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ABSTRACT

Numerical solutions for shape identification of flow past a circular cylinder are treated in
this paper. The minimization algorithm based on Sakawa-Shindo method is employed.
A unified computational approach to the simulation of flow and the shape identification
with the shape smoothing is presented. As a numerical approach to spatial discretization,
mixed interpolations by the improved bubble function and linear elements are applied for
velocity and pressure.

Keywords: Navier-Stokes equations, shape optimization, shape smoothing, bubble func-
tion element stabilization method, orthogonal basis bubble function element

1. INTRODUCTION

A two-level three-level formulation of finite element method with bubble function is pro-
posed for the incompressible Navier-Stokes equations (Matsumoto and Kawahara, 2001).
Numerically, spatial discretization is applied to the mixed interpolation for the velocity
and pressure fields by bubble element and linear element, respectively. Numerical solu-
tions (Pironneau, 1973; Pironneau, 1974; Bourot, 1975; Ganesh, 1994; Azegami, 2000) for
shape identification of flow past a circular cylinder are treated in this paper. The purpose
of the study is to formulate and solve an analysis of shape identification for Navier-Stokes
equations with unsteady flow. Generally, the state equations that govern incompressible
viscous flow are written to include the Navier-Stokes equations. By described here in
making the state equations a constraint of the performance function J , the Lagrange
multiplier method is applied for shape identification (Matsumoto and Kawahara, 2001;
Ogawa and Kawahara, 2003; Yagi and Kawahara, 2005; Shinohara et al., 2008). To mini-
mize the extended performance function J∗, it is necessary to solve the gradient of J∗ with
respect to the identified coordinates xj . The necessary condition is that the stationary
condition deriving from the first variation of J∗ is set to zero. To improve the efficiency,
stability, and accuracy of the calculation, the mixed interpolation that uses an orthogo-
nal basis bubble function element stabilization method (Matsumoto, 2005) for the state
equations of incompressible viscous fluid is applied. To validate the present method, the
shape identification considered the smoothing technique of flow past a circular cylinder
with periodic flow is analyzed. The identified drag force results in periodic solution region
are similar to the objective results.



2. STATE EQUATION

The state equation that governs incompressible viscous flow is written as the following
Navier-Stokes equation and the continuity equation in the non-dimensional form:

u̇i + ujui,j + p,i − ν (ui,j + uj,i),j = 0 in Ω (1)

ui,i = 0 in Ω (2)

ui, p, and ν are the velocity, pressure, and the inverse of the Reynolds number, respectively.
The boundary conditions are as follows:

ui = ûi on Γ1 (3)

{−p δij + ν (ui,j + uj,i)} · nj = t̂i on Γ2 (4)

where the Dirichlet and the Neumann boundary conditions are specified on Γ1 and Γ2,
respectively. Ω is the computational domain of R2. In equations (3) and (4), ûi denotes
the values given on the boundary, nj is the unit outward normal to Γ2 and δij are the
Kronecker delta function. The initial condition of velocity at t = t0 is specified on Ω,

ui(t0) = ûi0 on Ω. (5)

3. ORTHOGONAL BASIS BUBBLE FUNCTION ELEMENT STABILIZA-

TION METHOD

3.1 Mixed interpolation

The MINI elements used in the spatial discretization of equations (1) and (2) is shown in
Figure 1. The mixed interpolations for velocity and pressure are expressed as follows:
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Figure 1: Two-dimensional interpolation function.

uh
i |Ωe

=
3

∑

α=1

Φαuαi + φBuBi, ph|Ωe
=

3
∑

α=1

Ψαpα, Φα = Ψα −
1

3
φB, (6)

Ψ1 = 1 − r − s, Ψ2 = r, Ψ3 = s. (7)



Equation (6) is separated from the linear and bubble function interpolations as follows:

uh
i |Ωe

= ūh
i |Ωe

+ u
′h
i |Ωe

, ūh
i |Ωe

=
3

∑

α=1

Ψαuαi , u
′h
i |Ωe

= φBu
′

Bi , u
′

Bi = uBi −
1

3

3
∑

α=1

uαi. (8)

3.2 Bubble function element stabilization method

The two-level three-level finite element approximation (Matsumoto and Kawahara, 2001;
Matsumoto, 2005) is considered to be a variation problem of finite element space with the
bubble function element. In the two-level three-level finite element approximation, the
two-level partition with a two-level bubble function is employed for determination of the
finite element solution and the three-level partition with a three-level bubble function is
applied to the weighting function. The piecewise linear finite element space V̄ h

i , Qh and

the bubble function space V h′

i , V̂ h′

i are defined by

V̄ h
i = {v̄h

i ∈ (H1
0 (Ω))2, v̄h

i |Ωe
∈ (P1(Ωe))

2}, (9)

V h′

i = {vh′

i ∈ (H1
0 (Ω))2, vh′

i |Ωe
∈ φBv

′

Bi, v
′

Bi ∈ R2}, (10)

V̂ h′

i = {v̂h′

i ∈ (H1
0 (Ω))2, v̂h′

i |Ωe
∈ ϕBv

′

Bi, v
′

Bi ∈ R2}, (11)

Qh = {qh ∈ H1
0 (Ω), qh|Ωe

∈ P1(Ωe),
∫

Ω
qhdΩ = 0}, (12)

where φB and ϕB are the two- and three-level bubble functions with a compact support. In
the approximation, the two- and three-level bubble functions are defined elementwise. The
approximation is obtained by calculating the finite element solution (uh

i , p
h) ∈ V h

i × Qh,
which is determined by the finite element space of V h

i = V̄ h
i ⊕ V

′h
i for the velocity field

and Qh for the pressure field,

〈u̇h
i , v̂

h
i 〉 + 〈ūh

0ju
h
i,j, v̂

h
i 〉 + 〈ph

,i, v̂
h
i 〉 − 〈ν(uh

i,j + uh
j,i),j, v̂

h
i 〉 = 0 ∀v̂h

i ∈ V̂ h
i , (13)

〈uh
i,i, q

h〉 = 0 ∀qh ∈ Qh, (14)

where

〈uh, vh〉 :=
Ne
∑

e=1

〈uh, vh〉Ωe
:=

Ne
∑

e=1

∫

Ωe

uhvh dΩ , ūh
0j|Ωe

:=
1

Ae

〈ūh
j , 1〉Ωe

, Ae :=
∫

Ωe

dΩ.

Here, 〈·, ·〉Ωe
denotes the L2-inner product restricted to Ωe, Ne is the number of elements,

and ūh
0j is a constant defined elementwise by means of the velocity ūh

j by linear interpo-

lation. The finite element solution uh
i that belongs to V h

i and the weighting function v̂h
i

that belongs to

V̂ h
i = V̄ h

i ⊕ {vh′

i + v̂h′

i ; vh′

i |Ωe
+ v̂h′

i |Ωe
= (φB + ϕB)v

′

Bi}

can be expressed as follows:

uh
i = ūh

i + uh′

i , v̂h
i = v̄h

i + vh′

i + v̂h′

i = vh
i + v̂h′

i , (15)

where

ūh
i , v̄h

i ∈ V̄ h
i , u

′h
i =

Ne
∑

e=1

φBu
′

Bi ∈ V
′h
i ,



v
′h
i =

Ne
∑

e=1

φBv
′

Bi ∈ V
′h
i , v̂

′h
i =

Ne
∑

e=1

ϕBv
′

Bi ∈ V̂
′h
i . (16)

The two-level bubble function is used the orthogonal basis bubble function element (Mat-
sumoto, 2005) for P1B element. The orthogonal basis bubble function element has the
following relation equation (17).

〈φB, 1〉Ωe
= 〈φ2

B, 1〉Ωe
=

N + 1

N + 2
Ae. (17)

N is space dimension number. It is assumed that the three-level bubble function satisfies
the following equations:

〈Ψα, ϕB〉Ωe
=

1

N + 1
〈1, ϕB〉Ωe

, α = 1 · · ·N + 1, (18)

〈1, ϕB〉Ωe
= 0 , 〈φB, ϕB〉Ωe

= 0. (19)

The finite element equations that are employed in the bubble function element stabiliza-
tion method are given as follows:

〈u̇h
i , v

h
i 〉 + 〈ūh

0ju
h
i,j, v

h
i 〉 − 〈ph, vh

i,i〉 + 〈ν(ūh
i,j + ūh

j,i), v̄
h
i,j〉

+
Ne
∑

e=1

〈(ν + ν
′

i)(u
h′

i,j + uh′

j,i), v
h′

i,j〉Ωe
= 〈ti, v

h
i 〉Γ ∀vh

i ∈ V h
i , (20)

〈uh
i,i, q

h〉 = 0 ∀qh ∈ Qh, (21)

ν
′

i := 〈u̇h
i + ūh

0ju
h
i,j + ph

,i − ν(uh
i,j + uh

j,i),j, ϕB〉Ωe

/

〈(uh′

i,j + uh′

j,i), φB,j〉Ωe
.

The stabilized operator control term
Ne
∑

e=1

〈ν
′

i(u
h′

i,j + uh′

j,i), v
h′

i,j〉Ωe
is derived from the three-

level bubble function. The stabilized operator control parameter ν
′

i can be determined as
follows (Matsumoto and Kawahara, 2001; Matsumoto, 2005) :

〈(ν + ν
′

i)(u
h′

i,j + uh′

j,i), v
h′

i,j〉Ωe
=

〈φB, 1〉2Ωe

Ae

τ−1
eR δiju

′

Biv
′

Bi, (22)

τeR =

⎡

⎣

(

2|ui|

he

)2

+

(

4ν

h2
e

)2
⎤

⎦

− 1
2

.

he is the element length (Tezduyar and Osawa, 2000).

4. PERFORMANCE FUNCTION

Finite element equations (20) and (21) can be described as follows:

vT
i (Mu̇i + S(ū0j)ui − Bp − MΓti) = 0 in Ω, (23)

qT (BT ui) = 0 in Ω, (24)

ui(t0) = ûi0 on Ω. (25)



Shape identification formulates the problem that performance function is defined as fol-
lows:

J =
1

2

∫ tf

t0
(eT

ΓB
MΓti − Di)

T Qi(e
T
ΓB

MΓti − Di)dt +
1

2

∫ tf

t0
(AC − A0)Qa(AC − A0) dt, (26)

where

eT
ΓB

MΓti = −
∫

ΓB

tidΓ , eT
ΓB

= [0, 0, 0,−1,−1,−1, . . . , 0, 0, 0]. (27)

Qi is 1 and Qa is defined by the following equation (28).

Qa =
∫ tf

t0
(eT

ΓB
MΓti − Di)

T (0)Qi(e
T
ΓB

MΓti − Di)
(0)dt

/

∫ tf

t0
A

2(0)
C dt. (28)

ti, Qi and Di are traction value, weighting parameter and objective value, respectively. AC

and A0 are a computed area of identified shape and objective area. By making the state
equation a constraint of the performance function J , the Lagrange multiplier method was
applied for shape identification. The Lagrange multipliers for the equation are defined as
the adjoint velocity λui

and pressure λp to introduce them. The extended performance
function J∗ can be defined as follows:

J∗ = J +
∫ tf

t0
λT

ui
(−S(ū0j)ui + Bp + MΓti − Mu̇i) dt +

∫ tf

t0
λT

p (BT ui) dt. (29)

5. ADJOINT EQUATION

To minimize the extended performance function J∗, it is necessary to solve the gradient
of J∗ with respect to the identified coordinates xj . The necessary condition is that the
stationary condition deriving from the first variation of J∗ is set to zero, that is,

δJ∗ = 0, (30)

then, the adjoint state equation terminal condition to be solved can be obtained as follows:

Mλ̇ui
− S̃(uj)

T λui
+ Bλp = 0 in Ω, (31)

BT λui
= 0 in Ω, (32)

λui(tf )
= 0 in Ω, (33)

λui
= −eΓB

Qi(e
T
ΓB

MΓti − Di) on Γ. (34)

6. TIME DISCRETIZATION

6.1 Time discretization of the state equation

To discretize the state equation, a quasi-linear form is given by

M
un+1

i − un
i

∆t
+ S(ū∗

0j)u
n+1/2
i − Bpn+1 = MLti, (35)



BT un+1
i = 0, (36)

where

u∗
j =

1

2
(3un

j − un−1
j ) , u

n+1/2
i =

1

2
(un+1

i + un
i ),

is employed. To discretize the quasi-linear form in time, the second-order linear time
integrator was used. The boundary value problem is given by

M
ũn+1

i − un
i

∆t
+ S(ū∗

0j)ũ
n+1/2
i − Bpn = MLti, (37)

BT M̄−1B∆t(pn+1 − pn) = −BT ũn+1
i , (38)

M
un+1

i − ũn+1
i

∆t
+

1

2
S(u∗

j)(u
n+1
i − ũn+1

i ) − B(pn+1 − pn) = 0, (39)

where

ũ
n+1/2
i =

1

2
(ũn+1

i + un
i )

is finally derived. M is the mass matrix, and S(ū∗
0j) is the matrix of the advection term

and viscosity term. B is the gradient matrix, and MLti is boundary integration term. An
important point to be noted is that the consistent mass matrix M is a diagonal matrix
on account of the orthogonal intersection of the basis functions of the orthogonal basis
bubble function element.

6.2 Time discretization of the adjoint equation

To discretize the quasi-linear form in time, the second-order linear time integrator is used.
The boundary value problem is given by

M
λ̃n−1

ui
− λui

n

∆t
+ S̃(ū∗

0j)
T λ̃n−1/2

ui
− Bλpn = 0, (40)

BT M−1B∆t(λn−1
p − λn

p ) = −BT λ̃n−1
ui

, (41)

M
λn−1

ui
− λ̃n−1

ui

∆t
+

1

2
S̃(ū∗

0j)
T (λui

n−1 − λ̃n−1
ui

) − B(λn−1
p − λn

p ) = 0, (42)

where

λ̃n−1/2
ui

=
1

2
(λ̃n−1

ui
+ λn

ui
),

is finally derived. S̃(ū0j)
T is the transposed matrix of the linearlized S(ū0j)u

7. MINIMIZATION ALGORITHM WITH SHAPE SMOOTHING

The minimization algorithm based on Sakawa-Shindo method (Sakawa and Shindo, 1980)
is used. The identified coordinate values are renewed by the following equation,

x
(l+1)
j = x

(l)
j + α(l)d̃

(l)
j . (43)

(l) is the iteration step, and α(l) is the weighting coefficient. α(l) is renewed with every

iteration. d̃
(l)
j is the value that is smoothed by the following equations (44) and (45) of

d
(l)
j .



• Iterate: For m = 1,2,. . .,ms do.

M̄s d̃
(l)
j = M̃s d

(l)
j on ΓB, (44)

d̃
(l)
j −→ d

(l)
j . (45)

This is called the selective lumping method (Kawahara and Hirano, 1983). Here,

M̃s = esM̄s + (1 − es)Ms , 0 ≤ es ≤ 1, (46)

d
(l)
j = −

∫ tf

t0

⎧

⎨

⎩

λT
ui

⎡

⎣−

⎧

⎨

⎩

∂S(ūj)

∂x
(l)
j

⎫

⎬

⎭

ui +

⎧

⎨

⎩

∂B

∂x
(l)
j

⎫

⎬

⎭

p

⎤

⎦

+λT
p

⎧

⎨

⎩

∂BT

∂x
(l)
j

⎫

⎬

⎭

ui +

⎧

⎨

⎩

∂AC

∂x
(l)
j

⎫

⎬

⎭

Qa(AC − A0)

⎫

⎬

⎭

T (l)

dt. (47)

M̄s and Ms are lumped and consistent mass matrices on surface element of identified
shape. es is lumping parameter. The calculation algorithm based on Sakawa-Shindo
method is summarized as follows:

1. Set l = 0 and assume the initial identified vector x
(l)
j .

2. Solve the initial state vector u
(l)
i , p(l) using equations (37)-(39).

3. Solve the initial performance function J (l) using equation (26).

4. Solve the Lagrangian multiplier vector λ(l)
ui

, λ(l)
p using equations (40)-(42).

5. Solve the identified vector x
(l+1)
j using equation (43).

6. Solve the error norm e = ||x
(l+1)
j − x

(l)
j ||∞, and if e < ε then stop, else go to 7.

7. Solve the state vector u
(l+1)
i , p(l+1) using equations (37)-(39).

8. Solve the performance function J (l+1) using equation (26).

9. The weighting parameter α(l) is changed as follows: If J (l+1) ≤ J (l) then α(l+1) =
10
9
α(l) and go to 4., else α(l) = 1

2
α(l) and go to 5.

In the algorithm, α(0) is decided by α(0) = ∆x̂j

/ ∥

∥

∥d̃
(0)
j

∥

∥

∥

∞
.

8. NUMERICAL RESULTS FOR FLOW PAST A CIRCULAR CYLINDER

8.1 Flow past a circular cylinder

To validate the present method, the shape identification with the smoothing technique
of flow past a circular cylinder is analyzed. The computational domain shown in Figure
is 12 D wide and 24 D long. The central point of the circular cylinder is located to the
position in 6D width and 6D length. The initial finite element mesh is shown in Figure
3. The total numbers of nodes and elements are 1834 and 3500, respectively.
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Figure 2: Computational domain.

Figure 3: Initial finite element mesh.

8.2 Shape optimization

Two shape optimization problems for the incompressible Navier-Stokes equations are in-
vestigated. One , case1, is a drag force minimization with area constant of identified
shape. The other, case2, is a drag force constant with internal area maximization of
identified shape. Case1 is defined by equation (48).

J =
1

2

∫ tf

t0
(eT

ΓB
MΓt1)

T Q1(e
T
ΓB

MΓt1)dt +
1

2

∫ tf

t0
(AC − A0)Qa(AC − A0) dt (48)

AC is the computed external area of identified shape. A0 is the computed external area
of initial shape. Case2 is defined by equation (49).

J =
1

2

∫ tf

t0
(eT

ΓB
MΓt1 − D1)

T Q1(e
T
ΓB

MΓt1 − D1)dt +
1

2

∫ tf

t0
ACQaAC dt (49)

D1 is the drag force that was obtained by case1. The optimal shape is comparison between
the result of case1 and the result of case2.

8.3 Shape smoothing

The effect of shape smoothing by selective lumping method is examined. The results of
shape smoothing in the shape optimization problem of case1 are shown in figure 4. The
numerical results are used ∆t=0.2 and ∆x̂j=0.01. Dotted line means the initial shape.
Solid line means the identified shape. As for (a), (b), and (c) the identified shapes are
sharp, because the effect of smoothing is not working. On the other hand, as for (d), (e),



 

(a) es = 1, ms = 1 (b) es = 1 −
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(d) es = 1 −
√

3
2
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√

3
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√

3
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Figure 4: Shape smoothing in the shape optimization problem of case1. (Re=250)

and (f) the identified shapes are smooth, because the effect of smoothing is working.

8.4 Numerical results

The results of shape optimization are shown in Figures 5. The numerical results are used
∆t=0.2 and ∆x̂j=0.01. The identified shape (a) is similar to the identified shape (b).

(a) Case1 (b) Case2

Figure 5: Numerical results of shape optimization. (es = 1 −
√

3
2

, ms = 10, Re=250)

9. CONCLUSIONS

In this study, the numerical solutions for the two shape optimizations of flow past a circular
cylinder were analyzed. The minimization algorithm based on Sakawa-Shindo method is
proposed. A unified computational approach to the simulation of flow and the shape
identification with the smoothing technique was presented. As a numerical approach for
spatial discretization, that mixed interpolation by bubble and linear elements was applied



for velocity, and that by a linear element was applied for pressure. The present results
obtained in the incompressible Navier-Stokes equations, the identified shape of a drag
force minimization with area constant is similar to the identified shape of a drag force
constant with internal area maximization.
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