HENRY

Hydraulic Engineering Repository

Dimitriou, D.; Demetriou, J.
 Energy Loss in Submerged Hydraulic Jump Within Inclined Channel

Zur Verfügung gestellt in Kooperation mit/Provided in Cooperation with: Kuratorium für Forschung im Küsteningenieurwesen (KFKI)

Verfügbar unter/Available at: https://hdl.handle.net/20.500.11970/109839
Vorgeschlagene Zitierweise/Suggested citation:
Dimitriou, D.; Demetriou, J. (2010): Energy Loss in Submerged Hydraulic Jump Within Inclined Channel. In: Sundar, V.; Srinivasan, K.; Murali, K.; Sudheer, K.P. (Hg.): ICHE 2010. Proceedings of the 9th International Conference on Hydro-Science \& Engineering, August 2-5, 2010, Chennai, India. Chennai: Indian Institute of Technology Madras.

Standardnutzungsbedingungen/Terms of Use:

Die Dokumente in HENRY stehen unter der Creative Commons Lizenz CC BY 4.0, sofern keine abweichenden Nutzungsbedingungen getroffen wurden. Damit ist sowohl die kommerzielle Nutzung als auch das Teilen, die Weiterbearbeitung und Speicherung erlaubt. Das Verwenden und das Bearbeiten stehen unter der Bedingung der Namensnennung. Im Einzelfall kann eine restriktivere Lizenz gelten; dann gelten abweichend von den obigen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Documents in HENRY are made available under the Creative Commons License CC BY 4.0, if no other license is applicable. Under CC BY 4.0 commercial use and sharing, remixing, transforming, and building upon the material of the work is permitted. In some cases a different, more restrictive license may apply; if applicable the terms of the restrictive license will be binding.

Dimitriou D. ${ }^{1}$ and Demetriou J. ${ }^{2}$

Abstract

In this paper the mechanical energy and loss of energy in the submerged hydraulic jump within rectangular inclined (angle $\varphi, 3^{\circ} \leq \varphi \leq 15^{\circ}$) open channels are presented, analyzed, discussed and compared to corresponding free jump quantities. The energy and loss of energy calculations are based on previous measurements of both jumps' lengths and conjugate depths' ratios. The loss of energy in the submerged jump is much smaller than in corresponding free jump, showing that the submerged jump is not an effective means to dissipate any excessive flow energy when compared to much larger free jump energy loss.

Keywords: Submerged Jumps. Energy Loss.

INTRODUCTION

The water flow under a sluice gate and subsequent hydraulic jump (when formed under suitable conditions) belong to some of the most important hydraulic phenomena which are appearing in practice within open water channels. Sometimes the hydraulic jump is free and some other times is submerged, depending on the downstream flow conditions, i.e. on the free or obstructed downstream channel flow. In the last case an obstacle such as a solid body (for example another sluice gate or a weir) is raising the water level just after the sluice gate and the entire flow becomes submerged. The higher part of any hydraulic jump - under appropriate conditions - is permanently remaining at its place although the flow under it is steadily developing along the open channel.

Fig. 1 schematically shows the general flow case where the rectangular channel is inclined (angle φ) to the horizon - with a slope $\mathrm{J}_{0}=\sin \varphi$ - and includes a sharp edged and very thin sluice gate (perpendicular to the channel floor) which has the same width as the channel, and a lower aperture α. The water discharge per unit width is q , the most important depths are, p_{1}, p_{2}, for the submerged jump, and d_{1}, d_{2}, for the free jump. Both jumps are schematically presented in Fig. 1 and show the difference of the two states of flow. The submerged jump has an inclined length L and the free jump a corresponding length L_{d}.For the submerged jump

[^0]the control volume is included between cross sections 1 and 2 , where the local pressures are assumed to be hydrostatic. Cross section 1 is considered as coinciding with the contracted cross section of the free jump - at a distance x_{1}. The submerged jump has a mean free surface profile starting from the outer face of the sluice gate, followed by a local fall along x_{1}, and then it turns (along L) towards the downstream horizontal. Beyond x_{1}, the lower limit of the submerged jump has a complicated form also ending at p_{2} depth, while between the upper free surface and the lower limit a roller is created with its recirculating flow. The discharge q goes across p_{1} and p_{2}, while at cross section 1 the roller's water is increasing the pressure on depth p_{1} and the entire pressure distribution (column $\mathrm{t}+\mathrm{p}_{1}$) is considered as hydrostatic, with a resultant force along the flow direction (x) $0.5 \cdot \gamma \cdot\left(\mathrm{t}+\mathrm{p}_{1}\right)^{2} \cdot \cos \varphi$, where $\gamma=$ specific water weight.

Fig. 1. Submerged and free jump geometry.
The one-dimensional continuity equation is $\mathrm{q}=\mathrm{p}_{1} \cdot \mathrm{~V}_{1}=\mathrm{p}_{2} \cdot \mathrm{~V}_{2}$, while the momentum equation along x -with negligible tractive force on the channel boundaries - is

$$
\begin{equation*}
0.5 \cdot \gamma\left[\left(t+p_{1}\right)^{2}-p_{2}^{2}\right] \cdot \cos \varphi+W \cdot J_{o}=\rho \cdot q^{2} \cdot\left[\left(1 / p_{2}\right)-\left(1 / p_{1}\right)\right] \tag{1}
\end{equation*}
$$

The above equation has been solved in the past (Demetriou, 2006), for the theoretical ratio $\lambda_{1}=\mathrm{p}_{2} / \mathrm{p}_{1}$, after the experimental determination of the weight W among sluice gate, channel floor, cross section 2 and free surface. This theoretical ratio has also been successfully compared to corresponding (experimentally determined) ratio λ_{e}.

Fig. 1 also illustrates the mechanical energy (per unit water weight) H_{1} at section 1 (depth p_{1}), and H_{2} at section 2 (depth p_{2}), while $\Delta \mathrm{H}=\mathrm{H}_{1}-\mathrm{H}_{2}$ is the local loss of energy between conjugate depths p_{1} and p_{2}, which is due both to tractive stresses (for $\varphi>0^{\circ}$) and internal friction. The present paper is dealing with $\mathrm{H}_{1}, \mathrm{H}_{2}$ and $\Delta \mathrm{H}$ and the comparison of them with corresponding quantities in the free jump, both in inclined rectangular channels. The most important parameters are $\lambda=\mathrm{p}_{2} / \mathrm{p}_{1}, \mathrm{~L} / \mathrm{p}_{2}$ (experimentally determined) and the Froude numbers Fp_{1} (section 1)and Fp_{2} (section 2), generally with

$$
\begin{equation*}
F p=q / g^{1 / 2} \cdot(\text { corresponding depth })^{3 / 2} \tag{2}
\end{equation*}
$$

where $\mathrm{Fp}_{1}>1$ and $\mathrm{Fp}_{2}<1 . \mathrm{Fp}_{2}=\mathrm{q} / \mathrm{g}^{1 / 2} \cdot \mathrm{p}_{2}^{3 / 2}$ was mainly used here, while all Reynolds numbers had large enough values (turbulent flows).

For the free hydraulic jump the conjugate depths d_{1} and d_{2} (and their ratio $\delta=\mathrm{d}_{2} / \mathrm{d}_{1}$), the length $\mathrm{L}_{\mathrm{d}} / \mathrm{d}_{2}$ and Froude number $\mathrm{Fd}_{2}=\mathrm{q} / \mathrm{g}^{1 / 2} \cdot \mathrm{~d}_{2}^{3 / 2}=\mathrm{Fd}_{1} \cdot\left(\mathrm{~d}_{1} / \mathrm{d}_{2}\right)^{3 / 2}$ are used, while any comparison with the submerged jump is meant with $\mathrm{Fp}_{2}=\mathrm{Fd}_{2}=\mathrm{Fr}_{2}$. The points which appear on the following figures came out as results of energy computations, based on the pertinent experimental data and in combination with onedimensional energy expressions.

PREVIOUS EXPERIMENTAL RESULTS

2.1 For the submerged hydraulic jump within inclined rectangular channels, Retsinis et.al, (2005) and Demetriou et al (2006), have presented the following experimental equations:
a) For the jump length (with φ in degrees and $\mathrm{Fp}_{2}=\mathrm{Fr}_{2}$),

$$
\begin{align*}
L^{\prime}=\frac{L}{p_{2}} \cdot \frac{\cos \varphi}{(2.7 \cdot \varphi+30.8) \cdot F r_{2}} & =\left[\left(-2.9053+0.0069 \cdot \varphi-0.0018 \cdot \varphi^{2}\right) \cdot F r_{2}+\right. \tag{3}\\
+ & (-0.03 \cdot \varphi+1.25)]
\end{align*}
$$

The above length L is the distance between the sluice gate and cross section 2, while the distance x_{1} (between sluice gate and cross section 1) was measured as $\mathrm{x}_{1} \cong 1.7 \cdot \alpha$. Since x_{1} is rather small - in comparison with L, it is reasonable to consider the distance 1-2 as approximately equal to L .
b) For the conjugate depth's ratio (with φ in degrees)

$$
\lambda=p_{2} / p_{l}=1-\left\{\left[\left(L^{\prime}\right)^{2}-1\right] / B_{l}\right\}
$$

where,

$$
\begin{align*}
& \mathrm{e}, \tag{4}\\
& \left.B_{1}=\left[1.776+0.022 \cdot \varphi+0.224 \cdot e^{-\varphi}\right] \cdot \mathrm{Fr}_{2}^{\left(1.840-0.105 \cdot \varphi^{0.5}+0.16 \cdot e^{-\varphi}\right)}\right\}
\end{align*}
$$

The above equations are used here for $\varphi=3^{\circ}-6^{\circ}-9^{\circ}-12^{\circ}-15^{\circ}, 0.08 \leq \operatorname{Fr} 2 \leq 0.15$ for $\varphi=9^{\circ}$, and smaller Fr_{2} ranges for other angles φ.
2.2. For the free hydraulic jump, Demetriou (2005), has experimentally given the following equations:
a) For the jump length (with φ in degrees and $\mathrm{Fd}_{1}=\mathrm{Fr}_{1}$),

$$
L_{d} / d_{2}=\left[7.69-0.094 \cdot F r_{1}-\left(6.27 / F r_{1}\right)\right] \cdot \cos \varphi{ }^{\left(3.35 \cdot J_{o}^{-1.3}-2\right)}
$$

b) For the conjugate depths' ratio, the following equation was verified,

$$
\begin{equation*}
\delta=d_{2} / d_{1}=0.5 \cdot\left[\left(1+8 \cdot F r_{1}^{2}\right)^{1 / 2}-1\right] \cdot e^{3.5 \cdot 5 o} \tag{6}
\end{equation*}
$$

The above equations hold for $0^{\circ} \leq \varphi \leq 16^{\circ}, 2 \leq \operatorname{Fr}_{1} \leq 19$ for $\varphi=0^{\circ}$, and smaller $\operatorname{Fr}_{1}(\geq 2)$ ranges for other angles φ. Eq (6) gives exactly the same δ vs Fr_{1} lines as Chow's (1959), graphical straight lines.

RESULTS. ANALYSIS AND DISCUSSION

For the submerged jump the mechanical energy H_{1} is (Fig. 1), $\mathrm{H}_{1}=\mathrm{L} \cdot \mathrm{J}_{0}+\mathrm{p}_{1} \cdot \cos \varphi+\left(\mathrm{q}^{2} / \mathrm{p}_{1} \cdot 2 \cdot \mathrm{~g}\right)$, or, with the use of $\mathrm{Fr}_{2}(=\mathrm{Fp} 2), \lambda=\mathrm{p}_{2} / \mathrm{p}_{1}$, and after division by p_{1},

$$
\begin{equation*}
H_{l} / p_{1}=\lambda \cdot\left(L / p_{2}\right) \cdot J_{o}+\cos \varphi+0.5 \cdot \lambda^{3} \cdot F r_{2}^{2} \tag{7}
\end{equation*}
$$

Also, $\mathrm{H}_{2}=\mathrm{p}_{2} \cdot \cos \varphi+\left(\mathrm{q}^{2} / \mathrm{p}^{2}{ }_{2} \cdot 2 \cdot \mathrm{~g}\right)$, or

$$
\begin{equation*}
H_{2} / p_{1}=\lambda \cdot\left[\cos \varphi+0.5 \cdot F r_{2}^{2}\right] \tag{8}
\end{equation*}
$$

The local loss of mechanical energy between p_{1} and p_{2} is

$$
\begin{equation*}
\Delta H / p_{1}=\left(H_{l} / p_{1}\right)-\left(H_{2} / p_{l}\right)=\lambda \cdot\left(L / p_{2}\right) \cdot J_{o}+(\lambda-1) \cdot \cos \varphi+0.5 \cdot F r_{2}^{2} \cdot \lambda \cdot\left(\lambda^{2}-1\right) \tag{9}
\end{equation*}
$$

or, in terms of $\Delta \mathrm{H} / \mathrm{H}_{1}$,

$$
\begin{equation*}
\Delta H / H_{l}=\left(\Delta H / p_{l}\right) /\left(H_{l} / p_{I}\right) \tag{10}
\end{equation*}
$$

Corresponding energies and loss of energies for the non submerged (=free) jump are given by similar equations, although - instead of $\mathrm{p}_{1}, \mathrm{p}_{2}, \lambda, \mathrm{~L}$ and $\mathrm{Fp}_{2}\left(=\mathrm{Fr}_{2}\right)$ - corresponding quantities $\mathrm{d}_{1}, \mathrm{~d}_{2}, \delta=\mathrm{d}_{2} / \mathrm{d}_{1}, \mathrm{~L}_{\mathrm{d}}$ and $\mathrm{Fd}_{2}\left(=\mathrm{Fr}_{2}\right)$ are used, while any comparison is meant for the same Froude number.

For the submerged jump Fig. 2 presents $\mathrm{H}_{1} / \mathrm{p}_{1}$ vs Fr_{2} at $\varphi=3^{0}$, where the corresponding (solid) curve is freely extrapolated (dashed-short lines): $\mathrm{H}_{1} / \mathrm{p}_{1}$ is increasing with Fr_{2}, for example from 6.9 (at $\mathrm{Fr}_{2}=0.17$) to 7.3 (at $\mathrm{Fr}_{2}=0.20$), i.e. the percentage increase is (7.3-6.9) $100 / 6.9 \cong$ 8%.

Fig. 2. H_{1} / \mathbf{p}_{1} vs $\mathrm{Fr}_{\mathbf{2}}$ for $\boldsymbol{\varphi}=\mathbf{3}^{\mathbf{0}}$.
The same trends present $\mathrm{H}_{1} / \mathrm{p}_{1}$ vs Fr_{2} for $\varphi=6^{\circ}-9^{\circ}-12^{\circ}-15^{\circ}$ in Figs $3,4,5$, with the only difference (not visible in Fig.2) that after a certain Fr_{2} value corresponding curves are bending down, while the respective curve for $\varphi=15^{\circ}$ presents only a descending branch-in the present field of measurements. However the general $\mathrm{H}_{1} / \mathrm{p}_{1}$ level is considerably rising from $\varphi=3^{\circ}$ to $\varphi=15^{\circ}$.

Fig. 3. H_{1} / \mathbf{p}_{1} vs $\mathrm{Fr}_{\mathbf{2}}$ for $\varphi=\mathbf{6}^{\mathbf{0}}$.
Fig. 6 presents all previous curves (submerged jumps - solid lines) and all corresponding $\mathrm{H}_{1} / \mathrm{d}_{1}$ vs Fr_{2} (free jumps - dashed lines). Both families of lines are very systematic. For $\mathrm{Fr}_{2}=$ const. $\mathrm{H}_{1} / \mathrm{p}_{1}$ for submerged jumps are increasing when angle φ is increasing, while to $\mathrm{H}_{1} / \mathrm{d}_{1}=$ const. correspond larger Fr_{2} values when φ is decreasing. It is also clear that $\mathrm{H}_{1} / \mathrm{d}_{1}$ are generally larger than H_{1} / p_{1} for any pair of lines with $\varphi=$ const., i.e. the dimensionless energy at cross section 1 for submerged jump, is lower than the dimensionless energy at corresponding cross section for free ($=$ non submerged) jump (at d_{1}) - in the present field of measurements.As a simple example for $\varphi=9^{\circ}$ and $\mathrm{Fr}_{2}=0.13 \mathrm{H}_{1} / \mathrm{p}_{1} \cong 10$ for submerged jump, while $\mathrm{H}_{1} / \mathrm{d}_{1} \cong 17$ for free jump, i.e. there is a percentage energy increase in free jump of (1710) $\cdot 100 / 10=70 \%$.However, although the present measurements had a rather narrow Fr_{2} range, it may be predicted that any pair of corresponding lines - for the same angle φ - do not meet between them but they are incompatible curves.

Fig. 4. H_{1} / \mathbf{p}_{1} vs Fr_{2} for $\varphi=\boldsymbol{9}^{\mathbf{0}}$.

Fig. 5. H_{1} / p_{1} vs Fr_{2} for $\varphi=12^{\circ}$ and $\varphi=15^{\circ}$.

Fig. 6. H_{1} / \mathbf{p}_{1} and H_{1} / \mathbf{d}_{1} vs Fr_{2} for submerged and free jump, $\mathbf{3}^{\mathbf{0}} \leq \varphi \leq 5^{\circ}$.
Fig. 7 shows the dimensionless energy loss $\Delta \mathrm{H} / \mathrm{p}_{1}$ vs Fr_{2} at angle $\varphi=3^{\circ}$ for submerged jumps. When Fr_{2} is increasing $\Delta \mathrm{H} / \mathrm{p}_{1}$ are also increasing : As an example, for $\mathrm{Fr}_{2}=0.17 \Delta \mathrm{H} / \mathrm{p}_{1}$ is 0.15 , while for $\mathrm{Fr}_{2}=0.20 \Delta \mathrm{H} / \mathrm{p}_{1}$ becomes 1, i.e. the percentage increase is now much larger, (1$0.15) \cdot 100 / 0.15 \cong 565 \%$.

Fig. 7. $\Delta H / p_{1}$ vs $\mathrm{Fr}_{\mathbf{2}}$ for $\varphi=\mathbf{3}^{\mathbf{0}}$.
Next Figs. $8,9,10$ and 11 present $\Delta \mathrm{H} / \mathrm{p}_{1}$ vsFr r_{2} for $\varphi=6^{\circ}-9^{\circ}-12^{\circ}-15^{\circ}$, which also show the same trends as in Fig.7,but the general level of the dimensionless losses is strongly increasing with angle φ.

Fig. 8. $\Delta H / p_{1}$ vs Fr_{2} for $\varphi=\mathbf{6}^{\mathbf{0}}$.

Fig. 10. $\Delta H / p_{1}$ vs Fr_{2} for $\varphi=12^{0}$.

Fig. 9. $\Delta \mathrm{H} / \mathrm{p}_{1}$ vs Fr_{2} for $\varphi=\boldsymbol{9}^{0}$.

Fig. 11. $\Delta \mathrm{H} / \mathrm{p}_{1}$ vs Fr_{2} for $\varphi=\mathbf{1 5}^{\mathbf{0}}$.

Furthermore, Fig. 12 presents all previous $\Delta \mathrm{H} / \mathrm{p}_{1}$ vs Fr_{2} curves (solid lines) for submerged jumps and all $\Delta \mathrm{H} / \mathrm{d}_{1}$ vs Fr_{2} curves for free jumps (dashed lines). Both families of curves are very systematic. For $\mathrm{Fr}_{2}=$ const. $\Delta \mathrm{H} / \mathrm{p}_{1}$ for submerged jumps are largely increasing when angle φ is increasing. For example for $\mathrm{Fr}_{2}=0.09 \Delta \mathrm{H} / \mathrm{p}_{1} \cong 0.6\left(\varphi=9^{0}\right)$, while for same $\mathrm{Fr}_{2} \Delta \mathrm{H} / \mathrm{p}_{1} \cong 3.7$ $\left(\varphi=12^{\circ}\right)$, i.e. there is a percentage energy loss increase of (3.7-0.6) $\cdot 100 / 0.6 \cong 515 \%$ - when angle φ is increasing with a much smaller rate ($\sim 33 \%$).

Finally, the most important result in Fig. 12 comes from a comparison between $\Delta H / p_{1}$ (submerged jump-solid lines) and $\Delta \mathrm{H} / \mathrm{d}_{1}$ (free jump-dashed lines) for the same Fr_{2} and angle $\varphi: \Delta \mathrm{H} / \mathrm{d}_{1}$ for any pair of $\varphi=$ const. appears to be much larger than $\Delta \mathrm{H} / \mathrm{p}_{1}$, i.e. the dimensionless energy loss between conjugate jumps’ depths is considerably smaller for submerged jumps than for corresponding free jumps - in the present field of measurements. As a simple example for $\varphi=9^{\circ}$ and $\mathrm{Fr}_{2}=0.13 \Delta \mathrm{H} / \mathrm{p}_{1} \cong 2.6$ for submerged jump, while $\Delta \mathrm{H} / \mathrm{d}_{1} \cong$ 5.2 for free jump, i.e. there is a percentage energy loss increase in free jump of (5.2$2.6) \cdot 100 / 2.6=100 \%$. This fact looks rather reasonable if considering the flow nature of submerged jump-which is a rather calm flow phenomenon, and of the free jump which is far more violent: The submerged jump is not an effective means to dissipate excessive mechanical flow energy, although it presents some external similarities to the free jump.

Fig. 12. $\Delta \mathrm{H} / \mathbf{p}_{1}$ and $\Delta \mathrm{H} / \mathbf{d}_{1}$ vs Fr_{2} for submerged and free jump, $\mathbf{3}^{\circ} \leq \varphi \leq 15^{\circ}$.

CONCLUSIONS

In this paper the mechanical energy and loss of energy in the submerged hydraulic jump within rectangular inclined (angle φ, with $3^{\circ} \leq \varphi \leq 15^{\circ}$) open channels are presented, analyzed, discussed and compared to corresponding free jump quantities. The energy and loss of energy calculations are based on previous measurements by the second author with other authors, concerning jump length and conjugate depths' ratio, both for submerged and free jumps. Fig. 1 shows corresponding flow geometries, eq. (1) presents the one-dimensional momentum equation, while eq. 2 shows the main flow parameter, Froude number. Eqs. (3) to (6) give the results of the previous measurements, while eqs.(7) to (10) describe the corresponding energy and loss of energy. Figs. 2 to 6 present the dimensionless energy at the beginning of submerged and free jumps, while Figs. 7 to 12 show the dimensionless energy loss of both hydraulic jumps: The loss of energy in submerged jumps is much smaller than in free jumps and in this sense the submerged jump is not an effective means for the excessive flow energy dissipation - when compared to the free jump.

REFERENCES

Chow V.T. 1959. Open Channel Hydraulics, McGraw - Hill, p.427.
Demetriou J. 2005. Unique length and Profile Equations for Hydraulic Jump in Sloping Channels, $17^{\text {th }}$ Canadian Hydrotechnical Conference, Edmonton-Canada, August, p.p. 891898.

Demetriou J., Papathanasiadis T. 2006. A comparison Between Free - Submerged Hydraulic Jump in Horizontal Channel. $10^{\text {th }}$ E.Y.E. Congress, October, Xanthi, Greece, 8 pages.
Demetriou J., Retsinis G. 2006. Basic Flow Characteristics of Submerged Jumps Under Sluice Gates, IAHR, Int. Symposium on Hydraulic Structures, October, Ciudad Guayana, Venezuela, 8 pages.
Demetriou J. 2006. Submerged - Inclined Hydraulic Jump. A Comparison Between Theory and Measurement, $15^{\text {th }}$ Congress APD - IAHR 2006, August, IIT Madras, Chennai, India, pp3-9.
Retsinis G., Demetriou J. 2005. Discharge Measurements Through Sluice Gate in Submerged Open Channel Flow, $I^{s t}$ Int. Conference on E.P.S.M.S.O.,Athens, Greece, July, 6 pages.

[^0]: 1 Dr Mechanical Engineer, Davy Process Technology, London W2 6LE, UK, Email: dimitrios.dimitriou@davyprotech.com
 2 Associate Professor (RD), School of Civil Engineering, National Technical University of Athens, Greece, 12 Polykarpou St., N. Smyrni, Athens, 17123, Greece. Email : idimit@,central.ntua.gr (corresponding author).

