can be described as a power-law 

function of n. He used the following relation for transverse gradient of downstream velocity 

to derive the velocity distribution in streamwise direction. 

runu sss α=∂∂  (9) 

In this study, we apply the mathematical model proposed by Engelund (1974) and 

Blankaert (2002) and introduce the advection term –usun/r into Equation (8). This physical 

mechanism is described as follows: in curved channels, the flow direction at surface is 

outward, while at bottom layer it is inward due to secondary currents. Thus, us and r are 

positive in both layers, while un is positive at surface and negative in bottom. So, the term –

usun/r becomes negative and positive in those two layers, respectively. Therefore, this term 

tends to decelerate the streamwise velocity in the surface layer and accelerate it in the bottom 

layer. The momentum equations in s and n directions can be described as follows. 

[Momentum equation in s-direction] 
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[Momentum equation in n-direction] 
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The procedure for deriving the velocity distribution from Equation (10) is described as 

follows with assumption that the velocity distributions in s and n directions are expressed by 

the power-law. 

7

7

6

6

5

5

4

4

3

3

2

210 ζζζζζζζ CCCCCCCC
u

u

s

s +++++++=  (11a) 

7

7

6

6

5

5

4

4

3

3

2

210 ζζζζζζζ DDDDDDDD
u

u

s

n +++++++=  (11b) 

Substituting Equations (11) into Equations (10) and integrating Equations (10) in the depth 

direction, the coefficients Ci and Di are obtained. 
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where δ = h su /(βu*r). 

In addition, the following expressions for coefficients Ci and Di are obtained by 

satisfying Equation (14). 
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The procedure to obtain the coefficients Ci and Di is described as follows. Firstly, δ 

and r* in Equations (12) and (13) are assumed to be known. Then, 

1) C0, C1 and C2 are derived by substituting δ = 0 into Equations (12a), (12b) and 

(12c). 

2) C0, C1 and C2 obtained in 1) and δ are substituted in Equations (13). The 

coefficients D0-D7 are obtained to satisfy the Equation (15b). 



3) Substituting D0-D7 and δ into Equations (12), C2-C7 are derived. 

4) To satisfy Equation (15a) and the following relation, C0 and C1 are derived. 

                             2

*0
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Note that, the velocity distribution obtained in process 1) and 2) is the same as the Engelund 

model. 

 

2.3 Fundamental property of velocity distribution and momentum transport 

coefficients 

 

Here, we examine the fundamental property of velocity distribution and momentum 

transport coefficients in this model. Figures 1 and 2 show the velocity distributions in the 

main flow direction and the momentum transport coefficients csn and cn2, respectively. It can 

be observed that the velocity distribution is transformed due to the effects of secondary flow 

in case of large δ, while it coincides with the velocity distribution in uniform flow (Engelund 

model) in case of small δ. For large δ, the momentum transport coefficients are smaller in 

comparison to small δ. This is based on the fact that for larger δ, the effects of secondary 

currents become weak due to the deformation of velocity distribution in streamwise direction. 

This agrees with the results by Blankaert (2002), and reveals that the linear model, in which 

the velocity distribution in stream direction is assumed to be uniform, overestimates the 

momentum transport in curved channel flows. 

 

 

3. MODEL VERIFICATION 

 

The refined model is applied to simulate the flow of experiments conducted by 

Rozovskii (1961) for a uniformly curved channel. The hydraulic conditions are presented in 

Figure 3. No.1 and 2 are the sections at 36
o
 and 120

o
, respectively, from the entrance of 

curved channel. No. 3 and 4 are located at 0.1m and 0.5m, respectively, downstream of the 
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Figure 1 Velocity distribution in streamwise direction (left: r* = 10, right: r* = 15) 
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Figure 2 Momentum transport coefficients 



exit of curved channel. 

For the numerical simulation of refined model, the finite volume method is used and 

QUICK scheme is applied for the convection terms. The momentum transport coefficients csn 

and cn2 are multiplied by the dumping function to consider the attenuation of secondary 

currents strength near the walls. 
2
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aB

l
f w

 (17) 

where l = distance from side wall; B = channel width and a = 0.3. 

We tested the following 3 cases namely Run A, Run B and Run C. 

[Run A] The effects induced by secondary currents are not included. 

(Equations (1) and (2) without Sξ1-Sη4 ) 

[Run B] The effects of secondary currents are included, and Engelund 

model is used for the velocity distribution. 

[Run C] The effects of secondary currents are included, and the model 

proposed in this study is used for the velocity distribution. 

In Run C, the velocity distribution is derived by using the value of δ at each grid point, 

and the momentum transport coefficients csn and cn2 are calculated. The effects of δ is 

decreased by multiplying the coefficients by δ, since the velocity distribution in main flow 

direction deforms much due to large δ and the numerical simulation becomes unstable. 

We also conducted a 3D simulation using the Reynolds averaged 3D flow equations 

with contravariant components of velocity vectors in a moving generalized curvilinear 

coordinate system. A 2nd-order non-linear k-ε model by Kimura and Hosoda (2003) is 

adopted as a turbulence model. This model has been applied to various flow fields, such as 

flows around submerged spur dikes (Kimura et al., 2004). 

 

 

4. RESULTS AND DISCUSSIONS 

 

Figure 4 and 5 show the water surface elevation and depth averaged velocity 

distribution in transversal direction. The calculated results obtained for the water surface 

elevation and depth averaged velocity distribution from Run A, B and C are almost the same 

at sections No.1 and No.2. Here, only the results for Run C are presented. It is observed that 

both results obtained from the refined model (Run C) and the 3D model on transversal 

distribution of water surface elevation are in good agreement with the experiments. It is also 

seen that the refined model reproduces the experimental results on the distribution of depth 

averaged velocity at sections No.1 and No.2. On the other hand, at sections No.3 and No.4, 

which are located at 0.1m and 0.5m downstream of the exit of curved channel, the difference 

between Run B and Run C can be observed near the inner bank. It is observed that the results 
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 0.8m  flow 

 
Discharge Q: 12.3l/s, Average depth h: 0.06m, Bed slope: 0 

Figure 3 Experimental setup by Rozovskii 



of the model in Run B are in better agreement than Run A, due to inclusion of the effects of 

secondary currents. However, the momentum transport is overestimated in Run B, so the 

velocity gradient is higher. In the results of refined model in Run C, the momentum transport 

is decreased in comparison with Run B, and the results in Run C agree with the experiments. 

At the outer bank, the water surface elevation is decreased from the curved to straight 

channels, and the increment of the depth averaged velocity is observed. So, the calculated 

results are in close agreement with experimental results. In this case, the results of 3D model 

are in good agreement with the experiments. 

Figure 6 and 7 show the vertical velocity distribution at sections No.3 and No.4 at 

some points. The deformation of velocity distribution in streamwise direction can be observed 

in Run C, though the velocity dip is not reproduced. It is thought that the velocity dip can be 

reproduced by increasing the coefficients, which are multiplied by the value of δ. The strength 
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Figure 4 Transversal water level distribution 
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Figure 5 Depth averaged velocity distribution in transversal direction 
 



of secondary currents is decreased due to this deformation in Run C and the results agree with 

the experimental results better than in Run B. It should be noted that, in this case, the 3D 

model can also reproduce the experiments. 

 

 

5. CONCLUSIONS 

 

In this paper, a depth averaged flow model for a curved channel in generalized 

curvilinear coordinate system is refined by including the model for deformation of velocity 

distribution in streamwise direction due to the secondary currents. Based on the results 

obtained here, it can be concluded that the refined model is capable of simulating flow in 
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Figure 6 Comparison of velocity distribution at No.2 section 

(top: in streamwise direction, bottom: in transversal direction) 
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Figure 7 Comparison of velocity distribution at No.3 section 

(top: in streamwise direction, bottom: in transversal direction) 

 



curved channel. 
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