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MORPHODYNAMIC MODELING OF THE GERMAN BIGHT USING ANN 
 
 

Tim Berthold1, Peter Milbradt2 and Volker Berkhahn3 
 
 
ABSTRACT 
 
In this paper an approach is proposed, how to get a continuous description for sedimentologic 
measurements. Sedimentologic data has to be taken into account in order to deepen the 
understanding of morphodynamic processes and to improve simulation and forecasting models. 
Unfortunately, the data is sparsely distributed over space and time, since the measuring methods are 
expensive. Due to the small amount of data established interpolation and approximation methods are 
not suitable in this matter. The approach instead is based on an artificial neural network that is 
trained by the measured data. Additional information improves the performance of the model. 
 
 
1. INTRODUCTION 
 
Detailed information on morphodynamic evolution becomes more and more important in coastal 
engineering. A deepened understanding of morphodynamic processes is essential for coastal 
protection, shipping and also projects like the installation of offshore wind turbines and the 
connection to the onshore. 

Whereas bathymetric information in terms of the depth (z) of the sea is usually available 
covering large areas at high spatial resolution, the amount of sedimentological measurements is 
much less due to the expensive measuring methods. To advance the development of forecasting 
models and to deepen the understanding of morphodynamic processes, such data must be taken into 
account. In practice, information on the sediment of the seabed is often modeled in terms of maps. 
Since the amount of data is not very high, the maps generally base on few measurements compared 
to the size of the area that they cover. A map gives a snap-shot describing the soil at a certain point 
in time. Time dependency cannot be captured. Typically, a map is divided into regions, where each 
region is classified by the configuration of the sediment. The boundaries of the regions lead to 
discontinuities in the map, which can cause problems in simulation models. As an example, Figure 1 
shows a map of the German Bight created by Figge. 
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Figure 1 Map of the German Bight describing sedimentological data after classification by Figge 
(1981). 

 
A consistent digital sedimentological model is desirable. Well-established interpolation and 
approximation models however, do not lead to an appropriate result due to the low amount of 
available data. 

In this paper, artificial neural networks (ANN) are used to serve as a digital sedimentological 
model. It is shown how additional data of the bathymetry can be used to set up a model that is able 
to approximate sedimentological parameters quite well. ANN is a data-based method that is able to 
“learn” a mapping given by a set of training patterns. During a learning phase, the structure of the 
network is adapted by a learning rule in an iterative training process. When the training process is 
finished successfully, the network is able to provide information on the output parameters for any 
given input parameter within a given range.  A more detailed introduction of ANN can be found in 
the numerous literature. 

As training patterns, sedimentologic and bathymetric data around the estuary of the river Elbe 
in the German Bight will be used. The data will be described in Sect. 2.  To investigate the potential 
and the limits of the approach some scenarios will be regarded in Sect. 3, that are subject to the 
following restrictions: 

 
1. Only a scalar quantity is derived from the sediment data: as a first step, the d50 of the 

grain-size distribution will be used for approximation in this paper. 
2. The approximation of the data is time independent: although the bathymetry is 

changing significantly over time, this fact will not be considered for now. As a 
simplification only data will be regarded, that was measured within one year. 
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2. DATA SET 
 
A characteristic description of sedimentologic data is the grain-size distribution. Typically, a sample 
of the soil is being collected and then sieved with sieves of different size. In this way the frequency 
for each grain-size class can be determined, which is summarized in a histogram. Often, the 
cumulative curve is derived from the histogram as another representation. Because the sample is 
quantized, the evaluated data is a vector quantity. Figure 2 shows an example for the evaluated data. 
There are two different scales to describe the grain-size distribution: the phi-scale and the mm-scale. 
The scales can be transformed from phi to mm and the other way round (see McManus (1988)). In 
this paper we use the mm-scale, where the grain-size is represented by its diameter in mm. 

 

 
 

Figure 2 Exemplary representation of evaluated data in terms of a histogram, a grain-size 
distribution and a cumulative curve. 

 
From the grain-size distribution some characteristic statistical parameters can be derived. The 

percentile dn specifies the grain diameter for which n % of the found particles are smaller. Hence the 
d50 describes the diameter, where half of the particles are smaller and the other half is bigger. Other 
parameters are the sorting coefficient or the variance. All those are scalar quantities. 

For the ANN-model, we use sedimentologic data that was measured in the German Bight in 
about the last 100 years. As the first step is to set up a time independent approximation, the data 
used as training data must correspond approximately to a snap-shot. This means, that the data of 
interest has to be recorded nearly at the same time. The problem is that the smaller the interval, the 
smaller is the resulting data set. On the other hand, the interval must not be too large, because the 
bathymetry changes over time and the data is not representative anymore. As a compromise we use 
data that was recorded within the same year. In the year 2005, 473 sediment samples where recorded 
in the estuary of the river Elbe. For this time a bathymetric model is available also. In Figure 3 the 
bathymetry and the points of the sediment samples are depicted in the domain of investigation. The 
colors of the points represent the d50 of the sample. It can be seen, that the spatial resolution of the 
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sampling points is not very high. For this reason established interpolation or approximation methods 
are not suitable here. 
 

 
 

Figure 3 Domain of investigation in the German Bight (estuary of the river Elbe). The bathymetry 
(background) is the visualization of a bathymetric model of the region on July 1st in 2005. The 

colored dots represent the locations of the sediment samples that were recorded in the year 2005. 
The color represents the d50 of each measurement according to the given scale. 45 sediment samples 

are used as test patterns and are marked by a black rectangle. 
 
 
3. ANN-APPROXIMATION MODEL 
 
Using ANN as an approximation model for bathymetric data was successfully demonstrated in 
Berthold and Milbradt (2009). The approach described in this paper is a continuation of this idea. 
Again we use a feed-forward topology (compare Figure 4) with sigmoidal activation functions that 
is trained by a supervised learning method (a modification of the backpropagation learning rule 
using an additional momentum term). 
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Figure 4 Exemplary illustration of the used feed-forward topology. The size of the input layer 
depends on the scenario, whereas the output layer consists of 1 neuron representing the d50-

parameter. The sizes of the hidden layers will be varied. 
 

The aim is to obtain a consistent approximation model of the d50-parameter for the domain of 
interest using the data described by Figure 3. For this purpose we will examine the following 
scenarios varying the input parameters. To evaluate the ability of generalization for the different 
scenarios, the test set depicted in Figure 3 is used. This data will never be used for training. The test 
set will be the same for each scenario to achieve a better comparability. Again, there is a problem 
due to the small size of available data: it is important to have a test set that is disjunct to the training 
set in order to prevent the model of overfitting. To estimate the ability of generalization, the test set 
must be representative and not too small. On the other hand, valuable training patterns are not 
available, if they are used as test patterns. The test patterns were manually picked, trying to obtain a 
representative test set with patterns of all kind (the variety of d50 and the position of the samples). 
The size of the test set is about 10 % of the available data. 

Since the approximation results depend strongly on the chosen network topology, the sizes of 
the hidden layers are varied for each scenario. In turn each network topology will be trained 10 
times to cover the influence of the randomly chosen initial synapses weights. 
 
3.1 Dependency of the sample position 
 
Using common interpolation and approximation methods the approximated value directly depends 
on its position (here 

฀

(x,y)). This will be regarded in the first scenario, where patterns of the form 

฀

(x,y)d50 will be used for training and of course testing. In Berthold, Milbradt and Berkhahn 
(2010) a geometrical interpretation of particular neurons for the mapping 

฀

(x,y)z was presented. 
It was shown that topologies with relatively large hidden layers are useful for the approximation of 
the bathymetry. Hence, we will regard network topologies with up to 40 neurons in the hidden 
layers. 

Due to the little amount of sediment samples a poor ability of generalization of the model is 
expected. In the next section the influence of the depth of the bathymetry will be regarded in order 
to improve the model. 
 
3.2 Dependency of the depth of the sample position 
 
Figure 3 reveals the tendency that coarser particles are found more frequently in channels. This trend 
can also be seen in the scatter plot in Figure 5, where the d50 is plotted against the depth z of all 
samples in the year 2005. We do not describe the dependency of the parameters by a classic 
statistical method here, since we will investigate this issue within a second scenario of the form 
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฀

(z)d50. In the strict sense z is part of the position of the measurement. However, we try to find a 
two-dimensional approximation and the depth of the sample position is unique, because the sample 
is always recorded at the soil. Thus z can rather be interpreted as additional information than as part 
of the position. 
 

 
 

Figure 5 Scatter plot of the grain-size (d50) of the samples over the depth (z) of the position where 
the samples where recorded. A small tendency can be seen that coarser particles occur more 

frequently at deeper locations. 
 

3.3 Combining the position and the depth 
 
In the third scenario the input parameters of scenario 1 and 2 will be combined, since the grain-size 
is dependent of both, its position and the depth of the sea at that position. According to this the 
mapping that will be trained is 

฀

(x,y,z)d50. 
 
3.4 Dependency of the bathymetric environment 
 
As mentioned in Section 3.2 bigger particles are found more frequently in channels. A deeper z-
value is an indicator for a channel at that position. But a channel cannot be identified until the 
information of its environment is taken into account. This will be regarded in the fourth scenario. 
Since the bathymetric information is available for any position by the bathymetric model within its 
bounds it is possible to retrieve the depth in the environment of the sediment sample. In this scenario 
we additionally use the depth at 8 positions on a sphere around the sampling point as depicted in 
Figure 6. The sphere is defined using the maximum metric. The positions of the environment are 
like the positions of neighbours defined in the Moore neighbourhood on a regular quadratic grid. 

By choosing a too big radius the essential information of the bathymetric environment cannot 
be detected in the same way as if the radius was too small. For the selection of the radius, the 
bathymetry was analyzed and it was found out, that the width of the channels at the soil is about 200 
m to 500 m. This scenario is therefore run twice with a radius of 150 m and 300 m each. The 
mapping is 

฀

(z,zNE,zE ,zSE,zS,zSW,zW ,zNW,zN )d50 but will briefly be referred to as 

฀

(z,zmoore(r))d50 . 
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Figure 6 Definition of the additional positions (black dots) in the environment of the sampling 
position (red dot). The black dots are positioned on a sphere (marked blue) with the sampling 

position as its center and radius 

฀

r  dx  dy  using the maximum metric. The positions are placed 
like on a quadratic regular grid using a Moore neighbourhood. 

 
3.5 Combining the position and the surrounding parameters 
 
Analog to Section 3.3 the explicit position 

฀

(x,y) of the sampling point and the bathymetric 
information of its environment 

฀

(z,zmoore(r)) from Section 3.4 will be combined in the last scenario. 
The d50 is approximated by the mapping 

฀

(x,y,z,zmoore(r))d50  here. 
 
 
4. EVALUATION OF THE MODEL 
 
The evaluation of the approximation model is a difficult task. The only possibility is to measure the 
performance of the model with regard to the observed values by comparing the approximated output 
values to the measured ones. Since the aim is to obtain a continuous approximation model for the 
whole region around the measurements the accuracy of the model for any position in this region 
would have to be evaluated ideally. Of course this is not possible at all and if it was there would be 
no need for an approximation model. Usually the concept of the test set is used to address this 
matter: the observed data is being divided into two disjunct sets, the training set, which is used as 
training data and the test set, which is used to measure the performance of the model with respect to 
unknown patterns. 

Now, there are some challenges regarding the evaluation. First of all, it is clear that the 
selection of the test set fundamentally influences the quality of the evaluation of the generalization 
performance. A good performance of the model determined with regard to an uncharacteristic test 
set is not a confidential one. And even if the test set was found to be representative, in the strict 
sense statements can only be given for the used test set. Secondly, it seems to be insufficient to 
investigate the performance concerning the test set only, because the approximation of the patterns 
in the training set should be good as well for a continuous approximation. Thirdly, one of the biggest 
challenges is to define an adequate performance measure. The most commonly used performance 
measure in literature is the root mean square error (RMSE), which is defined in Equation 1, where 
the number of patterns is denoted by n, the observed output of the i-th pattern by 

฀

y i and the 
approximated output of the i-th pattern by 

฀

ˆ y i. 
 

฀

RMSE 
1

n
(yi  ˆ y i)

2

i1

n

      (1) 
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The RMSE can be used to compare the approximation quality of analog models. This is done 
in Figure 7, where the minimum approximation error (RMSE) of each scenario pertaining to the test 
set is shown for each network topology. Since we have 10 calculations for each network topology of 
each scenario, the best performance results in the depicted range (min/max denoted by the dashed 
lines). The continuous lines denote the means of the minimum values. 

 

 
 

Figure 7 Evaluation of the minimum approximation error (RMSE) relating to the test set for each 
scenario. 10 ANN where trained for each network topology (of each scenario) starting with different 
synapse weights. The mean of the 10 calculations is marked by the continuous line, the dashed lines 

denote the min/max. 
 

First of all, it can be seen that a strong dependency of the chosen network topology exists for 
scenario 

฀

(x,y)d50, where the generalization performances of the other scenarios do not change 
very much. Further, it turns out that scenario 

฀

(x,y)d50  does not perform very well in contrast to 
the others as it was expected. This may be caused by the rarely distributed training patterns. As for 
the commonly used approximation methods, the information of the position alone is not sufficient to 
produce a good approximation. The generalization performance of scenario 

฀

(z)d50 is slightly 
worse. The network is not able to perform very well, since the input data is ambivalent as was 
shown in Figure 5. But it is interesting to see that all the scenarios, which use a combination of the 
position and the depth as input parameters (

฀

(x,y,z)d50, 

฀

(x,y,z,zmoore(150m))d50 and 

฀

(x,y,z,zmoore(300m))d50) perform much better than the other scenarios. In the following one 
particular ANN-model of each scenario will be used for further investigations. Therefore those 
ANN-models where chosen, which had the best RMSE-value regarding the test set of each scenario 
(this corresponds to the minimum value of the lines in Figure 7 for each color). 
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While the RMSE can be used to compare the approximation quality of analog models, the 
meaning of particular RMSE-values is not obvious. Hence, the performance of the scenarios was 
determined using some other measures with regard to the training and the test set each. Table 1 gives 
an overview of the different performance measures applied to the given ANN-models of the 
described scenarios. The relative deviation concerning a particular pattern 

฀

i  specifies the deviation 
of the approximated output 

฀

ˆ y i to the expected output 

฀

y i in relation to the magnitude of the expected 
output. The mean relative deviation (MRD) is defined in Equation (2). 

 

฀

MRD 
1

n

yi  ˆ y i

yii1

n

      (2) 

 
Table 1 Performance of the approximation models of the different scenarios regarding 

different performance measures. The values where determined for one particular ANN-model of 
each scenario. 

 

scenario RMSE [-] MRD [rel] p5 [mm] p95 [mm] 
training test training test training test training test 

฀

x,y  0.0874 0.0627 0.4053 0.3049 -0.1414 -0.1094 0.1155 0.1208 

฀

z  0.0986 0.0730 0.4417 0.3392 -0.1372 -0.1210 0.0914 0.0812 

฀

x,y,z  0.0860 0.0459 0.3881 0.2569 -0.1239 -0.0556 0.0966 0.1006 

฀

z,zmoore(150m) 0.0945 0.0681 0.4234 0.3322 -0.1287 -0.1139 0.0751 0.0808 

฀

z,zmoore(300m) 0.0890 0.0583 0.4078 0.3054 -0.1537 -0.0592 0.0635 0.1149 

฀

x,y,z,zmoore(150m) 0.0791 0.0426 0.3719 0.2628 -0.1224 -0.0718 0.0763 0.0722 

฀

x,y,z,zmoore(300m) 0.0867 0.0411 0.3845 0.2673 -0.1445 -0.0598 0.0680 0.0603 
 
As further performance parameters the 5th (

฀

p5) and the 95th (

฀

p95) percentile of the difference 

฀

ˆ y i  yi will be regarded. The 

฀

p95 specifies the value, below which 95% of the differences may be 
found. The 

฀

p5 is defined likewise. The range 

฀

p5, p95  then defines the range of the deviation of the 
ANN-model, in which 90% of the observations fall into. 

It turns out that again the scenarios that use the position as well as the depth as input 
parameters perform nearly the same in terms of the MRD: the average of the relative deviation 
regarding the training set is about 38% each, whereas the approximation of the test set differs about 
26% related to the expected values on average. Regarding the 5th and 95th percentile the ANN-model 
of scenario 

฀

(x,y,z,zmoore(300m))d50 performs best concerning the test set: 90% of the produced 
output values do not differ more than 0.0603mm from the real output value, while that are 
0.0722mm for scenario 

฀

(x,y,z,zmoore(150m))d50 and only about 0.1mm for the model of scenario 

฀

(x,y,z)d50. 
Figures 8 to 14 in the appendix show the results of the d50-approximation and more detailed 

information of the performance in terms of a performance scatter plot for each scenario. It can be 
seen that the approximation of scenario 

฀

(x,y)d50  seems to be very coarse, while the 
approximation of the scenarios that solely use the depths as input parameters are very similar to the 
bathymetric structure. The combination of the position and the depth seem to improve the model. 
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5. CONCLUSION AND OUTLOOK 
 
In this paper an continuous approximation model for sedimentologic parameters was introduced, 
that is based on an artificial neural network. Measuring the approximation performance of such a 
model in particular and of approximation models in general is a big challenge. The performances of 
the ANN-models of the considered scenarios have been investigated with respect to different 
measures. The estimation of the approximation performance strongly depends on the used measure 
and on the data that is used for testing. Some more work has to be done to get suitable measures and 
test sets in order to determine an adequate approximation performance. 

Altogether the presented ANN-approximation model seems to produce quite good results in 
terms of the approximation of the d50 parameter of the given grain-size measurements. An 
acceptable continuous approximation was achieved. Particularly the combination of the position of 
the measurement and the depth of the sea at that position seem to improve the results of the model. 
Future works should focus on the approximation of other sedimentologic parameters, like the grain-
size distribution as a discretized function. 
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APPENDIX 
 
The results of the ANN-models of the different scenarios are summarized here in terms of 
performance scatter plots and the approximation of the d50-parameter for the produced output. For 
the d50-approximation plots the color scale from Figure 3 was used. The black dots mark the 
position of the test patterns. 
 

 
 

Figure 8 Results for the approximation model for scenario 

฀

(x,y)d50 . 
 

 
 

Figure 9 Results for the approximation model for scenario 

฀

(z)d50. 
 

 
 

Figure 10 Results for the approximation model for scenario 

฀

(x,y,z)d50. 
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Figure 11 Results for the approximation model for scenario 

฀

(z,zmoore(150m))d50. 
 

 
 

Figure 12 Results for the approximation model for scenario 

฀

(z,zmoore(300m))d50. 
 

 
 

Figure 13 Results for the approximation model for scenario 

฀

(x,y,z,zmoore(150m))d50. 
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Figure 14 Results for the approximation model for scenario 

฀

(x,y,z,zmoore(300m))d50. 
 


