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DRAG FORCE MINIMIZING SHAPE IDENTIFICATION OF BODY LOCATED IN
COMPRESSIBLE FLUID FLOW

K. Nojima' and M. Kawahara®

Abstract: This paper presents a numerical method of shape identification of a body located
in compressible viscous flow. The purpose of this research is to identify the optimal shape
that minimizes the fluid forces subjected to the body. The formulation of the shape
identification is based on the optimal control theory. The finite element method is used for
calculation of fluid flow. In this paper, optimal control is treated as fluid force minimization.
The first thing that should be carried out in the optimal control theory is to define a
performance function which expresses the optimal shape. The performance function must be
minimized satisfying the state equation. In the research, the Lagrange multipliers are
introduced for the constraint conditions. To avoid the break down of calculation caused by
destruction of elements, the finite element mesh is reconstructed in the identification process.
The grid generation scheme based on Delaunay triangulation is applied to the reconstruction
of finite element mesh. In this paper, an optimized shape of the body is obtained by
computation.

Keywords: finite element method, shape identification, optimal control theory
INTRODUCTION

It is well known that the shape of the body in incompressible viscous flow field which has the
minimum drag force is the streamline configuration. These are suggested by only experiments
and the numerical computations are not sufficiently carried out about this problem. The
purpose of this study is to determine an drag minimum shape of the body located in an
compressible viscous flow applying a formulation of the shape identification to a numerical
simulation.

The shape optimization in the incompressible Stokes flow as originated by O. Pironneau
(1973, 1974) and Glowinski(1975). Finite element methods have been successfully used to
solve a shape determination of a body in incompressible flows (He et al , 1997, Okumura and
Kawahara, 2000, Oawa and kawahara, 2003, Mohamadi and Pironneau, 2004, Katamine et al.,
2005, Yagi and Kawahara, 2005, 2007, Nojima and Kawahara, 2006, Azegami and Takechi,
2006).
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In this study, the shape determination problem in a compressible flow is solved in three
dimensional domain by the finite element method and the gradient method. For reduction of
the huge computational time of the three dimensional computation, the parallel computing is
used. The computational domain is decomposed to 512 sub-domains. Three-dimensional
finite element mesh generation system, which is based on Delaunay triangulation method is
also introduced (Bowyer 1981, Nojima 2006) for three-dimensional computation.

SHAPE IDENTIFICATION

Compressible Viscous Flow

Using the indicial notation and the summation convention with repeated indices, the basic
equation of a compressible viscous fluid flow described by the Cartesian coordinate x, can be

expressed by the following compressible Navier-Stokes equations:
U —+ Ajij — (KjiU,i),j =0 in Q, (1)

where Q is the computational domain assuming that the compressible viscous fluid flow
occupies € and A, and K, are Jacobian matrices as follows:

A O
e )
I U’ (2)
d
K;;U; =F7], 3)
P P pu; 0
Uy my UjpUy + 01;p 1 Tij
U= pus | = [maf , F? = |u;puz + 52]]) , Fj = ﬁ Toj s
pus ms u;jpus + 3, T3; 4
pe pe uj(pe +p) UiTij = 4 “)

where p is the density; u,, the velocity; e, the total energy density; p, the pressure; g Iz the
heat flux; and T, the viscous stress tensor. The Kronecker delta function is denoted by 51.] ,
where
5y—q L=
0 (i #J) (5)
The superposed dot denotes the partial derivative with respect to time ¢#. The subscripted
comma denotes partial differentiation. The total energy density e is expressed as follows:

o U; Uy
e=c¢-+ 5 (6)

which is the sum of the internal energy density & and the kinetic energy density. Since an
ideal gas is assumed, the state equation becomes
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p=(y—1)pe, (7)
where y is the ratio of specific heat. The following relationships are introduced:

7y =plu,, +u; )+ w0, (8)
2

A=-=u, 9
- )

e=c0, (10)
TH

95 =""p %0 (11)

¢, =[r(r-DM:]", (12)

where c, is the specific heat at constant volume; s, the viscosity coefficient; Pr, the Prandtl
number; M_, the free-stream Mach number; and Re, the Reynolds number. The Sutherland’s
viscosity is described as follows:
s 8 +C
=07 —=— 13
H=" 6 6+C (13)
C =110, (14)

where 6 is the temperature, and 6,[K] is the temperature scale. The Jacobian matrices A

and K, are expressed as follows:

0 5; 5; 5; 0
%(%17}/112 — UjUy (5]‘111/1 — 5j1’7U1 + Uj 5j2u1 - 63'17}/U2 (5j3u1 - 5j1:yU3 6j17)/
Aj e %(2‘2’7’(},2 — UjUg (Sj17.L2 — 5j27u1 6j2u2 — 5]'2’7’[1,2 + U 5j3u2 — 5]'2’7%3 (Sjg’j/ 5
$0;37u? — ujug dj1uz — 037Uy djousz — 537U dj3uz — dj37yus + u; 0537
(’7U2 — ’)/6)’[1,] 6]15 — ’7UjU1 (22&: — ’S/UjIU/Q (5135 — ’7’le’UJ3 'Vu]
(15)
where
U; Uy
_ 2 _ _ Wy lly
Yy=v—-1 v =uwu,, E=ne—T—45— (16)
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The typical optimization problem is shown in Fig. 1 Computational domain., where a solid
body with boundary I', is placed in an external flow. The initial condition is expressed as

U= IAJ'(xZ-,O), in €, (18)

where the superscripted ~ denotes a constant value. The boundary conditions for I', and I,

are defined as follows:

(ug, 725, qn) = (0,0,0) on I'g; x 1,
(us, 134, qn) = (0,0,0) on I'gy x I, 19
(Pos T4, Gn) = (Do, 0,0) on I'g x 1,

(ui; ¢a) = (0,0) on T'g x 1,

where I is the total time interval, and p, is the static pressure. In this study, the boundary

condition for inflow is defined by the Riemann invariant and the isentropic change. The
boundary condition for I', is expressed as follows:

Uy = Uy, on I't x1I,
2c
Ry = u, — ) on FIXI,
v—1

1 20
02:7(7—1)(6—5%'%), on I't x1I, (20)

S =lIn(pp™), on I't x1,

where u,, u,, ¢, R ,and S are the normal velocity, tangent velocity, sound speed, Riemann
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invariant, and entropy, respectively.

Fig. 1 Computational domain.

Performance Function

A fluid force reduction problem is formulated and solved, where the fluid force acting on the
surface of a body is used in the performance function. Geometric coordinates of the surface of
the body are selected such that they minimize the performance function J, which is defined
by the square sum of the fluid forces as follows:

1 B _
T=5 /I(Fi — F)Qi;(Fy — Fj)dt, (21)
/FB (22)
ti = (Tij — poijIny, =

where ¢, is the traction acting on the body; F;, the fluid force; F,, the target fluid force,

which is normally zero; 0, the weighting constant; and 7, the duration for which optimum

computation is carried out. The extended performance function J* can be obtained as
follows:

1 _ —
7 =5 [(Fi= F)Qu(F - R
I
+ /I /Q AT (U + AU, — (K;;U ) }d9t, 24)
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where
e
T
A= |n 25)
73
| €

Here, &, 1., and £ are the Lagrange multipliers, and they are also known as adjoint variables.

Adjoint Equations

The solution of the optimal control problem under the constraint conditions of the basic

equation (1) is used to determine the stationary condition of J* instead of that of J with
respect to the surface coordinates. The necessary condition required to satisfy the optimal
condition can be derived from the first variation of J* as follows:

5J°=0. (26)

The first variation of J* yields the following result:
5 = / U -{—A - (A;A), + A, ;A — (RLA,), + KL A, — K2
I

Ji,gt ot Ji.J

Q
+//55pdrdt+// ﬁ15m1dfdt+// f30madldt
1J1 IJTs1 IJTg1
I1JIg, IJTgs IJTo+I'p
+// f5(pe)dfdt+// ¢ 0gqn;dl'dt
IJTg1+Ts2+T0 I1Jrg
—// nléTl]n]dth—// UzéTQjﬂdedt—// ngéngndedt
IJTy IJTs1 IJTgo
—// {5an]df‘dt—// QUZ(ST”TLJdth
I1JT; IJTy

[ [ o= B - Ryasstra
1Jrg

A

+/A(.737;,tf) ~6U (w4, t5)TdQ2 = 0,
Q

(27)
where
0 L0590 — ujuy 185070 — ujuy $0syu? —ujus (YU —ve)u;
(Sj (5]'111/1 — 6j17U1 + Uy (Sjlil/g - (5]‘2’7/11,1 (5]‘1U3 - 6]'37)/1//1 (Sjlé - '71Lju1
A= |§; djot1 — Gj17Us 0oty — Ojo7yUs + uj 0oz — j37Yus 008 — Jujus |
dj3 Ojzur — 0j17us Ojsuz — 0joYus  Ojsuz — Oj3Yus +u; 0538 — Jujus
0 0517 0j27Y 9j37 Yu; (28)
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2 _ W2 _ W2 _ W2 _ 2
K121_K131_K212_K232_K313_K323_

(33)
&= {—wu; + %unk%)m + (Yugur — ve)u;Cin,
— i +mia) + XN e kij + M(%(,j + %C, )+ PR p k%}
M = {§0i; + (urdij — Yuilig)m. + niu; + (8655 — Jusuy)CIn;
+ g+ n5a) + A krdij + N(%C,j + %C, ) + A Ckéw} ps
¢ = (¥6imi + vCuy)n;. (34)

By setting each term to zero so as to satisfy the optimal condition, the adjoint equations,
boundary conditions, and terminal conditions for adjoint variables can be derived as follows:

—A— (AjA);+ A A — (KGA), + K A — K2 A, =0, in Qx1,

Ji,J Ji,J
(35)
(7:,¢) = (0,0) on IxI,

(€,7;,¢) = (0,0,0), on I'oxI,
(&,11,m2,73,¢) = (0,0,0,0,0), on Iy, x1I,
(&,11,12,m3,¢) = (0,0,0,0,0), on T, xI,

(M6, Ca) = (—=(F; — F)Qi5,0), on I'g xI, (36)
A(z;,tr) =0, in Q,

where ¢, is the flux of £ ; along the normal direction n,. The following relationship is used

for deriving the variation of J* with respect to Ox; :
dm; = 6(pu;) = uiép + pdu; = uiép + pu;01;. (37)

The gradient of J* with respect to the surface coordinates is obtained by solving the
compressible Navier-Stokes equations and adjoint equations, and it is expressed as follows:

grad( ) {pféw + (pe + P)C% + /J(??m + nj, Z) + A" Tk kélj}ul 1. (38)

Minimization Method

In this study, a weighted gradient method is used for the minimization algorithm. The
modified performance function K can be expressed as follows:
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K=J —% L L (0 —xWO (= xydTde+a™{ Y AN () - A 4 (39)
B e=1
O _mqr®
w,"=wve,, (40)

where [ represents the iteration cycle, and W represents the weighting constant, which is
updated during iteration. The third term represents a constant volume condition and a®
represents the Lagrange multiplier. Under the stationary condition 6K =0, we obtain the
following equation:

a m
D ,.0+1) _ g7 (D) ,.(D) * (+1)
W,ox; 7 =W, "x;"+G, +a E A7 (x). (41)
i e=l

)

The surface coordinates x are updated using to equation (41).

NUMERICAL EXAMPLE and CONCLUSION

The 3D shape determination problem is solved. The shape of the body is modified to an
appropriate shape in order to minimize the fluid force F;. The pre-assigned fluid force F, in
equation (24) is set to zero. To minimize the drag force, Q,,, 0,,, and Q;; are set to 1.0, 0.0,
and 0.0 , respectively. The value of the parameters are ® =1.0, Ar=0.005, ¢=1.0,
W =0.001, and E =10"°. The finite element mesh, shown in Fig. 2, consists of 1,56,937
nodes and 9,088,753 linear elements. Parallel computing based on the domain decomposition
method is applied to the computation. The computational domain divided into 512 sub-

domains. HA8000 cluster system, which is developed at the University of Tokyo, is used to
solve the 3D shape determination problem.

Fig. 2 Finite element mesh of a car.
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Fig. 3 Pressure distribution at front-nose.
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