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Even though formal optimization techniques have been applied to several types of problems in the water
industry, the vast majority of examples from the literature is based on (meta)heuristics, and in particular
those inspired on nature. Their application has been shown quite successful and has allowed significant
boosts in performance while reducing costs. This article provides an overview of nature-inspired opti-
mization techniques, and briefly discusses a number of case studies in which they have been applied.

Nature-based optimization techniques
and their application in the water industry

By Peter van Thienen, Edward Keedwell, Raziyeh Farmani and Ina Vertommen

There is already a long history of numerical optimization in
the water industry1. Many advances have been made regarding
the solution methods from linear and non-linear programming2

to nature-based optimization techniques, like genetic algorithms,
simulated annealing, particle swarm 3, ant colony and many
others. Besides the optimization methods, the design problems
have evolved from single to multiobjective, and from determi-
nistic to stochastic 2 and robust approaches. For a thorough
overview of the optimal design of water distribution networks
and the applied evolutionary algorithms and metaheuristics,
the reader is referred to 4, 5. The application of the methods
has been shown quite successful and has allowed significant
boosts in performance of many aspects of systems while redu-
cing costs. In this article, we present an overview of nature-
inspired optimization techniques, and briefly discuss a number
of case studies where they have been applied.

Nature-inspired optimization techniques
Nature-based or nature-inspired optimization techniques have
been in existence since the work of Rechenberg and Schwefel

in the early 60s on evolutionary strategies6. Since then, thousands
of approaches have been developed based on a wide variety
of natural systems. A complete taxonomy of these approaches
would be much too large for this article, but generally speaking
these methods fall into the following categories:

• Evolutionary based approaches: 4 where the underlying
iterative process includes perturbation by crossover and/or
random mutation and variously selection and replacement
of individuals. Methods here include evolutionary strategies,
genetic algorithms, multi and many objective evolutionary
algorithms, genetic programming and differential evolution.

• Swarm intelligence based approaches:3 where the underlying
iterative process is based on the movement and interaction
of individual agents working as part of a collective (e.g. a
herd, a flock or a swarm). Methods here include particle
swarm optimization, ant colony optimization, artificial bee
colony and many other approaches based on a diverse
array of organisms including fireflies, wolves, herons, fish
schools and whales.
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• Other approaches: 7 other sets of metaheuristic optimi-
zation methods exist that are perhaps more distantly
related to their natural inspiration but are nonetheless
nature-inspired. Methods such as simulated annealing
(inspired by the cooling of metal), chemical reaction opti-
mization and gravity search are examples of these.
Other methods that have a related mode of operation but
are not naturally inspired in the conventional sense include
methods such as tabu search and many variants of local
search.

Although each of the above approaches is inspired by a different
natural system, it is an open question as to whether they all
represent distinctly separate methods in the exploration of the
search space. However, each method has to balance the trade-
off between exploration and exploitation of the space of possible
solutions, which for most problems in the water industry is
very large indeed. Methods that solely exploit (e.g. hillclimbing)
will find mediocre solutions quickly, whereas those that solely
explore (e.g. random search) will eventually find good solutions,
but over huge timescales. Nature-inspired algorithms typically
embed exploration through the use of a random or probabilistic
operation (e.g. mutation in evolutionary algorithms, probabilistic
path selection in ant colony optimization) and exploitation by
conferring some preference on solutions that perform well at
the optimization task. A further feature that characterizes these
nature-inspired methods is that they are general-purpose
optimization algorithms that can be applied to many different
problems. For most algorithms application to new problems
requires the specification of three elements:

• Representation/encoding: this is the mapping between the
features of the problem being solved and the numeric
decision variables that will be optimized by the algorithm.
Although some representations will be straightforward,
there are often choices to be made that will determine the
efficacy of the search.

• Fitness or objective function(s): provides an assessment
of solution quality in terms of one or more objectives of the
problem being solved. Objectives in water industry network
problems usually include calculations of CAPEX, OPEX,
hydraulic constraints such as pressures, velocities and tank
penalties, the coverage or detection likelihood for sensor
networks, etc.

• Parameter settings: most algorithms have parameter settings
that can affect the efficacy of the algorithm and can vary
on different problems. Common parameter settings include
population sizes, number of iterations, perturbation operator
selections and application rates (evolutionary approaches)
and various momentum, velocity and pheromone evaporation
terms (swarm intelligence). These are usually set by rule
of thumb or through prior experimentation, although adaptive
methods that set these parameters automatically through

 the search are becoming increasingly popular.

The choice of algorithm is often dictated by the number and
complexity of the decision variables and constraints, the
computational complexity of the objective function and the
number of objectives to be optimized. Often the computational
complexity can be the largest factor and if the problem is
particularly time consuming to solve, on the optimization run
may require access to high performance or cloud computing
resources, although many problems can be optimized with
modern desktop equipment.

Nature-inspired optimization algorithms are among the
best-known approaches for discovering good solutions to highly
complex large-scale problems in reasonable time and have the
potential to transform the design and operation of the complex
assets and systems that characterize the water industry. This
is particularly the case when these methods are combined with
other popular AI methods such as machine learning, where the
predictive power of these methods can be coupled with opti-
mization to yield asset and operations upgrade programmes
designed for future system demands. AI is revolutionizing many
sectors and as such, it offers great potential for the water
industry as well.

Applications in the drinking water industry
A wide range of problems exists in the water industry for which
nature-based optimization algorithms can provide valuable solu-
tions. We give a generic overview here and discuss a number
of case studies for different fields of application and/or geogra-
phies in the following paragraphs. For water resource management,
areas of application include model calibration, choosing sampling
locations for monitoring, and risk-based water supply portfolio
planning, the optimization of reservoir operation, and regulation
of the abstraction from different sources for scarcity management.
Water pipe networks, both drinking water distribution and waste-
water collection networks have also been subjected to numerical
optimization in numerous cases. Not only their layout and sizing,
but also their subdivision into functional sections and the optimal
placement of different types of sensors, including water quality
sensors for contami-nation detection and pressure sensors for
leak detection have been explored.

Network design with multiple planning horizons
Climate change, population mobility and urban development
in cities necessitates the planning of major distribution network
upgrades and requires a phased approach where changes to
population and demand increase over time. Work in 2007 8

brought together researchers, consultants and city planners
to develop the water distribution system master plan for the
City of Ottawa. This phased expansion reflected expected
population and demand increases over a 25-year planning
horizon, optimized by using an evolutionary algorithm. When
the work was carried out, the population of Ottawa was about
800,000 which has risen to almost one million at the time of
writing, highlighting the extent of the planned urban growth
and underlining the accuracy of the projections which anticipated
1.07 million by 2021. The city’s demand is fed by two water
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purification plants, Britannia and Lemieux, located along the
Ottawa River, with a combined capacity of 640 Millions of
Liters per Day (MLD) and the East and West Urban Communities
are fed by a 1,200 mm transmission feed. A 1,220 mm main
also feeds the west portion of the South Urban Community
and a 762 mm main feeds a small area on the east side of the
river. There are two major storage reservoirs, one located in
the center of the city and the other in the East Urban Community
with storage capacity of 108 ML and 82 ML respectively. There
are also two smaller reservoirs in the West and South with
storage capacity of 34 ML and 18 ML respectively, and additional
elevated storage in the communities.

As with many evolutionary optimization applications, the
majority of the work was involved in the development of repre-
sentation and objective (fitness) function formulations to enable
the evolutionary algorithm to effectively solve the problem.
The representation establishing the link between the algorithm
and problem, provided the options to introduce new infrastruc-
ture and upgrade existing assets. A key element here was the
introduction of single variables that combined logical sets of
infrastructure upgrades. An example of this is in the introduction
of a new tank; this must be accompanied by the pipework nece-
ssary to connect the tank to the network and so was established
as a single ‘decision’ for the algorithm to take. The introduction
of these variables had the dual effect of increasing the engi-
neering feasibility of the developed solutions and reducing the
search space for the evolutionary algorithm. A single objective

Figure 1 | Layout of proposed pipes for rehabilitation in different clusters for solution with no deficiency.

function minimized costs (CAPEX and OPEX) and hydraulic
penalties under demand scenarios in 2011, 2021 and the final
planning horizon in 2031. The single objective function required
a coefficient to balance the cost and individual hydraulic compo-
nents, which allowed the optimization to be tailored towards
end-user requirements, although it would also suit a multi-
objective approach. Extensive optimization runs were conducted,
and a final 2031 solution was developed at an estimated CAD
402M, including CAD 205M for plant expansions, CAD 110M
for new water mains, CAD 45M for pumping stations and CAD
24M and CAD 17M for reservoir expansions and elevated tanks
respectively. However, the optimization was able to show only
CAD 79M was required to satisfy 2011 demands and a further
CAD 152M was required between 2011 and 2021, demonstrating
the benefit of using multiple planning horizons within the project.

Optimum rehabilitation schemes
The water sector is under growing pressure to deliver service
that satisfies customer expectations and regulatory require-
ments. Urbanization and growing water demand are putting
great stress on ageing or inadequate infrastructure in many
countries. This example9 demonstrates how existing scientific
and engineering knowledge benefited from advances in soft
computing analytics to address deficiencies in a water distri-
bution networks. This network is part of a water distribution
network of a city in the UK. The network has grown over years
from a small network to a system that serves 400,000 customers.
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The network has two reservoirs, 5 connections that import
water from adjacent systems, 1,891 nodes and 2,462 pipes.
The pipes have small to moderate diameter sizes with no major
transmission mains due to the way the system evolved in the
past. The existing network is unable to satisfy the recent growth
and projected future demands with adequate pressure. The
problem was set as a multi-objective optimization problem in
order to generate a set of optimum rehabilitation schemes that
trade-off between capital investment and system performance.
A two-stage methodology was proposed. In the first stage,
using network connectivity and topology, the system was
divided into a number of clusters with stronger internal than
external connectivity. In the second stage, three different
problem setting strategies, for optimal rehabilitation, were
considered including: 1 | rehabilitation of pipes within clusters
2 | rehabilitation of feed pipelines, pipes that connect the clus-
ters with deficiency to other clusters or to the sources, and
3 | rehabilitation of pipes within clusters and feed pipelines.

Using an undirected graph algorithm of the Gephi tool 10,
16 clusters with different degrees of pressure deficiency were
identified for this network. The pipes in the clusters that have
no performance issues and do not participate in water transmi-
ssion to other areas of the network will have no contribution
towards reducing deficiency in the system. Therefore, they
were not considered as candidate pipes for rehabilitation of
the system. A total of 248, 149 and 349 pipes were considered
for rehabilitation (as decision variables) for strategies 1, 2, and
3 respectively. The non-dominated sorting genetic algorithm
II (NSGA-II) was used to generate optimum Pareto-front bet-
ween total cost and number of nodes with pressure deficiency
for different strategies.

The generated results (Figure 1) based on strategy 3 do-
minated the results generated by both strategies 1 and 2. The
results of strategy 2 were also compared with those generated
based on considering i) all the pipes as design variables and ii)
a subset of pipes (567 pipes) based on the engineering judgment
(water company). The optimum Pareto front generated by stra-
tegy 3, again dominated the results generated based on these
two problem settings. The optimum solution with no pressure
deficiency generated by strategy 3, has a total cost of GBP
3.05 million. A solution, with total cost of GBP 4.15 million with
195 nodes with pressure deficiency, was generated independently
by the water company by trial and error. A solution, with a
similar number of deficient nodes, on Pareto-front of strategy
3 has a cost of GBP 1.5 million which is 65% cheaper than the
solution generated manually.

Network design and transition optimization
Different challenges arise when applying optimization techniques
to larger real-world networks: the computational effort involved
in applying numerical optimization techniques to such large
networks and being able to translate practical challenges and
constraints to formal problem formulations with clear objectives,
constraints and decision variables. To tackle the first challenge,
one might think of high-performance computing and problem-

specific variators. Regarding the second one, we have learned
that these types of problems are best solved in an iterative
process between researchers and practitioners, wherein each
result is assessed, and the optimization problem is adjusted
accordingly to the gained insights. This approach leads to
results that are a perfect fit for what water utilities are looking
for and has the added bonus of providing them with new insights
into their own water supply systems.

An optimization tool has been applied to the rehabilitation
of real-life networks in the Netherlands. It uses (modified)
genetic algorithms and NSGAII as optimization methods.
Network rehabilitation is approached as a two-phased problem:
(1) the optimal design of the network (so called blueprint or
master plan) and (2) the optimal transition between the currently
existing network and the blueprint, i.e., the rehabilitation timeline.
The design of the network blueprint considers the minimization
of costs (a function of the diameter and length of the new
pipes), constrained by minimum pressure requirements and
commercially available pipe diameters and materials. For the
rehabilitation timeline both hydraulic (improvement of current
pressure deficiencies) and risk based (reduction of pipe failures,
which are a function of pipe diameter, material and age) objec-
tives have been considered, in combination with a practical
aspect regarding the number of construction sites in each
rehabilitation step. A construction site is a cluster of valve
sections where old pipes are replaced by new ones. Water
utilities prefer to concentrate rehabilitation works in a few sites,
instead of working in a very disperse manner.

This approach was applied to the water distribution network
serving the area of Helmond-Mierlo, with 105,000 inhabitants
in the Netherlands11. The network model has about 12,000 pipes.
Adding to that 32 commercially available pipe diameters, it is
clear how large the solution space for this problem is. By star-
ting the optimization problem from the current pipe diameter
values and using problem specific variators in the GA, it was
possible to effectively explore the solution space.

Figure 2 illustrates the obtained results. The costs for
rebuilding entirely the network currently in the ground would
be EUR 41.1M. At the peak demand conditions (maximum
demand in the past 10 years) the 30 m pressure requirement
is not met at several nodes of the network. The costs of the
optimized blueprint are significantly lower, at EUR 26.4M.
At the same time, the hydraulic performance is significantly
improved: the total pressure deficiency in the network (sum
of all pressures below the required 30 m) is reduced by 97%.
Regarding the rehabilitation timeline two Pareto fronts were
obtained: (1) trade-off between maximization of hydraulic
performance and number of construction sites, and (2) trade-
off between the minimization of pipe failures and the number
of construction sites. Figure 2 (b) illustrates one of the iden-
tified solutions.

Network rehabilitation is an opportunity for re-designing,
an often organically grown network. The achieved results prove
that numerical optimization techniques can be used in this
context. Moreover, the achieved amount of savings allows the
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water utility to rehabilitate their networks at a higher rate. Pro-
actively replacing old and fragile pipes with new ones reduces
the risk of pipe failure and thus, water losses due to leakage.

Moreover, having the initial optimization problem defined
and all relevant data organized, it makes it easy to accommodate
different objectives, constraints, and scenarios. In this way, the
optimization problem can be re-run when new information, such
as changes in urban development or water demand, becomes
available, making it a very flexible approach.

Optimal water quality sensor placement
Both societal events and technological advances have pushed
the development of techniques for online water quality monitoring
in drinking water distribution systems since the beginning
of this century. Their purpose is generally to protect customers
from incidental and/or intentional drinking water contamination.
The number of online monitoring sensors that can be placed

in any system is always constrained by budgetary limitations.
Therefore, methods have been developed to determine optimal
sensor placement 12, 13 within a drinking water distribution network.
Optimality is, however, a matter of definitions and requirements.
The objectives that have been presented in the literature can
be classified roughly into three categories14, aimed at obtaining
information, facilitating utility response, and mitigating the
effects of contamination (Table 1).

Of the three classes of sensor placement optimization
objectives, those that are information-oriented are the simplest
to compute12, requiring only a network model (hydraulics and
material transport). The more complex effect-oriented approach
has been implemented in the Threat Ensemble Vulnerability
Assessment and Sensor Placement Optimization Tool (TEVA-
SPOT)13; here we present some results of its application to a
network model of part of the network of Vitens, the largest
water utility in the Netherlands. Many simulations were performed

Table 1 | Rate of increase of potential energy as a function of the lake trophic state with Po = 395,343 W

Objective class

Examples

(Dis)
advantages

Orientation of optimization strategy towards…

Detection likelihood,
time to first detection,
network/customer coverage

Simple, but several
steps from information
to actual customer
protection

Redundant detection,
identifiability of
contamination source

Close to operational
practice

Population affected, ingested
volume, numbers of people
above does threshold

Objective matches final
objective of utility, but the
latter is complex to compute
and the results show a
strong dependence of utility
response (time)

Information Utility response Effect mitigation

Figure 2 | Optimized solution for (A) pipe diameters to minimize costs while guaranteeing adequate network performance given by different colors, and (B)
rehabilitation timeline that maximizes the reduction of pipe failures with a maximum of 10 rehabilitation sites per year (the colors and numbers indicate the
year in which the pipes should be rehabilitated, pipes with the same color are rehabilitated in the same year).

A | Pipe diameters (in mm) B | Rehabilitation timeline (30 years)
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to study the relationship between the assumed and actual res-
ponse times of the utility (after which water consumption is
assumed to cease), on the one hand, and the performance of
the sensor network (reduction in the number of people affected)
on the other. In all cases, the sensor locations were optimized
using a genetic algorithm. Some results are shown in Figure 3.
Two important observations can be made: Sensors are useless
for event detection if the utility’s response time is too long and
Every additional sensor contributes less to the objective than
its predecessors (the law of diminishing returns).

When the water utility elects to consider only practically suitable
locations for sensor placement, this may have a significant effect
on the network’s performance as shown in a different study
presented in Figure 4 which presents a comparison between
the performance of optimizations (again using a genetic algo-
rithm) for different sets of uniformly distributed nodes used as
potential locations (300, and all 2,700, respectively). In some
cases, the network based on the practical set of potential loca-
tions performs better than one based on a larger number of
uniformly distributed nodes. The practical set may include, by
chance, suitable locations that are absent from the uniformly
distributed sets. The best performance is seen when all network
nodes are considered as candidate locations (grey curve in
Figure 4). But the main conclusion must be that even though
optimizing a sensor network configuration based on practically
available locations results in some performance loss compared
to networks in which sensor placement is not restricted, perfor-
ming an optimization is still worthwhile.

Conclusions
Several decades of development of ideas, methods and applica-
tions have resulted in a myriad of cases which demonstrate the
added value of applying numerical optimization techniques to
water industry problems. Nature-based metaheuristic methods
have been and continue to be particularly popular and successful
because of their ability to deal with the scale and complexity
that are typical in this field of application. Nevertheless, the vast

Figure 3 | Performance of optimized water quality sensor networks as a function
of number of sensors (n) and utility response times. Results from14.

Figure 4 | Water quality sensor network performance for ideal and practically
feasible locations. Results from 14.

majority of system design projects in practice continues to rely
on human designs and expert judgment. This is not to say that
the human factor should be taken out of the equation, rather the
opposite: the application of numerical optimization techniques
taking into account the deep domain knowledge of the water
industry’s experts holds the potential for performance increase
and cost reduction (both monetary and in terms of environmental
impact) in all these projects. The primary gains for the industry
from numerical optimization will come from taking the step to
actually more or less universally applying these methods.

Ongoing development in this area is focused on the develop-
ment of new and faster formulations of algorithms, often through
the combination of one or more techniques and in the development
of methods that can take advantage of modern CPU and GPU
(graphical processing unit architectures). Other areas of develop-
ment are learning optimization (hyperheuristic) methods 15 and
multi-method16 search which combine machine learning and opti-
mization components to create methods that can adapt to new
search space domains on the fly. Real-world applications are being
addressed through the development of many-objective 17 and
human-in-the-loop18 algorithms that aim to consider the large
number of objectives that characterize real world problems and
leverage the domain expertise of experienced staff. In this way,
the people that have always been responsible for the design of
systems and their operation continue to be so, but with a new
and very powerful tool in their toolbox.

We are becoming more aware of the uncertainties that exist
in the models and data that we are applying optimization to. In
addition to this we observe that the world is changing at an ever
quicker pace, and progressing climate change can be expected
to have more changes and con-sequences in store for us for the
rest of the century, both in terms of water availability and demand.
Considering these uncertainties in the present state and future
conditions and requirements (discussed in19), it becomes urgent
to start taking these uncertainties into account in the formulation
of our optimization problems. Academic work on robust and resi-
lient optimization has been presented in the past decades2, 20 this
should become the standard in real world applications as well.
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