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Last year IAHR published a white paper [1] 

on the ways that water planning and 

management can benefit from advances 

in artificial intelligence (AI) and machine 

learning (ML).  As discussed in this paper, 

the AI and ML applications in water 

management and hydro-environment 

engineering and research have been 

increasing rapidly during the last few 

years. In the present issue of Hydrolink, 

the first of two focusing on AI, four articles 

describe the use of AI and ML methods in 

the operation and management of different types of water systems. 

AI methods and tools have been embraced by many water utilities 

which use them to support the planning, operation and maintenance 

of their distribution networks, improve customer service and predict 

water demand. These utilities often deal with large volumes of data, 

often referred to as “big data”. 

 

The article by Cominola, Monks and Stewart in this issue discusses 

the application of Artificial Neural Networks (ANNs) on data from smart 

water meters to predict water demand and increase operational 

efficiency in water supply systems. In addition, the article points out 

that advance data analytics in combination with high-resolution smart 

meter data can increase customer engagement, proactively handle 

customer complaints and credit management, and provide innovative 

customer products and services. The vision for the future is that 

utilities serving different sectors, such as water, electricity, gas, and 

telecommunications, will be able to identify and exploit synergies in 

order to share big data and use AI techniques to reduce operating 

costs and improve service. 

 

The use of AI in water distribution networks is also the subject of the 

article by Romano, Boatwright, Mounce, Nikoloudi and Kapelan, 

which describes a system that uses a combination of several self-

learning AI techniques and statistical data analysis tools to detect 

events such as pipe bursts and leaks, as well as equipment and other 

failures in the network. The system learns from historical events to 

improve the detection of future events. This system, which was 

developed for United Utilities in northwest England, significantly 

improved the ability to deal with such events.   

 

The use of AI and ML for the management of sewers is described in 

the article by Myrans, Zheng and Kapelan. Artificial Neural Networks 

and Decision Trees have been used to predict sewer collapse / 

blockage rates that are critical for proactive asset management of 

sewer systems. They used data from level, flow and water quality 

sensors, as well as from other sources, such as closed-circuit 

television (CCTV) inspection videos in combination with information 

on the sewer characteristics, environmental conditions and mainte-

nance. ML methods have also been used to detect and predict 

blockages and to develop models that can predict threshold flow 

conditions that lead to self-cleansing conditions in sewers. The article 

presents an example of the use  

of cutting edge ML and computer vision 

techniques for the analysis and classifi-

cation of tens of thousands of CCTV images 

of sewers of South West Water in the United 

Kingdom, aimed at identified broken, 

cracked, deformed or otherwise damaged 

parts of the sewer network. 

 

AI methods have also been used in environ-

mental problems, as illustrated in the article 

by Lee, Guo. Chan, Choi, Wang and Leung, 

which describes the development of a 

system for the real-time forecasting of harmful algal blooms. The 

system uses an ANN model that assimilates high-frequency data to 

predict sea surface temperature (and vertical density stratification) that 

controls the stability of the water column, one of the two conditions 

(the other being the level of nutrients) for the algal population to grow.  

The article also describes the development of a system for the classifi-

cation of high-frequency microalgae image data that can be acquired 

in-situ through an imaging FlowCytobot, an automated, submersible 

equipment that can be continuously deployed underwater for months. 

The classification system employed a random forest algorithm with 

robust image processing and feature selection techniques and a pre-

trained Convolution Neural Network. 

 

Digitalisation is described as a major technology shock of the 21st 

century, which is affecting every aspect of our lives, from digital 

banking and retail to the entertainment industries. Water management 

and hydro-environmental engineering are no exception to that, but are 

perceived to lag behind other sectors in coming fully onboard the 

digitalization train. The articles in this issue of Hydrolink demonstrate 

clearly the potential of the digital technology applications for water 

management and hydro-environment engineering, which have already 

made their impact in practice. The breadth of applications, from water 

efficiency improvements via smart domestic water metering, through 

water and wastewater network anomaly detection, to algal bloom 

management, also demonstrate the level of maturity that has been 

attained in the development and application of hydroinformatics, a 

science field pioneered and championed by IAHR members. From the 

late 1980s and early 1990s, IAHR (together with IWA) was among the 

first professional organizations to recognize the potential and impor-

tance of this new field, by establishing an IAHR/IWA Joint Committee 

on Hydroinformatics, starting the Journal of Hydroinformatics 

(published by IWA) and supporting the organisation of a bi-annual 

conference on Hydroinformatics. Judging by the quality of the papers 

presented in this issue, the water sector will soon catch up with the 

sectors and industries that have gone further on the digital transfor-

mation curve.  

 

 
[1] Savić, D. 2019:  “Artificial Intelligence: How can water planning and management  

benefit from it?”, an IAHR white paper,  
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Since a wastewater network is often expected 

to collect sewers from all different water users 

in a particular urban region, its spatial scale 

as well as the structure complexity has 

typically substantially increased over the past 

few decades as a result of population growth 

and quick urbanization. These physical 

changes combined with system ageing result 

in a number of issues during the sewer 

network management or operation. Typical 

issues include (i) pipe blockages (e.g., sand 

sediments) that can directly affect flow 

capacity of the sewer pipes, causing manhole 

overflows and odour problems, (ii) illicit 

inflows (e.g., toxic discharges from local 

factories, rainwater, and groundwater) that 

may induce functional failures of wastewater 

treatment plants (WWTPs) and consequently 

result in significant contamination of the 

receiving water body, and (iii) leaks of the 

sewers that can directly induce serious 

contamination to the surrounding water 

environments. To solve these problems, 

deploying sensors in the sewer networks can 

be promising, aimed to detect or warn such 

events in an efficient manner.  

Currently, sensors are often only placed at the 

end of a sewer system, monitoring treatment 

processes and discharges into the local 

environment. However, this is slowly 

changing with the introduction of low-cost 

robust sensors, providing the network 

visibility required to inform and improve pipe 

maintenance and rehabilitation. This constant 

stream of data can provide many insights into 

the status of a network, although many of 

these are hard to spot with only human eyes. 

Fortunately, machine learning thrives in the 

age of data, capable of interpreting patterns 

in vast quantities of data that no human being 

could ever hope to identify. These data driven 

techniques have been well demonstrated in 

many other professional sectors including 

telecommunications, gas/oil and finance, 

where inordinate quantities of data are 

produced every day. 

Working with cutting edge AI technology 

provides the wastewater industry with a 

wealth of opportunities for more efficient 

means of practice. The strengths of machine 

learning include the ability to rapidly process 

and highlight trends and patterns in 

enormous volumes of data. From this skillset 

we can achieve the automation of tasks that 

would be extremely time consuming and 

tedious for a trained professional, real time 

analysis of sensor data and effective 

management of complex interrelated 

systems. This article will discuss a number of 

successful applications of machine learning 

within the wastewater sector, providing a 

number of examples, including one with 

more in-depth information.  

Machine Learning in sewer 

Management  

Artificial Intelligence (AI) and Machine 

Learning (ML) in particular are playing an 

increasing role in the management of sewer 

systems, ranging from improved operation 

and maintenance of these systems to their 

long-term planning and asset management. 

Most of AI based solutions are built around 

smart processing of some data and extracting 

the useful information from it[5]. The data often 

comes from various sensors installed in these 

systems (e.g. level, flow and water quality 

sensors) but frequently from other sources 

too (e.g. inspection CCTV videos, digital 

maps, asset data, etc.). The current situation 

in most water and sewer utilities is often 

described as DRIP – Data Reach Information 

Poor. AI/ML enables to solve this problem by 

extracting useful information from large 

amounts of data and using it for improved 

management of sewer systems. 

MACHINE LEARNING APPLICATIONS 
IN SEWER SYSTEMS  
BY JOSH MYRANS, FEIFEI ZHEN AND ZORAN KAPELAN

Given the growing scarcity of clean freshwater sources, the water industry as a whole has largely focused on the 

sustainable distribution and security of potable water. However, the less glamorous task of wastewater management 

is a constant pressure for all, requiring an equally significant investment into research and development. As if to 

further highlight this problem, the average age of sewer pipes in the UK is rapidly increasing, with many pipes still 

in service long past their intended lifespan. This article explores the advances in machine learning which are helping 

to better manage wastewater (or sewer) networks. 

hydrolink  number 4/2020

Dr Josh Myrans is a Data 

Scientist at the University of 

Exeter partnered with the UK 

water company: South West 

Water. He graduated from the 

University of Exeter in 2014 

with a BSc in computer Science 

and Mathematics, before 

continuing to complete his PhD in Water Informatics 

Engineering in 2018 (also at Exeter University). Josh 

has been working within South West Water as a KTP 

associate since November 2018, where he continues 

to develop his postgraduate research for practical 

application within the water industry. 

 

Professor Feifei Zheng, a PhD 

from the University of Adelaide, 

Australia. He is now a 

Professor in Zhejiang University, 

China, with research focus on 

design and operation of water 

infrastructures, 

hydroinformatics, as well as 

decision support systems for various water systems. 

He has led 12 research and consulting projects from 

national natural science foundation of China and 

various water utilities, and has published more than 

50 journal papers in his research area. 

 

Professor Zoran Kapelan is a 

Professor at the Delft University 

of Technology in the 

Netherlands where he is leading 

a research group on urban 

water infrastructure. He also 

holds a part-time professorial 

position at the University of 

Exeter in the UK. He is an IWA Fellow with 30 years 

of research and consulting experience in water 

engineering. His research interests cover a wide 

range of challenges related to water and wastewater 

infrastructure including development of various 

machine learning based technologies. Prof Kapelan 

pioneered the award winning burst/leak detection 

technology that is now used companywide in one of 

the largest UK water utilities resulting in large savings 

via reduced operational costs. He has published over 

150 peer-reviewed journal papers.

Artificial Intelligence



101

Some of the examples of ML methods 

developed for sewer systems include:  

• ML for predicting sewer collapse/blockage 

rates and the remaining asset life.  

ML methods such as Artificial Neural 

Networks and Decision Trees have been 

used to predict sewer collapse / blockage 

rates that are critical for proactive asset 

management of sewer systems [1]. Most of 

these methods work by establishing a link 

between the above variables and potential 

explanatory factors such as sewer charac-

teristics (e.g. pipe material, diameter, slope, 

condition), the environment (e.g. soil type, 

weather) and other factors (e.g. 

maintenance level). This data is used by 

the AI method to effectively learn under 

what combination of conditions sewer 

blockages or collapses occur.  

• Early warning systems for blockages and 

other events in sewer systems. ML 

methods such as advanced Artificial Neural 

Networks and Fuzzy Theory have been 

combined with fault detection and isolation 

methods such as Statistical Process 

Control to detect or even predict blockages 

in sewer systems by raising alarms in near 

real-time [10]. Detection is typically done in 

the case of more instantaneous blockage 

events whereas prediction is usually more 

accurate for the gradually forming 

blockages (e.g. due to siltation or 

fat/oil/grease build up). 

• Flood risk assessment and forecasting. The 

Cellular Automata based methodology has 

been used to predict the extent of flooding 

in the urban environment [6]. When 

compared to more conventional methods, 

these and similar ML-based methods tend 

to be computationally much faster yet 

accurate enough which enables their appli-

cation over much larger geographical areas 

and/or in flood forecasting in the near real-

time context.  

• Augmented Reality (AR) for improved 

visualisation and inspection of sewer 

system assets. AR methods that combine 

Virtual Reality with conventional video 

feeds have been used to enable improved 

visualisation of sewers and other under-

ground assets. This may involve presen-

tation of other data of interest (e.g. asset 

characteristics, current or predicted water 

level at the location, etc.). These methods 

provide great help to technicians doing 

work in the field.  

• Sewer self-cleansing. ML methods such as 

Random Forests have been used to 

develop models that can predict threshold 

flow conditions that lead to self-cleansing 

conditions in sewers [8]. This, in turn, can 

be used for the (re)design of these 

systems that ensures more effective 

sediment transport in sewer systems.  

• Real-time (online) modelling of sewer 

system. Data is crucial to enable the appli-

cations of various ML methods. 

Unfortunately, in many cases system state 

observations (e.g., i.e. flows, water depth 

and other state variables) are scarce. 

Sensor data can be used to enable the 

estimation of sewer system state at 

different locations in the system, especially 

where sensors are not present. For 

example, a research group from Zhejiang 

University in China has successfully 

utilized the water supply data in a novel 

way to drive the real-time simulation of the 

wastewater network [11]. The key feature of 

this modelling approach is the novel use of 

smart demand metering sensors from the 

water supply systems to enable more 

accurate state estimation of sewer 

systems. This, in turn, enables to develop 

real-time sewer models in a more cost-

effective manner.  

• Real-time sewer sensor data validation. 

Bayesian type methods have been 

combined with Neural Networks and 

Interval Mathematics to validate sensor 

data on flows, depths, electro-conductivity) 

in near real-time [2]. 

 

Note that the above examples present only a 

small sample of AI/ML methods and applica-

tions for improved management of sewer 

systems. The next section presents another, 

more detailed example of a successful ML-

based solution for solving a real-world 

challenge in these systems.  

Automated sewer condition 

assessment using CCTV analysis 

Background  

Currently the most common method of 

inspection for sewers is through the use of 

CCTV cameras, which traverse the network 

recording footage of the pipe interiors for 

analysis by trained technicians. These 

surveys are performed regularly and are vital 

to the effective maintenance of the network. 

However, most networks contain tens, if not 

hundreds of thousands of kilometres of 

sewer pipe, resulting in a constant stream of 

CCTV footage which must be manually 

reviewed. The labour-intensive nature of this 

task, makes it both time consuming and 

expensive. Furthermore, surveys are 

commonly mislabelled due to subjective fault 

codes and pure human error. With some 

cameras footage can instead be labelled as it 

is collected, making the process more 

efficient. However, the accompanying 

analysis is often even worse, with technicians 

now performing multiple jobs at once, 

working in the elements and often next to a 

busy road.  

Fortunately, AI can begin to improve upon 

this vital practice, automating elements of the 

analysis procedure in real time, so as to take 

the pressure off of the surveyor. Not only 

should this improve the speed and efficiency 

of a survey’s collection, but dramatically 

reduce the cost and improve the uniformity of 

analysis. Removing the pressure of 

annotation from the surveyors enables them 

to concentrate on capturing high quality 

footage, only requiring additional input for the 

annotation of the most obscure faults.  

AI-based methodology 

To achieve automated fault detection and 

classification, a number of cutting edge 

machine learning and computer vision 

techniques are applied, namely random 

forests [3] and HOG (Histogram of Oriented 

Gradients) features [4]. In combination with a 

large dataset of labelled CCTV images these 
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Figure 1. Flowchart depicting the process of applying automated labelling to raw images.
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tools can first identify the presence of faults 

within an image, continuing to predict each 

individual fault type. This is done according to 

current industry standards, so as to produce 

a simplified report similar to that already used 

by the industry. Given the expedient and 

transportable nature of these techniques, the 

entire process can be performed in real time 

on site, in an office or on a server.  

The procedure can effectively be broken 

down in to five stages: ‘Frame Extraction & 

Pre-processing’, ‘Feature Extraction’, 

‘Detection’, ‘Classification’ and if applied to 

continuous footage ‘Smoothing’ [9]. The tasks 

associated with each stage are presented in 

the process diagram shown in Figure 1 

require the collection of the image from the 

source video before re-sizing the image to 

match a uniform resolution and converting to 

greyscale. These two steps bring the data in 

line with the training set and eliminate 

unnecessary complexity from the image. This 

complexity is further reduced during the 

‘Feature Extraction’ stage, where the image is 

reduced to a much smaller string of values 

representing its key components, this is done 

using HOG feature description. The next 

stage ‘Detection’ passes the feature 

descriptor to a single pre-trained random 

forest, which predicts the probability of the 

original frame containing a fault. If this is 

below a pre-determined threshold, the image 

is labelled as normal and the cycle restarts on 

a fresh image, otherwise a fault has been 

identified.  

Once a frame is suspected to contain a fault 

the ‘Classification’ stage can occur, in which 

the feature descriptor is passed to a bank of 

random forests. Each of these random forests 

predicts the probability of the image 

containing a single fault type, i.e. that there is 

a single forest for cracks, a single forest for 

root intrusions etc. By combining and evalu-

ating these predictions in a pairwise manner, 

a list of the most probable fault types can be 

identified for this image. Finally, if the image 

has been extracted from a continuous video 

source, additional information can be gained 

by comparing predictions to those of neigh-

bouring frames. This is achieved during the 

‘Smoothing’ stage, which applies a median 

filter among other techniques to process the 

entire sequence of predictions throughout a 

video. Amending predictions in this way 

massively reduces the impact of noise and 

eliminates many isolated misclassifications, 

producing a list of predictions much more in 

line with a surveyor’s expectations. 

 

It should be noted that all random forest 

classifiers will require training on a labelled 

dataset of images, processed using exactly 

the same ‘Frame Extraction & Pre-

processing’ and ‘Feature Extraction’ stages 

as those intended for use on the video. This 

training sees each tree in a forest grown by 

randomly selecting features and splitting the 

training dataset according to their pre-

assigned labels. 

Results  

This automated fault analysis has been 

performed in collaboration with the UK water 

company South West Water (SWW). This has 

granted access to a library of over 60,000 

images, around half of which contained at 

least one labelled fault. In order to demon-

strate the AI technology all these images are 

utilised via 25-fold cross validation [7]. This 

system ensures that training and testing 

datasets are not mixed, whilst making the 

most of the available data. Furthermore, the 

data has been arranged so as no images 

from the same pipe are present in both a 

training and testing fold. 

When the above approach was applied to the 

full dataset of labelled images an accuracy of 

88% with a true positive rate (TPR) of 0.98 

and a false positive rate of 0.24 was 

achieved. This means that the methodology 

correctly identified the status of the pipe 88% 

of the time, whether that be normal or faulty. 

Additionally, from the misidentifications, only 

2% were missed defects and 24% were 

mislabelled normal pipe. By modifying the 

threshold on which an image is classified as 

faulty, the ratio between TPR and FPR can 

also be tweaked, as demonstrated by the 

receiver operating characteristic cure shown 

in Figure 2. 

Applying the process of classification to 

detected faults, we must now acknowledge 

that a single image can contain multiple fault 

types. To do so, the methodology’s results are 

evaluated using intersection over union (IoU), 

which measures the similarity of the predicted 

list of fault types with the true list of fault labels 

for a given image. This is a much more 

challenging task, assuming an image contains 

only a single fault, guesswork alone will only 

achieve an IoU of 6% (as we are using 18 

different labels).  

Although only a prototype, the methodology 

performs well, achieving an IoU of 35% and an 

accuracy on the primary fault of 70%. This 

performance is constantly improving, with the 

increased availability of high-quality labelled 

data. A handful of examples are shown below 

in Figure 3. 

 

It is also worth noting that these results are 

achieved using the labels assigned by the 

human observers which we know can be 
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Figure 2. Receiver operator characteristic curve, 
demonstrating the range of achievable true 
(TPR) and false (FPR) positive rates. The dashed 
line represents the TPR and FPR for a 50:50 
guess. Finally, the AUC (area under curve) is a 
measure of the methods overall performance.

Figure 3. Example images and the classifications generated by the machine learning algorithm.
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inconsistent. A recent quality survey of 5% of 

the dataset found more than 30% of the labels 

to be incorrect, and 10% of them to be uninter-

pretable. Anecdotally this is good for the 

industry in general, however this does not 

bode well for the performance of data driven 

methodologies such as this.  

This first step in the application of AI to the 

problem offers a great option for screening 

vast amounts of CCTV footage. It is much 

quicker than human analysis and can be 

performed outside of work hours in a 

massively parallel manner. Given its current 

role as a decision support tool, it can assist 

with operational efficiency, but continued 

development and increased data quality 

provide great prospects. 

 

Conclusion  

This article addresses the use of Artificial 

Intelligence and machine learning in particular 

in the daily management of sewer systems. 

Several examples of such applications are 

provided including the technology for 

automated detection of faults in sewers.  

This technology is a good example of how 

machine learning and AI can be influencing 

the wastewater sector. Current practices rely 

on the slow and expensive, human based 

coding of CCTV sewer surveys that is not 

always fully reliable. The machine learning 

based technology enables the automation of 

some of that process, accurately and more 

consistently identifying the presence of faults 

whilst providing a good estimate of potential 

fault types. Therefore, the AI-based solution 

has a great potential to help technicians do 

their job more effectively in the future whilst 

reducing related costs. 

 

Based on the above and other examples 

presented in the paper it is clear that the future 

of AI and machine learning in the wastewater 

sector is bright and that the full potential of 

these methods is yet to be fully explored. n 
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Within the UK and worldwide water industry, 

pipe bursts/leaks and other similar failure 

events are recognised as high priority issues. 

These events cause economic losses to the 

water companies, represent an environmental 

issue and have a negative impact on the water 

companies’ operational performance, customer 

service and reputation. Water companies 

currently allocate a vast amount of resources to 

manage these events, but with limited success. 

The largest barriers to progress in the UK are 

the complexity of Water Distribution Systems 

(WDSs), ageing water supply infrastructure and 

unknown/unknowable condition of assets 

which make these events impossible to 

eliminate/avoid completely. In their day-to-day 

operations, water companies are tasked with 

operating their WDSs optimally to minimise 

costs and meet the required standards of 

service and, therefore, also managing contin-

gency situations when events occur. In this 

scenario, an efficient event management 

process provides opportunities to improve the 

situation (e.g. by reducing the number/ duration 

of supply interruptions, conserving water and 

reducing the overall carbon footprint). 

 

Event management in WDSs can be divided 

into three principal stages[1]: 1) event detection, 

2) event location and 3) event response. The 

first two stages involve detecting and localising 

the event in the network and raising the 

relevant alarm. The third stage is associated 

with the decisions and actions required to 

reduce and, ultimately, eliminate the negative 

impact of the event on the water company and 

its customers.  

In the last decade the importance of a 

proactive approach to event management, 

supported by near real-time assets monitoring, 

has become apparent as water companies in 

the UK have had to deal with tightening 

regulatory and budgetary constraints. 

Instrumentation, data gathering and communi-

cation technologies have also improved over 

the years and become less expensive to own 

and operate. As a result, a vast array of 

pressure and flow data originating from the 

many District Metered Areas (DMAs) that 

typically form a UK WDS is now frequently 

available and expected to quickly grow over 

time (especially data from pressure sensors, 

because of their lower cost and easier instal-

lation and maintenance when compared to 

flow sensors). The flow is nowadays typically 

measured at the DMA entry and exit points to 

allow the volume of water consumed in each 

DMA to be tracked over time and pressure is 

measured at a limited number of DMA critical 

monitoring points to ensure adequate pressure 

at the customers’ taps.  

 

The above monitored data can give insights 

into the operation and current/future status of 

WDSs (including pipe bursts/leaks and other 

similar events), especially when coupled with 

suitable data driven techniques. Advances in 

these techniques utilising advanced statistical 

tools, Machine Learning (ML) and Artificial 

Intelligence (AI) have led to the development 

of pioneering techniques that automatically 

manage and analyse increasing numbers of 

near real-time data streams aiming at enabling 

the detection[2-6], approximate location[7-9] and 

response[10,11] to pipe bursts/leaks and other 

similar network events. These techniques are 

very promising for alerting the water company 

personnel as soon as an event occurs, guide 

them to the problem area (i.e. for narrowing 

down the event search area within a DMA) and 

for supporting the control room operators in 

the identification of a suitable strategy to 

respond to those events in near real-time. This 

is mainly because they automate the mundane 

tasks involved in the data analysis process, 

provide more consistent analysis of the data 

and because they can efficiently deal with the 

vast amount of, and often imperfect, sensor 

data collected by modern supervisory control 

and data acquisition (SCADA) systems and 

extract information useful in making reliable 

operational decisions. 

 

United Utilities has had a longstanding 

relationship with some of the, water systems 

engineering and hydroinformatics, leading UK 

Universities and in recent years has initiated a 

number of collaborative innovation projects 

with them. In some cases, these collaborations 

have taken advantage of programmes such as 

STREAM (the Industrial Doctoral Centre for the 

Water Sector - http://www.stream-idc.net) and 

WISE (Water Informatics: Science and 

Engineering Centre for Doctoral Training - 

http://wisecdt.org.uk) that are partially funded 

by the Engineering and Physical Sciences 

Research Council (EPSRC) and involve having 

a student based at United Utilities’ headquarter 

pursuing an Engineering Doctorate (EngD) or 

Doctor of Philosophy (PhD) degree for indus-

trially relevant research. These programmes 
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are therefore also valuable as they enable the 

training of people capable of working at the 

interface of traditionally separate informatics, 

science and engineering disciplines and who 

understand both data science and the 

complexities of water challenges.  

 

This article presents three complementary 

examples of the research work carried out in 

collaboration with the University of Exeter and 

the University of Sheffield to improve event 

management practices. Specifically, the first 

example focusses on event detection, the 

second example focusses on approximate 

event location and the third example focusses 

on post event response planning. These 

examples show how United Utilities is pursuing 

a fully managed life-cycle of events by taking a 

holistic approach to addressing the challenge 

of optimising the decision-making process of 

different teams in order to achieve the required 

level of service and the best utilisation of the 

assets at a minimum cost with an effective 

response time to all events. Indeed, a compre-

hensive, efficient and effective event 

management solution is key to such an 

optimisation challenge, which encompasses 

cross-organizational functions and works 

across different management levels. 

 

Event detection 

The first objective of a comprehensive event 

management solution is to provide near real-

time, actionable event alerts such as, pipe 

bursts/leaks, pressure/flow anomalies, and 

sensor faults / telemetry problems. This 

enables water companies to become aware of 

all the events occurring in a timely fashion and 

better manage the situation, armed with 

valuable insights about these events (e.g. type, 

size, indication of their timing, etc.). This 

section briefly presents an AI-based system[4,5] 

that not only detects pipe bursts/leaks but also 

equipment and other failures in WDSs. This 

section additionally provides a couple of 

examples of the significant impact that this 

system has had on United Utilities’ ability to 

deal with events in its WDS.  

 

The detection system briefly presented here 

makes synergistic use of several self-learning 

AI techniques and statistical data analysis 

tools. In the detection system the automatic 

processing of pressure and flow data 

communicated by the DMA sensors in near 

real-time starts with using advanced 

techniques for ensuring that the data is 

cleansed and erroneous/missing data 

removed and/or infilled (e.g. wavelets are used 

for removing noise from the measured flow 

and especially pressure signals). The 

detection system then makes use of the pre-

processed data to forecast the signal values in 

the near future using Artificial Neural Networks 

(ANNs). These values are then compared with 

incoming observations to collect different 

pieces of evidence about the failure event 

taking place. Statistical Process Control (SPC) 

techniques are also used for the analysis of the 

failure event -induced pressure/flow variations 

and gather additional pieces of evidence about 

the event occurring. The evidence collected 

this way is then processed using Bayesian 

Networks (BNs). BNs enable reasoning under 

uncertainty and simultaneously (synergisti-

cally) analysing multiple event occurrence 

evidence and multiple pressure/flow signals at 

the DMA level to estimate the likelihood of the 

event occurrence and raise corresponding 

detection alarms. The system also offers the 

capability to effectively learn from historical 

events to improve the detection of the future 

ones[5] (albeit it does not need information 

about historical events to start making reliable 

event detections when first applied to a 

DMA/WDS). It does not make use of a 

hydraulic or any other simulation model of the 

analysed WDS - i.e. it works solely by 

extracting useful information from sensor 

signals where bursts and other events leave 

their imprints (i.e. deviations from normal 

pressure and flows signals). This fact makes 

the detection system robust and scalable as it 

enables data to be processed in near real-time 

(i.e. within a 15 minute time window). 

 

Elements of the aforementioned detection 

system, developed initially as part of a 

research at the University of Exeter, have been 

built into United Utilities’ new Event 

Recognition in the Water Network (ERWAN) 

system. The ERWAN system’s development 

carried out in United Utilities also benefitted by 

the following additional technology enhance-

ments: a) development of a new methodology 

to add the capability to handle alarms from 

cascading DMAs[12], b) development of a new 

methodology to add the capability to rank 

alarms (based on a risk framework that 

accounts for factors such as mains length, 

material, number of industrial and key 

customers in a particular area of the water 

network), and c) development of a new 

methodology to add the capability to 

determine the likely root cause of an event. 

These enhancements have provided United 

Utilities additional, helpful event management 

tools. The ERWAN system has been used 

operationally companywide since 2015. It 

processes data from over 7,500 pressure and 

flow sensors every 15 minutes and detects 

events such as pipe bursts and related leaks in 
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a timely and reliable manner - i.e. shortly after 

their occurrence and with high true and low 

false alarm rates. 

 

Compared to previous company practice the 

ERWAN system has enabled United Utilities to 

detect pipe bursts and other failure events 

much more quickly. As an example, on the 31st 

of May 2016 there was a catastrophic failure of 

a 450 mm diameter main in the town of 

Formby which affected 10,600 properties. 

Using the ERWAN system the burst was ident-

ified more than three hours before the 

customers reported any disruption. This early 

event detection ensured planned responses 

were therefore deployed quicker. This also 

meant that customers were disrupted less as 

Alternative Supply Vehicles (ASVs – i.e. 

emergency tankers injecting water into the 

network) were deployed while the main was 

repaired. United Utilities estimates that this 

proactive response reduced interruptions to 

supply by 42%. Additionally, the ERWAN 

system has also demonstrated the potential to 

proactively prevent failures in some cases, e.g. 

via timely detection of faulty Pressure 

Reducing Valves (PRVs) often resulting in a 

follow-on pipe burst event(s). As an example of 

this situation, Figure 1 shows the ERWAN alert 

that was generated on the 9th of September 

2019, indicating that the pressure had 

increased in a DMA. This alert prompted the 

Early Detection Team (EDT) to investigate the 

issue and immediately schedule a job for a 

minor PRV service as the automatically ident-

ified root cause suggested a fault of that asset. 

During that site visit, it was identified that the 

PRV had failed ‘open’. Further work was then 

scheduled for a network resource to carry out 

a major service on the asset. Proactively ident-

ifying that issue with the PRV may have 

prevented a pipe burst in the relevant 

pressure-controlled DMAs (especially 

considering the observed significant pressure 

increase). The potential impact of such a 

failure would have been in excess of £900k in 

Customer supply Minutes Lost (CML) penalty 

cost alone, with the ASV fleet and resource 

utilisation costs and the disruption to the 

customers adding to that. 

 

The use of the ERWAN system has resulted in 

major operational cost savings (due to the 

reduced number of pipe bursts/leaks needed 

to detect and repair) to date and contributed to 

United Utilities’ CML, leakage and Customer 

Measure of Experience (C-Mex) performance 

(due to the avoidance or reduction in issues 

such as poor water pressure, no water, or poor 

water quality - therefore improving the service 

to over 7 million people and 200,000 business 

customers). It has also reduced asset 

maintenance costs by informing the need for 

maintenance prior to asset failure, and 

avoiding unneeded maintenance visits. 

Operational costs are also reduced as it 

enables problems to be dealt with proactively 

which is much less expensive than dealing 

with asset and service failures.  

 

Furthermore, the success of the ERWAN 

system has been important to influencing 

change in the ways of working (e.g. making 

better use of data analytics in the daily 

operation) and the establishment of the EDT in 

United Utilities’ Integrated Control Centre 

(ICC). The ICC is the hub of United Utilities’ 

operations where a team of highly trained 

system operators watch over the network 24/7. 

They use the information and insight provided 

by ERWAN and other monitoring systems to 

perform complex event diagnosis and, by 

making intelligent decisions in the centre, 

prevent abortive work for field staff and resolve 

disruption for customers faster. Increasingly, 

through control and automation, the ICC can 

intervene remotely to resolve issues faster and 

more efficiently. This hub is one of the corner-

stones of United Utilities’ AMP7 (Asset 

Management Plan five-year time period used 

in the English and Welsh water industry) 

Systems Thinking strategy and will catalyse 

future benefits. 

 

Event location 

After it is established that an event has 

occurred in a DMA by using automated 

systems such ERWAN, the next challenge in 

event management, especially when pipe 

burst/leak events are considered, is to 

determine the exact event location. Typically, 

network resources are deployed to DMAs 

containing new burst/leak events so that they 

can be precisely located (or “pinpointed”) and 

then repaired. There are many cases, such as 

when the size of a burst/leak event is small, 

where their location is not readily apparent. In 

these cases, resource intensive pinpointing 

activities such as acoustic surveys are carried 

out so that each of the pipes in a DMA can be 

examined to find the exact burst/leak location. 

It can take several days to examine all the 

pipes in a DMA as, in United Utilities for 

example, the typical total length of mains is 

about 13 km. This represents a significant 

investment of labour, equipment and 

operational expenditure when this approach is 

used across an entire WDS. In this scenario, a 

methodology that enables narrowing down the 

area that must be searched within a DMA (i.e. 

approximately locate the event) would be 

greatly beneficial for water companies. 

 

This section briefly presents the details of a 

novel methodological framework[9] for the 

approximate burst/leak location that is being 

developed as part of a collaboration with the 

University of Sheffield and one example of its 

application to a burst event simulated by the 

controlled opening of a fire hydrant in a United 

Utilities’ DMA. This framework assumes that an 

increased number of pressure sensors can be 

deployed in the DMA being analysed. Due to 

the financial constraints placed on water 

companies and the costs of the additional 

instrumentation required, however, it is 

desirable to limit the number of additional 

instruments to be deployed. Therefore, the 

methodological framework being developed 

also encompasses a method for selecting the 

optimal number and location of sensors to be 

deployed in a particular DMA to achieve a 

desired level of event location performance. 

This tight coupling between optimal sensor 

placement and approximate burst/leak 

location is of particular importance as an 

optimal sensor placement strategy depends 
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Figure 1. ERWAN system alert indicating a sudden pressure increase, likely due to a faulty pressure 
reducing valve.
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on the method that is used to locate the 

potential bursts/leaks and the efficiency of the 

burst/leak location depends on the sensor 

placement. 

 

The novel methodological framework is based 

upon a Spatially Constrained version of the 

Inverse Distance Weighted (SC-IDW) 

geospatial interpolation technique[13]. 

Generally speaking, geostatistical techniques 

have the potential to limit the number of instru-

ments which are deployed in a DMA as they 

can estimate the values of parameters at 

locations which are not measured based on 

the measurements from nearby sensors and, 

hence, to enable higher burst/leak location 

performance to be achieved for a given 

number of sensors[14]. Bearing this in mind, the 

use of SC-IDW enables the overcoming of the 

obvious limitation of traditional geostatistical 

techniques of using the Euclidean distance 

instead of the pipe length between the 

estimation locations and the instrument 

locations (i.e. not accounting for the actual 

network layout of a DMA). The framework 

makes also use of a hydraulic model and of 

the GALAXY multi-objective evolutionary 

algorithm[15] (i.e. a nature inspired AI method-

ology) to identify a Pareto front of optimal 

sensor configurations which simultaneously 

minimise the required number of pressure 

sensors (cost) and the average size of the 

areas to be searched (best level of burst/leak 

approximate location accuracy). 

 

The first step for solving the optimal sensor 

placement problem involves hydraulic 

modelling of bursts/leaks at all nodes and 

building a sensitivity matrix. The valid range of 

burst/leak event sizes to be modelled is deter-

mined for each DMA by considering the 

accuracy of the pressure instruments being 

used (to find the smallest burst/leak event 

sizes) and a maximum allowable increase in 

flow (to determine the largest burst/leak event 

sizes for each burst/leak event location). The 

aforementioned sensitivity matrix is based on 

the changes in pressure for each potential 

sensor location, which are calculated by 

comparing the pressure in the hydraulic model 

with no burst/leak modelled with the pressure 

in the model with each burst/leak modelled. 

Additional computations are then conducted 

aimed at reducing the search space of the 

optimisation (i.e. grouping together events that 

cannot be distinguished given the pressure 

instruments’ accuracy). Following this, the 

values of the pressure changes in the 

‘grouped’ sensitivity matrix are used for 

building various interpolation surfaces during 

the optimisation step, which aims at 

maximising (using an objective function also 

based on the SC-IDW interpolation technique 

and a threshold that defines the burst/leak 

search area on an interpolation surface) the 

location performance of each configuration of 

sensors for every burst/leak being modelled. 

After determining the optimal sensors configur-

ation by looking at the results of the 

optimisation step (and after deploying the 

pressure sensors in the field), the SC-IDW 

interpolation technique can be used 

operationally to calculate the approximate 

location of an actual burst/leak occurring in a 

DMA (once a burst/leak has been detected or 

is suspected) based on the actual changes 

(from ‘normal’) in pressures measured at the 

sensor locations. The calculated search area is 

then highlighted on a map of the DMA, which 

is passed to network resources to aid with 

pinpointing the burst/leak event.  

 

Figure 2 shows an example of such a map 

generated for the approximate location of a 

burst event simulated on the 14th of February 

2020 by the controlled opening of a fire 

hydrant (so that the exact size and start time 

are known) in one of United Utilities’ DMAs. 

This DMA contains approximately 2,100 

properties and 25 km of mains. A PRV controls 

the pressure in one section of the DMA 

because of the highly variable elevation in the 

area. The fire hydrant opening was adjusted to 

achieve a flow rate of 0.6 l/s which is equiv-

alent to approximately 6% of the average flow 

rate into the DMA calculated over a normal 

week. In Figure 2, the locations of the three 

optimally placed pressure sensors (deter-

mined by considering a total of 934 potential 

burst/leak event scenarios across 7 burst/leak 

event sizes) are shown as blue dots. The 

location of the opened fire hydrant is shown as 

a green dot. The pipes and nodes within the 

calculated search area are coloured in red. It 

can be noticed that this event was successfully 

approximately located within a search area 

that is less than a quarter of the total length of 

mains in the DMA. This example demonstrates 

the potential of the methodological framework 

being developed to allow successful 

approximate location of relatively small 

burst/leak events by using only a few 

additional optimally placed pressure sensors. 

This said, it is expected that the search areas 

can be further reduced by deploying more 

sensors. Nevertheless, by reducing the search 

area to a sub-region within a DMA, significant 

reductions in the time taken to pinpoint 

burst/leak events can be achieved (e.g. by ¾ 

as exemplified here). 
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Figure 2. Example of a successful approximate 
burst location.

Figure 3. New response methodology’s flowchart.

Artificial Intelligence



108

Post event response  

After successful detection and location of 

events, the next considerable challenge for 

water companies during the event 

management process is the identification of a 

suitable strategy to respond to those events in 

near real-time. This section briefly presents the 

details of a novel methodology[11] for the 

response to water network events that is being 

developed as part of a collaboration with the 

University of Exeter and the initial, promising 

results obtained from its application on a semi-

real case study. 

 

The novel event response methodology 

presented here aims at improving United 

Utilities’ current event response practice by 

supporting/guiding the ICC operators in the 

identification of low end-impact (i.e. the total 

impact after implementation of the response 

solution) and low cost response solutions. It 

consists of the following main steps: (1) robust 

initial event impact assessment (over a set 

horizon), (2) identification of a suitable isolation 

plan, (3) human-based, but computer-aided, 

identification of a response solution (i.e. 

manual solutions proposed by an operator), 

(4) automatic identification of a response 

solution generated using Genetic Algorithms 

(GAs) optimisation, and (5) selection of the 

response solution to be implemented in the 

field. Note that these five steps do not need to 

be necessarily carried out in a sequential 

manner. The following three-stage routine is 

performed in each of the aforementioned step: 

Stage 1) involves obtaining various operators’ 

inputs (e.g. impact horizon, earliest time the 

repair can be initiated, etc.), Stage 2) involves 

carrying out hydraulic simulations to assess 

the end-impact and cost of each solution, and 

Stage 3) involves visualising the calculated 

end-impact and computing the cost of each 

solution. The new response methodology’s 

steps are shown as a flowchart in Figure 3. 

 

The above event response methodology is 

implemented in the Interactive Response 

Planning Tool (IRPT), which has been 

developed in Matlab. In the IRPT, the hydraulic 

simulations are carried out by using 

EPANET2[16] and pressure-driven network 

modelling based on the methodology 

developed by Paez et al.[17]. The Non-

Dominated Sorting Genetic Algorithm II or 

NSGA II[18] (i.e. another AI tool/technique) is 

used to solve the multi-objective optimisation 

problem (albeit work has also been done to 

develop and use a new heuristic method that 

offers the advantage of significantly reducing 

the time taken to find near-optimal response 

solutions). The IRPT also links to the Quantum 

Geographic Information System (QGIS) 

software to visualise the spatial distribution of 

end-impact on a suitable map of the analysed 

WDS.  

 

The IRPT facilitates an operator’s decision-

making by considering/providing: (i) structured 

yet flexible approach that supports and guides 

the operator throughout the entire response 

process, whilst allowing the operator to have a 

final say, (ii) novel interaction with the operator 

in near real-time via the simple IRPT graphical 

user interface (e.g. allowing operators to 

propose different ‘what-if’ scenarios without 

being hydraulic experts), (iii) provision of 

automatically generated advices (e.g. optimal 

response solutions and assessed end-

impacts/costs), (iv) improved impact 

assessment using realistic (i.e. based on real-

life metrics used by water utilities) impact 

indicators that cover different aspects of the 

event, which are consistently calculated for 

every considered response intervention, (v) 

capability to select multiple common 

operational intervention types such as 

rezoning and water injection (based on 

operational costs, availability of different types 

of interventions, etc.), and (vi) capability to 

easily compare different response solutions by 

visualising, inter alia, the impact coverage 

(using maps) and cost of different solutions. As 

a result, low end-impact and cost solutions 

can be effectively identified. This has multiple 

benefits for a water company. The most 

important benefit is reducing the impact on the 

customers, which can be costly in many ways 

(financially but also in terms of reputation, 

etc.). Other benefits related to costs include: a) 

operational savings in the long-term as many 

events may occur each year - although the 

cost of a single response solution may be 

small (e.g. hundreds of pounds), and b) less 

time spent on site for opening valves or 

injecting water - this could benefit water 

companies in terms of more efficient 

scheduling of the network resources’ activities. 

 

The IRPT is illustrated here on a semi-real case 

study to demonstrate the benefit of a response 

solution identified through interaction with the 

IRPT (hereafter referred to as the ‘new method-

ology response’) by comparing it to a 

response solution based on typical water 

companies’ current practice (hereafter referred 

to as the ‘current practice response’). Note that 

the case study under scrutiny is referred to 

here as “semi-real” because, despite being 

based on a real system and event, several 

simplifications were made with regard to the 

actual response actions taken by the ICC 

operator in real-life. This is primarily because 

the IRPT is still in development and did not yet 

offer the capability of exactly replicating those 

real-life response actions. Bearing this in mind, 

note that the used ‘current practice response’ 

label should also be construed accordingly. 

The considered event was a shutdown of a 

Water Treatment Work (WTW) (serving multiple 

DMAs and approximately 100,000 customers) 

due to a burst on a main within the WTW. The 

shutdown resulted in intermittent supply and 

low pressure to some customers. The WTW 

remained shut until the quality of the water 

leaving the WTW could be assured to meet the 

required standards. United Utilities mobilised 

ASVs to the area, which injected water at 

various points in the affected area and at 

different times during the incident.  

 

Furthermore, United Utilities implemented a 

number of network changes (i.e. rezoning) in 

order to minimize customer end-impact. 

Bottled water was delivered directly to priority 

services and sensitive customers. The repair 

was completed 24 hours after the shutdown. 

Table 1 summarises the result obtained on this 

case study in terms of the total end-impact and 

the cost calculated by the IRPT for the ‘new 

methodology response’, ‘current practice 

response’ and ‘no response’ (i.e. initial 

condition of the system after the event) 

scenarios. For each of those scenarios, Table 1 

also presents the calculated values of the 

various impact indicators (which make up the 

total end-impact), namely: a) CML, b) Average 

Minutes Low Pressure (AMLP), c) 
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                                          CML             AMLP           UW           DRI         Cost        Total end- 

                                   (mins/cust)   (mins/cust)       (m3)           (-)             (£)        impact (%) 
                                                                                                                                                  

No response                       4                   3.6              3330           14               0                11.1 
 

Current practice  

response                            2.1                   2               1825          273           894               6.5 

 

New methodology  

response                            1.6                   2               1475           92             55                 5 

Table 1. Total end-impact, cost and values of the considered impact indicators for the ‘no response’, 
‘current practice response’, and ‘new methodology response’.

continued on page 119
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In subtropical eutrophic coastal waters 

around Hong Kong and the region, the 

explosive growth of phytoplankton (algal 

blooms) is often observed. These blooms 

can lead to water discoloration (e.g. red 

tides), severe dissolved oxygen depletion, 

and shellfish poisoning – resulting in beach 

closures and massive fish kills [1]. For 

example, in April 1998, a devastating red tide 

resulted in the worst fish kill in Hong Kong’s 

history - over 80% (3,400 tonnes) of fish 

stocks in Hong Kong were wiped out, with an 

estimated loss of over USD 40 million. 

Despite significant upgrades of the water 

pollution control infrastructure over the past 

two decades, massive harmful algal blooms 

(HAB) still recur and present formidable 

challenges to fisheries management (Figure 

1). Worldwide, HAB is an important problem 

related to the global challenges of water and 

food security. The onset of a HAB is also 

notoriously difficult to predict.  

 

Traditional approaches of red tide monitoring 

and fisheries management rely on field 

sampling and laboratory analysis of chloro-

phyll-a concentration (Chl-a) - an indicator of 

algal biomass - and manual cell counting and 

species identification, which are resources 

intensive and time consuming. With the 

increasing availability of real time water 

quality sensors, the development of HAB 

early warning systems has become a 

practical possibility. In this article, an 

overview of recent research on the use of 

remotely sensed data in a HAB early warning 

system is described. Two aspects of the 

system are presented: (i) daily forecast of 

algal bloom risk based on prediction of 

vertical density gradients using in-situ real 

time (10 min sampling period) water quality 

data; and (ii) use of machine learning to 

automatically detect target HAB species from 

images (30,000 numbers/hour) monitored by 

a submerged Imaging Flow Cytometer at a 

marine fish farm. Further details can be found 

in the cited references.  

Real time forecasting of algal blooms 

using real time water quality data  

The occurrence of HABs in eutrophic coastal 

waters depends on the complex interaction of 

physical and biological factors that include: 

nutrient supply (e.g. inorganic nitrogen and 

phosphorus), algal growth rate, hydro-meteo-

rological conditions (e.g. solar radiation, 

REAL TIME FORECASTING AND AUTOMATIC 
SPECIES CLASSIFICATION OF HARMFUL ALGAL 
BLOOMS (HAB) FOR FISHERIES MANAGEMENT  
BY JOSEPH H. W. LEE, J. H. GUO, TREE S. N. CHAN, DAVID K. W. CHOI, W. P. WANG AND  
KENNETH M. Y. LEUNG

Fish is an important source of animal protein in the diet of the Asian population and 60 percent of this is from 

aquaculture. Asia contributes about 90 per cent of the global aquaculture production and has become the most 

important supplier to the global seafood trade [7]. It is expected that population growth and economic development 

will lead to increasing fish consumption and global demand for food fish. In Hong Kong, marine fish culture 

(mariculture) has been a major supplier of high value fish including groupers, snappers and sea breams. Local 

mariculture is carried out in cages suspended by floating fish farm rafts in designated fish culture zones (FCZ) which 

are typically weakly-flushed tidal inlets. 

Figure 1. Typical marine fish culture zone located in a coastal tidal inlet and examples of coastal algal 
blooms and fish kills. 
(a) Examples of coastal algal blooms.                                                          

(b) Typical marine fish culture zone and massive fish kill in April 1998.
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Recently we have developed a daily algal 

bloom risk forecast system based on: (i) a 

vertical stability theory; and (ii) a data-driven 

artificial neural network (ANN) model that 

assimilates high frequency data to predict sea 

surface temperature (SST) and vertical density 

stratification on a daily basis. The model does 

not rely on past chlorophyll measurements 

and has been validated against extensive field 

data.  

 

Field observations show that a stable water 

column is necessary for an algal bloom to 

form. In weakly flushed tidal inlets, it can be 

shown that the vertical turbulent diffusivity, E, 

must be less than a turbulence threshold 

defined by the net algal growth rate and the 

euphotic depth – with E<Ec=4μl2/π2, where 

μ= net algal growth rate and l=euphotic 

depth (proportional to Secchi depth) [13], [14]. If 

the vertical mixing exceeds the critical turbu-

lence threshold, too much algae will be mixed 

out of the photic zone into the non-productive 

lower layer, and a bloom cannot be formed. 

The vertical stability criterion has been verified 

against 191 algal blooms over the past three 

decades [8].  

 

In addition to the water column stability 

condition, a nutrient threshold, i.e. total 

inorganic nitrogen > 120 μg/L and orthophos-

phate > 18 μg/L should be met. If both the 

stability and nutrient criteria are fulfilled, there 

is no restriction for the algal population to 

grow in either physical or biological aspects 
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Figure 2. Conceptual framework for a harmful algal bloom (HAB) early warning system for prognostic 
forecast of algal bloom. 

Figure 3. Daily algal bloom risk forecast framework as a function of 
hydro-meteorological and water quality data expressed in terms of a 
hydrodynamic stability risk factor and nutrient availability for the Yim 
Tin Tsai (YTT) Fish Culture Zone, Tolo Harbour, Hong Kong. 

Figure 4. Artificial Neural Network (ANN) for daily prediction of sea surface 
temperature (SST) and vertical temperature difference (ΔTz); the uppermost 
neuron in the input layer shows the most current real time measurement (when 
data is available). Time averages over several days indicated by over bar.

rainfall, air and water temperature, wind), tidal 

currents, water column transparency (light 

extinction) and turbulent mixing which is 

strongly affected by density stratification. The 

impacts of HAB on water quality also depend 

on algal and dissolved oxygen dynamics, and 

nutrient recycling. An early warning system of 

HAB occurrence (even with a lead time of 1-2 

days) can benefit fisheries management and 

emergency response greatly.  

Building on field observations of algal blooms, 

the use of data-driven methods such as 

Artificial Neural Networks (ANN) to predict 

coastal algal blooms has been attempted [2], [9]. 

However, the measurement frequency (typically 

monthly or biweekly) of most water quality 

monitoring protocols was insufficient to capture 

the highly dynamic variation of hydrodynamics 

and water quality, and in particular algal 

biomass. In recent years, HAB early warning 

systems have increasingly been reported [5], [6], 

[10]. Nevertheless, the development of field 

validated HAB forecast systems remains a 

formidable challenge.  
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and hence a bloom is likely to occur. Based 

on long term data, the vertical stability 

criterion and the nutrient threshold can be 

cast into probabilistic or risk terms and 

combined to give a prognostic forecast of 

algal bloom risk (high, medium, low) levels. 

Figure 2 shows a conceptual framework of a 

possible data assimilation system based on 

the integration of 3D and data-driven models, 

and field data.   

 

The availability of high-frequency real-time 

temperature, salinity, dissolved oxygen (DO) 

and chlorophyll fluorescence data (at 10-

minute intervals) opens the possibility of 

forecasting algal bloom risks on daily basis. 

Real-time telemetry data monitoring stations 

have now been set up in 12 key fish culture 

zones in Hong Kong, with spatial distances 

ranging from 2.5 to 20 km. Figure 3 shows the 

flow chart of the implementation of the 

forecasting framework for the Yim Tin Tsai 

marine fish culture zone in Tolo Harbour, Hong 

Kong. The vertical temperature and salinity 

gradients (and hence the density gradient) 

can be forecast by assimilation of data and/or 

model predictions using an Artificial Neural 

Network (ANN). Figure 4 shows an ANN 

model with three layers (input, hidden and 

output layers) for daily forecast of SST and 

vertical temperature difference using inputs of 

daily averaged real-time data in the previous 

day together with past hydro-meteorological 

data. A similar network can be obtained for 

the vertical salinity difference. The tidally and 

wind-induced vertical diffusivity E can then be 

estimated (based on 3D hydrodynamic 

models and predicted density stratification) 

and compared with the critical turbulence 

criterion Ec to give a stability risk factor R. By 

analysing all historical algal bloom events, the 

likelihood of a bloom occurrence based on 

hydrodynamic stability can be cast in terms of 

a probabilistic risk, P(B|R). Similarly, the 

likelihood of a bloom based on nutrient avail-

ability (i.e. concentration of total inorganic 

nitrogen and orthophosphate) can be 

obtained as P(B|N) and P(B|P). The algal 

bloom risk for the next day can then be 

obtained using the multiplication rule and the 

Liebig’s Law of the Minimum: P(B) = P(B|R). 

min[P(B|N),P(B|N)].[8]  

Figure 5 and Figure 6 show respectively a 

daily forecast of vertical temperature and 

salinity differential (at two levels). Based on 

Figure 5. Example daily forecast of vertical temperature differential ΔTz 
using hybrid ANN model, compared with daily-averaged real-time data and 
naive prediction given by data on the previous day. Note that the ANN 
daily forecast is continuous while naive prediction is limited by gaps of 
real-time data.

Figure 6. Example daily forecast of vertical salinity differential ΔSz using 
hybrid ANN model, compared with daily-averaged real-time data and naive 
prediction given by data on the previous day. Note the ANN daily forecast 
is continuous while naive prediction is limited by gaps of real-time data.

Figure 7. Example 
daily forecast of 
vertical turbulent 
diffusivity and bloom 
risk compared with 
measured surface 
and bottom 
dissolved oxygen 
and chlorophyll 
fluorescence for a 
dinoflagellate bloom 
observed at YTT FCZ 
in Mar-Apr 2016 
(causative species: 
Akashiwo 
sanguinea; cell 
count:1,000-10,000 
cells/mL).



the forecast, the vertical density gradient at 

the site can then be determined. The ANN 

model is a hybrid model that is capable of 

making short term forecasts even in the 

absence of in-situ data (e.g. due to data 

logger failure, system malfunctioning or 

equipment maintenance). The system has 

been validated against four years of field data, 

with an accuracy comparable to the field 

performance of commercially available 

systems (0.51 ̊ C and 0.58 psu for the 

temperature and salinity, respectively). It 

should be noted that the model is clearly 

superior to the naïve prediction (prediction of 

today’s conditions being same as yesterday). 

In practical deployment, the presence of real-

time data gaps is the norm rather than the 

exception and it is essential to have a model 

that can perform short-term forecasts even in 

the absence of in-situ real-time data.  

 

Figure 7 shows the variation of the estimated 

vertical diffusivity, algal bloom risk, DO and 

chlorophyll fluorescence in March-April 2016. 

It is seen that with the decrease in vertical 

diffusivity towards the end of March 2016, the 

bloom risk becomes steadily high (P(B)>0.8) 

around 26 March, and the stable water 

column resulted in an algal bloom which was 

sighted on 29 March, 2016. The onset of the 

dinoflagellate bloom was indicated by the 

sharp rise in chlorophyll fluorescence and was 

confirmed by direct onsite measurements 

which revealed the causative species to be 

Akashiwo sanguinea with cell counts of 1,000-

10,000 counts/mL and chlorophyll-a > 10 

μg/L. The photosynthetic production in the 

surface layer resulted in DO supersaturation 

(up to 16 mg/L) and a marked DO differential 

between surface and bottom of 4-10 mg/L. 

The bottom DO was depleted to a low level of 

around 4 mg/L during the bloom which 

subsided after about two weeks. The algal 

and DO dynamics is also associated with 

nitrogen and phosphorus uptake [8].  

 

The vertical turbulence at the site is 

dominated by wind-induced mixing prior to 

the bloom which was coincident with a period 

of low wind (< 2 m/s), neap tide, high water 

transparency (large Secchi depth), and 

increasing temperature and vertical 

temperature (salinity) differentials of 4 ̊ C  

(2 psu) respectively. The bloom occurrence is 

clearly correlated with the predicted algal 

bloom risks. As a bloom will occur if nutrients 

are sufficient, it is found that the bloom risk 

due to stability risk is often a good indicator of 

a bloom.  
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a b

Figure 10. Automated classification of 14 target harmful algal bloom (HAB) species using machine 
learning. (a) Examples of IFCB images for 14 target HAB species. (b) Confusion matrix of classifi-
cation result of test images. Numbers in blue boxes along the diagonal line indicates the correctly 
classified images. Class No. 15 refer to all species other than the 14 targets in (a).

Figure 8. HAB species monitoring at fish culture zone using Imaging Flow CytoBot (IFCB). (a) Field deployment of IFCB at fish raft. (b) IFCB 
(c) Hydrodynamic focusing.

Artificial Intelligence

a b c

Figure 9. Classification using a random forest classifier (ensemble of decision trees trained with 
bootstrap sampling and random feature subspace methods). Extracted features of input image are 
presented to classifier and each tree makes a prediction independently. The number of instances that 
each class i being predicted are counted (Ci) and a percentage score is obtained (Pi). The final 
decision is the class with the maximum score (majority vote).
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Automated classification of high-

frequency microalgae images 

High-frequency microalgae image data can be 

acquired in-situ through an imaging 

FlowCytobot (IFCB) that enables the identifi-

cation of HAB species and estimation of cell 

abundance in real time. The IFCB is an 

automated, submersible equipment that can 

be continuously deployed underwater for 

months [11]. Designed using the principle of 

hydrodynamic focusing and flow cytometry, the 

IFCB is able to capture up to 30,000 high-resol-

ution images (3.4 μm/pixel) in an hour (three 5 

mL samples). The observation range is from 10 

μm to 150 μm, which covers most of the 

common algal bloom species in Hong Kong. 

Analysis of image data at such a high sampling 

rate requires automated taxonomic classifi-

cation using machine learning techniques [12]. 

 

Since March 2019 we have been deploying an 

IFCB at the Yim Tin Tsai (YTT) Fish Culture 

Zone in Tolo Harbour, Hong Kong, to collect 

algal image data and monitor algal species. 

The system is equipped with a 4G cellular 

network connection to facilitate remote 

equipment control and data transfer (Figure 8). 

To collect training samples for development of 

auto-classifier, we have performed manual 

annotation of over 330,000 images collected 

by IFCB during the deployment in YTT. These 

images cover 40 categories from species to 

group levels, including diatoms and dinoflagel-

lates. Automated classification approach of 

IFCB images has been developed using both 

(i) random forest algorithm with robust image 

processing and feature selection techniques; 

and (ii) state-of-the-art transfer learning with a 

pre-trained Convolution Neural Network (CNN) 

(i.e. GoogLeNet). The random forest (RF) [3]  

is an efficient machine learning approach 

predicting the label of an unknown image 

based on extracted image features. As illus-

trated in Figure 9, an ensemble of decision 

trees trained with bootstrap sampling and 

feature bagging make predictions indepen-

dently and the final decision is based on 

majority votes. Fourteen commonly observed 

HAB species of particular interest are selected 

as the training targets (Figure 10(a)). Both RF 

and CNN approaches reach classification 

accuracies of over 80% for all target species. 

Figure 10(b) shows the confusion matrix of 

classification results (using the RF approach) 

of 1,000 test images for each species. The 

columns of the confusion matrix represent the 

number of predictions in each class while its 

rows represent the actual observations in each 

class. Testing against unlabelled IFCB samples 

shows that our developed classification 

approach is very efficient with near real-time 

cell abundance estimation of prevailing 

species - results can be obtained within 1-7 

minutes after a sample is acquired. This 

opens the possibility of adapting IFCB into a 

real-time HAB detection and early warning 

system. 
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Digital sensors and communication technol-

ogies have rapidly gained momentum with the 

transformation of our urban centers into smart 

cities. New digital products and data commu-

nications have revolutionized several urban 

services and enabled new economic models, 

as demonstrated, for instance, by the gig 

economy subverting the consolidated 

paradigm of the highly regulated taxi industry. 

Comparably, technological development 

coupled with existing demographic, 

economic, and climate challenges is giving 

traction to the utility sector to transition to the 

digital age. Both smart water metering and the 

associated data processing techniques, 

including advanced analytics and Artificial 

Intelligence (AI), are often mentioned as key 

transformative digital technologies of the utility 

sector [1]. However, we acknowledge that the 

uptake of digital technologies has been more 

gradual in the water sector, compared, for 

instance, to the energy sector. Smart water 

meter development and experimental trials 

started more than 20 years ago. Yet, large-

scale smart water meter rollouts, as well as 

commercial applications of AI technologies 

coupled with smart water meters, are still 

limited.  

 

Here, we analyze the role of smart water 

metering and AI in water business applica-

tions, and ultimately inquire: are they 

disruptive or incremental innovations for the 

digital transformation of water businesses? In 

this paper, we first investigate and provide 

examples on how smart meters and AI have 

been so far applied to support utility opera-

tions and customer engagement. We then 

formulate motivations and identify the benefits 

for using smart water meters in customer 

applications. Finally, we propose a pathway to 

best practice for water businesses to assess 

the maturity stage of their metering techno-

logies and their capacity to innovate. 

 

Advent and future of smart water 

meters 

Smart water metering technologies have been 

developed since the late 90s, allowing for 

gathering of water consumption data with high 

spatial and temporal resolution. Pioneering 

studies to advance smart meter technologies 

and run smart meter trials emerged primarily in 

Australia and the United States, fostered by 

prolonged drought conditions requiring 

campaigns and incentives to promote water 

conservation [2]. As reported in a recent review 

paper on the benefits and challenges of using 

smart meters for residential water demand 

modelling and management [3], different smart 

water meter technologies have been 

developed since the first prototypes. Along 

with their technological development, several 

modelling applications have been 

implemented, closing the loop between water 

consumption data gathering and water 

demand management. Smart water meters 

have been used to promote short-term water 

conservation, simply by enabling water 

consumers to gain more information and 

control over their water consumption and 

water bill. Moreover, the usage of smart meters 

to retrieve end use level information, 

characterize water consumption profiles of 

individual households, and monitor changes in 

SMART WATER METERING AND AI FOR 
UTILITY OPERATIONS AND CUSTOMER 
ENGAGEMENT: DISRUPTION OR 
INCREMENTAL INNOVATION? 
BY ANDREA COMINOLA, IAN MONKS AND RODNEY A. STEWART

Digital technologies are disrupting several economic sectors and creating new business opportunities. As part of 

this transformation, the utility sector is also becoming more digital. However, water businesses have been slow to 

change paradigm and so far adopted digital technologies with incremental steps, often acting reactively to water 

scarcity conditions. Technologies such as smart water metering and Artificial Intelligence now offer water businesses 

the opportunity to focus on customer centric solutions to reap both operational and customer satisfaction benefits. 

Figure 1. User interface of the SmartH2O platform with household consumption goal setting 
mechanisms [4].

Artificial Intelligence



115hydrolink  number 4/2020

water consumption has fostered the 

development of tools to analyze the different 

water consumption behaviors of individual 

customers, obtain insights on water 

consumption and conservation drivers, and 

ultimately design customized water demand 

management programs. Interactive web 

portals and customer engagement tools have 

been implemented as part of new customized 

demand management programs to enable 

data visualization and facilitate the two-way 

communication between water consumers and 

utilities (see, for example, the user interface of 

the SmartH2O platform in Figure 1 [4]). 

 

Overall, several studies and applications 

analyzed the information content of smart 

meter data to characterize and model water 

consumers’ behaviors. However, uncertainties 

related to return of investments, meter battery 

life, data management, data privacy, product 

availability, and the long-term persistence of 

conservation behaviors have so far slowed a 

complete rollout of smart metering technol-

ogies [5]. This does not mean that smart water 

meters are not revolutionizing the water utility 

sector, but rather that their benefits and 

business cases for water utility applications are 

becoming evident only gradually. Water 

businesses are beginning to view smart water 

metering as a valuable technology for them to 

manage water demand, reduce infrastructure 

costs and streamline operational functions.  

 

The global smart water meter market is 

expected to grow in the next years, reaching a 

value of more than 10 billion USD before 

2030.1 As smart water meters are now being 

considered “smart” not only because of their 

possibility to enable remote data reading, but 

also because of the wealth of applications 

enabled by their associated informatics, water 

businesses are adapting and starting to 

acquire new skill sets for their employees. A 

best-practice smart metering system goes 

beyond automated meter reading and 

rudimentary presentation of hourly 

consumption data to provide deeper insights 

on customers’ usage of water and the 

associated costs [6]. IT, data science, and 

analytics skills are needed to fully exploit smart 

meters coupled with advanced analytics and 

AI to support utility operations and customer 

engagement.  

 

Smart water meters coupled with AI 

to support utility operations 

AI-based models have been used already to 

support utility operations independently from 

the development of smart meter data. Typical 

applications regard metamodeling of water 

distribution networks with black-box models, 

such as Artificial Neural Networks (ANNs), or 

urban water demand prediction. Accurate 

predictions of urban water demand are key 

inputs for designing optimal planning and 

management decisions. Several techniques 

have been used in the literature to identify and 

infer existing relationships between water 

demand and sets of heterogeneous variables 

representing potential water demand determi-

nants. Among these, the last two decades 

have seen a rapid increase in the usage of 

ANN-based methods. The success of such 

methods is primarily due to their flexibility of 

use, their ability to capture unknown nonlinear 

relationships between the predictand, i.e., 

water demand, and its potential determinants, 

and their predictive capabilities demonstrated 

by benchmarking with alternative methods.  

 

The availability of smart water meter data is 

facilitating the full potential of such data-driven 

methods, especially for applications related to 

high-resolution descriptive and predictive 

modelling of water demand. For instance, 

Bennet et al. [7] demonstrated the suitability of 

ANN-based methods to forecast water 

demand at the household level for a sample of 

over 200 households in Australia. Besides the 

usage of ANN to forecast water demand, other 

advanced Data Analytics (DA) techniques 

have been adopted to create value from smart 

meter information. Data-driven customer 

segmentation enabled by data dimensionality 

reduction, clustering techniques, and pattern 

analysis, has been developed to support 

water businesses obtaining detailed insights 

about the heterogeneous behaviors of their 

water consumers, along with their socio-

demographic drivers and, thus, to better 

design demand management interventions.   

 

Moreover, some studies primarily conducted 

in drought-prone areas exploited advanced 

analytics and smart meter data to monitor 

behavioral responses to demand 

management interventions, pinpointing water 

use shifts correlated with climate-related mass 

media and policy events, and identify rebound 

effects (e.g., [8]). 

 

Finally, pattern analysis of smart meter data 

allows better identification of anomalous 

consumption levels and more accurate billing. 

Utility operations can even take advantage of 

smart meter applications that are apparently 

only customer oriented. For instance, the 

practice of service recovery leading to 

compensatory refunds for concealed leaks 

continues to cost water businesses as do 

disputes over accounts and compensation 

paid for water damage from network leaks and 

bursts.2 This is particularly the case in 

complex, multi-metered properties such as 

high-rise and multi-unit communities where 

both individual unit and communal 

consumption occurs.  

 

All the above examples illustrate a range of 

operational cases where water businesses 

benefit from advanced analytics coupled with 

high-resolution smart meter data. As a result 

of such coupling, water businesses can better 

inform their water demand and supply 

strategies, and therefore increase the 

efficiency of their operations. However, 

differently from other sensors distributed in the 

water distribution network (e.g., pressure 

sensors), smart water meters inherently record 

information on individual customer behaviors 

and consumption habits. This provides water 

businesses with further opportunities to exploit 

such information to develop customer 

engagement programs that include water 

consumers in their efficiency loop more 

transparently and proactively. 

 

“Digital transformation in the water sector 

will be incremental, but successful citywide 

rollouts will accelerate change through 

pressuring adjoining water businesses to 

step-up and provide similar solutions and 

efficiencies.”  

 

Water businesses must engage 

customers better 

Digital disruption has already revolutionized 

many industries and allowed much better 

engagement with customers through web and 

phone interfaces. Travel, banking and finance, 

education, retail, food, etc. are all industries 

that have used digital technologies and DA to 

capture and push useful information to 

customers and engage them better. However, 

the urban water sector is still largely engaging 

with customers in the same way that they 

have over the last few decades, where a single 

water usage data point is collected by human 

meter readers on a quarterly basis and paper 

bills are distributed to customers with limited 

useful information. Water bills are paid and 

engagement rarely occurs, and when it does, 

it is often to discuss high water usage from 

months past that may be due to a range of 

reasons such as an unknown leak, high 

usage, meter or reader error, meter read 

estimations, to name a few. Sadly, due to the 

present limited information collected on water 

1) https://www.reportsanddata.com/report-detail/smart-water- 
meters-market

2) https://energycentral.com/c/iu/advances-artificial-intelligence-ai-
and-machine-learning-coupled-smart-water
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usage in most jurisdictions, it is not possible to 

meaningfully engage with customers on high 

water usage, hidden leakage events, 

incentives to reduce total and peak period 

demand, water affordability, custom 

conservation opportunities, etc. 

 

Given that water businesses are often 

government-owned water service provider 

monopolies having no direct competition that 

can provide a superior customer experience, 

they often forget about the customer and the 

opportunities and benefits of smart water 

metering for them. However, modern business 

survival is often premised on their ability to 

engage with customers and provide them a 

fulfilling experience with the product or service 

provided. A recent paper by Monks et al. [9], 

identified a total of 75 benefits from smart 

water metering. These benefits help either the 

water businesses, or customers, or are shared 

by both water business and customer. Many 

benefits had not previously been revealed in 

the literature. Of the reported benefits, 40 

benefits directly impact customers and of 

these, 18 are considered exclusively benefits 

to customers, such as the reduction in costs 

to customers due to leak alerting or the 

availability of customized product offers, and 

the other 22 as benefits delivering to both 

customer and the water business, such as 

reduced customer billing complaints, 

enhanced communications, and improved 

meter failure analytics (shared benefits). 

Monks et al. [10] examined the extent to which 

smart metering would improve levels of 

customer satisfaction.  

 

Most operational smart water metering 

benefits can be quantified in monetary terms. 

Customer Satisfaction (CS) related business 

impacts are more easily distinguished in a 

comparable privately operated telecommuni-

cations business due to lost customers when 

service is comparably lower than competitors. 

These impacts are not directly discernable in a 

monopoly water business market 

arrangement where customers are not lost 

due to poor CS. However, in such market 

arrangements, while customers and revenue 

may not be lost in the short term, customer 

trust and relationships are being eroded over 

time, and dissatisfaction may culminate in 

pricing caps, government penalties, political 

backlash, and a lack of community cooper-

ation. Not sufficiently engaging with 

customers and not providing them with a 

comparable level of service to other best-

practice water businesses presents an unpal-

atable long-term risk to contemporary water 

businesses.  

 

The advent of smart metering technologies 

and near real-time communications of high-

resolution data has enabled many leading 

water businesses to provide to their 

customers superior levels of service that are 

best practice. Deeper insights from smart 

meter collected big data, supplemented with 

other internal and external datasets, can only 

be realized through the development and 

deployment of advanced data mining 

methods and AI techniques. Figure 2 outlines 

a pathway to harness customer engagement 

and satisfaction benefits from smart metering. 

 

“Water businesses that can effectively 

harness digital technologies like smart 

meters and AI techniques, will reap both 

operational and customer satisfaction 

benefits” 

 

Artificial Intelligence to facilitate 

customer data interpretation 

Understanding and interpreting customer data 

requires the development of AI through a 

range of DA and Machine Learning (ML) 

techniques. Smart water meters are now 

affordably deployable to provide the 

necessary data to interpret and report 

individual customer data in a proactive and 

meaningful way. Near real-time personalized 

water usage information and feedback has the 

potential to increase CS substantially [10]. 

Various AI approaches are being investigated 

to deeply analyze customer data, and they 

can be considered within the following four 

categories: Neural Network (NN) methods, 

regression methods, stochastic methods, and 

hybrid methods [6]. 

 

The dominance of NN-based methods is 

notable in customer data interpretation 

because of the large volume of smart metering 

data. Various researchers have employed a 

range of ANNs in their proposed methods, 

including more advanced deep learning (DL) 

NNs. Regression-based methods are also 

commonly used. Regression-based 

approaches are good for identifying key 

factors contributing to customer water 

consumption. Some regression-based 

methods include Support Vector Regression 

(SVR), Support Vector Machine (SVM)-based 

regression, Multivariate Adaptive Regression 

Splines (MARS), and Projection Pursuit 

Regression (PPR). There is a growing use of 

sophisticated stochastic-based techniques 

such as Hidden Markov Models (HMM) to 

forecast customer water usage information. 

Recently reported methods are hybrids, i.e., 

they employ more than one technique and are 

often required for complex customer 

interpretation and reporting requirements. 

Some hybrid methods already adopted by 

water researchers and industry professionals 

for customer water usage profiling include 

General Regression NN (GRNN), Extreme 

Learning Machine (ELM) integrated with 

Variational Model Decomposition (VMD), 

Singular Spectrum Analysis (SSA) coupled 

with linear autoregressive models, 

spatiotemporal Gaussian process models, 

Gaussian mixture models and K-means 

clustering Generalized Additive Models 

(GAM), hybrid Particle Swarm Optimisation–

ANN (PSO-ANN), Bayesian Additive 

Regression Trees (BART),  Gradient Boosting 

Machines (GBM), to name a few examples. 

Each of these techniques fosters the creation 

of sufficient AI to feedback customized 

information to customers, such as their quasi 

real-time water consumption, time-of-use or 

exceedance of high demand thresholds, and 

leak alerts.  

    

Smart meter and AI customer appli-

cations and benefits 

Smart meters and AI will enhance existing 

customer engagement activities and provide a 

whole new range of applications [10]. These 

applications will provide various benefits for 

both customers and their service providers. 

The key applications and benefits are 

discussed below.  
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• Proactive handling of customer 

complaints and credit management: in 

addition to the elimination of reading errors, 

estimated reads, self-reads and meter-

reader access, customers will have access 

to web portals and phone applications that 

provide detailed information on their water 

usage and alert them of high water usage 

and bills well before payments are required, 

thereby allowing customers to reduce 

consumption to fit within their monthly 

available budget.  

 

Benefits of this enhanced customer 

engagement application include: reduced 

customer billing complaints; reduced 

external and internal costs of ombudsman 

referred complaints and legal costs; 

improved outcomes from billing disputes; 

and reduced requirement for customers to 

contact bill relief agents. 

 

• User-friendly customer information 

provision: information is power, and when 

customers have tailored water usage 

information for them, they are able to make 

better decisions and more timely actions [11].  

 

Benefits of this application include: reduced 

leaks and associated costs at properties; 

water usage awareness and education; 

greater water efficiency and reduced bills; 

choice of billing frequency (e.g., monthly, 

quarterly, etc.); information on appliance 

efficiency; increased goodwill from 

information sharing with their customers; 

and the ability to be notified of internal leaks 

that may cause building damage and 

insurance claims.  

 

• Provision of innovative customer 

products and services: big data from 

smart meters opens opportunities for water 

service providers to offer a range of new 

products and services to their customers. 

These products and services may generate 

new or improved revenue streams or be 

used to increase levels of CS such as billing 

day flexibility. For example, through under-

standing water usage within a customer’s 

premises, providers may be able to refer 

required services (e.g., plumbers to fix 

identified leaks, efficient appliances where 

high water use, etc.). Water service 

providers may also seek to offer complete 

water monitoring solutions where they sub-

meter their larger water usage customers or 

the provision of algorithms to provide end-

use data (e.g., shower, tap, etc.) on 

residential properties [12]. Other services 

could include tailored benchmarking, 

increased security through monitoring of 

water usage, to name a few.  

 

Customer benefits of this application 

include: billing day flexibility; provision of 

complete customer end-use data logging 

and analytics services; new suites of online 

products and services; and increased 

goodwill from new products and services 

provision. 

 

• Customer satisfaction with heightened 

quality assurance: current urban water 

management approaches adopted by 

industry professionals are reliant on many 

assumptions (e.g., water bill estimates) and 

are subject to error. Customers expect 

others to pay their fair share through 

accurate metering. This relatively low level of 

quality assurance due to decision making 

based on incomplete information has been 

accepted by captive customers for some 

time. However, smart metering and big data 

analytics provides an opportunity to signifi-

cantly enhance the level of quality 

assurance related to water usage, which will 

generate goodwill with customers.  

 

Customer benefits of this application 

include: the ability of large smart meter 

datasets to help detect faulty meters and 

improve meter sizing for non-residential 

customers; water theft; automated 

regulation compliance monitoring; 

improvement in value of goodwill customer 

recognition of better capital management 

and operational efficiency.   

 

A pathway to best practice 

We suggest that there is a “best practice” that 

water businesses might strive for that 

maximises the return on investment on smart 

water metering. The collected meter readings 

need to be assembled into a data repository 

along with other sensor and operational data, 

and complemented with external weather, 

demographic, property, and various other data 

sources. Digital twinning of physical and virtual 

city infrastructure is already driving the push 

for an open source Common Data 

Environment (CDE) for all static and ‘live’ data 

sources.  

 

The level of business transformation based 

around the metering technology might be 

recognised through a capability model. The 

Intelligent Metering Maturity Model is 

suggested and a prototype is illustrated in 

Figure 3. Capability models have provided 

observers with a method of comparing 

businesses against each other and best 

practice, and they have provided a roadmap to 

improvement. 

 

At the lowest level, water businesses would 

score zero with 100% manual metering and no 

digital metering, or incomplete metering (e.g., 

it is estimated that only 50% of the domestic 

properties in the UK were metered in 2015; 

differently, in Australia almost all properties in 

urban areas are metered, but the penetration 

rate of digital metering is roughly 10%). The 

score rises to 1 when digital metering is raised 

to 100% replacing all manual metering, but 

without any in-depth exploitation of the data 

other than automated billing, as is the current 

situation with metering of high-rise buildings in 

many utilities. Applying basic DA and AI 

approaches for leveraging of the data for 
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processes that are essentially operational 

(e.g., network leak detection, planning and 

peak demand analytics, meter sizing and 

meter failure analytics) raises the score. 

Higher scores are achieved by providing leak 

alerting and a customer portal for accessing 

their data and offering frequent (e.g., monthly) 

billing. The highest scores can only be 

achieved when water businesses introduce 

sufficient predictive AI to accurately under-

stand and predict network and customer 

functions without manual human data manipu-

lation and interpretation.  

 

Disruptive or incremental 

innovation? 

Two technologies are under consideration 

here: smart water meters and AI. At times both 

would be considered disruptive in their own 

right and have improved CS. A demonstrative 

case study is given by a smart meter instal-

lation rolled out in Kansas City, Missouri in the 

United States, along with an extensive process 

re-engineering undertaken to leverage the 

technology [13]. The published customer satis-

faction level reported over the following four 

years from 2013 show an uplift of the 

percentage of customers satisfied from the 

high sixties to the mid-nineties. Another case 

study in Newmarket (UK) reports 8% water 

savings achieved by combining a smart 

metering program with data and behavioral 

science.3  Townsville (Australia) avoided a 

costly engineering solution saving USD 4M 

when they used sensors and data analytics 

across their network to identify the true cause 

of low-pressure supply issue and resolved the 

issue through better valve operation. Longer 

term water savings of 6.8% were achieved in 

Sydney (Australia) when smart meter data is 

presented back to the customer via in house 

displays [14]. To realise the CS improvements 

the technology needs to be enabled, first.  

 

Most of the 75 benefits identified from smart 

water metering in reference [9] rely on the use 

of data analytics to mine the data for insights. 

Indeed, one of the pre-conditions is the 

resourcing of a data analytics capability, 

whether through deploying in-house expertise 

or by out-sourcing to their digital metering 

supplier or to consultants. An example of best 

practice in this regard is the recent smart 

meter rollout of the city of Gandía (Spain), 

where the joint effort of the local utility, city 

council, and a telecommunications company 

is leading to the collection of hourly water 

consumption data from over 40,000 smart 

meters and this data is standardized in a Big 

Data platform.4 

 

The willingness of a water business to enable 

the benefits would depend on their appetite 

and capacity for change and, in some cases, 

may require change approval by their 

regulator. Where metered billing is not the 

social norm, water businesses might still move 

to smart metering (or data logging) having 

recognized the potential to deliver the detailed 

data needed to overcome operational and 

water quality issues, and assist water 

conservation efforts. Indications from past and 

recent surveys of water businesses, and inclu-

sions in recent pricing submissions to 

regulators, show that the larger water 

businesses are actively considering a move to 

digital metering. Many smaller regional water 

businesses with less capital and capacity for 

risk, are waiting to see the direction taken by 

larger utilities. However, there are some 

smaller agile water businesses that are better 

able to exploit the benefits of digital techno-

logies, and they are technologically 

leapfrogging the larger metropolitan water 

service providers in their country. 

 

Hence, can we ultimately say 

whether smart water meters and AI 

are disrupting or incrementally 

innovating the water sector? 

Generally, water businesses do not compete 

against each other by virtue of their exclusive 

rights of service and natural monopoly status, 

being government-owned or tightly regulated, 

and sometimes having common owners, 

making their relationship more collegiate than 

competitive. Knowledge and experience are 

shared through formal and informal channels. 

However, a technological laggard will event-

ually be found out by their customers as they 

become aware of superior services offered by 

adjoining water businesses, through various 

channels such as media, government reports, 

discussions with friends and family, moving to 

a new address, to name a few. Water 

businesses that are slow to embrace change, 

are merely widening the technological gap that 

will need to be addressed at some point in the 

future.  

 

Examining the theory of disruptive innovation 
[15], a gap has been identified with mission 

driven institutions that have a higher calling, 

among which water services might consider 

themselves. While both the take-up of smart 

water metering and AI within water businesses 

may be slowly growing after a stuttering and 

fragmented start, we feel they should now be 

considered embedded technologies among 

progressive companies. Following a long 

gestation period, smart water meters and AI 

should now be treated as mature Business As 

Usual (BAU) tools, rather than as must-use 

disrupting technologies. In the absence of data 

warehouses being utilised by utilities [6], smart 
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Figure 3. Suggested 
capability model and 
pathway to best 
practice.

Artificial Intelligence



119hydrolink  number 4/2020

Artificial Intelligence

water meter technology vendors or private 

software companies are providing cloud-

based data repositories, customer portals, and 

offering to fill utilities’ AI gaps as an add-on 

service. In this regard, the development of 

smart metering and AI can be considered 

disruptive, as it created opportunities for new 

economic models, tech actors, and investors 

previously not attracted by the water sector. 

The next significant innovation and business 

step will be materialized when synergies 

between the water sector and other utility 

sectors (e.g., electricity, gas, telecommunica-

tions) will be exploited in a cost-effective 

manner to realize the vision of a digital multi-

utility service provider [16]. Exploiting multi-

sectoral synergies will reduce asset and 

operational costs by collecting concurrent 

water-energy data efficiently,  

implementing flexible and data agnostic 

processing techniques, and ultimately 

designing integrated tailor-made services to 

customers. n 
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two leading UK universities in water engin-

eering, works by extracting useful information 

form pressure and flow sensors and other data 

sources available.  

 

The new technology enables United Utilities to 

manage the above events much more pro-

actively than before by reducing the time of 

awareness to these events but also, in some 

cases, preventing events from taking place 

altogether. This combination has resulted in a 

range of benefits achieved, from major 

operational cost savings to reduced inter-

ruptions to supply and hence improved service 

to over 7 million people and 200,000 

businesses in the north west of England. As 

the new technology has also demonstrated the 

potential to more efficiently guide United 

Utilities’ personnel to the problem areas and to 

support the ICC operators to make better and 

more informed decisions when tasked with the 

identification of a suitable strategy to respond 

to those events, further benefits arising from 

the pursued fully managed life-cycle of events 

approach are expected. n 
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AI–BASED EVENT MANAGEMENT AT UNITED UTILITIES 

“At a minimum, water service providers must embrace incremental digital transformation, or 

government sanctioned alternative retail models offered by innovative private technology 

providers will be pushed upon them and strip back their function to heavily constrained 

water asset operators.” 
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Unaccounted for Water (UW), and d) 

Discolouration Risk Increase (DRI). It can be 

noticed that even though CML, AMLP and UW 

are reduced when compared to the ‘no 

response’ scenario, the ‘new methodology 

response’ offers further improvements over the 

‘current practice response’. Indeed, the ‘new 

methodology response’ further reduced all 

impact indicators except AMLP that remained 

the same. The ‘new methodology response’ 

also suggested a smaller number of interven-

tions to implement as evidenced by the 

significant improvement in DRI and cost. In 

light of the above, it can be concluded that 

through interaction with the IRPT operators 

could have identified a more effective response 

solution. Hence, this case study shows the 

potential of the IRPT to be beneficially used by 

United Utilities to make better and more 

informed decisions. 

 

Summary 

This paper describes an AI-based approach for 

managing events in WDSs such as pipe 

bursts/leaks and equipment failure. The key 

pieces of new technology are comprised of a 

series of ML and other advanced analytics 

methods that are used to detect and locate 

these events and then identify an optimal 

response strategy, all in (semi) automated 

fashion and in near real-time. This new 

technology, developed in collaboration with 
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This article presents a similar history, of the 

design and construction of the Mar del Plata, 

Argentina, Outfall System. But here, we show 

how the improvements to the water quality of 

the Mar del Plata’s beaches were immediately 

felt following the outfall construction and 

commissioning [5], propping up the city’s 

success as one of the premier touristic desti-

nations in Argentina. More than that, Mar del 

Plata is a great example for reflection and 

evaluation whether such long times for imple-

mentation of solutions can be afforded if we 

are to achieve the SDGs by 2030. 

 

The City 

Founded 146 years ago, the coastal city of 

Mar del Plata is the most popular vacation 

destination in Argentina. Its beaches (Fig. 1) 

are a main attraction to both local residents 

and tourists, making Mar de Plata one of the 

largest urban settings in the country [5] with a 

population nearing one million during the 

holiday season. As tourism is a vital part of its 

economy, protecting the water quality of its 

beaches is paramount to the city. 

 

With over 95% sewerage coverage, a 

submarine outfall operating since 2014, and a 

new wastewater treatment plant since 2018, 

Mar del Plata can be considered to have an 

advanced level of sanitation. This effort 

resulted in greatly improved water quality for 

primary recreation, safeguarding public health 

and promoting touristic activity.  Regular 

monitoring programs indicate the entire city’s 

coastal waters meet local and international 

guidelines for primary contact recreation.  

 

We would like to highlight the immediate 

improvements of the recreational water quality 

of Mar del Plata since the commencement of 

the submarine outfall operation. Fig. 2 

presents 30 years of entorococci monitoring in 

Mar del Plata’s beaches. It can be readily seen 

that the water quality standards for indicators 

of fecal contamination were met almost 

immediately following the outfall construction. 

For example, at Delicias Beach approximately 

0.9 km from the discharge, the monitored 

enterococci concentrations reduced 

considerably from 50,000 to 27 entoro-

THE HISTORY OF THE MAR  
DEL PLATA OUTFALL SYSTEM:  
A TALE WORTH TELLING 
BY MARCELO SCAGLIOLA, ANA PAULA COMINO, PHIL ROBERTS AND DANIEL BOTELHO

In a previous issue of Hydrolink, we discussed the contribution of marine outfall systems as part of the solutions for 

the UN Sustainable Development Goals (SDGs), and introduced general guiding principles for system design, 

construction, and operation [12]. Because they convey the effluent to the ocean, outfalls are frequently (and 

erroneously) perceived as a pollution source. As a result, all too often the adoption of marine outfalls encounter 

fierce social and political resistance taking many years for their construction and implementation, preventing the 

affected communities from enjoying better sanitation outcomes [15]. 

Figure 1. Aerial view of Mar del Plata’s beaches.
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cocci/100 ml following commencement of the 

outfall operation (Fig. 2b). 

 

In hindsight, one can readily observe the 

benefits of the outfall operation. However, the 

project history dates back to the beginning of 

the 1980’s, owing to several serious impedi-

ments along the way.  It is therefore important 

to look back at this period to identify and 

reflect over the reasons why it took so long to 

complete the outfall project. In doing so, it is 

also opportune to present the mitigation 

measures undertaken for recreational water 

quality improvements before concluding the 

outfall installation. 

 

Vision and early project stages 

In the early 1980’s, the sewage discharge was 

located approximately 10 km north of the city 

at the existing outfall starting point. Tasked 

with the challenge of protecting Mar del 

Plata’s beaches, Eng. Alberto Baltar, director 

of Obras Sanitarias Sociedad de Estado 

(OSSE) at the time, had the initial vision for a 

submarine outfall and diffuser system. His 

vision was based on his knowledge of similar 

technology applications around the world. 

Further, Eng. Baltar had a strong perception 

of the self-purifying capacity of the sea in Mar 

del Plata, noting its open coast, energetic surf 

zone, and intermittent storms and erosive 

processes, all of which indicated a favorable 

system for assimilation of the organic loads 

from the urban effluent (Baltar, pers. comm.).  

 

With this initial vision, almost exclusively Eng. 

Baltar’s, the city of Mar del Plata commis-

sioned a study to present an outfall system as 

an alternative for adequate effluent disposal in 

the area [9].  The study comprised several field 

studies, which were the first to characterise 

the physico-chemical and bacteriological 

composition of both the wastewater effluent 

and the water near the discharge. These 

studies also quantified relevant local ocean-

ographic processes to conclude that a marine 

outfall could be adopted as a solution for the 

city’s effluent discharges. 

 

Following these preliminary investigations, 

OSSE hired Eng. Russell Ludwig, a renowned 

consultant on outfalls, who reviewed the 

Instituto Nacional de Ciencia y Técnicas 

Hídricas (INCyTH) [9] studies and recom-

mended additional engineering elements to 

the diffuser system [11]. Of particular relevance 

was the recommendation for application of 

new advanced modeling techniques for 

assessment of nearfield dilution considering 

local currents [12]. These new formulations had 

been proven to be the most accurate when 

compared to field data of operating outfalls 

and later became the basis for the model 

PLUMES [2] that was subsequently adopted 

for the Mar del Plata outfall design. 

 

New treatment plant and delays 

As a first step preceding outfall construction, 

an effluent pre-treatment plant (later named 

the Eng. Baltar plant) was tendered and 

constructed. Starting operation in 1989, this 

pre-treatment plant comprised 0.5 mm screen 

filters designed to work in tandem with the 

submarine outfall. However, the plant and 

outfall worked together for only four years. In 

2019, the plant was dismantled and replaced 

by a new pre-treatment plant. 

 

Since inception of the outfall system, it took 

almost an entire decade for the construction 

of the first pre-treatment plant. Over this 

period, a series of debates were held 

between proponents of the outfall and those 

who were opposed to it in favor of a 

secondary wastewater treatment plant. 

(Sarandón, pers. comm.). These discussions, 

in part responsible for the delays over this first 

decade, presented convincing arguments for 

a submarine outfall as the best disposal alter-

native for Mar del Plata. 

 

While economic factors always permeate 

large infrastructure projects, technical aspects 

were at the forefront for selection of the best 

alternative. Notwithstanding this, shortly after 

commissioning the first pre-treatment plant, 

Eng. Baltar retired, which proved to be crucial 

for the project delays. The project benefits 

were questioned, discussions effectively 

returned to ground zero, and new technical 

and political arguments were put forward 

probing whether a secondary treatment plant 

would be a better solution than the combined 

pre-treatment and outfall system. 

 

Secondary treatment or outfall 

system? 

Results obtained in Mar del Plata up to the 

current day show that these discussions were 

counterproductive, and that the focus should 

have been on recreational water quality. 

Independent of the level of wastewater 

treatment (primary, secondary, or tertiary), 

existing marine outfall technology is not only 

adequate but it can be argued is essential for 

maintaining water quality for primary contact 

recreation. Even advanced levels of treatment 

will still require an outfall that removes the 

effluent far from shore [13].  

 

Figure 2. A. Faecal contamination indicators in Mar del Plata’s beach before and after the outfall (log 
scale). B. Details at Las Delicias, Violeta e Roja Beaches. The yellow bar shows monitoring results 
from the Contamination Monitoring Program (CMP) supported by the Virtual Beach modelling before 
the outfall operation commenced. 

A.

B.
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Existing mathematical models can be used to 

define discharge location and diffuser design, 

to ensure that the self-purifying capacity of the 

receiving waters is sufficient to maintain water 

quality in bathing zones. Human enteric 

bacteria are not endemic to marine systems 

and as a result undergo significant die-off 

once discharged in the ocean. A well-

designed outfall system takes into consider-

ation bacterial mortality and ensures 

recreational waters are free from harmful 

enteric bacteria, thus precluding the need for 

additional disinfection. Furthermore, the rapid 

dilution achieved with a marine outfall diffuser 

(approximately 1:100) greatly improves the 

assimilation capacity of the receiving marine 

ecosystem. 

 

A secondary wastewater treatment plant 

reduces biochemical oxygen demand (BOD) 

by oxidation of the organic load through a 

series of distinct microorganisms in 

succession within a controlled environment. 

The same result can be achieved by dilution 

with an outfall diffuser allowing the marine 

environment itself to undertake the oxidation 

process, and, as a result, reducing the level of 

treatment required. Therefore, the type of 

treatment and outfall design should be 

thought of as parts of an overall system to be 

evaluated, and not competing options as 

often argued. 

 

Unfortunately, this old discussion of 

‘secondary treatment vs outfall is still 

common in many proposed sanitation 

projects. The precedent of Mar del Plata 

shows that discussions must be supported by 

an assessment of the marine environment not 

only as a receptor of effluent discharges, but 

as a nature-based solution and part of an 

integrated sanitation system. The assimilation 

capacity of the receiving environment has 

enormous implications for the choice of 

treatment system.  

 

Determination of assimilative capacity 

requires evaluation of the marine ecosystem 

centered on baseline data collected prior to 

discharge and identification of potential 

ecological vulnerability points. This evaluation 

permits the design of post-discharge 

monitoring programs to continuously assess 

the environmental disturbance resulting from 

the effluent disposal. Such monitoring 

programs are important components within 

the broader context of an Integrated Coastal 

Management (ICM) system [4]. 

 

Sanitation planning within an ICM strategy, 

which continually evaluates the environmental 

impact of sewage disposal through ecological 

studies and monitoring of the receiving 

environment (both water and sediment water 

quality variables), allows constant 

assessment of ecosystem health as well as 

identification of requirements and opportun-

ities for interventions in case of environmental 

harm.  

 

Significant savings can result from this 

continual environmental diagnosis method 

without necessarily relying on more advanced 

levels of effluent treatment. These savings can 

be used for extending the sewerage network 

to regions with limited coverage, a common 

situation in developing nations. As such, 

scarce resources can be better spent on infra-

structure and social development to satisfy 

the basic sanitation needs to be delivered by 

the Sustainable Development Goals (SDG) 

initiatives.  

 

Guaranteeing 100% water supply, sanitation 

and hygiene for the world’s population by 

2030 will require optimal application of 

economic resources. Recognised as a 

solution to protect human health from 

effluent-borne infections, submarine outfall 

systems require relatively low capital and 

operational costs. Our history strongly 

suggests that, at least initially, economic 

resources should be used to extend the 

coverage of sewerage networks in combi-

nation with an outfall system (provided there 

is adequate environmental assimilation 

capacity). As a result, local communities will 

enjoy the benefits of proper effluent 

conveyance and disposal, as well as the 

ocean as an environmental treatment 

resource. Mar del Plata is living proof that this 

strategy for sanitation works. 

 

More on history and additional 

environmental studies 

Returning to our outfall history, it is important 

to mention that the INCyTH study not only 

focused on a preliminary assessment of the 

receiving water but also recommended 

additional studies that included continual and 

permanent monitoring for the beach’s recre-

ational water quality and the wastewater 

effluent parameters. 

 

Following Eng. Baltar’s retirement, despite the 

decision-making delays regarding the 

sanitation alternative choice, data collection 

for preliminary studies continued and was 

augmented. Studies looked at a range of 

environmental aspects, including heavy 

metals in sediments [16], effluent assimilation 

capacity [10], permanent bacterial monitoring 

at the city’s beaches [16], [17], [21], permanent 

monitoring for effluent and pretreatment solid 

waste characterisation [21], ocean currents [20], 

marine receiving environment monitoring [21], 

as well as intertidal and subtidal physico-

chemical characterisation [21]. These studies 

further confirmed the conclusions obtained in 

the earlier study by INCyTH [9], supporting the 

recommendation that an outfall and diffuser 

was the best solution for the city’s effluent 

disposal. These studies were also of funda-

mental importance in that they determined the 

baseline conditions prior to outfall 

construction, and could therefore be used for 

evaluation of the outfall performance. 

 

Reenactment of the submarine 

outfall project as part of the 

sanitation solution for Mar de Plata 

Almost one decade after the Eng. Baltar plant 

commissioning, OSSE with the help of the 

National Entity of Hydraulic and Sanitation 

Works [7], recruited an experienced interna-

tional consultant (Eng. Martí) to review the 

previous studies and deliberate on whether a 

secondary treatment plant or an outfall should 

be adopted as part of the sanitation solution 

for Mar del Plata. Eng. Martí concluded an 

outfall would be the most appropriate option 

for Mar del Plata and himself executed the 

modeling required to define the outfall design 

parameters and additional specifications to 

prepare the corresponding construction 

tender. The tender was issued in 1999 for the 

second stage of the treatment plant, 

comprising upgrades to the existing 

pretreatment plant and construction of the 

submarine outfall.  

 

It is to be noted that another decade had 

passed since inauguration of the initial 

pretreatment plant before tendering for the 

outfall construction. These delays were 

largely due to lack of project technical 

support following Eng. Baltar retirement and 

recommencement of the old discussions. As 

a result of this chronology, it is concluded that 

such important projects cannot be solely 

vested in a single person for its execution. 

When there is a network of professionals 

to provide support for the project, eventual 

project impediments can be readily and 

efficiently overcome, resulting in project 

improvements and its timely conclusion. A 

series of examples in this regard were 

essential for completion of Mar del Plata’s 

outfall. 

 

First attempt at outfall construction 

Tendering for outfall construction started in 

1999, financed by OSSE. However, a series of 
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complex tendering processes, technical 

issues, and a serious economic crisis in 

Argentina in 2000, rendered the project no 

longer viable. Once again, the project was 

delayed and a new tender process could only 

be undertaken in 2008, thus wasting another 

decade. 

 

Nevertheless, the effluent and marine environ-

mental monitoring programs continued and 

were showing serious contamination of Mar 

del Plata’s beaches by the discharge plume. 

The monitoring data comprised an important 

environmental baseline to influence decision-

making with regards to the sanitation of the 

city. 

 

Second and successful attempt at 

outfall construction 

Following more favorable economic and 

political conditions, supported by the 

monitoring information, a second attempt to 

construct the marine outfall was set in motion 

in 2006. The Argentinean Government and 

the Municipality of Mar del Plata signed a 

covenant for the outfall construction, based 

on the recognition of the importance of Mar 

del Plata’s beaches as a tourist resource for 

the entire country. Another six years had 

passed since the first failed construction 

attempt in 2000. 

 

By this time, 10 years of monitoring data were 

available, providing an excellent environ-

mental baseline prior to outfall operation with 

great scientific value. It was the perfect oppor-

tunity to present the monitoring data and 

announce the Mar del Plata outfall 

construction to the international community at 

a specialised conference in Antalya, Turkey 
[19]. Shortly after, a new outfall and diffuser 

design commenced, including diffuser 

modeling and pipeline material re-specifi-

cation. This time, taking the lessons learnt 

from the first attempt, collaboration was 

established between ENOHSA, OSSE, inter-

national consultants, and the University of 

Cordoba. A new tender process was estab-

lished, a contract was awarded and outfall 

construction finally started in 2008. The works 

were financed by Argentina’s National 

Treasury and executed under the 

management of Mar del Plata’s municipality 

government. 

 

Interaction with Marine Outfall 

Technical Committee  

Virtual Beach Model Calibration 

As a result of participation in Marine Waste 

Water Disposal (MWWD) conference in 2006 
[19], a fruitful collaboration between OSSE and 

the IAHR-IWA Technical Committee on Marine 

Outfall Systems was initiated, which was 

fundamental for the completion of the outfall 

project. Over the same period, in 2006, new 

regional recreational water quality norms were 

enacted for recreational water quality in 

Argentina. Suffice to say, the water quality of 

Mar del Plata’s beaches did not meet the 

standards at the time [1]( see also Fig. 2). It 

was then decided that a mitigation strategy to 

protect the recreational water quality was 

required while outfall construction was 

underway [3]. 

 

Data from the 10-year environmental 

monitoring were adopted for calibration of the 

Virtual Beach bacterial dispersion model [8], 

such that bacterial contamination levels at Mar 

del Plata’s beaches could be predicted one 

day in advance [11]. This same model was then 

adopted with other studies undertaken by 

OSSE on local water currents (Scagliola et al. 

1998) and bacterial decay [18], [23] to design a 

Contamination Mitigation Program based on 

sewage effluent hypochlorite dosing. 

 

A central aspect of the Mitigation Program 

was the identification of days requiring 

effluent chlorination, the level of dosing, and 

the start and end times of the operation. This 

Program, which was in place between 2008 

and 2014, was an effective effluent 

management measure that ensured Mar del 

Plata’s beaches met recreational water quality 

standards prior to outfall construction [24], [25]. 

On average, chlorination was undertaken in 

25 of the 90 summer days considered in the 

Mitigation Program, allowing not only 

significant cost savings but also minimization 

of secondary detrimental chlorination effects 
[4], [6]. The Mar del Plata effluent disinfection 

based on the Virtual Beach predictive model 

proved to be a valuable innovation that can 

be recommended to locations that do not 

meet water quality standards while sanitation 

solutions (i.e. a marine outfall) are yet to be 

completed. Such innovation could only be 

accomplished by collaboration between local 

investigators with water quality modeling 

experts. 

 

Figure 3.  Final section of the Mar del Plata outfall showing diffuser ports ready for installation.
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The interaction between OSSE and the IAHR-

IWA TC on Marine Outfall Systems culminated 

in the organisation of the International 

Symposium of Marine Outfall Systems in Mar 

del Plata in 2011 congregating over 300 

participants from across the globe to share 

their experiences on diverse aspects of outfall 

design, construction and operation. 

 

Outfall installation problems 

The Mitigation Program proved to be efficient 

in improving the city’s recreational water 

quality while construction of the outfall was 

underway. However, over this second 

construction attempt, new problems came to 

light. Originally, the design considered a 

buried manifold across the entire outfall 

reach. However, due to the vigorous local 

sediment dynamics, the dredged trench was 

reburied before installation of the pipeline 

could be undertaken. 

 

As a result, an alternative trenchless design 

was presented as a solution to the problem. 

The new design comprised anchoring the 

outfall to the seabed and adjustment to its last 

700 m alignment. Given these modifications, 

OSSE consulted the IAHR-IWA TC on Marine 

Outfall Systems who recommended a 

qualified consultant to review the alternative 

design. The positive interaction between the 

construction team and the design reviewer 

permitted continuation of construction 

through to completion in 2014 (fig. 3). 

 

New wastewater treatment plant 

Simultaneously to the submarine outfall 

design and construction, a new treatment 

plant design was undertaken to replace the 

Eng. Baltar pretreatment plant. Installed in a 

nearby larger building, the new location could 

accommodate future upgrades that might 

become necessary, depending on either the 

receiving marine water quality monitoring 

indicators or in case new and more stringent 

water quality standards are put in place. This 

plant, functioning since 2018, adopts new 

technology, including primary treatment 

followed by a pre-staged de-aerator and 

degreaser system, all of which are essential to 

dealing with the urban effluent characteristics 

that are highly affected by the local fishing 

industry.  

 

The plant discharges to the 4.2 km long 

marine outfall. The outfall terminates in a 

diffuser along its final 500 m that consists of 

ninety 15 cm diameter ports. Together, the 

sewage collectors, new treatment plant and 

outfall form Mar del Plata’s sanitation system. 

With these installations, the environmental 

monitoring of Mar del Plata’s beaches 

showed that recreational water quality 

standards for fecal Enterococci were not 

exceeded (fig. 2). Further, near field 

monitoring shows there is neither organic 

enrichment nor heavy metal and hydrocarbon 

contamination in the sediments [22]. Moreover, 

benthic organism studies indicate good 

conditions and a healthy marine receiving 

environment [5], [25]  

 

Discussion and conclusions 

We have described an extensive project 

process that involved multiple technical and 

institutional actors. Noting the long times to 

complete the outfall construction, as well as 

past and current wastewater treatment plants, 

the sanitation plan for Mar del Plata had to 

progress at all levels (local, provincial, and 

national), as a state policy independent of 

government changes. 

 

For more than 30 years, different city mayors, 

hundreds of technical professionals and 

workforce from OSSE, local and international 

consultants, and National and Provincial 

Entities and Authorities participated and 

contributed to the sanitation project. It is 

impossible to name every single person 

without unjustly missing important contribu-

tions, but it is fair to say those involved were 

genuinely interested in obtaining the best 

solutions. There were long periods during 

which the project was put into question. The 

doubts with regards to the project were 

generally of a technical nature, whereby the 

choice between outfall and a secondary 

treatment plant promoted a debate that 

ultimately allowed the project’s continuation. 

Therefore, the technical basis behind such 

projects must be sustained by a network of 

professionals that are able to understand and 

solve the myriad of problems that may occur 

throughout a project’s lifetime, from inception 

through construction and into operation, and 

eventually until decommissioning. 

 

Today’s accomplishments were only possible 

thanks to the assembled network effort, 

knowledge and will to see the project to 

completion. Specially, the concerted actions 

from OSSE and successive local and national 

governments were crucial to overcome 

obstacles to the outfall construction. These 

institutions had the foresight to prioritise the 

development and implementation of public 

policies as a vehicle to guarantee the water 

quality of the beaches enjoyed by visitors 

from across the country. It is therefore 

imperative to have water quality objectives 

and receiving environmental values ahead of 
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any specific technical solution, and not the 

other way around. 

 

Likewise, the implementation of the Marine 

Environment Monitoring Program in 

conjunction with adequate assessment of its 
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results were fundamental, not only for evalu-

ation of ecosystem health and recreational 

water quality during the project progression, 

but also for recognition that the outfall 

construction was essential for the sanitation 

needs of the city. The program was also 

crucial to demonstrate that, once the project 

was initiated, no additional steps would be 

required to complement the overall city’s 

sanitation plan. Further, the monitoring 

allowed the design of a Contaminant 

Mitigation Program using the Virtual Beach 

system that was based on sampled 

parameters, maritime conditions and 

modeling predictions. For other localities still 

requiring completion of their sanitation 

programs, application of a similar system is 

recommended as an effective means of 

reducing the risk of beach fecal contami-

nation.  

 

Possibly, the most important conclusion from 

this story is the importance of networks to 

advance, improve, and finalise projects. 

Along the way, the project largely benefited 

from the interaction of professionals through 

the IAHR-IWA TC on Marine Outfall Systems. 

These interactions culminated in the adoption 

of tools developed by Committee members, 

as well as the identification of experienced 

consultants for crucial project adjustments. 

Further, the meetings organised by the TC 

and other relevant organisations created 

optimal conditions for the establishment of an 

effective network of professionals, which 

proved to be the best conduit for reduction of 

project uncertainties and timelines, and for 

the development of solutions to drive the 

project towards its final objectives. 

 

This experience shows how Technical 

Committees are invaluable for the collective 

construction of sanitation projects around the 

world. Technical meetings, such as the 

International Symposium on Outfall Systems 

held in Mar del Plata in 2011, are not only 

important for the outfall technical community 

but also offer an important vehicle for 

communication of sanitation activities to the 

public at large, and are therefore an integral 

part of achieving SDGs 6.6•. 

 

As previously discussed, marine outfall 

systems can play an important role to achieve 

SDG’s by 2030. However, long periods of 

inaction cannot be justified nor afforded. The 

professional networks and dissemination of 

learned lessons between projects were 

demonstrated to be the best approach to 

reduce delays and conclude projects. The 

cost-benefit ratio provided by marine outfalls 

is likely to lead to improved sanitation condi-

tions for achievement of SDGs. 
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Spillways are key dam safety structures 

releasing excess water from reservoirs, in 

particular during floods. Weirs control the 

discharge through free flow spillways and 

corresponding reservoir levels. A high 

discharge capacity spillway allows for more 

reservoir water storage while keeping dam 

overtopping and other upstream flood related 

risks at acceptable levels. Since the discharge 

capacity of a weir is proportional to its crest 

length, engineers and scientists early on 

developed solutions to maximize this crest 

length [5] while responding to projects goals or 

sites limitations (restricted spillway width, 

project economics, etc.). In this respect, 

Labyrinth weirs, firstly formally studied in 1941 

by Gentilini, place the crest of a thin vertical 

wall along a triangular, trapezoidal or rectan-

gular path (in plan view) to maximize the crest 

length within a limited footprint (Figure 1). The 

number of Labyrinth weir projects increased 

exponentially after the publication of key 

research by the US Bureau of Reclamation 

and the American Society of Civil Engineers 

(ASCE) in the eighties and the construction of 

Ute Dam (USA). Additional noteworthy studies 

that have advanced the state-of-practice 

regarding Labyrinth weirs have been 

conducted at the Laboratório Nacional de 

Engenharia Civil (Portugal) and at the Utah 

Water Research Laboratory at Utah State 

University (USA). More than one hundred 

structures have been built to date [1] and 

Labyrinth weirs remains an active research 

topic today. 

From 1999, the NGO Hydrocoop began inves-

tigations to improve the traditional Labyrinth 

concept, in close collaboration with the 

Electricité de France - Laboratoire National 

d’Hydraulique (EDF-LNH) in France and then 

the Indian Institute of Technology Roorkee in 

India and the Biskra University in Algeria [3]. 

Their objective was to develop a new type of 

labyrinth weir with an even smaller footprint 

while maintaining a structurally simple and 

economical structure that could readily be 

constructed. Such a weir could be placed atop 

gravity dams in addition to the various applica-

tions common to Labyrinth weirs 

(embankment dams, run-of-river, etc.). In 2003, 

based on the results of many tests with 

selected shapes at University of Biskra and 

some experiments at EDF-LNH, Lempérière 

and Ouamane proposed for the first time the 

Piano Key weir [2].  

A Piano Key weir is a rectangular Labyrinth 

weir featuring inclined aprons with cantilevered 

apexes, increasing crest length while reducing 

footprint size. This arrangement is also struc-

turally advantageous as the cantilevered walls 

are shorter and steel reinforcement reduced, 

relative to a Labyrinth weir. The name “Piano 

Key weir” refers to the rectangular crest pattern 

and was proposed by Claude Bessière, who 

was involved in the development of Fusegates, 

a fuse system placed on a spillway crest that 

operates as a Labyrinth weir for a moderate 

range of reservoir levels and overturns at high 

reservoir elevation to free the supporting crest. 

Several types of Piano Key weirs have been 

defined based upon the geometry of the 

overhangs with the types A and B (as 

described by Lempérière and Ouamane in 
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Labyrinth weirs are an efficient solution for free surface flow whose development has been initially favored by a 

close collaboration between research and industry in the United States. Piano Key weirs improve the traditional 

Labyrinth concept and have been developed with the same collaborative spirit at an international level. Both 

structures have a huge potential of development and application worldwide, which has been exploited yet only in 

a few countries. 

hydrolink  number 4/2020

Figure 1. Hope Mills dam spillway with a 4.6 m high Labyrinth weir in North 
Carolina, USA (commissioned 2018). Photo courtesy of Schnabel 
Engineering.

Figure 2. Charmines dam spillway in France with a 23 m wide type-A piano 
key weir section on both sides of the crest gates (PKW commissioned in 
2015). Photo courtesy of EDF.



127hydrolink  number 4/2020

2003) being the primary types constructed. It is 

interesting to note that the dams of Beni 

Bahdel and Bakhada, built during the 1930s in 

Algeria, are equipped with a weir having an 

inclined upstream apron similar to the type B 

Piano Key weir.  

Following 2003, developments continued at 

the University of Biskra, where a specific 

experimental platform was built by Professor 

Ouamane [4]. Additional advancements at LNH 

were provided by Mr Cicero but also at IIT 

Roorkee, IWHR Laboratory (China) and at Ho 

Chi Minh and Hanoi Hydraulic Laboratories 

(Vietnam). Subsequent research contributions 

and design advancements were provided by 

Ecole Polytechnique Fédérale de Lausanne  

(Switzerland), University of Liege (Belgium) 

and Utah State University (USA). The next 

crucial step in Piano Key weir development 

was reached with the design and construction 

of the first prototype structures. Electricité de 

France with Mr Laugier applied the concept to 

increase the discharge capacity of existing 

dams in France (Figure 2), while it has been 

used by the Vietnamese National Committee 

on Large Dams with the advices of Mr Ho Ta 

Khanh to avoid more expensive and less safe 

surface gates on new structures in Vietnam 

(Figure 3). As for traditional Labyrinths, the 

collaboration between research, consultancy 

and industry was a key element in the Piano 

Key weirs development success. Of particular 

note is the early organization of several 

specific international workshops and confer-

ences that facilitated the connection of all 

these actors, forming an international nonlinear 

weir community. At these special events, an 

open and friendly environment was estab-

lished where knowledge from practice and 

research was freely exchanged; these events 

also resulted in the publication of multiple 

reference books on these two weir types 

(https://www.pkw.uliege.be).  

Since the 2006 Goulours dam Piano Key weir 

commissioning in France, more than 35 Piano 

Key weirs have been build worldwide, 

consistent with the number of traditional 

Labyrinth weirs built during that same period 
[1]. Research continues throughout the globe, 

with an average of 15 contributions in scientific 

journals every year since 2010. This prompt 

and fast development shows that the Piano 

Key weir solution fills a gap in hydraulic struc-

tures engineering, in particular in the current 

period of climate evolution, limited resources 

and continually increasing water related 

issues.  

Labyrinth and Piano Key weirs, both very 

efficient free surface flow weir solutions, have a 

huge potential of development and application 

worldwide. This potential has been well used 

for the first type in the US, while for the latter it 

has mainly been exploited for existing dams in 

France and new structures in Vietnam. It is the 

authors’ belief that the fast development of 

these nonlinear weir solutions will continue  

into the future, with a wish that the same  

level of enthusiasm, collaborative spirit and  

competency with which it began persists. n 
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