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PARTIAL DIFFERENTIAL EQUATION MODEL FOR SPATIALLY DISTRIBUTED 
STATISTICS OF CONTAMINANT PARTICLES IN LOCALLY ONE-DIMENSIONAL 

OPEN CHANNEL NETWORKS 
 
 

Hidekazu Yoshioka1, Koichi Unami1, and Toshihiko Kawachi1 
 
 
ABSTRACT 
 
Contaminant particle dynamics in surface water flows is well described by a stochastic differential 
equation and its associated Kolmogorov’s backward equation. This study develops a partial 
differential equation model (PDE model) to efficiently analyze spatially distributed statistics of 
contaminant particles in surface water flows. The PDE model is analytically derived from a 
Kolmogorov’s backward equation without assuming empirical gradient type laws. Locally one-
dimensional open channel networks are focused on as the domains of surface water flows. A 
versatile Petrov-Galerkin finite element method scheme utilizing exact solutions to local two-point 
boundary value problems as weight functions is developed for accurate numerical resolution of the 
model. Stability condition of the scheme is investigated on the basis of the M-matrix theory. A series 
of numerical test problems is carried out to verify the scheme. Numerical analysis of contaminant 
transport in an existing open channel network is also carried out to assess applicability of the PDE 
model to real life problems. Distributions of escape probability and statistical moments of residence 
time of contaminant particles are successfully computed with assumed dispersivity. It is concluded 
that our approach serves as a reliable tool for the contaminant transport analysis in open channel 
networks. 
 
 
1. INTRODUCTION 
 
Contaminant transport phenomena in surface water flows, such as canals, rivers, lakes, estuaries, and 
seas have been eagerly studied for their significant impacts on water environment and human 
activities. In general, such transport phenomena are analyzed using physically based mathematical 
models. Most of the existing models are classified as the deterministic models derived by combining 
mass conservation laws and empirical gradient type laws (Chatwin and Allen, 1985). However, for 
turbulent diffusion phenomena and dispersion phenomena, assumption of the gradient type laws is 
only an analogy to the well-known Fick’s law for molecular diffusion phenomena. Since 
contaminant particle dynamics in surface water flows is inherently stochastic, more consistent 
approach will be necessary to take uncertainties involved in the phenomena into account properly. In 
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order to do so, motions of contaminant particles in the flows should be understood as suitably 
chosen stochastic processes. Especially, stochastic differential equation (SDE) (Øksendal, 2001), the 
stochastic counterpart of ordinary differential equation, is known to be effective for modeling 
transport phenomena in surface water flows. Charles et al. (2009) analyzed two-dimensional 
dispersion in real shallow water based on an SDE driven by colored noise terms. Oh and Tsai (2010) 
modeled sediment transport in open channel flows as a jump diffusion process governed by an SDE 
driven by both Gaussian and Poisson white noise terms. 

As well as the SDE, its associated advection diffusion equations (ADEs) the Kolmogorov’s 
forward equation (KFE) and the Kolmogorov’s backward equation (KBE) provide reasonable 
analytical means for contaminant transport phenomena in water bodies (Bodo et al. 1984). The KFE 
and the KBE respectively govern forward and backward evolution of the conditional probability 
density function (PDF) of particle position. Some researchers have found that application of certain 
mathematical operations to the KFE leads to macroscopic transport equations. Too et al. (1986) 
discussed longitudinal dispersion in tubular flows and analytically derived the transport equation of 
solute with a nonlinear reaction term. Man and Tsai (2007) derived a stochastic partial differential 
equation model for suspended sediments transport from a KFE. Yoshioka et al. (2012) deduced the 
transport equation of conservative solute based on the linearity of KFE. Their derivation technique 
has been extended and applied to formulate systems of transport equations of reactive substances in 
locally one- and horizontally two- dimensional shallow water flows (Yoshioka, 2012). On the other 
hand, the KBE and its related partial differential equations (PDEs) govern spatially distributed 
statistics of particles such as statistical moments of residence time in a domain and escape 
probability from a domain. Analyzing spatio-temporal evolution of the spatially distributed statistics 
plays a key step for well understanding and evaluating stochastic nature of contaminant transport 
phenomena. Naeh et al. (1990) reviewed engineering applications of the spatially distributed 
statistics analysis. Cai et al. (1996) developed an evaluation method for groundwater contamination 
process based on the analytical solutions to KBEs. A series of studies including Brannan et al. (1999, 
2001) and Szurley and Duan (2001) numerically analyzed stochastic particle dynamics in 
geophysical vortices based on the escape probability and the mean residence time. Unami et al. 
(2010) utilized a KBE to assess ecological effect of hydraulic structures installed in existing 
drainage canals in terms of ascending probability of fish. Yoshioka et al. (2011) numerically solved 
KBEs to analyze stochastic contaminant particle dynamics in an existing open channel network. 

This study develops a new mathematical model for the spatially distributed statistics, termed 
PDE model, for efficient analysis of contaminant transport phenomena in surface water flows. The 
model consists of a set of linear time-backward parabolic equations containing advection, diffusion, 
and reaction terms. Due to its Eulerian nature, the PDE model does not require cost consuming 
trajectory generations used in the conventional Monte-Carlo models (Lejay 2003, 2004). Locally 
one-dimensional open channel networks, connected graphs in which hydraulic properties such as 
wetted cross-sectional area and cross-section average velocity are distributed, are focused on as the 
domains of surface water flows. Locally one-dimensional open channel networks arise in various 
applied problems such as agricultural water pollution (McGechan et al. 2008), salt intrusion in 
estuaries (Ngyuen and Savenije, 2006), and aquatic population persistence (Grant et al., 2007). 

A versatile Petrov-Galerkin finite element method (PGFEM) scheme is developed for 
numerical resolution of the PDE model. The scheme is categorized as the conforming finite element 
methods, and it has no stabilization parameters to be chosen a priori. The scheme implicitly includes 
internal boundary conditions in spatial discretization as in the authors’ developed numerical methods 
(Unami 1998, Yoshioka et al. 2011) so that the channel junctions are consistently dealt with. Exact 
solutions to local two-point boundary value problems are utilized in determining the weight 
functions to generate oscillation-free numerical solutions with compact stencil. This evaluation 
method is referred to as the fitting technique, and it has been recognized to work well in solving the 



Proceedings of the 10th Intl. Conf.on Hydroscience & Engineering, Nov. 4-7, 2012, Orlando, Florida, U.S.A. 
 

3 

steady ADEs (de Falco and O’Riordan, 2011), and the non-degenerate (NG-Stynes et al., 1988) and 
the degenerate (Valkov, 2011) unsteady ADEs in one-dimensional domains. However, to the 
authors’ knowledge, no FEM scheme with the fitting technique has been applied to the ADEs on 
connected graph domains. 

This paper is organized as follows. In Section 2, a concise introduction is given for locally 
one-dimensional open channel network as well as the SDE, the KBE, and the PDE model defined on 
it. In Section 3, the Petrov-Galerkin finite element formulation is presented. Stability analysis of the 
scheme is also conducted in this section. In Section 4, accuracy of the scheme is verified with a 
number of test problems in hypothetical domains. Numerical analysis of contaminant transport 
phenomena in an existing domain is carried out in Section 5. Section 6 provides conclusions of this 
study. Supplementary information is given in APPENDICES. 
 
 
2. MATHEMATICAL MODEL 
 
2.1 Definition of locally one-dimensional open channel Network 
 
In analyzing transport phenomena in open channel systems, the one-dimensional shallow water 
approximation has been practically applied to flow fields (Szymkiewicz, 2010). In such a case, a 
locally one-dimensional open channel network extending over the horizontally two-dimensional 
plain defines the computational domain. A locally one-dimensional open channel network is a 
connected graph domain consisting of a collection of a finite number of reaches linked via a set of 
junctions. Hydraulic properties such as wetted cross-sectional area and cross-section average 
velocity are distributed on it. A finite length Jordan curve gives a reach and arbitrary position in the 
domain is uniquely determined by a local abscissa taken along the reach. A channel network is said 
to be multiply-connected if it contains at least one loop and to be simply-connected otherwise 
(Abbott, 1979). ADEs and SDEs defined in a locally one-dimensional open channel network 
generally require certain internal boundary treatments at junctions to preserve unique existence and 
regularity of the solutions (Von Below 1988, and Freidlin and Sheu, 2000). 
 
2.2 SDE and associated KBE 
 
A locally one-dimensional open channel network is taken as the domain   where the flow field is 
defined and passive contaminant particles are present. The boundary of   is denoted by  , which 
consists of the open boundary O  and the wall boundary W  with WO    , O  , and 

WO   . The position of a contaminant particle in   is modeled as a continuous stochastic 
process and is denoted by tX  at time t . Assuming the Markov property of tX  yields the Ito’s SDE 

    d , d 2 , d dt t t t tX V t X t D t X B     (1) 
where V  is the deterministic cross-sectional average velocity, 0D   is the dispersivity, tB  is the 
one-dimensional standard Brownian motion, and t  is the local time (Freidlin and Sheu, 2000) that 
increases only at junctions. The SDE (1) describes the increment d tX  as a sum of the deterministic 
term dV t , the stochastic term 2 d tD B , and the remaining term d t  for the incremental law at 
junctions. Let  , , ,P P s y t G  be the transition probability such that tX x G   provided that 
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sX y  for the past time s t  for an arbitrary sub-domain G  contained in  . The conditional PDF 
 , , ,p p s y t x  for tX  is defined to satisfy the condition (Arnold, 1974) 

 
    , , , , , , d

G
P s y t G p s y t x x  . (2) 

 
According to Øksendal (2001), the KBE associated with the SDE (1) is given by 
 

 
2

2 0X
p pV D Rp
y y

p p L p
s s
 

 
 

  
 


 

 (3) 

 
where XL  is the infinitesimal generator of tX  and 0R   is the decay coefficient defined as 
 

    
0

1, lim , ,Kh
R R t x P t x h

h
   (4) 

 
where  , ,KP t x h  is the probability such that the particle positioned at x  at the time t  is killed 
during the time interval  ,t t h . Backward evolution of p  for the past time s t  is uniquely 
determined by solving the KBE (3) with the terminal condition 
 
    , , ,   in  p t y t x y x    (5) 
 
and the boundary conditions 
 
   O, , , 0  at  p s y t x    (6) 
 
and 

 W0  at  pD
y


 


. (7) 

Then, p  satisfies 
 
    lim , , , 0k

t
t s p s y t x


   (8) 

 
for arbitrary non-negative integer k . 
 
2.3 The PDE Model 
 
The partial differential equation model (PDE model) governing escape probability from a domain 
and statistical moments of residence time in a domain is analytically derived from the KBE (3). This 
section rigorously defines these spatially distributed statistics and derives their governing equations. 
 
2.4 Residence Time 
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Residence time is the total elapsed time that a particle spent in the domain before reaching the open 
boundary or being killed. Residence time ,s y  of a particle provided that sX y  is defined as 
 
  ,

Oinf , ,  s y
s tt s t s X y X        (9) 

 
where   is the coffin state on which killed particles are put (Øksendal, 2001). By (9), the k th 
statistical moment of the residence time  ,kM s y  is expressed using p  as 
 

 

   
   
   

   

   

, ,

,

,

, E

Pr

Pr 0 d

1 , , , d d

, , , d d

ks y s y
k

k s y

s

k s y

s

k

s

k

s

M s y

t s t s t s dt

t s t s t
t

t s p s y t x x t
t

t s p s y t x x t
t



















    

      


    


     


  






 

 

 (10) 

 
where  ,Es y   represents the expectation operator conditioned on s  and y . Since the limit behavior 
of p  for t  is constrained by (8), applying a partial integration to (10) results in 
 

 

     

       

   

1

1

, , , , d d

, , , d , , , d d

, , , d d

k
k s

k k

ss

k

s

M s y t s p s y t x x t
t

t s p s y t x x k t s p s y t x x t

k t s p s y t x x t





  

 

 




  



      

 

 

  

 

. (11) 

 
Substituting (3) into (11) yields the governing equation of  ,kM s y  as 
 

 1
k

X k k
M L M kM
s 


  


 (12) 

 
with the terminal condition 
  , 0  in  kM y    (13) 
 
and the boundary conditions 
 
   O, 0  at  kM s y    (14) 
and 

 W0  at  kD
y
M

 


 (15) 
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for 1k   where  0 , 1M s y   by the definition. The first order moment 1M  in particular is termed 
mean residence time (MRT), which is one of the most important spatially distributed statistics in 
application. Similar but deterministic approach based governing equation of MRT has been derived 
in Delhez et al. (2004) for coastal transport problems. 
 
2.5 Escape Probability 
 
Escape probability is the probability that a particle reaches a specified portion of the open boundary 
before being killed. The escape probability  ,E s y  of a particle provided that sX y  reaches the 
portion of the open boundary O    is expressed as 
 
    ,, Pr s y ss

E s y X X y 



   . (16) 

 
According to Schuss (2010), application of the Kolmogorov’s representation formula to (16) yields 
the governing equation of  ,E s y  as 
 

 0X

E
L E

s





 


. (17) 

 
with the terminal condition 
 
  , 1  in  E y     (18) 
 
and the boundary conditions 
 
  , 1  at  E s y  , (19) 
   O, 0  at  E s y   , (20) 
 
and 

 W0  at  
E

D
y

 


. (21) 

 
 
3. FINITE ELEMENT FORMULATION 
 
3.1 Weak Formulation 
 
This section presents the finite element formulation for the PDE model. In order to consistently deal 
with singularity of junctions in the locally one-dimensional channel networks, the ADEs (12) and 
(17) shall be understood as the weak form 
 

  d d d d du u uw y wV y Dw y w yRu wq y
s y y y    

   
    

         (22) 
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with the terminal condition 
 
    ,   in  Tu T y f y   (23) 
 
and the boundary conditions 
 
    

O O,   at  u s y f y   (24) 
 
and 

 W0  at  uD
y


 


 (25) 

 
where w  is arbitrary weight function in the Hilbert space  1H  , T  is the terminal time, 

 1u H   is the unknown, q  is the source term, Tf  and 
O
f  are positive functions. The left hand 

side of (22) vanishes in steady problems. Based on the above weak formulation, internal boundary 
conditions at junctions are implicitly taken into account as shown in the next section. 
 
3.2 Spatial Discretization 
 
Spatial discretization of the weak form (22) is performed within the fitting Petrov-Galerkin 
framework. The domain   is firstly divided into a computational mesh consisting of elements 
bounded by two nodes, so that any junction exactly falls on one of the nodes. The elements and the 
nodes are respectively indexed with the natural numbers. The total numbers of elements and nodes 
are respectively denoted by eN  and nN . The i th node is denoted by Pi . The k th element is denoted 
by k . The length of k  is represented by kl . The number of elements connected to Pi  is denoted 
by  i . The j th element connected to Pi  is referred to as the  ,i j th element  ,i j . There are 
two nodes that bound  ,i j ; one of them is the i th node Pi , and the other is referred to as the 

 ,i j th node  ,P i j . A schematic sketch of the computational mesh is shown in Figure 1.  
 
 

 
 

Figure 1 A schematic sketch of the computational mesh around the node Pi  (   3i  ). 
 
The direction of the y  abscissa in  ,i j  is identified with the sign parameter ,i j , which is equal to 
1  when y  is directed to  ,P i j  and is equal to 1  otherwise. The known functions V  and R  are 
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attributed to the elements as constant values, while D  and q  are attributed to the elements as linear 
functions which may be discontinuous at the nodes. According to Benichou and Debsbois (2009), 
such discontinuities of the known functions do not affect well-posedness of the problem. The 
discretized V  and R  in k  are denoted as kV  and kR , respectively. The discretized D  and q  in 

 ,i j  are respectively denoted as ,i jD  and ,i jq , and these are given by 
 

    , ,0 , ,1 , ,0 , ,
,

,  

0,   Otherwise
i j i j i j i j i j

i j

z y   


    


 (26) 

 
with the local abscissa 

 
 

 , ,
, ,

  in  i
i j i j

i j i j

y yz
l 



   (27) 

 
where  , ,0i j  and , ,1i j  are the left hand side limit in  ,i j  
 
 

 ,
, ,0  in  

lim
i i j

i j y y 

 
 

  (28) 

 
and the right hand limit in  ,i j  
 
 

   , ,
, ,1   in  

lim
i j i j

i j y y 

 
 

 , (29) 

 
iy  and  ,i jy  represent y  at Pi  and at  ,P i j , and   corresponds to D  or q . The unknown u  in 

 ,i j  is linearly interpolated as 

    ,,i i i ji ju u u u z    (30) 
 
to ensure  1u H  . On the basis of the fitting technique, exact solutions to local two-point 
boundary value problems are utilized to determine the weight function w  in order to generate 
oscillation free numerical solutions. The weight function associated with the node Pi  is denoted as 

iw , and is determined to solve the two-point boundary value problems 

      

2

, ,0 , , ,2 0  in  i i
i j ii j i j i j

w wD V R w
y y  

 
   

 
 (31) 

     ,1,   0i i i i jw x w x   (32) 
 
for  1 j i   . Since the support i  of iw  is given by closure of the additive set of elements 
 

  
 

,1

i
i i jj






  , (33) 
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spatial discretization in the PGFEM scheme is carried out with compact stencil. Exact solutions to 
(31) and (32) are calculated as 
 

 
   

     
, , , , , ,

,
, ,

exp exp
  in  

exp exp
i j i j i j i j i j i j

i i j
i j i j

z z
w 

   

 

   

 

  
 


 (34) 

 
where ,i j 

 
are the non-dimensional parameters given by 

 

            
2 2

, , , , , , ,
,

, ,0 , ,0 , ,0

41
2

i j i j i j i j i j i j i j
i j

i j i j i j

V l V l R l
D D D
     


           

. (35) 

 
However, the l’Hospital’s rule is applied to (34) for degenerate cases as 
 

 
   

   
, , ,

,
,

exp exp
  in  

exp 1
i j i j i j

i i j
i j

P P z
w

P 


 


 (36) 

with 

    , , ,
,

, ,0

i j i j i j
i j

i j

V l
P

D
 

  (37) 

when  , 0i jV   and  , 0i jR  , and 
  , ,1   in  i i j i jw z     (38) 
 
when  , 0i jV   and  , 0i jR  . Since  ,i jR  is greater than or equal to 0, iw  in the sub-domain 

 ,i j  monotonically decreases from 1 at iy  to 0 at  ,i jy  (Gilberg and Trundinger, 1977). 
Therefore, considering the direction of the y  abscissa in  ,i j  yields the inequality 
 

  , ,0  in  i
i j i j
w
y  
 


. (39) 

Substituting iw w  into (22) yields 
 

  d d d d d
i i i i i

i i i i i
u u uw y wV y Dw y w y wq y
s y y y

Ru
    

   
    

        . (40) 

 
The left hand side of (40) is calculated as 
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 

 

 

 
 

 

 

 
 

,

,

1

,

1 , ,

,
, ,0 , ,1

1

d d

d

dd
d d

i i j

i j

i

i i
j

i
ii j

i i i
j i j i j

i
i ji

i j i j
j

u uw y w y
s s

u u
w u y y y

s l

uuI I
s s



























 


 

      
     

 
   

 

 

 



. (41) 

 
where the integrals , ,0i jI  and , ,1i jI  are given by 
 

 
     , ,

, ,0 , ,1
, ,, ,

1 d ,   d
i j i j

i i
i j i i j i

i j i ji j i j

y y y yI w y I w y
l l    

    
     
   
   

  . (42) 

 
Exact expressions of , ,0i jI  and , ,1i jI  are presented in APPENDIX A. The last term of the right hand 
side of (40) is calculated as 

 
 

 

 

 
 

,
,

1

, ,0 , ,0 , ,1 , ,1
1

d d
i i j

i

i i i j
j

i

i j i j i j i j
j

wq x wq x

I q I q














  

  

 


. (43) 

 
Since u  is element-wise linear, the second term of the right hand side of (40) is calculated as 

 

   
 

 

 

 
 

 

 

 
 

 
 

 

 

 

,

,
,

,

,
,

,

1

1

, , ,0
1

, ,0
1

, ,0
1

d d

d

d

d

i i j

i j
i j

i j

i j
i j

i j

i i

i

i

j

i

j

i

i j i j
j

i

i
i

j
j

i

i j
j

i

u uDw y Dw y
y y y y

u Dw y
y y

u
y

wu D y
y y

w u
y

D

D y
y































 

 


 




   


   

 


 





 



 






 



 













. (44) 

 
By (44), the first, the second, and the third terms of the right hand side of (40) are recast as 
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 

 
 

 
 

 
 

 

 
 

 
 

 

 

, , ,

, ,

, ,
1

, ,0, ,
1

, ,0,

d d d

d d d

d d

i i i

i j i j i j

i j i j

i

i j i j
j

i

i ji j i j
j

i ji

i i i

i i i

i
i

i j

i

i

u uwV y Dw y w y
y y y

u uwV y Dw y w y
y y y

w uV w D y w y
y y

Ru

R u

R u

wwV D
y

  

 

  



 



 



  


 


  
  

  

   
      
   

        

 




   

  

 

 



 

   
 

 

,
,

2

, ,0 , ,2
1

d
i j

i j

i
i i

i j ii j i j
j

w wD V R w uu
y y

y






 
 

  
   

       


.(45) 

 
Since iw  is the solution to (31) and (32), the second term of the right hand side of (45) vanishes. 
Finally, (40) results in the ordinary differential equation (ODE) 
 

  
 

 
 

 

  
 

,

,
, ,0 , ,1 , ,0 , ,0 , ,1, ,

1 1 1

dd
d d

i j

i i i
i ji

i j i j i j i j i i ji
i

j i j
j j

i
j

uuI I I q I qwu wV D
ys s



  


 
  

  
 

 
           

   .(46) 

 
When the node iP  falls on a junction, the ODE (46) serves as an internal boundary condition and 
thus the present PGFEM scheme consistently deals with junctions without any special treatment. 
 
3.3 Temporal Discretization 
 
Assembling (46) for all i  yields the system of ODEs 
 

 dM N
ds

  
u u b  (47) 

where  iuu  is the nN -dimensional nodal solution vector, ,M Mi k     and ,N Ni k    are the 

n nN N -dimensional matrices, and  ibb  is the nN -dimensional vector independent of u . The 
system of ODEs (47) is integrated backward in time by the  -method (Knabner and Angermann, 
2003) starting from the terminal condition (23) with imposing the boundary conditions (24) and (25)
. Applying the  -method to (47) obtains the recursion 
 

 

      
         

             
     

              

1 1
1

1 1

1

1 1

M 1 M M

N 1 N 1

1

N 1 1

m m m m
mm m

m m m m

m m

m m m m m

s s
 

   

 

   

 


 



 

 
    

 

    

  

     

u u u u

u u

b b

u u b b

 (48) 

 
where 0s   is the fixed time increment, the superscript  m  represents the value at the time 

s T m s   , and  M
m

 and 
 N
m

 are the n nN N -dimensional matrices given by 
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        1M M 1 M

m m m     (49) 
and 
        1N N 1 N

m m m    . (50) 
 
Straightforward calculations show that  M m  is positive definite and  N m is an M-matrix 
(APPENDIX B). 
 
3.4 Stability Analysis 
 
Stability of the PGFEM scheme is analyzed on the basis of the M-matrix theory (Hundsdorfer and 
Verwer, 2007). Here, a numerical scheme is said to be stable if it generates oscillation-free 
numerical solutions. The vector b  is set as the null vector throughout the stability analysis since it 
makes no contribution to stability of the scheme. 
 
3.5 Stability for steady Problems 
 
In steady problems, the system of ODEs (47) reduces to the linear algebraic equation 
 
 N u 0  (51) 
 
where 0  is the nN -dimensional null vector. Since inverse of an M-matrix is positive definite, 
inverse of N  is positive definite as well, showing that the scheme satisfies the elliptic discrete 
maximum principle (Idelsohn et al, 1996) and is unconditionally stable for steady problems. 
 
3.6 Stability for unsteady Problems 
 
It has been well recognized that FEM schemes produce unphysical oscillatory solutions for unsteady 
ADEs due to the positive-definiteness of mass-matrix, even if the time increment is taken 
sufficiently fine. A simple and efficient way to cope with this issue is to lump the mass-matrix 
(Quarteroni and Valli, 2008). In this study, the matrix  M m  is lumped as 
 

      
 

, ,0 , ,1
, 1,

,  
M M

0,   Otherwise

i

mm i j i j
i k ji k

I I i k





   




 . (52) 

 
Then, the system of ODEs (47) results in 
 

 dM N
ds

 
u u , (53) 

 
leading to the recursion 
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       

     1 11 1M N M 1 N
m mm mm m

s s
 

                
u u  (54) 

 
where 

 
       1

M M 1 M
m m m

 


   . (55) 
 
According to Mincsovics (2010), the PGFEM scheme is stable with satisfying the parabolic discrete 
maximum principle if s  is chosen sufficiently small so that 
 

 
 

   
,

,
,

M0 min
1 N

m
i i

mi m
i i

s


      
  

 (56) 

 
holds. This inequality is automatically satisfied in the case of 1  . 
 
 
4. NUMERICAL TESTS 
 
The PGFEM scheme is verified with a number of test problems in a one-dimensional interval and in 
a simply-connected open channel network. Computed solutions are compared with analytical or 
reference solutions. The time increment s  is chosen so that the inequality (56) is fulfilled. 
 
4.1 Test Problems in a one-dimensional Interval 
 
The PGFEM scheme is firstly applied to one-dimensional test problems to examine its accuracy. The 
unit interval  0,1  is taken as the computational domain  , which is divided into e 100N   uniform 
elements with n 101N   nodes. Here, two test problems Tests 1D-a and 1D-b are examined. The 
known functions V , D , R , q , the terminal condition (T.C.), and the boundary conditions (B.C.) 
are specified in Tests 1D-a and 1D-b as summarized in Table 1 where d  and r  are positive 
constants, and H  is the Heaviside step function. Test 1D-a is a steady problem with a flow turning 
point at 0.5x   and Test 1D-b is an unsteady problem with continuously varying diffusivity. 
Solution of Test 1D-a exhibits a sudden transition around the flow turning point 0.5x   when both 
D  and R  are small (Farrel et al., 2004), which is difficult to compute with the conventional 
numerical schemes. Numerical resolution of Test 1D-b requires both spatial and temporal accuracy. 
In Test 1D-b, the terminal time T , the time increment s , and the parameter   are set as 0.5 , 

0.01 , and 0.5 , respectively. Since the analytical solution of Test 1D-b is not known, numerical 
solution on e 1,000N   uniform elements with the time increment 0.001s    is regarded as the 
reference solution. Comparisons of the computed and the analytical solutions of Test 1D-a for 
   ,  0.0001,1d r   and    ,  0.0001,10,000d r   are shown in Figure 2, and comparisons of the 
computed and the reference solutions of Test 1D-b for    , 0.01,1d r   and    ,  0.0001,1d r   are 
shown in Figure 3 and Figure 4. Figure 2 shows that the PGFEM scheme exhibits excellent accuracy 
for the steady problems, while Figure 3 and Figure 4 show that the scheme produces overly 
smoothed solutions for the unsteady problems with small diffusivity. This is due to the mass 
lumping technique employed in the scheme. As reported in Guo and Stynes (1994a, 1994b), lumped 
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FEM schemes generally have excessive apparent numerical diffusivity. The PGFEM scheme 
developed in this study is not an exception. However, non-lumped FEM schemes generally cannot 
satisfy the parabolic discrete maximum principle which ensures temporal stability. Thus, there is a 
tradeoff between temporal accuracy and stability of the FEM schemes, and which should be chosen 
depends on the purpose of analysis. Since this study focuses on analyzing non-negative spatially 
distributed statistics, negative numerical solutions should not be present. Therefore, the mass 
lumping employed in this study is a reasonable option to obtain physically meaningful solutions. 
 

Table 1 Computational conditions specified for Tests 1D-a and 1D-b. 
 

Test V  D  R  q  T.C. B.C. 
1D-a  1.5 0.5 1H x   0.0001 r  1 Not specified    ,0 ,1 0u t u t   
1D-b 1  1d y  

1 0  , 1u T y      ,0 ,1 0u t u t   
 

 
 

Figure 2 Comparisons of computed and analytical solutions for Test 1D-a with 1r   and 10,000r  . 
 

 
 

Figure 3 Comparisons of computed and reference solutions for Test 1D-a with 0.01d  . 
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Figure 4 Comparisons of computed and reference solutions for Test 1D-a with 0.0001d  . 
 

4.2 Test Problems in a simply-connected open channel Network 
 
The PGFEM scheme is examined to compute MRT distributions based on the ADE (12), for the 
purpose of verifying its ability to deal with junctions. The hypothetical simply-connected open 
channel network in Ramirez (2011) is taken as the computational domain  . As illustrated in Figure 
5, the key nodes defining the boundaries of the reaches are alphabetically labeled A to H, and the y  
direction in each reach is identified. The key nodes are referred to as the upstream-ends (A, F, G, 
and H), the downstream-end (E), and the junctions (B, C, and D) serving as the confluence points in 
the channel network. Flow field in the domain is steady. Each reach is divided into 100 uniform 
elements, resulting in totally e 350N   elements with n 351N   nodes. The channel length L  and 
the cross-sectional average velocity V  for the reaches are specified according to Ramirez (2011) as 
shown in Table 2. The dispersivity D  is set as 
 D V    (57) 
where   and   are positive constants. Here,   and   are set as 0.1 and 1.0×10-6, respectively. The 
decay coefficient R  is considered two cases, which are of 0R   (Test L1D-a) and 0.005R   (Test 
L1D-b) over the domain. The ADE (12) is solved under the boundary conditions 
 
  1 0  at  EM y   (58) 
and 

 1 0  at  A, F, G, and HMD
y





. (59) 

 
Analytical MRT distributions are obtained by assuming global continuity of 1M  and the internal 
boundary conditions of the form (APPENDIX C) 
 

 
junc

1

1 , junction

0
j j

MD
y





 
  

  (60) 

 
at the junctions B, C, and D where junc  is the total number of reaches connected to the junction. The 
analytical MRT distributions do not have local extrema inside of the domain  , taking the 
minimum value 0 at the downstream-end E. Comparisons of the computed and the analytical MRT 
distributions for Tests L1D-a and L1D-b are shown in Figure 6. The computed MRT distributions 



Proceedings of the 10th Intl. Conf.on Hydroscience & Engineering, Nov. 4-7, 2012, Orlando, Florida, U.S.A. 
 

16 

have no local extrema and there is an excellent agreement between the computed and analytical 
results, showing that the proposed PGFEM scheme correctly deals with the junctions.  
 

Table 2 Specified values of L  and V  in each reach (Ramirez, 2011). 
 

 A-B B-C C-D D-E F-B G-C H-D 
L  (m) 43.8 93.6 107.6 88.3 42.3 59.9 50.1 
V  (m/s) 0.78 1.04 1.11 1.05 0.91 0.86 0.83 

 

 
 

Figure 5 Plane view of the simply-connected open channel network with key nodes (Ramirez, 2011). 
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Figure 6 Comparisons of the computed and the analytical MRT distributions. 

 
 

5. APPLICATION TO REAL LIFE PROBLEMS 
 
5.1 Computational Domain 
 
The verified PGFEM scheme is applied to numerical analysis of contaminant transport phenomena 
in an existing domain. A multiply-connected open channel network draining hydromorphic 
farmlands in the Guinea savanna agro-ecological zone of Ghana (Unami and Alam, 2012) is taken as 
the computational domain. Figure 7 illustrates a plane view of the channel network as the 
computational domain with finite element mesh and key nodes alphabetically labeled from A to P. 
Total numbers of elements and nodes in the domain are e 228N   and n 224N  , respectively. The 
channel network consists of a main loop (A-B-C-D-E-F-A-G-H-I) running in the rice field, a 
downstream gully (K-L-M-N-O-J-P), and steep cliffs connecting the main loop and the gully (F-L, 
A-M, G-N, H-O, and I-J). The node D is the highest point in the domain, K and P are the boundaries, 
A, F, G, H, J, L, M, N, and O are the junctions. The node P is the downstream-end of the domain 
where a free-overflow natural weir is installed. The water input into the channel network is direct 
rainfall and lateral groundwater seepage from the farmlands (Unami et al., 2007). Water flows in the 
channel network exhibit highly complicated natures including both subcritical and supercritical 
flows due to the complex topography of the channel.  
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Figure 7 Plane view of the multiply-connected open channel network domain with computational 
mesh and key nodes. 

 
5.2 Computational Conditions 
 
The computed flow field in Unami and Alam (2012) is used for determining distributions of the 
known functions V  and D  in the domain. The cross-sectional velocity V  is directly calculated from 
the flow field and the dispersivity D  is estimated using the following stochastic theory based 
analytical formula (APPENDIX D) 
 

 
2 8/3

2 48
V

D
g n

  
 , (61) 

 
where   and   are positive parameters,   is the hydraulic radius, g  is the gravitational 
acceleration, n  is the Manning’s roughness coefficient. Here,   and   are set as 5.00 and 2.25  in 
order to provide realistic distribution of D . The decay coefficient R  is set as 0 (Case OC-1) or 
0.0005 (Case OC-2) over the domain. The boundary nodes K and P are treated as the wall boundary 

W  and the open boundary O , respectively. The statistical moments 1M  and 2M , and the escape 
probability PE  from the downstream-end P are computed using the PDE model with the PGFEM 
scheme. The total simulation period T  is 30,000 (s), 10:10 a.m. on September 1st, 2009, is set as the 
time 0s   and 6:30 p.m. on September 1st, 2009, is set as the terminal time s T . The time 
increment s  and the parameter   are fixed to 0.01  (s) and 0.5 , respectively. For computational 
purpose, the terminal conditions (13) and (18) are replaced with 
 
  , 0  in    for  1,2kM T y k    (62) 
and 
  P , 1  in  E T y   . (63) 
 
5.3 Computational Results 
 
Computational results of the spatially distributed statistics for Cases OC-1 and OC-2 are presented, 
focusing on the time series at the highest point D where the MRT 1M  mainly attains the maximum 
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values. Figure 8 and Figure 9 show time series of rainfall intensity, the MRT 1,DM  at the node D and 

its deviations 1,D DM    and 1,D DM   , and the escape probability P,DE  at the node D where 

 2
2 1M M    represents the standard deviation of residence time. Non-negativity of 1M , 2M , 

and PE  were completely maintained in the entire simulation period. In Case OC-1, the escape 
probability PE  is 1 over the domain at all times implying that all the contaminant particles 
eventually flow out from the domain. In Case OC-2, increase of 1,DM  and decrease of P,DE  occur 
simultaneously, and vice versa. This is considered to be reasonable since larger (smaller) residence 
time with 0R   results in more (less) contaminant killing and thus lower (higher) escape probability. 
Time evolution of 1,DM  and D  are clearly inter-connected, and D  generally attains larger 
values in Case OC-1 than in Case OC-2. This is caused by the larger value of R  in Case OC-2 
which results in enhancing the variance of killing time as well as the second-order moment 2M . 
Although no experimental data to be compared is available, the computational results are consistent 
with intuitive expectations. 
 

 
 

Figure 8 Rainfall intensity, the MRT 1,DM  at the node D with its deviations 1,D DM    and 

1,D DM   , and the escape probability P,DE  at the node D for the Case OC-1. 
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Figure 9 Rainfall intensity, the MRT 1,DM  at the node D with its deviations 1,D DM    and 

1,D DM   , and the escape probability P,DE  at the node D for the Case OC-2. 
 
 

6. CONCLUSIONS 
 
The PDE model for spatio-temporal evolution of the spatially distributed statistics was proposed to 
efficiently analyze contaminant transport phenomena in locally one-dimensional open channel 
networks. The model is based on the KBE for contaminant particle transport and is not grounded on 
the gradient type laws. Each spatially distributed statistics was rigorously defined using the 
conditional PDF and then the linear time-backward ADEs comprising the model were derived. 

A semi-implicit PGFEM scheme was introduced for accurate numerical resolution of the PDE 
model. In the scheme, a fitting technique is incorporated in order to produce oscillation-free 
numerical solutions with compact stencil. Then, junctions in the domains are consistently dealt with 
since the internal boundary conditions are implicitly included in spatial discretization of the scheme. 
Stability analysis based on the M-matrix theory showed that the scheme completely satisfies the 
elliptic discrete maximum principle as well as the parabolic discrete maximum principle with 
sufficiently fine time increment.  

A series of test problems was examined to verify the PGFEM scheme. Computational results 
showed that the scheme produces excellently accurate numerical solutions for the steady test 
problems. However, computational results for the unsteady test problems indicated that time 
accuracy of the scheme should be improved. Possible options to improve time accuracy of the 
scheme are to use sufficiently fine computational mesh or to implement higher order temporal 
integration method such as the Padé approximation based method (Tian and Yu, 2010). Numerical 
analysis of contaminant transport phenomena in an existing multiply-connected open channel 
network was also carried out to assess applicability of the PDE model with the PGFEM scheme to 
problems in real life. Distributions of the spatially distributed statistics were successfully computed 
with the assumed dispersivity. Although no experimental data to be compared is available, the 
obtained results are considered to have reasonable accuracy.  

It is concluded that the PDE model with the PGFEM scheme serves as an efficient and reliable 
tool for contaminant transport analysis in open channel networks. The theory and the method 
developed in this study are versatile, and thus they can be applied to quite a wide range of transport 
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phenomena in surface water flows. Future work will include sensitivity analysis of the PDE model, 
more detailed accuracy analysis of the PGFEM scheme, and application of them to important 
practical problems. 
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APPENDICES 
 
 
APPENDIX A 
 
This APPENDIX gives the analytical expressions of the integrals  , ,0i jI  and , ,1i jI  defined in (42). By 
(34) and (42), , ,0i jI  is calculated as 
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where the change of variables from y  to ,i jz  in (27) is applied in the second line of (64) and the 
function  1F   is defined as 
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Similarly,  , ,1i jI  is calculated as 
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APPENDIX B 
 
This APPENDIX proves that the matrix N  in (53) is an M-matrix. An M-matrix is a diagonally 
dominant matrix with positive diagonal entries and non-negative off-diagonal entries. In order to 
prove that N  is an M-matrix, it is sufficient to show that N  is a diagonally dominant matrix with 
negative diagonal entries and positive off-diagonal entries. Firstly, the first term of the right hand 
side of (45) is rewritten as 
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and each ,i kN  is given by 
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where the limits iy y  and  ,i jy y  are taken within the element  ,i j . Comparing (27) and 
(69) shows that the off-diagonal entries of N  are positive. Next, the diagonal entry ,i iN  is recast as 
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substituting (31) and (69) into (70) yields 
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Negativity of ,i iN  follows from the positivity of  , ,i i jN  . Finally, diagonal dominance of N  is 
confirmed by the inequality 
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showing that the matrix N  as well as  N m  are M-matrices. 
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This APPENDIX derives the internal boundary condition (60). Without loss of generality, the 
domain   is assumed to consist of all P  reaches conversing at a node P as shown in Figure 10. 
Each reach is given as a finite interval. The y  abscissa in the jth reach starts from the node P and is 
denoted by jy . The weight function w  associated with the node P is then defined as 

 P max ,0    in the th reachjyw j


 

  
 

 (73) 

where   is a sufficiently small positive constant. The weak form (22) is rewritten as 
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where 
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,
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 . (75) 

By taking the limit 0  , the first term and the second term of (74) vanish. On the other hand, the 
limit of the third term is calculated as 
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, (76) 

yielding the internal boundary condition at the node P as 
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 . (77) 

Internal boundary conditions for more general cases are derived in a similar way. 
 

 
 

Figure 10 A schematic sketch of the reaches converging at a node. 
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This APPENDIX analytically derives the formula (61) of the dispersivity D . In the one-dimensional 
shallow water theory, the cross-sectional velocity v  is damped by the Manning’s friction law as 

 
2

4/3
d
d
v gnF v v
t
 


 (78) 

where F  is the spatial differential terms. The cross-sectional velocity v  is decomposed to the 
deterministic component V  and the stochastic component W  as 
 v V W  . (79) 
Then, (78) is linearized around the deterministic component V  and adding a stochastic fluctuation 
term to it obtains the governing equation of W  as 
 ,d d d t xW W t B     (80) 

where 
2

4/3

2gn V
 


 is the attenuation characteristic of W ,   is a positive parameter, and ,t xB  is the 

space-time white noise (Funaki, 2005). The differential equation (80) is regarded as an infinite SDE. 
In the above framework, passive particle displacement tX  in the flow is described as 

 d
d

tX v V W
t
   . (81) 

In an infinite uniform flow, the parameters   and   are considered to be constant and 
straightforward calculation shows that the variance Var tX    for a large time t  is given by 

 
2

2Var tX t


     (82) 

where 0X  is taken as 0 without loss of generality. On the other hand, the variance  Var tX  at the 
time t  is given by 
  Var 2tX Dt . (83) 
Considering the statistical consistency between the two expressions (82) and (83), the dispersivity 
D  is determined as 

 
2 2 8/3

22 2 42 8
D

g n V
 



  . (84) 

The same result has been obtained in Yioshioka et al. (2010). Further, assuming the velocity 
dependence of   as 
 2 V    (85) 
leads to (61).  
 
 
 


