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ORTHOGONAL BASIS BUBBLE FUNCTION
FINITE ELEMENT METHOD
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ABSTRACT

In this paper, an orthogonal basis bubble function element stabilization method for shal-
low water long wave equation is proposed. The result of the diagonal mass matrix using
the orthogonal basis bubble function element is in a better agreement with a exact solu-
tion than the result of the lumped mass matrix using the linear bubble function element.
The bubble function method stabilization method obtained better numerical accuracy and
stability than the classical bubble function method with Bubnov-Galerkin formulation.

Keywords: shallow water equation, orthogonal basis bubble function element stabilization
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1. INTRODUCTION

Recently, it was found that bubble function element in finite element method based on
Bubnov-Galerkin formulation operate a stabilizing role in certain kind of problem (Pierre,
1988; Baicocchi et al., 1993). For steady advection diffusion problem, the Bubnov-
Galerkin method employing the piecewise linear interpolation with bubble function is
equivalent to the streamline-upwind /Petrov-Galerkin (SUPG) finite element method (Brooks
and Hughes, 1982) using P1 approximation. In this framework, some researchers have de-
veloped the advanced bubble function elements for the advection diffusion problem (Simo
et al., 1995; Yamada, 1998). The advanced bubble function elements are established by
using the bubble function with a scaling parameter according to the cell Peclet number
to attain optimal numerical diffusion. Authors (Matsumoto et al., 2003) have applied
this approach to shallow water long wave problem by using special bubble functions with
two-level three-level partitions. The special bubble functions with two-level three-level
partitions are extended as orthogonal basis bubble function element stabilization method
for P1B element (Matsumoto, 2005). An important point to be noted is that the consis-
tent mass matrix is a diagonal matrix on account of the orthogonal intersection of the
basis functions of the orthogonal basis bubble function element. Therefore, an explicit
finite element method with orthogonal basis bubble function element is proposed in this
paper. The orthogonal basis bubble function element stabilization method obtains better
stability than the classical bubble function element method.

2. BASIC EQUATION

The shallow water long wave equation to the coordinate system of Figure 1 is written as
the following momentum equation and continuity equation.

u+ Luwu+Nuwu=f in Qx][0,T]. (1)
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Figure 1: Coordinate system.
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n and ¢; are the water depth and discharge of unit width. ¢ = /g7, u;, u., n, ve, k, w,
®, pa, P, Cs, and w; are the wave speed, velocity, friction velocity, Manning’s coefficient of
roughness, kinematic viscosity, Karman constant value(=0.41), earth angular velocity(~
7.27 x 107°), geographical latitude, atmosphere density, water density, surface friction
coefficient, and wind speed. g is the gravitational acceleration. ¢ and v, are the shock-
capturing coefficient and artificial viscosity coefficient of the water depth. The boundary
conditions are as follows:

A

u=u on I, (2)
ou .
(Vijaxj> n=(vyu,;) - n=t on Iy, (3)
where the Dirichlet and the Neumann boundary conditions are specified on I'y and I's,
respectively. In equations (2) and (3), @ denotes the values given on the boundary, n is



the unit outward normal to I's.

3. BUBBLE FUNCTION ELEMENT STABILIZATION METHOD
3.1 Bubble function element

The bubble function element used in the spatial discretization of equation (1) is shown in
Figure 2. The bubble function element is expressed as follows:
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Figure 2: Two-dimensional interpolation function.
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Equation (4) is separated from the linear and bubble function interpolations as follows:
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3.2 Bubble function element stabilization method

The two-level three-level finite element approximation (Matsumoto et al., 2003; Mat-
sumoto, 2005) is considered to be a variation problem of finite element space with the
bubble function element. In the two-level three-level finite element approximation, the
two-level partition with a two-level bubble function is employed for determination of the
finite element solution and the three-level partition with a three-level bubble function is
applied to the weighting function. The piecewise linear finite element space V', and the

bubble function space V7, V;Z are defined by
Vi ={on € (Hy(Q)*, valo. € (PLQ))°} . (7)

V;z = {U;z € (H&(Q))B’ U;L Qe — ¢Bv39’ sz € R3} ) (8)




Vh = {”h € (Hy())?, Uh QOBUB> UB eR’}, (9)

where ¢p and ¢p are the two- and three-level bubble functions with a compact support.
In the approximation, the two- and three-level bubble functions are defined elementwise.
The approximation is obtained by calculating the finite element solution w;, € V', which
is determined by the finite element space of V;, = V;, @ Vh

(i, + L(T@on)up + N(@on) @y — f,9n) =0 Yo, €V, (10)
where
Ne 1
(wn, vp) = Z U, Vp)0 = A—(ﬂh, g, , A = dsl.
e=1 e Qe

Here, (-, -)q. denotes the Lo-inner product restricted to 2., N, is the number of elements,
and gy, is a constant defined elementwise by means of the velocity wu; by linear interpo-
lation. The finite element solution w; that belongs to V', and the weighting function vy,
that belongs to

Vi=Vid{v, +0,; vyla + 040 = (05 + ©5)vs}

can be expressed as follows:

uh:’l_llh—l-’ll/;l,’i)h:’l_)h“r‘vz‘f"i’h:vh‘f‘@ha (11)
where
Ne
Uy, vy € Vi, U, = Z¢B’U;B S Vh?
e=1
, Ne , , , Ne , !
e=1 e=1

The two-level bubble function is used the orthogonal basis bubble function element (Mat-
sumoto, 2005) for P1B element. The orthogonal basis bubble function element has the
following relation equation (13).

N+1

<¢B> 1>Qe = <¢QBa 1>Qe = m e:

(13)
N is space dimension number. It is assumed that the three-level bubble function satisfies
the following equations:

1
N+1

(Lign)a. =0, (¢5,pB)o. = 0. (15)

The finite element that is employed in the bubble function element stabilization method
is given as follows:

<\I/a,QOB>Q€ = <1,(,03>Qe , O = 1-- N—|— 1, (14)

Ne

(e, vn) + (A(Bon)iwni, vn) + (Vijttn g, V) + D (Vi + V) (05, dpi)o, upvy
e=1

+N(ﬂ0h)<ﬁh, ’Uh> = <f, ’Uh> + <i - N, ’Uh>p2 Yv, e V. (16)



Here, v, is set to zero. The stabilized operator control term (vi; + v;;){¢p,;, d5.)a. U is
derived from the three-level bubble function. l/;j is expressed as follows,

!
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The stabilized operator control parameter l/;j can be determined as follows (Matsumoto
et al., 2003; Matsumoto, 2005) :

/ / QSB, ]_ 2 _ ’
(vij + Vz'j)<¢B,ja bBi).Up = <A>Qe7'eb%u3 ) (17)
where
T 000 1 { L1 }5
TeR = Teu s Ten = 77 3 Teu = )
R 0 0 7o ! ’TSUGNl‘ (TSUGN1)2 (TSUGNz)2

_ 3 . . Vn
TsupGr = {Z (C‘J VU, + [u”- V‘I’a‘)} I [IVn] w' =[uo]"
a=1

. L . > V|u”|]
Tsupca = Wehran » Nron = 2 Z ‘7' ) V‘I’a‘ y T= HvHuhHH :

a=1

hran is the element length (Tezduyar and Senga, 2006).

4. TEMPORAL DISCRETIZATION
4.1 Jameson-Baker’s m-step Runge-Kutta method
Finally, the finite element equation (16) can be expressed as follows:
My, + F(uy) = 0. (18)
In the temporal discretization, an explicit method is employed in this study. For the

finite element equation (18), the time discretization based on Jameson-Baker’'s m-step
Runge-Kutta method (Jameson and Baker, 1983) is given by

n+1/(m+1 n
[=0,1,....m—1 , uh+/(+):uh,
n+1/(m—1) n At n+1/(m+1-1)

At and n denote the time increment and time step.



4.2 Mass matrix of bubble function element

The mass matrix of the bubble function element will be described in this section. The
mass matrix of each element in the two-dimensional bubble function element is expressed
as follows:

A A A
Lok R
(@), =M, =| 2 § R
» 15 ¢ U
0 0 0 0
-2 -2 -2 3 1 1 1 -3
1 -2 -2 -2 3 1 1 1 1 -3
+§<¢B71>Qe —92 _9 _9 3 +§<¢Ba¢B>Qe 1 1 1 -3 ; (20)
3 3 3 0 -3 -3 -3 9

m=1,---4, n=1,---,4,
® = [0, Dy B3 )",
Here, ¢ is an arbitrary two-level bubble function that conforms to the bubble function.

The mass matrix of the bubble function element is determined on the basis of the following
two integration values.

(98, 1a. » (9B, 9B)a. (21)

The following integration values are used in the case of a linear bubble function (Mat-
sumoto, 2006).

1 1
(6B, )o, = gAe , (0B, 0B)0. = 614@- (22)
A consistent mass matrix of the bubble function element is obtained as follows:
4 1 1 2
A 1 4 1 2
(e) _ ‘e
My = 36 |1 1 4 2 (23)
2 2 2 6

The mass matrix of the linear bubble function element is not a diagonal matrix. Therefore,
the lumping of the mass matrix is required to solve the m-step Runge-Kutta method
efficiently. The lumped mass matrix of the linear bubble function element is given by

2
4
A
M'®) ~ diag (Z M%ﬁ%) =3 2 9 . (24)
n=1

On the other hand, following are the integration values for the case of an orthogonal basis
bubble function (Matsumoto, 2005).

N+1

<¢Ba 1>Qe = <¢Ba¢B>Qe = m

A, N=2. (25)

By substituting equation (25) into equation (20), the consistent mass matrix of the bubble
unction element is obtained as follows:

M) = : (26)



An important point to be noted is that the consistent mass matrix M is a diagonal matrix
on account of the orthogonal intersection of the basis functions of the orthogonal basis
bubble function element.

5. WIND-DRIVEN CURRENT PROBLEM

The wind-driven current problem (Csanady, 1982) is used to investigate the numerical
accuracy of the bubble function element stabilization method as a numerical example.
Figure 3 shows the computational model and mesh type. This problem has the following
exact solution.

(=

cs 4l {i 1)”+1 (2n — Dmet . (2n— 1)7r;v} (27)

pgh w2 pgh o8 [ S [

In the finite element mesh, 200 x 4 divisions are performed. The total numbers of nodes
and elements are 1007 and 1604, respectively. The numerical results obtained after 50.0

Wind

Mesh Type =
[=10m, 4x=0.05m

Figure 3: Computational model and mesh type.

s are shown in Figure 4. Figure 4 is the results of the point of z=0.25 with the central
points to y axis. The numerical results are used At=0.001 s and m=4. The numerical
results shown in Figure 4 indicate the results with the stabilized operator control term.
”Lumped mass matrix” indicates the result of a linear bubble function element. ”Diagonal
mass matrix” indicates the result of an orthogonal basis bubble function element. The
result of the diagonal mass matrix is in a better agreement with the exact solution than
the result of the lumped mass matrix, as shown in Figure 4.
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Figure 4: Numerical results of after 50.0 s.
(n =0, cs =0.001, h =2m/s, p=998.2kg/m3, p, = 1kg/m?, w; = 1m/s, wy =0, § = 0)

6. DAM-BREAK PROBLEM
6.1 Numerical example 1
In order to investigate the numerical accuracy and stability of stabilized bubble function

method, dam-break problem (Stoker, 1957) is used numerical example. Figure 5 shows
the computational model and mesh type. The numerical results at 1.0 s of water depth

- v
Im
v = :I: 0.1m
|= ;
10m
Mesh Type =2
Ax =0.05m

Figure 5: Computational model and mesh type.

and velocity are shown in Figures 6-7. The results of these figures are the values on y
axis. The domain is divided into 200 equal-length elements. The numerical results are
used At=0.001 s and m=4. We compare the results of water depth and velocity by using
classical bubble function element and bubble function element stabilization method. The
classical bubble function element means the bubble function element without the stabilized
operator control term in equation (16). The spatial oscillation of water depth and velocity
is very serious in the result from classical bubble function element. However, the bubble
function element stabilization method remedies the oscillation distribution of water depth
and velocity.
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6.2 Numerical example 2

In numerical example 1, the results for bubble function element stabilization method
oscillate the discontinuous parts. Therefore, shock-capturing term requires this problem.
In this study, a shock-capturing coefficient based on the reference (Tezduyar and Senga,
2006) is proposed as follows

(28)

h B R Te h
§ = HON | <<Uk ol >Q> ;A= ey (Tsvan1) ™5 e =0.15 .

2 </a]];7 /a]];>ﬂe 2

Figure 8 is numerical results at 1.0 s with shock-capturing term using bubble function
element stabilization method. The results of bubble function element stabilization method
are in good agreement with the results of exact solutions.

7. CONCLUSION

In this paper, the bubble function method stabilization method for shallow water long
wave equation was investigated. The result of the diagonal mass matrix is in a better
agreement with the exact solution of the wind-driven current problem than the result
of the lumped mass matrix. The bubble function method stabilization method obtained
better numerical accuracy and stability than the classical bubble function method with
Bubnov-Galerkin formulation.
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