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ABSTRACT

The present text deals with the hydraulics of critical and near critical flows in open channels,
resulting from the research by the author on the “regime”, ['], of rivers and its significance in
fluvial geomorphology. From these concepts, many observations of great importance for the
understanding of processes and problems in river hydraulics have been made, such as those
on the behavior of river channels in alluvial fans, the hydraulics of mud flow, the singular
behavior of mountain torrents and the great impact that regime, as expressed by the
magnitude of the “Froude” number has on the behavior of rivers. In this article the
dependency of the flow regime with the concentration of flow in the cross section is
examined, and a theory of “Near Critical Flow” is presented; it is proved that the
characteristics of this type of flows are the same for any given cross section.

This work is derived from the study of river crossings of oil pipelines in mountain torrents in
Colombia during the 1980s, the observation of river flow phenomena caused by the sudden
melting of the Nevado del Ruiz Volcano’s glacier ice snowcap in 1985 and numerous other
incidents in South and Central America as well as work done by the author in 1990 in Bolivia
designing a river control system for the Pirai River, in the Santa Cruz de la Sierra Area. It has
also been developed from more than 15 graduate theses in the engineering faculties of the
National and Los Andes Universities in Bogota since 1990. In the course of these activities, a
new understanding of critical and near critical flow in open channels has emerged.

THE CONCEPT OF REGIME IN CHANNEL HYDRAULICS

Flow regime in channel hydraulics refers to the total energy content of the channel and its
division between potential and kinetic energy. The importance of this concept comes from the
considerable variation in the behavior of free surface flows with different kinetic and potential
energy content which can be mathematically proved to be a function of the Froude Number.

The Froude Number describes the relationship between two basic parameters of free surface
channel flow: the average flow velocity, V, and the celerity of shallow surface waves, Xéd,
where, g, is the acceleration of gravity, and d, is the average flow depth :

V

F=E 0y

Even though the Froude Number is an non dimensional parameter and can have any positive
value greater than zero, it’s unusual to find flows in nature with Froude numbers much
greater than 1.0; values slightly higher than 2.0 have been reported in the literature, but they
have a considerable level of uncertainty. Under very special flow conditions, in hydraulic
structures built of smooth materials, the Froude number can easily reach values of 10.0, and
in the less frequent conditions of artificially concentrated flows, for example in sewers or in

' The regime of a river is defined by its energy content, expressed as a function of its velocity and the depth of its flow.



the steep spillway channels of large dams, it can reach even greater values. The flow regime
in open channels, natural or artificial, is denoted in the literature according to the value of the
Froude number, as follows : 0 < F < 1.0, SUBCRITICAL; F = 1.0, CRITICAL; F > 1.0,
SUPERCRITICAL

DIFERENTIATION OF FLOW REGIMES

Hydraulic engineers usually don’t differentiate between flow dynamics or flow regimes for
different Froude numbers as long as they are simply greater or lesser than 1.0, which is the
condition for critical flow. This is particularly true in the case of river engineers, who are used
to nature’s favorite range for lowland rivers, 0.1 < F < 0.3. Few would accept a priori the
difference between a flow with a Froude number from 1.2 to 2.5 or from 2.5 to 5.0. The
Author wishes to emphasize in this article, however, that, essentially, flows with Froude
numbers between 0.5 and 1.5 are indistinguishable in nature. This is the case particularly if
they occur in channels capable of varying their roughness or their slopes, as is the case in
piedmont streams on alluvial fans.

Critical Flow in Channels

Critical flow in an open channel of a specific cross section is defined as that which presents
minimal specific energy conditions for a given channel. Specific energy, E, is defined as the
total energy of the flow as related to the bottom of the channel:

E=y+— @)

Considering a constant flow in this channel, it is possible to prove that E is a unique function
of y, given that V' = Q/4, where A, the area of the cross section of the flow, is a unique
function of y. In the case of a very wide rectangular channel, where V' = Q/by = ¢/y; while A =
by, the following is obtained :

Plotting the function E = Ay) Produces the curve in Figure 1 :
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Figure 1. Generalized Specific Energy Curve in an Open Channel



This curve, is asymptotic to the E axis and to the 45° line that has been drawn to construct the
graph. Deriving equation (2), in relation to y, the condition of critical flow is obtained :

2
aE _ 0 , for a Coriolis coefficient of & =1.0, produces: y? = LA, y E.=15y,
4

dy
Where sub index ¢ indicates the condition of critical flow. The assumption « =1.0 is made for
purposes of simplification without losing generality, given that @ must be a constant for a
channel of given cross section. The condition of critical flow is based in the quadratic nature
of the function, and can also be expressed by:
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THE FROUDE NUMBER AND FLOW CONCENTRATION

To understand the conditions under which the Froude number of any given flow can be
obtained; it is simply enough to write Manning’s equation as a function of this parameter,
(Ordofiez, 1992, 2005). For a rectangular channel :

1
y-9_21p2361/2 (6)
y n
This equation can be expressed in terms of F and ¢ as follows :
59
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Sub index F in the flow per width unit serves to denote that this is the flow capable of
producing a certain value of the Froude number. Equation (7) can be represented graphically
as a function of » and S or be calculated as in Table 1:

Table 1. Values of the Froude Number Corresponding to Different Values for q, n and So

q n=0.012 n=0.020 n=0.020
(mes/m) | S0 =0.0001 | 0.0003 0.0005 0.001 So = 0.0003 0.0005 0.001 | So=10.010
0.0001

1 0.27 0.44 0.56 0.76 0.17 0.28 0.35 0.48 1.36
3 0.30 0.50 0.62 0.85 0.19 0.31 0.39 0.54 1.52
5 0.32 0.52 0.67 0.90 0.20 0.33 0.41 0.57 1.60
10 0.34 0.56 0.70 0.96 0.22 0.35 0.44 0.61 1.71
20 0.36 0.60 0.75 1.03 0.23 0.38 0.48 0.65 1.83
30 0.38 0.62 0.78 1.07 0.24 0.39 0.50 0.68 1.91
50 0.40 0.66 0.83 1.15 0.25 0.42 0.52 0.71 2.01
100 0.43 0.70 0.89 1.21 0.27 0.44 0.56 0.76 2.16

From equation (7), and Table 1 the following can be deduced :

e C(ritical flow conditions are not independent from roughness, as suggested by equation (4),
because roughness and slope determine the flow concentration necessary to produce
critical flow in a channel or, in fact, any Froude number.

e For high slopes, (higher than 1%), it is impossible to obtain sub critical flows even in
conditions of high surface roughness.



e For moderate to low slopes, (lesser to 1°/540), it is impossible to obtain supercritical flow,
even in conditions of very low roughness.

e It is very difficult to obtain critical flow in intermediate slopes (between 1°/40, and 1%/400),
even for relatively low conditions of roughness.

e It is unlikely to obtain truly sub critical flows for intermediate slopes and normal or low
friction coefficients since, in these conditions, F is always between 0.6 and 1.5, (NC).

e [t is practically impossible to obtain flows with F > 2.0 in natural channels, given the huge
flow concentration required for even low roughness conditions.

Variation of the Froude Number in Open Channels

Equation (7) can also be used to calculate the variation in the Froude number in a channel :

Equation (7) can also be expressed as: q= g’ 5 10 3)

Where a is now the parameter defined by Maza-Alvarez as : a= S )

From equation (8), the value of F can be deduced as well as its rate of change with ¢ :

_ a’;j Y (10)
dF a0.9
W =0.1 — q 0.9 a1
where: F=F +Aq ar 12)
o dq

Equations (10) through (12) demonstrate that the variation of the Froude number in a channel

must increase monotonically with the flow per width unit ¢. This is of utmost importance in
the treatment of, for example, morphological phenomena such as the scouring of river beds,
since it would be impossible that the Froude number decrease as the scouring process

continues, if the value of ¢ is increasing,( Ordoiiez, 2005).

It is also clear that, as ¢ increases, the variation on F is increasingly smaller, which means

that a given reach of a river does not suffer great regime variation despite the value of ¢
increasing greatly. This situation has been previously observed by the author in the discharge
measurements at gauging stations, (Ordofiez, Aldana, 2003). Table 2 displays the results of
using equation (12) for typical values for a, and indicates that F does not increase more than
20% for variations in ¢ of up to 500%, both for sub critical and supercritical flows. The table
also shows that F does increase as ¢ increases, although, as it has already been mentioned,
only slightly; therefore, rivers tend to maintain their regime unchanged, within a characteristic
range, in a given reach, under conditions of increasing flow.

It is worth noting, that the direct use of Manning’s equation in the case of alluvial rivers,
using the same exponents that are recommended for prismatic channel hydraulics, is not
always correct; in fact, some authors have proposed to change them, (Einstein, Chien, 1956).
The author also has shown that for example, in the case of the Saldafia River in Colombia, a
large mountain stream with a very large sediment load, the exponent of the relation between F
and ¢ is closer to 0.5 than 0.1, although the trend of the curve is identical; and that a similar
observation can be made considering the variation in the parameters for the whole section and



the variation in the parameters for subsections of the same cross section. The results indicate
that the curve dF/dq presents the same characteristics of equation (11), with the ¢ exponent
also different from -0.9 but always negative.

Table 2.- Typical Variations of the Froude Number for Given values of a

q 5=0.0001 D=0.00lm n=0.013 a=0.78 S=0.001 D=0.005m n=0.017 o=1.89
Fatanning | (dF/dq) | Fri) Aq (%) | AF (%) Framing | (dF/dq) | Fqe) Aq (%) | AF (%)

0.5 0.24 0.0477 0.24 -50 -8 0.53 0.1055 0.53 -50 -10

1 0.26 0.0255 0.26 - - 0.57 0.0565 0.57 - -
3 0.29 0.0095 0.29 300 12 0.63 0.0210 0.64 300 12
5 0.30 0.0060 0.30 500 15 0.66 0.0133 0.67 500 18
10 0.32 0.0032 0.32 1000 23 0.71 0.0071 0.72 1000 26
15 0.33 0.0022 0.34 1500 31 0.74 0.0049 0.75 1500 32
20 0.34 0.0017 0.35 2000 35 0.76 0.0038 0.77 2000 35
25 0.35 0.0014 0.36 2500 38 0.78 0.0031 0.79 2500 38
35 0.36 0.0010 0.37 3500 42 0.81 0.0023 0.81 3500 42
45 0.37 0.0008 0.38 4500 46 0.83 0.0018 0.83 4500 46
50 0.38 0.0008 0.38 * 5000 46 0.84 0.0017 | 0.84 ** 5000 47

* Although total variation is 60%, q variation is of 10,000%; also, the regime is very similar for F=0.24 o F=0.37
** Although total variation is 60%, q variation is of 10,000%; also, the regime is very similar for F=0. 53 o F=0.85

A THEORY OF NEAR CRITICAL FLOW IN CHANNELS
Definition of Near Critical Flow

As it has been observed previously, flow regime in the vicinity of “Critical Flow” conditions
is very difficult to differentiate given the “flat” character of the energy curve in Figure 1 near
the “critical” point. This is why, in this area, it is preferable to differentiate a sector within
which it is more appropriate to speak of Near Critical Flow. Given that, as previously stated,
the highest velocity flows in nature, in torrential streams, are precisely as undefined in their
regime as previously stated, and given that, as it will be proven in the present chapter, natural
channel flows never achieve true super critical status, it is incumbent in this discussion to
define with greater accuracy what is the range of Froude numbers in near critical flow. In
other words, how “flat” is the energy curve at the critical point.

Torrential Flow and Near Critical Flow

Torrential Flow conditions are characteristic of steep rivers, (So > 0.001), that flow through
mountain and piedmont areas at very high velocities. The term “torrential”, is very imprecise,
and nobody has clearly defined it, but clearly applies to flows with high Froude number, close
to the 1.0 of Critical Flow. In practice, torrential status also refers to a hydrology with highly
variable levels of flow intensity, with steep flow duration curves, intermittent flows and
channels subject to sudden floods. Engineers must often interpret peculiar river behavior with
little hydraulic or hydrological data, which frequently leads to mistakes, particularly in the
case of extreme floods. To improve understanding of torrential flow, the following questions
must be asked: How high, can high velocity be in an open channel? What phenomena occur
when approaching this velocity? What causes such velocities to occur in an open channel; is it
because of the slope, the flow intensity or the channel roughness?

In a study of the Pirai River, in Bolivia, (SEARPI, 1990), in the context of moderately high
alluvial valley slope, the author observed first hand, the existence of normal flows that were
very close to critical in, what was later evidenced as being, the moderately sloped portion, (So
< 0.0005), of the middle reach of a very extensive alluvial fan. These flows were indicative of



an extreme flow dynamics, where the hydraulic characteristics were very difficult to estimate
through conventional uniform and gradually varying flow modeling. The search for solutions
to these problems led the author to make a series of observations, based on simple
unidirectional flow equations for open channels that allow results more consistent with the
real flow dynamics, than conventional modeling, and constitute what will be referred to in this
volume the Near Critical Flow Theory, these observations are as follows :

1. For a very wide rectangular section, its easy to ascertain that the relative specific energy
E/E_ is a unique function of y/y, :

E Z 2 1
Yy & 2y,

2
Yc y
—Q = = < =5=f (—) 13)
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2. It can also be ascertained, that the Froude number is a unique function of y/y, as well:
2

3
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For rectangular channels: F= ( A )2 14)

3. As explained, the two former conditions are properties of the flow itself and so do not
depend on the transverse section. From equations (13) and (14), it follows that :

== fy(F)
E, 7}
E 2 2, 1 4
For example, in a rectangular channel : £ = 3 F A + 3 FA (15)

c

This equation leads to the interesting conclusion that specific relative energy in an open
channel is a unique function of the Froude number, which allows for the graph in Figure 7 to
be drawn, combining equations (13), (14) and (15) :
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Figure 7. Generalized Specific Relative Energy Curve in a Very Wide Rectangular Channel. Ref. [3 |



4. This diagram shows that, even though it takes a great amount of energy in excess of critical
energy to produce a low velocity flow with a Froude number lesser than 0.6 or a high
velocity one with Froude number greater than 1.6, the amount required for the flow to
acquire numbers between 0.6 and 1.6 is practically the same.

The author recommends that the graph Figure 7 be considered the standard diagram for
Near Critical Flow.

5. For purposes of completing the theory, it must be said that an equation similar to (15) can
be written for specific relative force, (Naranjo, Palacio, 2000).

Fe _2p0s 1 (16)
F,. 3 3

Instability of Near Critical Flow

Figure 7 shows that, for a rectangular channel, flows with 0.55 < F < 1.6 have energy levels
that differ from critical level in less than 712%, which allows for the inference that there is no way
to differentiate these flows (or even those of slightly greater range) in natural channels, because their
proximity to critical flow makes them similarly unstable.

Considering the difficulties of measuring the hydraulic parameters of a river with greater
precision than 10 to 15%, specially near critical flow conditions, its possible to conclude that
there is no way to recognize the regime of a river in the 0.55 < F < 1.6 range; where E/ E, <
L.12; this is the reason why rivers of very steep slopes present highly unstable flows and
regimes which constantly change between subcritical and supercritical; it is also why they
cannot be classified as or the other, and should simply be considered mear critical, their
dynamics being essentially different from either type and from critical flow itself. In this
range, flow is of an undulating nature and can present great fluctuations in velocity.

Near Critical Flow in Prismatic Channels

As the author has demonstrated in several previous publications, this same condition presents
itself for prismatic channels of any shape, which implies that it is a basic condition of flow
and does not simply dependant on the shape of the cross section of the channel, (Ordéiiez,
2002,1994, 1992). Although the existence of an intermediate flow level, between sub critical
and supercritical, may seem to be an exclusive condition of rectangular channels, the same
range of Froude numbers, 0.55 < F < 1.6, produce the same instability conditions for E/Ec <
1.12 in any other prismatic section, than the one that occurs for a normal, or a very wide
rectangular section, (Ordéiez, 2002).

The preceding raises two more observations of the near critical flow theory:

6. Table 3 indicates the value range for F' in each E/Ec < 1.12 case. As it is shown, all sections
present similar behavior, indication that this condition is a property of flow in the vicinity
of critical conditions and not of the section itself. The table also indicates the range of
values for y/y, for near critical flow is within £35% y,. .

7. The author also puts forward that in near critical range, the value 4 y==+1/3y, is the

order of magnitude of the ondulatory free surface profile that occurs in these naturally
unstable flows. Some experimental evidence regarding this has been presented by Sanchez
J. R. (1992).
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Figure 11. Relative Specific Energy for prismatic channels of varied cross section

The values on Table 3 indicate that, regardless of the shape of the section, flows with Froude
number values in the 0.55<F < 1.65 range also display values of E/Ec < 1.12, that is, values
of specific energy that differ in at least 12% with energy levels corresponding to critical flow.
Given that, in practice, it is impossible to measure y or V" with precision greater than 15%, the
characteristics of flows in this range make them essentially unrecognizable from each other.

Table 3 Values for E/Ec for values for 0.55<F <1.65 in prismatic section channels

F TRIANGULAR | RECTANGULAR | TRAPEZOIDAL | CIRCULAR | PARABOLIC
0.55 1.09 1.14 1.09 1.09 1.12
0.60 1.07 1.11 1.07 1.07 1.10
0.70 1.04 1.05 1.04 1.04 1.05
0.90 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
1.20 1.01 1.02 1.01 1.01 1.01
1.40 1.04 1.05 1.04 1.04 1.04
1.60 1.09 1.11 1.09 1.09 1.09
1.65 1.10 1.13 1.10 1.10 1.10

Calculation of Near Critical Flow Parameters

According to the theory that has been presented, the calculation of characteristic parameters
of near critical flow must follow the procedure listed below :

1. Verification that the flow is, in fact, near critical. To this end, proof of morphological and
hydraulic type is necessary. Regarding morphology, the following must be ascertained:

e Whether or not the river is “braided”.
e Whether or not it flows over an “alluvial fan”.
e Whether or not its slope is greater than 1 in one thousand



Regarding hydraulics, the following must be ascertained :
e Whether or not it is a “torrential” stream.
e Whether or not all or part of the section flows with F = 0.55

2. Calculate the characteristics of the main flow, or the most likely maximum value of ¢,
which can be estimated through equation (7) for F=1.0. If this calculation yields too high a
value, (greater than 30 cm/sec), calculate for a lesser value, F=0.8 for example, or use the
maximum value of 30 cm/sec, uncommon in natural channels.

. Determine the critical depth for the calculated value of ¢.

. Calculate the maximum and minimum values of the depth, as 1.4Yc and 0.7Yc.

. Calculate the maximum and minimum values of velocity, as ¢/0.7Yc and q/1.4Yc.

AN L b W

. In case that the calculation of flow confinement dikes is required, a dike height in excess of
1.4Yc must be employed. If the design of structures that will have to withstand maximum

flow velocity, use g/0.7Yc as the value.

Although these calculations might seem arbitrary, it should be taken into account that no
uniform flow model, be it gradually varied or non permanent, can accurately calculate the
hydraulics of a channel for near critical flows. In these cases the model assumes that the
conditions are identical to critical flow, which can induce mistakes in the determination of
parameters for the design of flood prevention hydraulic structures. The suggested method will
always provide results that are more consistent with the actual flow conditions and lead to
more conservative determinations of design parameters.

Another very important condition in natural channel design for this Froude number range is
the critical revision of hydrological conditions, since floods with high recurrence intervals are
usually accompanied by mud flows where the total volume of the hydrographs may be double
or triple the volume of water, examples in the following sections are demonstrative of this
fundamental characteristic of the calculation required for these types of practical situations.

5 CONCLUSIONS

Through theoretical analysis and practical examples, the influence of river regime, (expressed
by the magnitude of the Froude number), over the hydraulic behavior of rivers, has been
explained. A theory of near-critical flow has been presented, which permits to calculate the
characteristic parameters for this type of flows. This also gives clues about the substantial
differences that exist between the sub critical regimes of low land rivers and the near critical
regimes of piedmont torrential streams.

Based on simple uniform flow concepts, the author has also obtained an equation which
shows the variation of hydraulic regime in an alluvial channel as the flow discharge increases.
The base of this equation is the Manning equation, written in terms of the Froude number; this
derivation proves theoretically some of the previous observations made by the author, based
on the study of data on river discharge measurements in hydrometric stations in Colombia :

1. The value of the Froude number of the flow indicates the level of energy it has. Relative
specific energy is a function of the Froude number of the flow.

2. The Froude number in a channel must rise monotonically with the flow per width unit in
uniform flow conditions.

3. The variation of the Froude number in a given reach of an alluvial channel is very small
in comparison with the discharge variation.



The dynamics of torrential floods in medium and high slope piedmont streams, (So > 0.001),
is the dynamics of near critical flows, with Froude numbers between 0.6 y 1.5. Higher Froude
numbers apparently do not occur in nature, while the erroneous selection of lower numbers in
this type of rivers, may result in errors in the estimation of the effective width of the main
flow. In near critical flow the unstable nature of critical flows applies, with a strong
oscillation in the surface, that generates effective depths greater than those that can be
calculated for sub critical flow, as well as radically higher velocities.
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Table 5. Flow characteristics of the prismatic sections
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