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ABSTRACT  

 

Movement of sediment particles in regular and extreme flow events can be described 

by a stochastic diffusion jump process. The stochastic differential equation (SDE) in the 

proposed stochastic diffusion jump model classifies the movement of particles using three 

major terms including a mean drift motion, a random Brownian type turbulent motion and a 

Poisson jump term caused by the occurrence of the hydrologic extreme events. The random 

term is represented by the Wiener process.  The jump term is modelled as the Poisson 

process. The magnitude of particle movement in response to extreme flow events, 

characterized as the Poisson jump, depends on the hydraulic characteristics of extreme events 

and the properties of the sediment particles.  The frequency of occurrence of the extreme 

events in the proposed model can be explicitly accounted for in the evaluation of movement 

of sediment particles.  The particle relaxation time is defined by the time needed for a 

particle to adjust to a change in its ambient environment.  Herein it can also be applied to 

sediment particles as the time needed for a particle to move from the regular state to the 

extreme flow state.  Since sediment particle size is normally larger than the fluid particle size, 

there is a lag in time in response to the extreme event because of the particle inertia effect.  

The proposed particle tracking model is able to account for such delayed responses in 

sediment transport modeling, and to test the validity of a commonly adopted assumption, the 

Reynolds analogy.  The ability to incorporate such phase lags is considered an advance in 

sediment transport modeling. One examples is presented to illustrate the realizations of 

sediment transport.  The mean and variance of particle trajectory can be obtained from 

simulations of the proposed model. 
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1. INTRODUCTION 

 

Flow dynamics and sediment transport bring about morphological changes as well as 

movements of contaminated materials, which can cause severe problems. Especially, the 

problems can become serious when extreme events such as floods occur. The extreme events 

enhance the unsteadiness of flows and magnify the lag effects of sediments in response to 

extreme flows. Despite the seriousness of problems, the unsteady flow and sediment transport 

have been traditionally approximated at steady or quasi-steady situations in the existing 

numerical models. Additionally, in general sediment transport modeling, deterministic 

differential equations for transport are first established and then solved analytically or 

numerically (Syvitski et al., 1995; Arnold et al., 1998; Moulin et al., 1998). In recent years, a 



few stochastic modeling approaches have attempted to demonstrate the essential stochastic 

characteristics of sediment transport processes. However, these studies mostly focus on the 

statistical properties of hydrological features such as stream flow or river morphology, not 

those of the sediment particle transport (Singer et al., 2004; Van Vuren et al., 2005). Although 

these models are also a stochastic approach related to the flood effect and morphological 

changes, they concentrated on the Monte Carlo simulation of sediment movements with the 

morphological response. To our knowledge, the stochastic model of discrete sediment particle 

transport is unprecedented.  

The stochastic approach proposed in this study is similar to the particle tracking model 

in the sense that it deals with sediment particles as a collection of discrete particles. Moreover, 

compared to the existing approaches, there are mainly two distinct points in the proposed 

approach. Firstly, it can model the stochastic movement of sediment particle; thus, it can take 

parameters such as diffusion coefficients of the probability distribution into consideration so 

as to effectively model the random term due to turbulence. Secondly, it can consider the 

impact of extreme flow events such as floods on sediment transport by treating the occurrence 

of extreme events as a stochastic process. The impact of extreme flow events on particle 

movement is not negligible; i.e., the particle movement is rapidly altered by the extreme flow 

events. Therefore, the proposed model that includes the jump term for extreme events may 

enhance the prediction of sediment transport models substantially. 

The extreme events can be considered an external force that can accelerate flow, 

expressed by a change of particle velocity between before and after the extreme event during 

the relaxation time. The relaxation time is defined by the time taken by a particle to adjust to a 

change in environment. Although the lag effects have recently started being considered in 

sediment transport models (Wu et al., 2006), the relaxation time has not been thoroughly 

examined to date. Therefore, the main purposes of this paper are to define the relaxation time 

during extreme events in a river flow and to establish a stochastic diffusion jump particle 

tracking model for sediment movement when the extreme flow occurs. 

 

 

2. STOCHASTIC MODELS 

 

2.1 Stochastic Diffusion Model 

 

 Particle movement in a flow can be delineated by a stochastic diffusion model. The 

Langevin equation is a stochastic diffusion equation describing the Brownian motion. The 

Langevin equation of particle displacement is  
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where tX  is the position or trajectory of a particle = [ ]( )  ( )  ( )
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tX . /td dtB  (= ( )W t ) is the Gaussian White noise (Gardiner, 1985) . The first term on the 

right hand side of equation (1a) or (1b) explains the mean drift motion of particles and the 



second term for the random motion due to turbulence. Mathematically,  
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Equation (1) can be developed as a stochastic partial differential equation (SPDE) by 

combining with the advection-diffusion equation. 

 

2.2 Stochastic Diffusion Jump Particle Tracking Model 

 

 The governing equation that describes the jumps due to extreme events can be made 

by adding the jump term to a Langevin equation or an Ito process. It can be written as 

drift term    random term jump term
due to turbulence
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where ( , )tt Xh is the jump amplification factor and tP  denotes a Poisson process so that the 

inter-arrival time between extreme events is exponentially distributed. To solve equation (4), 

Newton’s second law of motion is introduced as 

 p

p r e

d
m

dt
= = +

V
F F F         (5) 

where rF  denotes forces exerted on the particle in the regular flow field and eF  denotes 

additional forces due to extreme events. As eF  moves the particle from one state to another 

state, mathematically, it can be expressed as 
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where ( )f tu is the increased mean drift flow velocity due to an extreme flow event, 0( )p tV  

is particle velocity before the extreme event and pτ  is the particle relaxation time. 

From equations (5) and (6), the particle velocity can be represented by 
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By comparing equation (4b) with equation (7), we find that the jump term corresponds to the 

third term of the right-hand side in equation (7). Thus, assuming that only one extreme event 

occurs within a time interval [t, t+dt], the jump term can be rewritten as 
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3. RELAXATION TIME 

 

In aerodynamic engineering, according to Owen (1969), the particle relaxation time is 

a characteristic time for a particle to transit from one state to another state in air stream. From 

Newton’s law, 
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the particle velocity and relaxation time can be expressed as { } ( )/2 (1 ) / 18pt

p p pV d g e
τρ μ−= −  

and ( ) ( )2 / 18p p pdτ ρ μ= . For sediment particle movement in response to an extreme event, 

the relaxation time can be regarded as the time needed for a particle to move from the regular 

flow state to the extreme flow state. However, the sediment transport in the flow field has 

different dominant forces exerted on the sediment particle compared to the pneumatic 

transport. Therefore it is necessary to define the relaxation time appropriate to the situation of 

change from the regular flow state to the extreme flow state. 

 

 

We can derive the relaxation time from the force balance equation.  The force 

balance in the x-direction can take the effect of the external force due to extreme events into 

account as follows:  
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where sρ  is the particle density, p∀ is the particle volume, pA is the projected area of the 

particle, pV  is the particle velocity, fu is the fluid velocity, DC  is the drag 

coefficient, ( ) ( )3
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rV . 
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The general solution of the partial differential equation is  
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Given the initial condition, ( ) (0)r fo fV u t u= −  at 0t = , we can obtain 

 

2 2

2

2 2

18 (Re )

18 (Re ) 18 (Re )

18 (Re ) 18 (Re )

( ) ( ) (0)
1 1

ps p f s p f

p p s p

s p s p

p p

d du d du
t

dt dt d

r fo fd dd d
dt dt

V t u t u e

μψρ ρ
μψ μψ ρ

ρ ρ
μψ μψ

−⎡ ⎤
⎢ ⎥= + − −
⎢ ⎥+ +⎣ ⎦

  (12) 

The relaxation time is defined in a traditional way from the equation (12) as 
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We find that the particle relaxation time is affected by the particle properties such as particle 



size, density and particle Reynolds number. 

 

4. DISCUSSION 

 

As the derived relaxation time formula in the previous section, the relaxation time is 

determined by the particle properties and forces exerted on particles. Firstly, as particle size or 

density increases, the relaxation time increases proportionally as in Figure 1 and Figure 2. The 

x-axis and y-axis of the figures respectively represent the Φ scale and the dimensionless 

relaxation time. The Φ scale is used for the characterization of the grain size distribution of 

sediment as suggested by Krumbein (1936). As the definition of Φ scale, i.e., Φ = −log2(dp) 

where dp is the diameter of the sediment (mm), it is noted that larger particles have the smaller 

Φ values. Furthermore, the extent of the effect of each force on time lag is comparable from 

the Figure 1 and Figure 2. The main force that causes the relaxation of sediment particles is 

the drag force. Added mass also plays a subordinate role in the relaxation of sediment 

particles. 

 

 

 
Figure 1 Dimensionless Relaxation Time      Figure 2 Dimensionless Relaxation Time  

       (only Drag Force)         (Drag Force and Added Mass) 

 

 

4. APPLICATIONS 

 

The sediment particle trajectories in a flow are presented in the following examples 

using the proposed stochastic diffusion jump particle tracking model. As the proposed 

stochastic diffusion jump model newly considers the effect of the relaxation time, we can 

compare the results of the proposed model in the following scenarios: 1) in the absence of the 

relaxation time, and 2) in the absence of extreme flow events. Besides, the resultant 

trajectories of the stochastic diffusion model are also added for comparison. The governing 

equation of the stochastic diffusion model is a Langevin equation or an Ito process, which is 

equivalent to the equation used in the random walk particle tracking model.  

 

The flow conditions of an example are given as follows: it is a regular flow which has 

the mean drift velocity 0.1u = m/s. The diffusivity is 0.1σ = m
2
/s. The occurrence of the 

extreme events can be represented by a Poisson process with a rate of 0.1/s, i.e., the mean 

frequency of occurrence 10λ = . The magnitude of the extreme events is assumed to have the 

mean drift velocity increased to 2u = m/s. Particle properties are as follows: particle 

diameter is 1 mm and particle density is 4000 kg/m
3
. The total simulation time is 100 s , and 

the time step is 0.006 s. The examples were performed by the MATLAB program that 



provides the random number generation (randn) function. In order to show the stochastic 

results effectively, we performed 800 iterative simulations and computed the respective 

ensemble means and variances of those scenarios. Figure 3 shows the particle trajectories in 

the one-dimensional flow field during the total simulation time. The relative time in the figure 

is defined as the time normalized by the total simulation time. The dashed-dotted, dotted and 

solid lines respectively display the results from the stochastic diffusion model without 

extreme events, the stochastic diffusion jump model with extreme events and the stochastic 

diffusion jump model considering relaxation time. The ensemble means represented by bold 

lines have probabilistically reflected the stochastic scenarios represented by fine lines. 

Figure 3 demonstrates the differences in the mean particle trajectories among the 

stochastic diffusion model (i.e., particle tracking model), stochastic diffusion jump model and 

stochastic diffusion jump model with the relaxation time. In particular, the differences are 

well explained by the ensemble mean lines. The dashed-dotted line shows how well the 

stochastic notion describes the diffusion term due to turbulence as random fluctuation in a 

regular flow. The dotted line demonstrates that the additional term for jumps due to extreme 

events can be modeled by introducing the concept of a stochastic process. As the ensemble 

means of dotted lines manifest, the overall particle velocity is increasing when extreme flow 

events occur. It can mainly affect the erosion/deposition of sediment such as downstream 

bridge scouring. The solid line explains the effect of time lag due to the inertia effect of the 

particle and shows the modified result of the dotted line. As the solid line displayed under the 

dotted line, the relaxation time can be thought of as a factor that diminishes the impact of the 

extreme flow events. It can be reasonably explained that the overall velocity of sediment 

particles is reduced by the relaxation during a given period. The model of solid lines enables 

us to simulate the varying effect of particle size and density on particle relaxation time. As 

demonstrated in the simulations, the proposed stochastic diffusion jump model can reckon 

probabilistic properties in the sediment transport, which could not be included in the 

traditional sediment transport model. 
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Figure 3. Sediment Particle Trajectories and Ensemble Mean in a 1-D flow 

 

 



The variances of iterative simulation results of particle trajectories are delineated in 

Figure 4. The figure conveys the fact that the uncertainties of the trajectories are increasing 

when the effect of jumps term is larger. The uncertainties due to jump terms decrease when 

considering the relaxation time because the relaxation of sediment particles reduces the 

impact of extreme flow events.  
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Figure 4. Variances of Sediment Particle Trajectories in a 1-D flow 

 

 

5. CONCLUSIONS 

 

In order to describe the sediment transport, many researchers have traditionally used 

the numerical analysis of differential transport equations. However, the traditional governing 

equations do not explicitly include the statistical characteristics of sediment particles. In this 

paper, we propose a stochastic diffusion jump model with a particle relaxation time as an 

alternative approach for sediment transport. This study shows the accuracy of the proposed 

stochastic diffusion jump particle tracking model by comparing with results of the stochastic 

diffusion model that has the same governing equations as the random walk particle tracking 

model. Furthermore, the study accounts for the time lag of sediment particles in response to 

the extreme flow by introducing a physical term, the particle relaxation time.  

The proposed stochastic diffusion jump model is at its developmental stage. In this 

paper, we have noted the following: Firstly, the stochastic model can elucidate the stochastic 

characteristics of particle movement. Since the particle movement is intrinsically stochastic, 

the proposed model may produce the results closer to the reality. Secondly, the proposed 

model shows a great potential for modeling the sediment transport in extreme event flows as 

well as in regular flows. Lastly, the jump term due to extreme events can take the particle 

relaxation time into account. Although there has recently been a study of sediment transport 

model considering the lag effects (Wu et al., 2006), it has used a conceptual correction factor. 

When extreme events occur, particles tend to move along the flow after a certain short time 

period because of the inertia effect of particles. Using the relaxation time, the acceleration can 

be computed so that retardation of particle trajectory can be modeled. Hence, the relaxation 



time also enables the proposed model to generate a more realistic result. 

It is concluded that the proposed stochastic diffusion jump model can show the 

probabilistic properties of sediment transport and the most probable pathline in addition to the 

overall tendency of sediment transport. However, more work is needed. The probability and 

magnitude of the extreme events from the frequency analysis can be used to quantify the 

parameter associated with the Poisson process in the proposed model. The applicability of the 

relaxation time to real case examples should be further investigated. 
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