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Abstract:  This paper presents a two-dimensional (2D) numerical model for the simulation of 

shallow, transient free-surface flows over a natural topography. The governing equations are 2D 

depth averaged non-linear shallow water equations with source terms due to bottom elevation 

and non-linear friction terms. The equations are solved using a central upwind scheme 

(Kurganov and Petrova 2007). The main advantages of this scheme are smaller numerical 

dissipation, high resolution and ease of implementation. This scheme is well balanced and 

guarantees the positivity of the depth at wet and dry cell interface over complex topography. For 

the steady state conditions, the flux terms are exactly balanced by the source terms due to bottom 

elevation maintaining the lake at rest conditions. The numerical model results are verified using 

analytical solutions and validated using experimental data from laboratory and model tests as 

well as field data gathered from past dam break events. Some of the simulated benchmark tests 

involved a mixture of various flow regimes, i.e. supercritical, sub-critical and transcritical flows. 

It was observed that the simulated results regarding flood arrival time and time history of flow 

depth and discharge are in good agreement with the analytical solutions as well as the 

experimental data from laboratory tests and field observations. The developed numerical model 

was also used to simulate the Malpasset dam failure event occurred in France in 1959. It is 

shown that the simulated results agree well with the observed field data and model tests. 

 

Keywords Shallow water equations; System of hyperbolic conservation laws; Central 

upwind scheme; Well balanced schemes; Flood simulation on complex topography. 

 

INTRODUCTION 

 

The study of water flows is an integral part of many engineering and environmental problems. 

Free surface water flows are found in nature in many situations such as open channel flows, river 

flows, coastal flows, tsunamis, dam break flows etc. These flows are characterized by the 

presence of a free surface and can be modeled using shallow water equations, which form a 

system of nonlinear hyperbolic equations. In recent years, there has been a substantial research 

emphasis on the development of numerical models to simulate these flows. For instance, Zhou et 

al. (2001) provided a good historic revision and features required for 2D river flow simulation 
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model such as wetting drying front treatment, treatment of bed elevation terms in sources terms, 

steady and unsteady flow and subcritical or supercritical conditions. Brufau et al. (2004) 

developed two-dimensional (2D) numerical model to simulate river flows and provided 

numerically stable and conservative solution. Ying et al. (2003) developed numerical models for 

flow generated by dam failure or levee breaching process using conservative form of shallow 

water equations. Caleffi et al. (2002) used finite volume method for modelling the extreme flood 

events in natural channels. Valiani et al. (2002) modeled  Malpasset dam break event using 2D 

finite volume method. 

 

The depth averaged non-linear shallow water equations govern the free surface shallow flows. 

These are commonly used to model flood flows in rivers, open channels or hydrodynamics in 

coastal areas etc. These equations are the member of the general class of equations called 

hyperbolic conservation laws. This system of equations admits steady-state solutions in which 

the non-zero flux terms are balanced by the sources terms. These nonlinear hyperbolic equations 

admit solutions that involve discontinuous and nonlinear waves, such as shocks and rarefactions, 

as well as wet-dry interfaces. In the case of water flow, shocks correspond to standing or moving 

hydraulic jumps, which are difficult to capture by simple solution schemes. A variety of high-

order well-balanced schemes for the Saint-Venant system of equations can be found in 

(LeVeque, 1998, Kurganov and Levy, 2002, Russo 2005, Noelle et al. 2006). These schemes 

produce good approximation of the quasi-steady solutions and non-stationary steady states. The 

difficulty may occur where dry states are encountered in the solutions domain. In this case, due 

to numerical oscillations, water depth (h) may become negative and the numerical computation 

will break down as the wave speeds are computed as eigenvalues ( ghu + ) of the Jacobian of 

the Eq. 1. Another difficulty with some of the schemes can be that they can only be applied in 

case of a continuous bottom topography function. 

 

The model presented in this paper is based on the central upwind scheme (Kuraganov and 

Petrova 2007) which is simple to implement and robust in computations. The main advantage of 

this scheme is its capability to simultaneously preserve the positivity of flow depth and stationary 

steady state solutions of lake at rest case. One dimensional (1D) version of the present model was 

tested against the analytical solutions of selected benchmark problems (Zhou et al. 2001) and 

experimental data published in the literature (Brufau et al. 2002). The 2D version of the present 

model was then applied to a real-life case of dam-break flood simulation. This paper is organized 

as follows: In section 2, the detailed description of the model development is presented. In 

section 3, 1D model is validated and the simulations are compared with analytical solution and 

experimental data. Section 4 presents the application of 2D version of the present model to 

simulate the Malpasset dam break event.  

 

MODEL DEVELOPMENT 

 

Governing Equations 

The 2D shallow water equations describing the free surface flow over a bottom topography 

that can be defined as a height field, B(x,y) can be written as: 
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where t is time and x and y are Cartesian coordinates describing the horizontal plane, h(x,y,t) is 

the depth of the flow, u(x,y,t) and v(x,y,t) are the components of the depth-averaged velocities in 

x  and y  directions, respectively. The gravitational acceleration is denoted by g. Sfx and Sfy are 

the components of bottom friction term due to its roughness in x and y directions, respectively. 

The first equation represents the conservation of mass, and the remaining two equations 

represent the conservation of momentum in x  and y  directions.    The source terms are 

discretized by paying attention to preserve the steady-state solutions. The water surface elevation 

is represented by w(x,y,t) such that w = h+B (see figure 1). The w(x,y,t) remains constant for the 

steady state condition. By doing simple algebraic manipulations, the Eq.1 is written in terms of 

w(x,y,t). The bottom elevation B(x) remains constant in time. 
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The bottom frictions terms fxS  and fyS  in the 

above equations are described as 

)(/ 222 BwCvuguS fx −+=  and 

)(/ 222 BwCvugvS fy −+= , where the C is the 

Chezy coefficient and is calculated as  

nBwC /)( 6/1−=  and n is the Manning’s 

coefficient.  

              

 

The  Eq.2 can be written in vector form as 

follows: 

 

),(),(),( BUSBUGBUFU yxt =++                                                                   (3)  

 

where U, F(U,B), G(U,B) and S(U,B) are the vector of primitive variables, fluxes in x and y 

 Fig.1 Variables definition sketch

 B 

 h 

 W
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direction and sources, defined as follows: 
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Numerical Scheme 

The discretization of the above equations is based on the finite volume method. The 

computational domain is a regular Cartesian grid in the 

horizontal plane as shown in figure 2. The grid is uniform 

with Δx as its spatial scale. The distance of the cell from the 

origin is  xa = a. Δx and the finite volume of the cells Cij is 

defined as [ ]2/12/12/12/1 ,,, +−+− jjii yyxx . The locations 

represented by xi+1/2, xi-1/2, yj+1/2, yj-1/2, are designated as the 

mid-point of sides of the cell volume in both x and y 

direction. These mid-point locations are superscripted as 

east (
E
), west (

W
), north (

N
) and south (

S
) in the equations. 

The primitive variables are considered at the cell center and 

the bottom elevation is considered at the four corner of the 

cell. 

 

The central upwind scheme (Kurganov and Petrova 2007) to solve the system of Eq.2 is as 

follows; 
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The forth order 2D numerical fluxes, H
x
 and H

y
 are given below. 
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Fig. 2 Computational grid 
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Where 
±

±±
±

±± 2/1,2/12/1,2/1 , jiji ba
 are the local one-sided speed of the propagation and are 

computed as follows: 
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U
E,W,N,S

 are the point values of the piecewise linear reconstruction  U = (w, hu, hv) for U
~

 at 

location defined as ),(),,(),,(),,( 2/1,,2/1,,,,2/1,,2/1 −+−+ jijijijijijijiji yxyxyxyx  .These point values 

are evaluated from a non-oscillatory piecewise polynomial reconstruction inside each grid 

cell from the cell averaged values of the variables U(x,y).  

 

( ) )()()()(,
~

jijyiijxij yyUxxUUyxU −+−+=        
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U  is the mean value of the variables in the cell center.  The numerical derivatives jixU ,)( and 

jiyU ,)(  are at least first-order component-wise approximations of  ),,( tyxU jix  and ),,( tyxU jiy . 

They are computed using a non-linear limiter function commonly known as minmod limiter. 
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The θ is a parameter for controlling numerical viscosity and for best result its value is taken 

as 1.3. The minmod function is defined as: 
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The function of this limiter is to construct the linear slope within each grid cell as a nonlinear 
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average of forward and the backward differences to prevent overshoots at the local maxima. The 

discretization of source terms is of crucial importance as the non-zero fluxes need to be balanced 

with the source terms in case of steady state solutions. The non-flux component of the flux terms 

in momentum equations is balanced with the source terms. 
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MODEL VALIDATION 

 

Numerical Experiments

  

The numerical experiments were conducted to verify the accuracy of the model by simulating 

established benchmark test problems with the 1D version of the model. The initial conditions are 

taken from Zhou et al. (2001).  Two selected tests cases are presented in this paper. One case is 

transcritical flow without a shock and another case is transcritical flow with a shock over a 

bump. The computational domain is constituted of 100 uniform cells of size Δx = 0.25m. The 

initial water depth of the whole domain is equal to the specified downstream flow depth of 0.4m 

and 0.33m respectively. The 1D bump in the 25m long channel was defined as follows: 

 

⎩
⎨
⎧ −−

=
0

)10(05.002.0
)(

2x
xB

 
 

Transcritical flow without a shock   

A discharge per unit width of 1.53 m
2
/s was imposed on the upstream boundary and downstream 

boundary conditions were open type. The Δt was computed from CFL criteria in all cases. The 

steady state reached after about 1500 iterations. The water surface elevation as a function of time 

at steady state is plotted in figure 3 which shows a very good agreement with the analytical 

solutions. The computed discharge is also compared with the theoretical as shown in figure 4.  

 

Transcritical flow with a shock 

 A discharge per unit width of  1.18 m
2
/s was imposed on the upstream boundary and 0.33m 

depth was imposed on the downstream boundary. The steady state reached after about 1800 

iterations. It is shown in figure 6 that the computed water surface elevation at steady state shows 

a good agreement with the analytical solution. The computed discharge is also compared with the 

theoretical discharge as shown in figure 6.  

 

Experimental comparison 

The model is validated against the experimental data taken from Brufau et al. (2002). The 

experiments were conducted to generate a flood wave over a triangular bump resulting from a 

If 8m < x <12m 

otherwise 
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dam failure. The schematic layout of the experiments is shown in figure 7. The experiments were 

conducted in a 38 meter long horizontal channel with a rectangular cross-section. The dam is 

located at 15.5m and the water depth in the reservoir upstream of the dam is 0.75m. A 6m long 

and 0.4m high triangular obstacle is located at 13m downstream of the dam. The channel is a 

fixed bed with dry initial conditions. The side boundaries are solid walls and the down-stream 

boundary conditions are open boundary type. The Δx is 0.01m and time step is computed by the 

CFL criteria. The Manning’s coefficient n is 0.0125. The Gauge points (G) are located at 4 m, 10 

m, 11 m, 13 m and 20 m downstream of the dam and are shown in figure 7. 

 

 

Fig.7 schematic diagram showing the experimental set up and observation 

points. (Brufau et al. 2002) 
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Fig.3 Steady transcritical flow over a bump 

without shock (Water surface). 
Fig.4 Steady transcritical flow over a 

bump without shock (Discharge). 
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The predicted and measured water depths at 5 gauge points are plotted in figure 8 as a function 

of time. The flow regime changes from subcritical to transcritical and goes to supercritical flow 

at various gauge points during the course of time. The model reproduces the water depth at G4 to 

a good extent. At G10 and G11, the model slightly over-estimates the water depth at the 

beginning, however, after 15 seconds good agreement with the experiments is observed. The G13 

is located at the tip of the triangular obstacle and is a critical point. The model slightly 

underestimates the maximum depth there. Nevertheless, the general trend is captured well 

despite a slight time lag. At G20, the trend is observed well and the water depth is slightly under-

estimated. As a conclusion it can be said that the model predicts the water surface variations at 

various gauge points up to a reasonable good accuracy.  

  

Fig.8  Comparison of the simulated and 

experimentally observed time evolution 

of water-depth at five gauge point 

locations. The dots represent the 

experimental data and the solid line with 

hallow dots represent the simulations.  
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MODEL APPLICATION 

 

The two-dimensional version of this model was applied to simulate the historic Malpasset dam-

break event that occurred on December 2, 1959, and resulted in a catastrophic flood that caused 

the death of 421 people in the downstream valley. Malpasset double-curvature arch dam was 

constructed on the Reyran River in France. The height of the dam was 66 meters and crest length 

was 223 meters. The maximum reservoir capacity was 55x10
6
 m

3
. A physical model was built in 

1962 to study the dam-break flow resulting from this catastrophic event. The front arrival times 

and the maximum water depths were measured at 9 observation points of the physical model. 

The location of the observation points and reservoir are shown in figure 9-A. The simulated 

water depth at 700 second and 2000 seconds after the dam failure is shown in figure 9-B and 9-

C. It is observed that the model gives a realistic prediction of the flood depth at the downstream 

area. The flood arrival times computed at the observations points are compared with those 

observed from the physical model. The graph plotted in figure 10 shows that the flood front 

arrival time matches well with the observation data. 

 

CONCLUSIONS 

A two-dimensional numerical model is 

developed to numerically solve shallow water 

equations using Kurganov and Petrova (2007) 

scheme. This scheme is well balanced and 

preserves the positivity of the water depth at the 

discontinuous bottom surface. The simulation 

results from one-dimensional version of the 

model are compared with the analytical solutions 

of transcritical flow with and without a shock. 

The model reproduced the analytical solution 

results up to a very good accuracy. An 

experimental case of a dam break problem taken 

from the literature (Brufau et al. 2002) is 

simulated. It is shown that the flow depths 

computed at various gauge points agree with the 

experimental data. The two-dimensional version 

of the model was applied to simulate the real-life 

case of Malpasset dam break event. It is shown 

that the flood-arrival times computed at nine 

observation points of the physical model 

compare well with the observed data. The results 

of verification validation tests show that the 

model can be applied to simulate real-life dam-

break flood flows.    

A

B

C

Fig.9 Location of observation points

(yellow dots) and simulated water depth 

at 700s and 2000s from the failure of the

Malpasset dam. 
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Fig.10 Comparison of simulated and observed flood front 

arrival time after the malpasset dam break event. 
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