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time demand [11], while the portable devices

used for this purpose are not of sufficient

accuracy. Furthermore, in the various methods

used for chemical analysis of water, the

detection of nitrates is affected by the presence

of other ions, especially Cl- [12]. Physics-based

models for the analysis of groundwater contam-

ination problems have developed significantly

in recent years. However, these models require

extensive data that are often not available. In

many applications, there is a need to develop

surrogate, easy to use models that can rapidly

analyze groundwater contamination, without the

limitations of more complex models. The scope

of this study is to describe a model for the easy

estimation of nitrate groundwater contamination

based on easily measurable and cost effective

input parameters.

Artificial neural networks are data driven models

that treat the system being studied as a ‘black

box’ [13]. ANNs have the ability to correlate

variables whose relationship is not known or is

very complex [14], [15], without the use of 

physical data, such as porosity or hydraulic

conductivity [16].
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An artificial neural network (ANN) model is proposed for the determination of groundwater nitrate  contamination,

based on an approach of easily measurable and cost-effective water quality parameters (pH, electrical conduc-

tivity, HCO3
-, Cl-, Ca2+, Mg2+, Na+, K+, SO4

2-). The data used, derived from the chemical analyses of groundwater

samples, from wells located in the Kopaidian Plain, Greece. The results of the model described in this article

indicate that ANNs could be used as an alternative method for the estimation of groundwater contamination

problems.

The rapid increase in population, as well as

industrialization and intensification of agricul-

tural activities, have led to significant quanti-

tative and qualitative degradation of

groundwater resources worldwide [1]. The

situation is expected to be burdened by climate

change, which will cause changes in rainfall

patterns and an increase in average surface

temperature, especially in drought-prone 

areas [2]. Surface and groundwater contami-

nation due to the presence of nitrates (NO3
-) 

is considered as one of the most common

environmental problems [3], [4]. The major

anthropogenic source of nitrogen in the

environment is the application of nitrogen

fertilizer [5]. Other anthropogenic sources

include industrial wastes, deforestation

(leading to conversion to agricultural land)

domestic wastewater and septic tanks [6].

According to Greek and EU legislation, nitrate

concentration shall not exceed 50 mg /l for

nitrates (NO3
-), or 11 mg /l for nitrate-nitrogen

(NO3
-N) [7]. On a global scale, concentrations

of nitrate in groundwater exceed the limits that

have been set, and it is estimated that in the

last three decades nitrate pollution has

increased by 36%. In the eastern

Mediterranean and Africa, the situation is even

more worrying, as nitrate levels seem to have

more than doubled [6].

Nitrate ions have a toxic effect with proven

effects on human health and have been statisti-

cally associated with various forms of cancer
[8], [9], [10]. In addition, increased indices of

thyroid diseases have been recorded in areas

with high nitrate levels in water supplies [5]. In

order to protect public health, sustainable

management of groundwater resources is

required. However, techniques for detecting

and measuring nitrate concentrations in water

can be characterized by high cost and high

ANNs have widely found applications in

hydrology and have been successfully used in

groundwater quality modeling [16],[17]. Several

studies have presented ANNs for the estimation

of the water level by using water budget

variables as input parameters [15], [18], [19], [20], [21].

Regarding nitrate contamination, ANN models

using water quality parameters or/and water

budget variables as input parameters, have

been proposed [22], [23], [24]. Comprehensive

reviews over the applications of ANNs in

hydrology can be found in [17], [25] and [26].

An ANN consists of a number of fully connected

processors called neurons, which accept,

analyze, and exchange information over a

network of weighted connections [26]. The feed-

forward neural network was the first type of

ANN, where information moves in a forward

direction. The information is processed at

different layers, divided in three categories:

input, output and hidden layers. Each input xi

presented in a neuron, is weighted by a

synaptic weight wi and the results are summed.

The sum is introduced in an activation function;

in the case it exceeds a certain threshold value,.

The basic function of an ANN is the training

process, which is performed by a learning rule

that modifies the weights of the connections in

order to minimize the difference between the

calculated output of the network and the

desired output (real value) [25]. The efficiency of

the model is evaluated by its generalization

ability, i.e. its ability to give the correct output

even for examples not included in the training

set. More information regarding ANNs and their

operation is presented by [16] and [27].

In this study, a feed-forward neural network

consisting of three layers was developed, using

MATLAB R2010 software. A Levenberg-

Marquardt regularization algorithm was

“It is estimated 

that in the last 

three decades

nitrate pollution 

has increased 

by 36%”
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employed for the training procedure. The ANN’s

architecture was determined through a trial and

error procedure, based on the correlation coeffi-

cient (R) between the real data and the

simulated values by the model. The best archi-

tecture came out to be that of one hidden layer

with 10 nodes, a sigmoid function in the first

layer and a linear in the output layer as

activation functions. Of the available data, 60%

was used in the training process, 20% in the

testing process and the remaining 20% was

used for the evaluation of the model’s

performance (generalization ability).

For the analysis of the results, four error

indicators were calculated: the Root Mean

Square Error RMSE), the Mean Absolute Error

(MAE), the bias (mean error) and the Nash-

Sutcliffe Model Efficiency (NSME).

The data used for the ANN’s training and

validation, were derived from a set of 263

measurements of typical water quality param-

eters, obtained from sampling in the Kopaidian

Plain. The area has been designated as a

vulnerable zone with respect to nitrogen

pollution from agricultural runoff, according to

the requirements of the European Union

Directive 91/676/EEC [28], due to the intensive

agricultural, livestock and industrial activities that

take place in it. The input parameters to the

model were pH, electrical conductivity, bicar-

bonate (HCO3
-) and Cl-, Ca2+, Mg2+, Na+, K+,

SO4
2-.

Table 1 presents the maximum, minimum and

the mean value of the NO3
- concentrations and

of all the parameters used as inputs to the

model.

The simulation results are presented in Figure 1.

The Pearson coefficient (R index) is shown on

top of each chart, respectively, for the training

data in the top left part of the figure, for the

validation set in the top right, for the testing data

set in the bottom left and for the full data set in

the bottom right. In the plot, the simulated

values (output – vertical axis) are plotted against

the observed values (target – horizontal axis),

and their best-fit equation, which describes the

solid line in the graph, is shown on the vertical

axis title. As shown in the charts of Figure 1 the

ANN has delivered very good results.

A high correlation is observed, between the

simulated and actual values, for every data set,

with a correlation index for the full data set of

0.96545. In the test set, R is equal to 0.95909

and in the validation set, R= 0.93057.

Considering that these data have not been used

                       NO3
-             pH              COND            Ca2+              Mg2               Na+               K+                 HCO3

-           Cl-                SO4
2 -

                        (mg/l)                                                     (mg/l)          (mg/l)          (mg/l)          (mg/l)         (mg/l)          (mg/l)         (mg/l)

Min              5                6.4           234             2.4             4.4             2.3             0.4             49              5.3            10

Max             167            9.1           2750           236            121.1         303.5         13              585            560.2        148.9

Mean          27.31        7.66         791.03        66.66        38.40         36.62         1.94          324.10      58.01        38.04

Table 1: Maximum, minimum and mean values of the input and output parameters used in the model

Figure 1. Model’s results - R coefficient

Index                                             All                                 Test                           Validation

RMSE (mg/l)                             7.75                              10.94                               9.14

MAE (mg/l)                               5.70                               8.07                                6.90

Bias (mg/l)                               -0.65                             -0.77                              -3.07

NSE                                          0.9878                          0.9193                           0.9969

St. Deviation                           29.70                             38.90                              23.64

Figure 2. Observed versus simulated values

Table 3. Calculated statistical indicators
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in the training process, R values signify a very

good generalization ability of the model.

In Figure 2, the simulated values by the model,

together with the real data are presented, along

with the threshold value of 50 mg/l for nitrate

concentration. As already expected from the R

value, Figure 2 confirms that the simulated

values are very close to their observed counter-

parts.

The calculated indicators for an additional evalu-

ation of the model’s performance are shown in

Table 3.

For the full data set, the NSE is equal to 0.9878,

for the test set, NSEtest= 0.9193 and for the

validation set, NSEvald=0.9969. As shown by the

indicators, the model has produced remarkably

satisfactory results. NSE values in the range

(0.75 < NSE < 1), indicate very good

performance of the model being assessed [29].

Therefore, taking into account the NSE index,

the simulation can be characterized successful.

Moreover, according to [30], RMSE and MAE

values less than half of the standard deviation of

the observed data are considered low. In

addition, the small difference between RMSE

and MAE (7.754874 mg/l - 5.702638 mg/l)

indicates the absence of extreme errors. Lastly,

it is worth pointing out that according to the Bias

index, the model tends to underestimate the

observed values but not by much. The calcu-

lated indices suggest that the model is highly

accurate.

Conclusions

In hydrological applications, there is a need to

develop simple models that can capture the

main relationships between parameters without

the need to develop complex physics-based

models that are difficult to solve. ANNs have the

essential advantage that they can track the

hidden relationship between variables – without

the need to assume linearity- and so, available

data that are not usually used in conventional

techniques can be exploited. The results of the

study described in this article demonstrate that

ANNs are a potentially powerful modelling

method, more economical and less time

consuming. n
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