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ABSTRACT

In this paper, a new and alternative method for Boundary Domain Integral Method
(BDIM) in boundary elements method is represented for computation of incompressible
viscous fluid flows, governed by the Navier-Stokes equation. Combined with dual reciprocity
method (DRM), the proposed BEM algorithm uses vorticity—stream function formulation. To
remove the probability of singular coefficient matrix, Hardy's Multiquadric radial basis
function (RBF) with the shape parameter c=1 is employed in DRM algorithm. Spatial
discretization is implemented by discretizing the boundary into linear elements. Adams
method is employed for temporal discretization. Vorticity boundary conditions are
constructed by Taylor's series second order expansion. Unlike usual BEMs for solving N-S
equations, in which computation is done on whole domain (BDIM), except finite number of
nodes in the Vicinity of boundary, no computation is needed in domain. The accuracy and
robustness of the proposed algorithm is shown for a test problem in which a laminar flow in a
standard shear driven cavity with different Reynolds numbers is considered. The comparison
of obtained results for steady state condition with Chen and Ghia's results shows that in
addition to high accuracy and convergence, the proposed algorithm leads to more efficient
and faster computation than customary BDIMs.
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1. INTRODUCTION

The origins of the boundary element method (BEM) are strongly connected with
computation of linear or weakly non-linear field problems, which can be computed by means
of boundary-only discretization of computational domain. In case of viscous fluid flows at
high values of Reynolds number, the flow phenomena is strongly non-linear and boundary-
only discretization had to be paired with domain discretization as well. This procedure
weakens the advantages of BEM, in which equations are discretized merely orthe boundary.

In the context of BEM related methods for laminar viscous fluid flows several
successful attempts have already been made. An excellent survey of these approaches can be
found in the book of Wrobel. These numerical approaches were based on different forms of
Navier—Stokes equations, representing the frame for the solution of viscous flow problems.
Different techniques of capturing non-linear domain effects were developed, including
internal cells, macro-elements and dual and multiple reciprocity methods.

In boundary domain integral method (BDIM), velocity—vorticity formulation was used
for the solution of Navier—Stokes equations. Its main advantage is an implicit computation of



boundary vorticity values, whereas the disadvantage is the computation of boundary integrals
as well as domain integrals.

In obtaining a divergence-free numerical solution for all types of geometry, special
attention has to be paid to a proper numerical treatment of governing equations. In case of
BDIM, vector potential formulation and vector—velocity formulation of flow kinematics were
already used. In the first case in flow kinetics the parabolic-diffusion fundamental solution
was used and in the second the diffusion—convection fundamental solution was used.

In order to lower the computational cost of the method, subdomain technique was used
with vector—potential formulation, although it was restricted to non-star arrangement of
subdomains and to segmentation of flow kinematics. On the other hand, the velocity vector
formulation of flow kinematics allowed the use of macro-element based subdomain technique
in both flow kinematics and flow kinetics, but it lacked the conservation properties when
applied to complex geometries.

In order to overcome these drawbacks, this paper presents a further development of
BDIM technique, combining the vorticity-stream function formulation with dual reciprocity
method and the use of diffusion—convection fundamental solution. The new computational
algorithm can be viewed as a development of the BDIM method which approaches toward the
boundary element method over the domain boundary.

2. GOVERNING EQUATIONS

The dimensionless non conservative two-dimensional Navier—Stokes equations in term
of the vorticity—stream function formulation within closed domains in Cartesian coordinate
system are as follows:
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where o, y and Re are the vorticity, stream function and Reynolds number, respectively. u
and v are the components of velocity in the x and y directions, which can be calculated using
IR 4 )
oy Ox

One of the advantages of using vorticity-stream function formulation lies in removing
pressure gradient terms from the solution process, resulting in a higher numerical stability of
the computational scheme. The pressure does not appear in the solution procedure and has no
influence on the velocity field, a fact that is of course valid only for incompressible fluid
approximation.

u

3. INTEGRAL EQUATIONS FORMULATION

One of the most important uses of boundary elements method for boundary value
problems is the Laplace equation. At first, the formulation and boundary integral equation is
presented by weighted residual method. The dual reciprocity method (DRM) is applied to
stream function equation. Then the BEM formulation of convection-diffusion equation and
descretization procedure is presented. The derivation of the integral form starts with the
choice of ¢ as the fundamental solution of Laplace equation. Application of the Green's



theorem for the equation, the final integral form of Laplace equation is obtained which for the
2-D case becomes

CONPX) = [ [ (X x)q(0) - p(0)g" (X', x) Jas “)
where C(X")=a/2m and X' is the source point. These parameters are shown in figure 1.
n X n
a
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Figure 1 internal angle a at the source point X'

After computation of field variable on the boundary, ¢ and its derivatives are easily
obtained in all over the domain:

P(x') = [ [ (<, )g(x) - p(x)g” (x', %) Jds (5)
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3.1 Numerical implementation

By employing linear elements and dividing the boundary into N, elements the discretized
form of equation (4) is written as

oSl ] i) oS-l o

=1
For computing K/ and K/, as shown in Figure (2), the local coordinate -1 is employed.

Figure 2 local coordinate for each element

According to the coordinate shown
g, =] ¢'Nas, ; hf=[ ¢'NaS, for k
K =|-1q+& 1 1f-&, 1]
K =lriveth rh-&i]

where N; and N, are linear Lagrangian functions and

1,2 (8)
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For the employed hnear elements the analytical evaluatlons of above integrals are presented
in the paper of John Wang and Ting-Kuei Tsay (2005).
The integrations should be assembled by

G, :gl‘z/‘ 1 +gl‘1/
H  =h +h,+Co,
By switching the source point over all boundary nodes, N, equations are obtained. Due to
sharp edges at corners, the double node technique is used for flux discontinuity. Hence the G

and flux vector are matrices of rank N¢x(N.+4) and (N.+4) respectively.
In equation (1) o is treated as body force. The integral form of equation (1) is written as

CXPX) = [ 5" 0)g(x) - ¢(x)q (X', x)Jas
+[ (X 0ex)dV

which has one extra domain integral term over equation (4) and can be computed by dividing
the domain to some virtual cells and computed numerically. These cells are called background
cells. This type of domain calculation removes the BEM advantage that all equations and
computations are done on boundary. Therefore to approximate these terms the DRM (dual
reciprocity method) is employed.
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4. DRM (DUAL RECIPROCITY METHOD)

This method was first introduced by Nardini & Brebbia and then developed for some
applications. In fact this method is the generalization of particular solutions method. By the

DRM, v is written as y = +7 , in which i is the V*7 =0 solution and  is the particular
solution of V7 =—Q which is approximated by a i, series. The series has N+L terms in

which N is the number of boundary nodes and L is number of some internal nodes. According

to the approximation, we have
N+L

O)E—zakfk (13)

a, are coefficients that are unknown at first and f, are approximation functions. 7, and f,
are related by

Vi =, (14)
Substituting equation (14) and (13) in equation (1), one obtains
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After integrating, the equation can be rewrltten as
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G and H are the matrices defined in equation (11). Applying the above equation for all
boundary nodes we obtain
HY - GO = (HU - GO)u (17)

Equation (17) is the base equation in our DRM implementation. As can be seen in the
equation, by considering L=0 the equations are fully evaluated over boundary. The more the
interior nodes are considered, the higher the accuracy would be. By evaluating the vorticity in
N+L nodes, vector a is obtained by @ = Fa
Substituting the above equation of a in equation (17) yields

HY - GO = (HU - GO)F'o (18)
Selecting approximation functions fj is still an open subject. The accuracy of polynomial
functions is higher. In using polynomial functions, F may be singular and consequently not
invertible. Radial basis functions are proved to avoid singular F matrix. Hence Radial basis
functions (RBF) are employed in this study. For more details on RBFs the reader can refer to
works of Kansa, powell and wendland. The parameters in RBFs are called shape parameters
and are used for fine tuning. In this research the Hardy Multiquadric is employed with c=1.

5. VORTICITY TRANSFER EQUATION

To solve equation (2) the homogenous form of the equation is coupled with DRM.
Consequently the formulation of homogenous equation is presented and then temporal term is
descretized by another technique. Solution of convection-diffusion equations by BEM shows
promising results. Applying divergence theorem to steady state form of equation (2) one
obtains

*
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By considering o as the fundamental solutron the final form of equation (19) is written as
N N 8(0 oo (X',x) N
o(X) = [[o'x'x —dS - j O(x) =S [Lo* X' 007, (0ds  (20)
where Ky and K, are second order Bessel functions and
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Source point is considered on all boundary nodes. Hence
CX)o(X')=— j (X, ) a’S j o(x)F"dS (22)
in which F" is the total flux deﬁned as
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The implementation and descretization is done as before. The temporal descretization is done
by a method based on Adams method. Integration of equation (2) in time results in

~o = —v wdi - jt’ﬂm(\?ﬁ)wdz (24)

The integral with linear term is evaluated by implicit Adams-Moulton while the one with non
linear term is evaluated by explicit Adams-Bashford. Consequently the equation of ™ order is
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In this study the Adams 2 is employed. Hence the equation is rewritten as

1 - - ~
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e

The above formulation is coupled with DRM and solved in each time step. The method is an

iterative method and in each time step iteration goes on until the below criterion is satisfied

n+l n+l

O k1 — Q@ k|
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relative (27)
£=10"° is considered. By solving the equation (26) in time step (n), the vorticity values are
obtained. Hence equation (17) can readily be solved. By solving equation (17) the y values
are computed on the boundary and some limited nodes in the domain. By having stream
function, the vorticity boundary conditions and velocity components can be computed. These
boundary conditions are used to solve vorticity equation in the next iteration, i.e. in a
sequential manner. This process continues until the convergence criterion (27) is satisfied.

6. BOUNDARY CONDITIONS

Driven cavity flow problem is one of the best benchmarks to verify numerical models.
According to Ghia and Shin, the vorticity boundary condition does not exist explicitly and
should be constructed. The method is based on Taylor series second order expansion. By
some mathematical operations on Taylor series with consideration to equation (3), the
following second order boundary conditions are obtained

l//3,j _81//2,/‘ + 7'//1,/‘ _ l/le—2,j _8W1M—1,j +7l//1M,j
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As can be seen, two other layers of nodes parallel to boundary nodes are entered in
above equation. It should be noted that these nodes are also included in DRM method. Three
different meshes used in implementation are illustrated in figure 4. For stability purposes,
At=10" is considered. At the initial time the fluid is at rest.

7. SOLUTION METHOD AND ALGORITHM

In each time step, equations (1) and (2) are solved in an iterative manner and again this
procedure is done until criterion (27) is achieved for all boundary nodes. Two loops are
employed. The outer loop is for time steps while the inner one is for iteration in each time
step. For stability purposes, the SUR (successive under relaxation) parameter is employed. To
assess error, the criterion below is used

S (k41 k 2
( {a)j }_ {a)j })

- (29)
< 2

> (k+1 {a)j })

j=1
According to figure (4), the relaxation parameter for t=6 sec and mesh = 45x45 with I1=10"
was determined to be about 0.63 which led to 28 iteration. It is worth mentioning that the
iteration numbers decrease as time of modeling increases. For t=6 sec and mesh = 45x45 with
relaxation factor of 0.63,t he convergence of the proposed method is plotted in figure (3).
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Figure 3 The convergence in t=6 for Re=1000
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8. THE RESULTS AND CONCLUSION
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In higher Reynolds number the swirling nature of flow intensifies. To model higher
values of Reynolds number, three node distributions are considered which are 27x27, 45x45
and 61x61. These node distributions, which are displayed in figure 4, are utilized to model
Reynolds numbers up to Re=100, 1000 and 2000, respectively.
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Figure 4 Cavity with three different meshes
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The primary vortex and vortex produced in two corners are listed in table (1). Also
computation CPU time relative to BDIM is presented in the last column which shows the
advantage, i.e. faster and less computationally expensive algorithm than regular BDIM.

Table 1 Coordinates of vortices in steady state

Mesh | Re | Primary vortex | Right bottom | Left bottom | Relative CPU time
27x27 | 400 0.61,0.75 --- --- 0.28
100 0.62,0.73 --- --—-
45x45 | 400 0.57,0.68 0.88,0.10 --- 0.052
1000 0.54,0.7 2 0.86,0.11 0.07,0.06
61x61 | 2000 0.52,0.55 0.87,0.98 0.08,0.09 0.029




To display the transient solution of flow, the time history of streamlines for Re=2000
is demonstrated in figure (5). At the starting times the vortex is near the upper wall and
enlarges smoothly moving toward the upper left corner. As shown in about t=6 seconds the
first secondary vortex is produced at right of the cavity at about y=0.5. The secondary vortex
then enlarges and moves toward the bottom right corner of cavity, whereas the primary vortex
moves from the upper right corner to the centre of the cavity. According to figures, at higher
time values, the streamlines change slower than that of starting times. The streamlines seem to
reach the steady-state at about t=90 seconds.
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Figure 5 Time history of streamlines for Re=2000 in boundary mesh of 61x61

The above figures clearly show the flow nature, i.e. the swirling behaviour of flow in
high Reynolds numbers. To verify the solutions, results from current modified BEM are
compared to that of Ghia & Shin. In that article they presented the steady state solution of
velocity components on horizontal and vertical centrelines and vorticity on the top wall for



different Reynolds number. Hence, steady state velocity field distributions at x=1/2 (in y
direction) and at y=1/2 (in x direction) are plotted in figures (6a) and (6b), respectively, and
are compared with Ghia (1992) and chen's (1991) results. Also, in order to observe the
convergence speed of flow to steady-state, the vertical velocity distributions on the horizontal
centreline (y=0.5) are plotted in figure 7.
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Figure 6 Comparison of vertical and horizontal component of velocity in x=1/2 and y=1/2
with Ghia & Chen results
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Figure 7 Transient vertical velocity on y=1/2 for Re=1000



Comparison of the results for different Reynolds numbers, shown in figure 6, shows
promising results and proves the excellent method capability. Figure 7 clearly shows that at
starting times velocity changes rapidly whereas the change rate becomes gradually less and
eventually reaches to a fixed curve, which corresponds to the steady state condition. The
figure also shows that the flow reaches to steady state at about t=45 seconds.

9. CONCLUSION

As shown in this paper the new proposed method for two-dimensional analysis for
transient fluid flows is well verified by certified results. The robustness was verified by
considering the well-known CFD problem, lid driven cavity flow, which was shown to let to
promising results. The method is capable of reducing computation expenses since equations
are satisfied on some boundary nodes and some finite layers of nodes adjacent to boundary
nodes. Hence, it is an efficient method for especially transient problems and a powerful
alternative to BDIM.
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