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Abstract:  Most of the hydraulic structures are founded on alluvial planes of India. Hydraulic 

structures such as weirs or barrages are integral parts of diversion head works. However, there 

is no fixed procedure to design the basic barrage parameters. The depth of sheet piles, the length 

and thickness of floor may be treated as basic barrage parameters.  The variation in seepage 

head affects the downstream sheet pile depth, overall length of impervious floor, and thickness of 

impervious floor. The exit gradient, which is considered the most appropriate criterion to ensure 

safety against piping on permeable foundations, exhibits non linear variation in floor length with 

variation in depth of down stream sheet pile. These facts complicate the problem and increase 

the non linearity of the problem. However, an optimization problem may be formulated to obtain 

the optimum structural dimensions that minimize the cost as well as satisfy the exit gradient 

criteria. The optimization problem for determining an optimal section for the weirs or barrages 

consists of minimizing the construction cost, earth work, cost of sheet piling, length of 

impervious floor etc. Nonlinear optimization formulation (NLOF) with subsurface flow 

embedded as constraint in the optimization formulation is solved by Genetic algorithm (GA). The 

results obtained in this study indicate that considerable cost savings can be achieved when the 

proposed NLOF is solved using GA. Uncertainty in design, and hence cost from uncertain safe 

exit gradient, a hydrogeologic parameter, are quantified using fuzzy numbers. Results show 

linear correlation between uncertainty in overall cost and uncertainty in safe exit gradient value. 

The limited evaluation show potential applicability of the proposed methodology. 

 

Keywords: nonlinear optimization formulation; genetic algorithm; hydraulic structures; barrage 

design; fuzzy numbers.  

 

INTRODUCTION 

 

Hydraulic structures such as weirs and barrages are costly water resources projects. A safe and 

optimal design of hydraulic structures is always being a challenge to water resource researchers.  

The hydraulic structure such as barrages on alluvial soils is subjected to subsurface seepage. The 

seepage head causing the seepage vary with variation in flows. Design of hydraulic structures 

should also insure safety against seepage induced failure of the hydraulic structures.  
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The variation in seepage head affects the downstream sheet pile depth, overall length of 

impervious floor, and thickness of impervious floor. The exit gradient, which is considered the 

most appropriate criterion to ensure safety against seepage induced piping (Khosla, 1932; Khosla, 

et al., 1936; Varshney and Gupta, 1988; Asawa, 2005) on permeable foundations, exhibits non 

linear variation in floor length with variation in depth of down stream sheet pile. These facts 

complicate the problem and increase the non linearity of the problem. However, an optimization 

problem may be formulated to obtain the optimum structural dimensions that minimize the cost 

as well as satisfy the safe exit gradient criteria.  
  

The optimization problem for determining an optimal section for the weirs or barrages consists of 

minimizing the construction cost, earth work, cost of sheet piling, and length of impervious floor 

(Garg et al., 2002; Singh, 2007). Earlier work (Garg et al., 2002) discussed the optimal design of 

barrage profile for single deterministic value of seepage head. This study first solve the of 

nonlinear optimization formulation problem (NLOP) using genetic algorithm (GA) which gives 

optimal dimensions of the barrage profile that minimizes unit cost of concrete work, and 

earthwork and searches the barrage dimension satisfying the exit gradient criteria. The work is 

then extended to characterize uncertainty in design due to uncertainty in measured value of exit 

gradient, an important hydrogeologic parameter. Uncertainty in design, and hence cost from 

uncertain safe exit gradient value are quantified using fuzzy numbers.  

 

SUBSURFACE FLOW  

  

The general seepage equation under a barrage profile may be written as: 
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This is well known Laplace equation for seepage of water through porous media. This equation 

implicitly assumes that (i) the soil is homogeneous and isotropic; (ii) the voids are completely 

filled with water; (iii) no consolidation or expansion of soil takes place;and (iv) flow is steady 

and obeys Darcy’s law.  

 

For 2-dimensional flow, the seepage equation (1) may be written as: 
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The need to provide adequate resistance to seepage flow represented by equation (1) both under 

and around a hydraulic structure may be an important determinant of its geometry (Skutch, 

1997).The boundary between hydraulic structural surface and foundation soil represents a 

potential plane of failure.  

 

Stability under a given hydraulic head could in theory be achieved by an almost limitless 
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combination of vertical and horizontal contact surfaces below the structure provided that the total 

length of the resultant seepage path were adequately long for that head (Skutch, 1997; Leliavsky, 

1979). In practical terms, the designer must decide on an appropriate balance between the length 

of the horizontal and vertical elements.  

 

Lane’s (1935) Weighted Creep Theory, and Khosla's Method of Independent Variables, is most 

commonly adopted (Varshney et al, 1988) methods. Present work utilized Khosla's Method of 

independent variables (Asawa, 2005) to simulate the subsurface behavior in the optimization 

formulation. 

 

Method of independent variables is based on Schwarz-Christoffel transformation to solve the 

Laplace equation (1) which represents seepage through the subsurface media under a hydraulic 

structure. A composite structure is split up into a number of simple standard forms each of which 

has a known solution. The uplift pressures at key points corresponding to each elementary form 

are calculated on the assumption that each form exists independently. Finally, corrections are to 

be applied for thickness of floor, and interference effects of piles on each others.  

 

 

An explicit check is for the stability of the hydraulic structure for soil at the exit is devised by 

Khosla (Khosla et al., 1936). The exit gradient for the simple profile as in Fig. 1 is given by as 

follows: 

 

λπ
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2

2 ];11[
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1

d

L
=++= ααλ ; L is total length of the floor; and H is the seepage head. 

 
Fig.1. Schematic of parameters used in exit gradient 

 

Equation (3) gives GE equal to infinity for no sheet pile at the downstream side of the floor. 

Therefore, it is necessary that a vertical cutoff (sheet pile) be provided at the downstream end of 

the floor. To prevent piping, the exit gradient is kept well below the critical values which depend 

upon the type of soil.  

 

The present work uses GA based optimization formulation incorporating uplift pressure and exit 

gradient in the optimization model to fix depth of sheet piles and length and thickness of floor.  

The optimization solution thus ensures safe structure with economy. 
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OPTIMAL DESIGN FORMULATION  

  

Optimization Model 

 

Minimize  C (L, d1, dd) = c1(f1) + c2(f2) + c3(f3) + c4(f4) + c5(f5)    (4) 

 

Subject to 
λπdd

H
SEG ≥              (5) 
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where C (L, d1, dd)  is objective function represents total cost of barrage per unit width (Rs/m), 

and is function of floor length (L), upstream sheet pile depth (d1) and downstream sheet pile 

depth (dd); f1 is total volume of concrete in the floor per unit width for a given barrage profile and 

c1 is cost of concrete floor (Rs/m
3
); f2 is the depth of upstream sheet pile below the concrete floor 

and c2 is the cost of upstream sheet pile including driving (Rs/m
2
); f3 is the depth of downstream 

sheet pile below the concrete floor and c3 is the cost of downstream sheet pile including driving 

(Rs/m
2
);

 
f4 is the volume of soil excavated per unit width for laying concrete floor and c4 is cost 

of excavation including dewatering (Rs/m
3
); f5 is the volume of soil required in filling per unit 

width and c5 is cost of earth filling (Rs/m
3
); SEG is safe exit gradient for a given soil formation 

on which the hydraulic structure is constructed and is function of downstream depth and the 

length of the floor; 
dd
L

=++= ααλ ];211[
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; L is total length of the floor; H is the seepage 

head ; d1 is the upstream sheet pile depth; d2 is downstream sheet pile depth; L
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  are upper bound on L, d1 and dd 

respectively. The constraint equation (5) may be written as follows after substituting the value 

of λ : 
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In the optimization formulation, for a give barrage profile and seepage head H, f1 is computed by 

estimating thickness at different key locations of the floor using Khosla’s method of independent 

variables and hence nonlinear function of length of floor (L), upstream sheet pile depth (d1) and 

downstream sheet pile depth (d2). Similarly f4, and f5 is nonlinear. The constraint represented by 

equation (10) is also nonlinear function of length of the floor and downstream sheet pile depth 
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(d2). Thus both objective function and constraint are nonlinear; make the problem in the category 

of nonlinear optimization program (NLOP) formulation, which are inherently complex.  

 

Characterizing Model Functional Parameters  

 

For a given geometry of a barrage and seepage head H, the optimization model functional 

parameters f1, f2, f3, f4 and f5 are characterized for the barrage profile shown in Fig. 2. 

Intermediate sheet-piles are not effective in reducing the uplift pressures and only add to the cost 

of in reducing the uplift pressures and only add to the cost of the barrage (Garg et al., 2002). In 

present work, no intermediate sheet piles are considered. 

 

 

 
 

Fig 2. Schematic of barrage parameters utilized in performance evaluation. 

 

 

Optimization Procedure Using Genetic Algorithm 

 

GA was originally proposed by Holland (Holland, 1975) and further developed by Goldberg 

(Goldberg, 1989). It is based on the principles of genetics and natural selection.GA’s are 

applicable to a variety of optimization problems that are not well suited for standard optimization 

algorithms, including problems in which the objective function is discontinuous, non-

differentiable, stochastic, or highly nonlinear (Haestad 2003). The GA search starts from a 

population of many points, rather than starting from just one point. This parallelism means that 

the search will not become trapped on local optima (Singh and Datta, 2006). 

 

The optimization model represented by equations (4)-(10) and the functional parameters 

embedded in the optimization model are solved using Genetic Algorithm on MATLAB platform. 

The basic steps employed in solution procedure may be presented as follows: 

 

(i) Specification of parameters (decision variables) and hydrogeologic parameters 

(seepage head, and exit gradient) of problem domain in optimization formulation. 

(ii)  Representation of solution space by string of chromosomes of specified lengths 

where each individual (chromosomes) correspond to a parameter. 

(iii) Randomly generate initial population of potential values of parameters in forms of 

strings.  

(iv) Decode each individual into decimal valued parameter 

d1 

E 

L 

dd 

H A 

B 

C 
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(v) Simulate seepage flow with decoded parameters to characterize f1, f2, f3, f4, and f5 

to evaluate objective function satisfying constraints. 

(vi) Assign fitness value of each individual of population using objective function 

information. 

(vii) Stop if termination criteria satisfied, otherwise select and met the individual with 

high fitness value. More fit individual end up with more copies of themselves 

(viii) Perform cross-over operation on the selected  parent population 

(ix) Perform mutation operation as in cross over operation with low probability 

(x) Obtain new population after cross-over and mutation 

(xi) Go to step (iv) 

 

In crossover, the offspring or children from the parents in the mating pool is determined. 

Mutation is performed with very low probability equal or close to the inverse of population size 

(DeJong, 1975). Such a low probability is helpful in keeping diversity in the population, and 

prevents the convergence of GA to local minima. The present work employed a real coded 

genetic algorithm (Passino, 2005), and implemented on MATLAB platform. The termination 

criteria is assumed to be satisfied when the population converges i.e. the average fitness of the 

population matches with the best fitness of the population and/or there is a little improvement in 

fitness with increase in number of generations.  

 

 

Table 1.  Physical parameters values of barrage profile by conventional method utilized  

for performance evaluation as shown in Fig. 2. 

 

Physical parameters Values (meters) 
*
L  

H 
*
d1 

*
d2 

105.37 

7.12 

5.45 

5.9 

* Decision variables to be optimized 

 

Representation 

 

A solution vector x (L, d1, d2) for the barrage profile, shown in Fig. 2 whose parameters are 

shown in Table 1, can be represented as a real parameter vector. A chromosome is a string of 

“genes” that can take on different “alleles” that are encoded with number systems in a computer. 

A gene is a “digit location” that can take on different values from a number system (i.e., different 

types of alleles). For instance, in a base-2 number system, alleles come from the set {0, 1}, while 

in a base-10 number system, alleles come from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Depending on 

the chosen number system, may need to encode and decode. In this study base-10 number 

representation is being used for coding.  

 

 UNCERTAINTY CHARACTERIZATION IN THE OPTIMIZATION MODEL 
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Real-world problems, especially those that involve natural systems, such as soil and water, are 

complex and composed of many non-deterministic components having non-linear coupling.  In 

dealing with such systems, one has to face a high degree of uncertainty and tolerate imprecision. 

There is a high degree of local soil variability, and imprecision in the determination of soil 

parameters. Statistical techniques have been traditionally used to deal with parametric variation 

in model inputs, but these require substantial hydrogeologic explorations data for estimates of 

probability distributions. In the presence of limited, inaccurate or imprecise information, 

simulation with fuzzy numbers represents an alternative tool to handle parametric uncertainty. 

Fuzzy sets offer an alternate and simple way to address uncertainties even for limited exploration 

data sets. In the present work, the optimal design is first obtained assuming a deterministic value 

of hydrogelogic parameter, safe exit gradient, in optimization model. Uncertainty in safe exit 

gradient is then characterized using fuzzy numbers. The fuzzified NLOF is then solved using GA. 

 

Sources of Uncertainty 

 

Uncertainty in general comes in two forms: aleatory (stochastic, random natural variability or 

noncognitive) and epistemic (cognitive or subjective) (Hofer et al., 2002). Such distinctions in 

uncertainty are most often identified in risk assessment and reliability engineering (Helton et al., 

2004; Helton and Oberkampf, 2004; Oberkampf et al., 2004). Recently, Srinivasan et al. (2007) 

identified these uncertainties in hydrogeological applications.  Aleatory uncertainty refers to 

uncertainty that cannot be reduced by more exhaustive measurements or by a better model. 

Epistemic uncertainty, on the other hand, refers to uncertainty that can be reduced (Ross et al., 

2009). 

 

Approaches to Treatment of Uncertainties 

 

Despite these apparent distinctions in uncertainty, probability theory alone has traditionally been 

used to characterize both forms of uncertainty in engineering applications (Apostolakis, 1990; 

Helton et al., 2004). While it is commonly accepted that probability theory is ideal for the 

characterization of aleatory uncertainty (Ganoulis, 1996), the facility with which probability 

theory effectively captures epistemic uncertainty has been called into question (O’Hagan and 

Oakley, 2004), especially given the introduction of a number of alternative methods of epistemic 

uncertainty characterization (Choquet, 1954; Zadeh, 1965, 1978; Shafer, 1976). 

 

Klir (1995) has presented uncertainty representation in the context of different domains of 

applicability. Among them, probabilistic approaches (e.g. Monte Carlo Simulation) are quite 

common and have been commonly used in the treatment and processing of uncertainty for 

solution of system modeling (Schuhmacher et al., 2001). When it was recognized that probability 

theory is capable of representing only one of the several distinct types of uncertainty, new 

theories for treating uncertainty emerged. One of the milestones in the evolution of these new 

uncertainty theories is the seminal paper by Lofti A. Zadeh (1965). He proposed a new 

mathematical tool in his paper and called this new mathematical tool “fuzzy sets.” He proposed 

the concept of fuzzy algorithms in 1968 (Zadeh, 1968), and together with Bellman, proposed a 

new approach for decision-making in fuzzy environments in 1970 (Bellman & Zadeh, 1970). 
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Fuzzy set theory has been recently applied in various fields for uncertainty quantification (Cho  et 

al., 2002; Hanss, 2002;  Kentel & Aral, 2004; Mauris et al., 2001). 

 

A fuzzy number’s membership function can be of arbitrary shape, either derived from (limited) 

experimental data or expert knowledge of the model parameters. The triangular shape is widely 

used for reasons of simplicity: when the exact parameter distribution is not known, it doesn’t 

make sense to assign a more complex-shaped function. In practical applications simple linear 

functions, such as triangular ones are preferable due to their computational efficiency 

(Khrisnapuram, 1998).The membership functions are possibilistic distribution functions that 

denote if an input is possible ( A = 1), impossible ( A = 0) or something in between. The α -

sublevel technique (Hanss & Willner, 1999) consists of subdividing the membership range of a 

fuzzy number into α -sublevels at membership levels j = j/m, for j = 0, 1, ...m. This allows to 

numerically represent the fuzzy number by a set of m + 1 intervals [a
(j)

, b
(j)

]. Fig. 3 shows a 

triangular fuzzy number, subdivided into intervals using m = 6. 

 

 
Fig. 3. The α-cut technique to numerically represent a fuzzy number 

 

Membership functions define the degree of participation of an observable element in the set, not 

the desirability or the value of the information. The membership function is cut horizontally at a 

finite number of α -levels between 0 and 1 (Fig. 3). For each α -level of the parameter, the model 

is run to determine the minimum and maximum possible values of the output. This information is 

then directly used to construct the corresponding membership function of the output which is 

used as a measure of uncertainty. If the output is monotonic with respect to the dependent fuzzy 

variable/s, the process is rather simple since only two simulations will be enough for each α-level 

(one for each boundary). Otherwise, optimization routines have to be carried out to determine the 

minimum and maximum values of the output for each α-level. 

 

The transformation method presented by Hanss, (2002) uses a fuzzy alpha-cut (FAC) approach 

based on interval arithmetic. The uncertain response reconstructed from a set of deterministic 

responses, combining the extrema of each interval in every possible way unlike the FAC 

technique where only a particular level of membership (α -level) values for uncertain parameters 

are used for simulation.  
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Uncertainty in Hydrogeologic Parameters  

 

Traditionally, a deterministic procedure is employed to obtain design values for hydrogeologic 

parameters such as exit gradient, by calculating the average of values obtained from several tests. 

However, it is known that the results of both in-situ or laboratory tests may be influenced by 

several factors. The latter tests can be affected by factors such as mechanical disturbance in the 

soil samples, in the process of extraction and remolding; by changes in the samples during 

storage, and so forth. In-situ tests can also be affected by mechanical interferences, inadequate 

execution, and so on. Therefore, it can be intuitively understood that there is a high degree of 

local soil variability, and imprecision in the determination of the design values of soil parameters. 

Large variations in the values of exit gradient and hence in cost may be expected due to these 

uncertainties. 

 

Fuzzy modeling of uncertainty for hydrogeologic parameters such as exit gradient and seepage 

head  is based on Zadeh’s extension principle (Zadeh, 1968) and transformation method (Hanss, 

2002). In this study only exit gradient is considered to be imprecise. Input exit gradient, as 

imprecise parameter, is represented by fuzzy numbers. The resulting output i.e. minimum cost 

obtained by the optimization model is also fuzzy numbers characterized by their membership 

functions. The reduced TM (Hanss, 2002) is used in the present study. The measure of 

uncertainty used is the ratio of the 0.1-level support to the value of which the membership 

function is equal to 1 (Abebe et al., 2000). 

 

RESULTS AND DISCUSSION 

 

Earlier (mid 19th century), weirs and barrages have been designed and constructed in India on the 

basis of experience using the technology available at that period of time. Some of them were 

based on Bligh’s creep theory, which proved to be unsafe and uneconomical. Comparison of the 

parameters of these structures with the proposed approach is, thus, not justified. Therefore, a 

typical barrage profile, a spillway portion of a barrage, is chosen for illustrating the proposed 

approach as shown in Fig. 2. The barrage profile shown in Fig. 2 and parameters values given 

Table 1 is solved employing the methodology presented in this work.  

 

The barrage profile is first designed by the conventional method based on Khosla’s 2-D seepage 

analysis, in which the depth of sheet-piles is limited from scour considerations and the floor 

length is established to achieve a permissible exit gradient. The barrage profile is then optimized 

using the proposed approach with the same relative prices of materials used in the conventional 

method. In the optimization approach the depth of sheet-piles determined from scour 

considerations is taken as a lower bound (3.0 m), and the upper bound is set from practical 

considerations and limited to 12.0 m. In present work, for performance evaluations, value of cost 

of concreting, c1, is taken as Rs. 986.0/m
3
; cost of sheet-piling including driving, c1, is taken as 

Rs. 1510.0/m
2
; cost of excavation and dewatering, c3, is taken as Rs. 35.60/m

3
; cost of earth 

filling, c4, ia taken as Rs. 11.0/m
3
; and minimum thickness of floor is 1.0 m by conventional 
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method. The results are compared in Table 2.  

 

Table 2. Results of GA and conventional method with safe exit gradient equal to 1/8 and 

minimum thickness of floor as 1m 

  

These results reveal that the optimization approach favors the depth of the downstream sheet pile 

to be deeper than that required from scour considerations. It also resulted in a smaller floor length 

and overall lower cost. It has shown a savings in the barrage cost ranging from 16.73 percent.  

 

 

Uncertainty in Prediction of Cost due to Uncertain Exit Gradient 

 

Here, the exit gradient is assumed to vary from 0.15 to 0.20 with central value of 0.175 (1/6) in 

triangular fuzzy numbers representation. The result of variation in cost is corresponding different 

degree of membership for exit gradient shown in Fig.4. The measure of uncertainty  is found to 

be 14 percent. Since, left and right spread from central value of exit gradient is almost 14 percent, 

it can be concluded that uncertainty in cost has linear correlation with uncertainty in exit gradient.  
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Fig.4.   Costs variations corresponding to different α-cuts of exit gradient 
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CONSLUSIONS 

 

Optimization model solution essentially provides the basic barrage parameters such as depth of 

sheet-piles/cutoffs and length and thickness of floor, and reduces the over all costs. The GA 

based optimization model is embedded with the subsurface flow simulation to solve the nonlinear 

objective function of minimizing cost subject to nonlinear constraints. The applicability of the 

model has been illustrated with an example. The optimization approach is capable of evolving an 

optimal design of a barrage, which otherwise is difficult using the conventional approach.  

 

The limited performance evaluation results show the potential applicability of the GA based 

methodology for optimizing the barrage profiles dimensions to obtain optimal costs. The present 

work also demonstrates the fuzzy based framework for uncertainty characterization in optimal 

cost for imprecise hydrogeologic parameter, exit gradient. The uncertainty in cost is found to be 

directly proportional to uncertainty in exit gradient. The GA based optimization approach is 

equally valid for optimal design of other major hydraulic structures, such as canal drops and 

regulators. 
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