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ABSTRACT  

 

The Maximum Likelihood Ensemble Filter (MLEF) is a control theory based 

ensemble data assimilation algorithm. The MLEF is presented and its basic equations 

discussed. Its relation to Kalman filtering is examined, indicating that the MLEF can be 

viewed as a nonlinear extension of the Kalman filter in the sense that it reduces to the 

standard Kalman filter for linear operators and Gaussian Probability Density Function 

assumption. In the analysis step, the MLEF employs an unconstrained iterative minimization. 

It is shown that the MLEF minimization can be used as a stand-alone non-differentiable 

minimization. The MLEF non-differentiable minimization is tested with a “spike” non-

differentiable function, and it was shown that it outperforms the nonlinear conjugate-gradient 

minimization for a given example.  
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1. INTRODUCTION 

 

The Maximum Likelihood Ensemble Filter (MLEF) is a control theory based 

ensemble data assimilation system (Zupanski 2005; Zupanski and Zupanski 2006; Zupanski et 

al. 2008).  The MLEF is a nonlinear extension of the Kalman filter, in the sense that it 

reduces to the Kalman filter for linear operators and Gaussian Probability Density Function 

(PDF) assumption. Most important difference is in the analysis step: instead of producing an 

analytic solution of the linear system of equations, the MLEF finds optimal numerical 

solution via iterative minimization of the cost function. The minimization algorithms 

currently used within the MLEF are based on unconstrained minimization algorithms such as 

the nonlinear conjugate gradient and quasi-Newton minimization methods. The MLEF 

minimization includes an automatic Hessian preconditioning through a control variable 

transformation. This makes the handling of highly nonlinear operators and non-Gaussian 

PDFs easier. Although the MLEF was originally developed for use in meteorological, oceanic 

and climate applications, it can be used in any signal processing or related application in 

engineering and/or geosciences.  

In principle, the observation operator used in the analysis step of the filter can be 

nonlinear and/or non-differentiable function. Then the cost function is also nonlinear and/or 

non-differentiable, essentially making the minimization problem non-differentiable. Standard 

gradient-based minimization method may fail in such situations thus it is of interest to 

examine how the MLEF would perform in comparison. 

The paper is organized as follows. In section 2 we present the basic MLEF equations. 



In section 3 we describe the experimental sent and discuss the results, and conclusions are 

drawn in section 4. 

 

2. MLEF equations 

 

The MLEF equations can be derived without employing linearity or differentiability 

assumptions (Zupanski et al. 2008). In this section we define basic equations used in the 

MLEF, primarily focusing on the analysis step of the filter and related minimization of the 

cost function. 

Let the state space be denoted  S
NS , where NS denotes its dimension, and let 

  x S  be a state vector. We also refer to the set of state vectors 
  
x
i

S  ;  (i = 1,…,N
E
){ }  as 

ensembles, and to the space  E
N
E of dimension NE as an ensemble space. For NE=NS this 

defines a full-rank problem, while for NE<NS this defines a reduced-rank problem.  

 

2.1 Prediction step 

 

We consider a nonlinear dynamical model  M :S S  as a mean of transporting the 

state vector according to 
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where t-1 and t refer to the current and the next analysis times, respectively. Given the 

perturbation vectors from previous analysis 
  
{pi

f
S ;(i = 1,…,NE )} , we define the square 

root forecast error covariance as 
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where
  
Pf

1/2
:E S  is a N

S
N

E
matrix with columns

  
{pi

f
S ;(i = 1,…,NE )} . The 

superscripts a and f refer to analysis and forecast, respectively 

 

2.2 Analysis step 

 

The nonlinear analysis solution in the MLEF is the maximum of a posterior 

probability density function (PDF), in practice found by an iterative minimization of a cost 

function  
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where  R :O O is the observation error covariance,  O
N
O is the observation space, 

N
O

is the dimension of  O, 
 
y O is the observation vector, and  H :S O  is a nonlinear 

and/or non-differentiable observation operator. Since the matrix fP is defined using ensemble 

forecast increments, the minimization of the cost function will involve a search in the 

ensemble-spanned subspace  E . 

 The cost function (3) is minimized using a control variable transformation in the form 
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where is a control vector in ensemble subspace, and the observation perturbation matrix 

 Z :S O  is an N
O

N
E

matrix 

 

      
 
Z(x) = z1(x) z2 (x) zN E

(x) zi (x) = R
1/2

H (x + pi
f
)-H (x) .  (5) 

 

At the end of minimization, the MLEF produces not only the analysis, but also an analysis 

uncertainty estimate in the form of a square-root analysis error covariance  
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The matrix 1/2

a
P  is a N

S
N

E
matrix. 

 

3. EXPERIMENTAL SETUP AND RESULTS 

 

3.1 Experimental setup 

 

We consider an ensemble data assimilation problem involving shock-wave 

propagation by the one-dimensional Burgers model (e.g., Zupanski et al. 2008). We evaluate 

the non-differentiable capability of the MLEF minimization by considering a non-

differentiable observation operator in the form of a “spike” function 

 

      
  
H (x) = x 0.5 for 0 x 1                      (7) 

 

This function has a discontinuity at x=0.5 and represents one of the often tested non-

differentiable functions (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spike function used in the experiments. 

 



 

In our application the state vector of the Burgers model has dimension NS=81. The 

data assimilation problem is defined as an identical twin experiment. The observations are 

defined at each model point as a random perturbation to the “true” state, with identical error 

standard deviation equal to 0.1. The minimization/assimilation experiment starts with 

perturbed initial conditions, with the idea of matching the “true” state. In all experiments we 

use only 4 ensemble members, which represent the uncertainty of the shock-wave with 

sufficient accuracy. 

 Two minimization experiments are performed in the first analysis cycle, the MLEF 

and the GRAD experiment. The MLEF is the one using the previously defined MLEF 

algorithm (i.e. without linearity or differentiability assumptions), and other using standard 

gradient-based minimization framework. The minimization algorithm used is the Fletcher-

Reeves nonlinear conjugate-gradient algorithm (Luenberger 1984). The experiments differ 

only in the way the observation perturbation is used: in the MLEF we simply use the finite-

difference 
 H (x + pi

f
)-H (x) , while in the GRAD experiment we use its linear approximation   

 

H

x
pi
f
. This change impacts the gradient and Hessian calculations. 

 

3.2 Results 

 

We evaluate the results in terms of the cost function decrease, gradient norm decrease, 

and by comparing the produced analysis with the “true” state. We perform 50 minimization 

iterations. The cost function minimization is presented in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Cost function minimization results obtained using: a) gradient based method (full 

line), and b) MLEF-based method (dashed line). 

 

 

One can note that in the GRAD experiment there is only a marginal reduction 

achieved, while in the MLEF experiment the reduction is more substantial.  

The gradient norm is defined as 
   

g = g
T
g( )

1/ 2

where g denotes the gradient. The 

decrease of the gradient norm is shown in Figure 3. One can note a similar decrease/change of 

the gradient norm in both experiments. However, the change of the gradient norm is much 



smoother in the MLEF experiment, suggesting that the gradient in the GRAD experiment had 

more problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Same as Figure 2, except for the gradient norm. 

 

The ultimate goal of this application of non-differentiable minimization was to 

produce an improved solution, closer to the “true” state than the initial guess. The errors of 

the solution and of the initial guess are shown in Figure 4.  

 

Figure 4. The initial guess error (blue line - open circles) and the solution error (red line – full 

circles, in the GRAD experiment (left panel) and the MLEF experiment (right panel). The 

horizontal axis represents the grid points of the Burgers model. 

 

 

 Note that the initial guess error is same in both experiments since they both started 



from the same guess. All noticeable differences are located in the first 10 grid-points since 

this was the position of the shock-wave and of the discontinuity introduced by the spike 

function. In the GRAD experiment, the solution is in fact worse than the initial guess, 

indicating that gradient based minimization was not able to handle the discontinuity. On the 

other hand, the solution error is considerably reduced in the MLEF experiment: the maximum 

error is reduced by about factor of five. 

 

4. CONCLUSIONS 

 

The non-differentiable minimization algorithm within the MLEF was compared with 

the gradient-based minimization, in an example of a non-differentiable spike function. The 

results indicate superior results of the MLEF, both in terms of the cost function reduction and 

the reduction of the solution error. The gradient norm decrease in the MLEF is characterized 

by a smoother change than in the GRAD experiment. This simple, but challenging example is 

seen as a first step in a more complex evaluation of the MLEF minimization as a non-

differentiable minimization algorithm. If successful, this minimization method has a potential 

to be applied in various nonlinear and non-differentiable optimization problems in 

geosciences and engineering. 
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