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ABSTRACT  

 

Dam-break flow has been an important problem in the study of shallow flow. In dam-

break flow problem, water behind a gate is released by the instantaneous removal of the gate. 

In this study, instead of the commonly used dam-break flow with infinite extent, a more 

practical finite extent dam is used as a means to investigate the inertia- and viscous-flow 

regimes. Inviscid fluid is considered in the study of inertia-flow regime. In investigating 

viscous-flow regime, Newtonian and non-Newtonian fluids which represent the more 

common and simple viscous fluids, are considered. Theoretical studies of both inertia- and 

viscous-flow regimes are carried out and similarity solutions describing the regimes are 

derived. Theoretical findings are verified with two numerical models; a depth-averaged model 

(in the case of inviscid fluid only) and MPS (Moving Particle Semi-Implicit) Model. 
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1. INTRODUCTION 

 

Dam-break flow has been intensively studied, analytically and experimentally, in the 

hydraulic engineering as a means to simulate actual dam-break failure and its effect such as 

surging waves and debris flow. The study of dam-break flow is also being used as a means to 

evaluate rheological properties. For example, Hosoda (1998) treated the slump flow test of 

fresh concrete as a problem similar to the phenomenon of dam-break flow of finite extent in 

his study of rheological properties of fresh concrete. Similarly, Shao and Lo (2003) also used 

the finite extent dam-break flow in the numerical simulations of some viscous fluids. 

The existence of inertia- and viscous-flow regimes is clarified by Huppert (1982) in 

his study of viscous fluid flow over a horizontal channel. In this study, instead of the 

commonly used dam-break flow of infinite extent, a more practical finite-extent dam is used a 

means to investigate the inertia- and viscous-flow regimes.  

This study is divided into 2 parts: the first part deals with the verification of inertia-

flow regime by examining flow of inviscid fluid, while the second part investigates the 

viscous-flow regimes by using Newtonian and non-Newtonian fluids. In both parts, the 

propagation of wave front and the variation of depth at the origin are used as parameters to 

describe the flow characteristics. 

 

 

2. INERTIA-FLOW REGIME 

 

  The flow from a sudden release of mass of inviscid fluid in a dam can be adequately 

described by the one-dimensional depth-averaged continuity and momentum equations: 
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The parameters are described schematically in Figure 1 with h  as depth of flow, V as flow 

velocity and g  as the gravitational acceleration. The dam is located at oLx =
 
with 0=x  

being the upstream boundary of the reservoir. The initial depth of the dam is set as oh . At 

the upstream boundary, 0== hVq  or equivalently, 0=V . 

 

V

 
 

Figure 1. Dam-break flow of finite extent. 

 

2.1 Depth near the origin of dam-break flow of finite extent 

 

h  and V  are assumed to be expressible as a power series in x  near 0=x .  
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where ( )thm  = time varying depth at 0=x , ( )ta i  and ( )tbi  are functions of t  to be 

determined and other parameters are defined as in Figure 1. Substituting Eq. 3 and Eq. 4 into 

Eq. 1 and grouping terms of the same order in x  yields, 
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where n = 1, 2 and 3 for 1
st
, 2

nd
, and 3

rd
 order respectively. Since V  is expanded up to the 

order of 4 in the Taylor’s series, the term ( ) 1 1 ++ nmbhn  is neglected in the case of 4
th

 order. 

Similarly substituting Eq. 3 and Eq. 4 into Eq. 2 results in: 
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From Eq. 7, 01 =a  and therefore from Eq. 6, with 1=n , 02 =b . Consequently, from Eq. 9 

and Eq. 6 with 3=n , 03 =a  and
 

04 =b . By defining dimensionless variables, 

oo hghtt =' , omm hhh =′ , ohaa 22 =′ , ohaa 44 =′ , we obtain the dimensionless equations 

as follows:   

 

Continuity equation: 
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Power-law solutions of the form:   ˆ,ˆ,ˆ,ˆ,ˆ
3142

edcba

m tEbtDbtCatBatAh ′=′=′=′′=′′=′ are 

found where, 3 ,2 ,1 −=+−=−= eabd  and 4−=+ ca  leading to: 
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From Eq. 16, the following equation for a  can be derived: 

 

( )( )( ) 031210231 2 =++++ aaaaa          (17) 

 

with solutions 1−=a , 32−=a , ( ) 1066 ±−=a  and 0≠a . Therefore, the possible 

temporal variation of the depth at the origin mh  can be expressed as follows: 
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In the case of 32−=a or ( ) 1066 ±−=a , the positive value of B̂  implies a concave 

free-surface profile near the origin, which is unlikely to occur in the instantaneous release of 

fluid volume from the dam. For 0ˆˆ  ,1 ==−= CBa  and the profile near the origin 

( ) ohtAtxh 1ˆ, −′=  implies a horizontal free-surface near the origin. Therefore 1−=a  is 

chosen as the appropriate solution. This power-law solution is only valid for oo cLt > as the 

depth at the origin begins to decrease immediately after oo cLt = where oc is the celerity of 

the flow.
   

 

2.2 Wave front position of dam-break flow of finite extent 
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Figure 2. Characteristic lines of dam-break flow of finite extent 

 

By solving the governing depth-averaged equation of motion using the method of 

characteristics (MOC), the analytical solution for temporal variation of the wave front, L  

due to the release of fluid behind an infinite-extent dam can be obtained,
 
(Jain, 2001) and the 

solution is given by  

 

tLtghLL oo ∝→+= 2              (21)   

 

In the case of finite-extent dam-break flow, the position of the first negative wave reflected by 

the upstream wall (represented by dotted line in Figure 2) can be determined by solving for 

position at point B, bx
 
in Figure 2 using characteristic lines, (Hogg, 2006).  
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Comparing Eq. 21 and Eq. 22 reveals that the negative wave reflected by the upstream wall 



always trails behind the front propagation wave, and therefore will not affect the flow in the 

region between the wave front and the disturbance. Therefore Eq. 21 is valid for dam-break 

flow of finite extent as well.  

 

3. VISCOUS-FLOW REGIME 

 

3.1 Theoretical Analysis 

 

The momentum equations for viscous fluid can be written as in Eq. 23. 
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In the x  direction, for 2-dimensional case, Eq. 23 can be written as follows: 
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By assuming that the flow is slow, the inertia term on the left hand side of Eq. 24 can be 

neglected compared to the pressure and stress term. Therefore, in the case of horizontal flow 

where 0=xg , we could equate the pressure term and stress term. By assuming static 

pressure distribution, shear stress yxτ  over the depth of flow, h  can be written as follows: 
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Power-Law model is used to define the shear stress- rate of strain relations for general viscous 

fluid here, and is written in its general form as in Eq. 26 with =K viscosity coefficient and 

=n flow index. For Newtonian fluid, 1=n , while for non-Newtonian fluid; 10 << n in the 

case of shear-thinning fluid and 1>n in the case of shear-thickening fluid. 
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By substituting Eq. 26 into Eq. 25, velocity distribution can be derived as follows: 
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Therefore, the depth-averaged velocity in x  direction, U can be derived as well.  
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This velocity distribution also agrees with the velocity distribution of viscous fluid flowing 

down an inclined plane by Ng and Mei (Ng and Mei, 1994). By using Eq. 25 and Eq. 28, an 

expression describing the relation between bottom shear stress, bτ  and depth-averaged 

velocity, U can be derived as follows: 
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The relation in Eq. 29 also agrees with the derivation made by Ng and Mei (Ng and Mei, 

1994) for viscous flow down an inclined plane. The velocity distribution and bottom shear 

stress derived in Eq. 27 and Eq. 29 satisfy zero velocity at bottom boundary and vanishing 

shear stress at free surface. Therefore, for general viscous fluid, the depth-averaged equation 

of motion of can be written as follows: 
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Similarity functions ( )ξp  and ( )ξq  are introduced for the depth and velocity of flow as 

follows: 

( ) ( )ξpthh m=                               (32)  

( ) ( )ξptVV m=                               (33) 
          

( )tL

x
=ξ                                   (34) 

  

( )tL  is the wave front position measured from the origin as shown in Figure 1. The boundary 

conditions for the similarity functions of ( )ξp  and ( )ξq  are: 

 

( ) ( ) ( ) 00  ,01  ,10 === qpp                       (35) 

 

By assuming similarity solutions exist for mh , mV  and mL : 
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where oh is the characteristic depth and oL is the characteristic length. The dimensionless 

form for time t′  is introduced as follows: 
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By utilizing Eq. 36, the expression of depth and velocity of flow in similarity solutions form 

are substituted into the governing equation in Eq. 23 and Eq. 24. Therefore, the governing 

equations can be written in dimensionless form of time, t′ as follows: 
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Momentum Equation: 
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By equating the power of t′  in the continuity equation in Eq. 38, the following relations of 

coefficients is obtained: 
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For constant volume of flow 
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It is assumed that in the case of viscous-flow regime, the flow is governed by the dynamic 

equilibrium of pressure and viscosity. Therefore, by equating the power of t′ between 

pressure and viscous terms in Eq. 39, we can write the following relations between the 

coefficients, 
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By solving Eq. 40, Eq. 41 and Eq. 42; 
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Thus, the temporal variation of the depth at the origin, mh  and wave front propagation, 

L can be written as follow: 
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4. NUMERICAL SIMULATION AND RESULTS 

  

4.1 Numerical Simulation Models 

 

Two models are used to verify the analytical results: a depth-averaged model with 

Harten (1983)’s TVD (Total Variation Diminishing) scheme and a particle-based model, MPS 

(Moving Particle Semi-Implicit) which is originally used to solve the governing Navier-

Stokes equation of motion (Koshizuka and Oka, 1996). MPS is used as an alternative 

numerical simulation model as setup is fairly easy due to its grid-less nature and its ability to 

handle complicated free surface flow (Gotoh et al., 2005). Although the MPS approach does 

not directly solve the governing depth-averaged equations used in the analytical analysis, the 

solution of Navier-Stokes equation by the MPS model can be approximated by the solution of 

depth-averaged model.  

 

4.2 Results 

 

Simulations of inviscid fluid are carried out with depth-averaged model with Harten’s 

TVD scheme and MPS model, while the simulations of viscous fluid are carried out using 

MPS model only. Simulations conditions are shown in Table 1. During the simulations, wave 

front propagation and temporal variation of depth at the origin are observed. The results for 

the case of inviscid fluid are shown in Figure 3, while for the case of Newtonian and non-

Newtonian fluids (shear thickening and shear thinning), the results of simulation are shown in 

Figure 4, Figure 5 and Figure 6 respectively. 

 

Table 1 Temporal variation of wave front and depth of flow at the origin, and numerical 

simulation conditions. 
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Initial dam size:  
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Newtonian 1 5

1

tL ∝  5
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Kinematic viscosity, ν 

1) ν=0.0005Pa.s 

Non-newtonian 

Shear thickening 2 7
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Consistency, K 

1) K=0.01 Pa.s
2

 

2) K=1.0 Pa.s
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1) K=0.01 Pa.s

1/2 

2) K=1.0 Pa.s
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       Figure. 3 Temporal variation of depth at the origin, mh  and wave front, L  

propagation for inviscid fluid 

 

(a)      (b)  
   

Figure 4. Temporal variation of a) depth at the origin, mh  and b) wave front, L   

for Newtonian fluid. 
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Figure 5. Temporal variation of a) depth at the origin, mh  and b) wave front, L    

for non-Newtonian fluid of shear thickening type. 
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Figure 6. Temporal variation of a) depth at the origin, mh  and b) wave front, L   

for non-Newtonian fluid of shear thinning type. 

 

5. CONCLUSION 

 

Inertia- and viscous-flow regimes are investigated in this study by examining inviscid 

and viscous fluids independently. The temporal variation of the flow depth at the origin, mh  

and wave front, L  propagation are used as parameters to describe the characteristics of the 

regimes. Analytical results for both inertia- and viscous-flow regimes show satisfactory 

agreement with numerical simulation results. It is envisaged that the simple mathematical 

methods used here could be improved for wider applicability. In the sense of engineering 

applications, the findings of characteristics regimes can be used to verify experimental or 

numerical simulation results of simple viscous fluid. 
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