
Conference Paper, Published Version

Kim, Tae Beom; Choi, Sung-Uk
Algorithm for 2D Finite Element Modeling of Bed Elevation
Change in a Natural River
Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with:
Kuratorium für Forschung im Küsteningenieurwesen (KFKI)

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/110060

Vorgeschlagene Zitierweise/Suggested citation:
Kim, Tae Beom; Choi, Sung-Uk (2008): Algorithm for 2D Finite Element Modeling of Bed
Elevation Change in a Natural River. In: Wang, Sam S. Y. (Hg.): ICHE 2008. Proceedings of
the 8th International Conference on Hydro-Science and Engineering, September 9-12, 2008,
Nagoya, Japan. Nagoya: Nagoya Hydraulic Research Institute for River Basin Management.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden
Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die
Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der
Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen
Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is
applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material
of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of
the restrictive license will be binding.



ALGORITHM FOR 2D FINITE ELEMENT MODELING OF BED 

ELEVATION CHANGE IN A NATURAL RIVER  
 

Tae Beom Kim
1
 and Sung-Uk Choi

2

 

1 Post-doctoral Researcher, School of Civil & Environmental Engineering, Yonsei University 

134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749, Korea, e-mail: geo108@naver.com 
2 Professor, School of Civil & Environmental Engineering, Yonsei University 

134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749, Korea, e-mail: schoi@yonsei.ac.kr 

 

ABSTRACT  

 

The purpose of this study is to develop a 2D finite element model which is capable of 

predicting the time-dependent bed elevation change of the stream. The shallow water 

equations and the Exner’s equation are solved with 2D Characteristic Dissipative-Galerkin 

method and Bubnov-Galerkin method, respectively. The developed model is a decoupled 

model in a sense that the bed elevation does not change simultaneously with the flow during 

each computational time step. Solving the Exner's equation provides the time-dependent bed 

elevation change based on the equilibrium sediment load. The impacts of the secondary flows 

in a curved channel and the gravity force due to the geographic change in the direction of 

sediment transport are taken into account for the accurate spatial variation of equilibrium 

sediment loads. In order to incorporate these effects into the numerical model, the spatial 

variation of mean velocity and the topography are necessary. However, estimating the 

variation of spatially-continuous variables at one node of FEM grid is very difficult. A new 

FEM algorithm for the Exner's equation, proposed herein, estimates the equilibrium sediment 

load not at the node but within the element. For validation, the developed model is applied to 

140° bended laboratory channel data at Delft Hydraulics Laboratory and aggradation data of 

Soni et al.’s (1980) experiment. The simulated results agree well with the measured data. 

Presently, this model is restricted to the case with uniform sediment, neglecting armoring or 

grain sorting effects. 
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1. INTRODUCTION 

 

A natural alluvial river tends to keep a stable equilibrium state between flow and river 

bed. When one of two regimes is altered, the other reacts and finally achieves a new stable 

state. The response like this may be occurred when the flow characteristics are changed 

through the curved reach from the straight one or when the sediment higher than that the flow 

is capable of transporting is loaded from the upstream reach. The former generates the erosion 

near the outer bank and the deposition near the inner bank. The latter generates the 

aggradation of river bed, and then induces the change of flow characteristics. The prediction 

of such a river bed change is a very important and challenging task for practical engineers and 

scientists.

In predicting the morphological change of a curved channel, a 1D model is not 

appropriate since the transverse bed profile can not be explained. A 3D model may be the best 

choice. Nevertheless 3D model is not readily applicable to many engineering problems even 

nowadays due to tremendous computational expense, complexity of numerical computations, 

and necessity of sufficiently detailed observation data for calibration and verification. These 

necessitate the introduction of 2D model. 



Since the past, 2D models of the bed deformation have used the finite difference 

method as numerical tool. After a few days, the finite volume method began to be used since 

it is excellent in the aspect of mass conservation. Recently, 2D FDM or FVM models using 

curvilinear or body fitted coordinate system are developed (Kassem and Chaudhry, 2002; Duc 

et al., 2004; Wu 2004) since Cartesian coordinate systems may not accurately represent the 

irregular channel shape and can induce inaccurate simulation results. It is well known that the 

finite element method provides more flexibility in handling spatial domain than FDM or FVM. 

However, the finite element model of bed morphological change is not sufficiently and 

commonly used and developed compared with the finite difference or finite volume models. 

In this study, a numerical model capable of predicting the time variation of the bed 

elevation change is developed. The shallow water equations and the Exner’s equation are 

solved by the finite element method. The shallow water equations are solved with 2D 

Characteristic Dissipative-Galerkin scheme proposed by Ghanem (1995) which is one of the 

Streamline-Upwind / Petrov-Galerkin (SU/PG) scheme. The Exner’s equation is solved with 

classical Bubnov-Galerkin scheme. A new FEM algorithm for the Exner's equation is 

introduced in this study, in which estimates the equilibrium sediment load not at a node but 

within an element. For validation, the developed model is applied to 140° bended laboratory 

channel data at Delft Hydraulics Laboratory (Struiksma, 1983) and straight channel data for 

bed aggradation due to sediment overloading (Soni et al., 1980).  

The numerical model developed in the present study is based upon the decoupled 

modeling approach assuming that the interaction between flow and bed is ignorable during 

the computational time step. Also, the model is restricted to beds of uniform sediment without 

armoring or grain sorting effects. 

 

 

2. GOVERNING EQUATIONS 

 

 Flow equations 

 

 For the flow analysis, the following 2D shallow water equations with the effective 

stress terms are adopted: 
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where h is flow depth, p and q are discharge per unit width in x- and y-directions, respectively, 

g is gravitational acceleration, zb is bed elevation measured from a certain datum, n is 

Manning’s roughness coefficient, and νt is turbulent viscosity. Herein, the following parabolic 

eddy viscosity model is used: 
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where U* is shear velocity, and κ is von Kármán constant (≈0.4). 

 

 Bed elevation change equations 

 

In order to estimate the bed elevation change, the following Exner’s equation is 

solved: 
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where p' is porosity, and qtx and qty are the x- and y-components of total sediment load per unit 

width which are expressed as following, respectively. 
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where Φ is the counterclockwise angle of sediment transport direction from the positive x-

axis , and qt is total sediment load per unit width. In the present study, Engelund and Hansen’s 

(1972) formula and Soni et al.’s (1980) formula, which are expressed as Eq. 11 and Eq. 12, 

respectively, are used for the total sediment load. 
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where V is depth-averaged flow velocity, γ is specific weight of fluid, γs is specific weight of 

sediment, d50 is the median grain diameter, and τ0 is bed shear stress. 

 
b
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where a and b have values as 0.00145 and 5.0, respectively for the sediment size used in Soni 

et al.’s (1980) experiment. 

In laterally sloping bed, sediment transport direction in Eq. 10 is not identical with the 

direction of bed shear stress due to the gravity force acting on the particles. This effect can be 

expressed as following (Koch and Flokstra, 1980): 
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where α is the direction of bed shear stress, fs is shape factor ranging from 1 to 2, and θ* is the 

dimensionless Shield’s parameter expressed as following: 
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In a curved channel, the difference of centrifugal forces between the upper and the 

lower layer of flow induces the secondary flow, also known as helical or spiral flow. The 

secondary flow causes the direction of bed shear stress to deviate from the direction of the 

mean flow velocity. Therefore, it is necessary to reflect the effect of secondary flow on the 

sediment transport direction in a curved channel. This effect can be introduced in Eq. 13 as 

following: 
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where u and v are the x- and y-components of the depth-averaged velocity, respectively, Rc is 

the local radius of curvature of the streamline, and F is the parameter defined as following 

(Jansen, 1979): 
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In Eq. 15, the second term of the right side is the deviation of the bed shear stress from 

the streamlines due to the secondary flow in a curved channel. Since in some cases the inertia 

of the secondary flow has to be accounted for, it is necessary to reflect the inertia effect using 

a inertial adaptation equation (Struiksma et al., 1985) as following: 
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where C is Chézy coeffient, I is a measure of the intensity of the secondary flow, s is the 

streamwise coordinate, β is a given coefficient normally between 0.4 and 2.0, for which De 

Vriend (1981) proposed about 1.3 and Struiksma et al. (1985) used 0.6, and R is the local 

radius of curvature of the streamline calculated as following: 
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3. NUMERICAL METHODS 

 

 Flow equations 

 

To solve the sallow water equations numerically, the Streamline-Upwind/Petrov-

Galerkin (SU/PG) scheme is used. The SU/PG scheme employs the weighting function as 

following: 
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where Ni is basis or shape function for the i-th node,  is weighting function for the i-th 

node, ω is weighting coefficient, and W

*

iN

x and Wy are weighting matrices in the x- and y-

directions, respectively. In this study, following weighting matrices suggested by Ghanem 

(1995) are used: 
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The inverse of the square root of the matrix can be determined by Cayley-Hamilton theorem 

(Hoger and Carlson, 1984). In estimation of ∆x and ∆y, following expressions suggested by 

Katopodes (1984), which can be applied to the distorted elements, are used: 
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where ξ and η are isoparametric coordinates. Then, the weighted residual equation of the 

shallow water equations takes the form of 

 

0

i i
i

N N
N x y

x y

d
t x y x y

ω ω
Ω

⎛ ⎞∂ ∂
+ Δ + Δ⎜ ⎟∂ ∂⎝

∂⎛ ⎞∂∂ ∂ ∂
× + + + + + Ω =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∫ x y

yx

W W

DDU U U
A B F

⎠
    (23) 

 
The resulting nonlinear equations are linearized by using the Newton-Raphson method, and 

the global matrix is solved by the frontal solution algorithm for unsymmetric matrices 

proposed by Hood (1976).

 

 Bed elevation change equations 

 

The weighted residual equation of the Exner’s equations for bed elevation change is as 

following: 
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The time derivative is replaced by finite difference form and the finite element approximation 

to the solution or variables is applied. Then, the following equation in matrix form can be 

obtained: 
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where ∆zb, qtx, and qty are the vector of variation of bed elevation, and the vector of x- and y-

components of total sediment load per unit width, respectively. In order to use Eq. 25, qtx and 

qty defined on every each node are necessary. qtx and qty can be estimated in Eq. 10 and the 

sediment transport direction, Φ, can be estimated through Eq. 13~19. Here, partial derivatives 

of spatial variables such as bed elevation and flow velocity components are necessary. 

Gradient of spatially continuous variables at any one node can not be defined in the 

discretized finite element mesh. Therefore, new algorithm to estimate the equilibrium 

sediment load not at a node but within an element is proposed. 



The following equation in matrix form can be obtained by using the Green’s Theorem 

in Eq. 24 and the finite element approximation to the solution: 
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where Γe
 means the boundary of an element. As shown in Eq. 30 and 31, qtx and qty can be 

defined within an element or along element boundaries. Therefore, spatially continuous 

variables can also be estimated within an element by using finite element approximation. In 

Eq. 24, time derivative can be replace by time-difference approximation of the general form 

 

( )
11

1

n nn n

b b b bz z z z

t t
θ θ

++ − ∂ ∂⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟Δ ∂ ∂⎝ ⎠ ⎝ ⎠t
     (32) 

 

where n is the know time level, n+1 is the unknown time level, and θ is the implicitness 

parameter. 

 

 

4. MODEL TESTS 

 

 140° Curved channel 

 

For validation, the developed model is applied 140° curved channel data from Delft 

Hydraulics Laboratory (DHL) (Struiksma, 1983). The main parameters of DHL experiment 

reported by Struiksma et al. (1985) are: water discharge = 0.061 m
3
/s, flume width = 1.5 m, 

water depth = 0.1 m, flow velocity 0.41 m/s, slope = 0.203 %, Chézy coefficient = 28.8, 

median grain diameter = 0.45 mm, bend radius = 12 m, bend length = 29.32 m. The sediment 

is considered uniform sand (σg = 1.19). Since the meander length is more than 10 times the 

width, it does not fit the features of a freely meandering stream (Struiksma et al., 1985). The 

duration of the flow in the flume which was initially flat in the lateral direction was long 

enough to establish equilibrium bed topography. Bed-level fluctuations were smoothed out by 

averaging a large number of independent soundings. 

Since the initial condition implies a subcritical flow with Froude number of 0.414, the 

discharge and the flow depth were imposed at the upstream and downstream boundaries, 

respectively. For numerical stability, the straight part was extended to 10 and 15 times of the 

channel width at the upstream and downstream parts, respectively. The bed elevation change 

at upstream and downstream boundaries was ignored. Porosity of the sediment was assumed 

to be 0.4. Figure 1 shows the variation of the bed profile along the longitudinal lines. In the 

figure, both profiles show sediment deposition and erosion near the inner and outer banks, 

respectively. Good agreement is also found in the location and the amounts of maximum 

deposition and erosion between simulated and measured data as well as the bed profile 

tendency. However, after their peaks, the fluctuation of the computed bed profile is slightly 

overestimated compared with the measured profile.  

 



 
 

Figure 1 Comparison between the computed and measured longitudinal bed profiles for DHL 

experiment (Struiksma, 1983). 

 

 

 Bed aggradation 

 

To verify the applicability of boundary condition, the developed model was applied to 

Soni et al.’s (1980) experiment in which they carried out bed aggradation test due to 

overloaded sediment in a straight flume in order to provide information on bed and water 

surface profiles. The experiment were conducted in a 0.2 m wide, 0.5 m deep, and 30 m long 

recirculatory tilting flume located in the Hydraulics Laboratory of the University of Roorkee, 

Roorkee, India. The bed and injected material was uniform sand with a median diameter of 

0.32 mm. After the establishment of uniform flow conditions for a given discharge and slope, 

the sediment supply rate was increased to a predetermined value by continuously feeding 

excess sediment at the upstream end of the flume at a constant rate. The bed and water surface 

profiles were recorded using a point gage at every 2.5 m length at intervals generally varying 

from 10 ~ 20 minutes. The measured profiles were averaged because of the presence of 

ripples and dunes on the bed. 

For the numerical simulation, the experiment with 4 times more than equilibrium 

sediment load rate was selected. Initial bed slope, water discharge and water depth were 

0.00356, 0.02 m
2
/s, and 0.05 m, respectively. Figure 2 shows the results of the computed bed 

and water surface elevation profiles at various times. Due to the overloaded sediment influx in 

the upstream boundary, bed elevation increases and the range of bed elevation change is 

extended toward downstream in time. Simulated results agree well with experimental data by 

Soni et al. (1980). Although water surface profiles are slightly different from the experimental 

data, it is satisfactory. 
 



 
(a) 15 minutes elapsed 

 

 
(b) 30 minutes elapsed 

 

 
(c) 40 minutes elapsed 

 

Figure 2 Bed and water surface profiles for Soni et al.’s (1980) experiment 

 

 

5. CONCLUSION 

 

In the present paper, a 2D finite element model was proposed for numerical simulation 

of bed elevation change. In order to alleviate the numerical instability encountered in 

advection-dominated flows, the Streamline Upwind/Petrov- Galerkin method was used for the 

numerical analysis of the shallow water equations. For evaluating the bed elevation change, 

the Exner’s equation was solved by using a newly proposed FEM algorithm in which 



estimates the equilibrium sediment load not at a node but within an element. Both effects by 

secondary flows in a curved channel and gravity force acting on a sediment grain in a laterally 

sloping bed were reflected in the model. 

The developed model was applied to two experimental cases: 140° curved channel at 

Delft Hydraulics Laboratory and Soni et al.’s (1980) bed aggradation experiment. It was 

found that the model predicts the bed elevation change in a curved channel properly. The 

resulting flow field induces sediment erosion and deposition near the outer and inner banks, 

respectively. Also, through the application of Soni et al.’s (1980) experiment, the model got 

the confidential results for the sediment boundary condition. 
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