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ABSTRACT 
 
This paper compares the fifth-order WENO finite volume scheme, the second-order MacCormack 

finite difference scheme, and the second-order MUSCL finite volume scheme for solving one-

dimensional kinematic wave equation. The stability, accuracy, and computational cost of these 

schemes are compared. These numerical schemes are tested against several synthetic flow 

experiments including shock wave, rarefaction wave, wave steepening, and uniform/non-uniform 

rainfall-runoff generated overland flows. The results show that the Godunov-type schemes are more 

accurate and stable than the classical MacCormack scheme. Furthermore, the Godunov-type 

schemes, like MUSCL and WENO scheme, are suitable for solving complex flow features using 

moderated computing resources on current personal computers. 

 

 
1. INTRODUCTION 

 

The kinematic wave equation was developed by Lighthill and Whitham (1955). The equation is 

based on the assumptions that the acceleration term and the pressure gradient term in the momentum 

equation are negligible, so that the energy slope is equal to the bottom slope.  The kinematic wave 

model is widely used to simulate the overland flow (Ponce 1991, Singh 2001). Lighthill and 

Whitham (1955) found that the kinematic wave dominates the flood wave and can carry the main 

disturbance to the downstream. Henderson (1966) showed that natural flood waves behave nearly 

the same as kinematic waves in steep slope ( 0 0.002S  ). Woolhiser and Liggett (1967) derived the 

kinematic wave number ( k ) as a criterion to evaluate the accuracy of the kinematic wave solution 

and proved that the kinematic wave equation gives accurate results for most overland surface flows. 

Vieira (1983) concluded that the kinematic wave equation can be used on natural slopes with 

50k  . Ponce (1991) compared the kinematic wave equation with the unit hydrograph as a 

practical method of overland flow routing. Singh (2001) summarized the applicability of kinematic 

wave equation in hydrology and related areas. 

The kinematic wave equation is a first-order hyperbolic partial differential equation (PDE).  

For a hyperbolic equation, the disturbance will travel along the characteristics of the equation in a 

finite propagation speed. This feature distinguishes the hyperbolic equations from elliptic and 

parabolic equations. On the other hand, the kinematic wave equation also belongs to a kind of 

equations called conservation laws (LeVeque 2002, Toro 2009). Since the flux term is a nonlinear 

function of conservative variables, the solution does not propagate uniformly but deforms as it 

evolves. Even the initial conditions are continuous and smooth the hyperbolic conservation laws can 

develop discontinuities in the solution, for example shock waves. 
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Both shock wave and rarefaction wave are the intrinsic features of hyperbolic equations. 

Lighthill and Whitham (1955) discussed the formations of shock wave and rarefaction wave. Kibler 

and Woolhiser (1970) investigated the structure and general properties of shock waves and 

developed a numerical procedure for shock fitting.  Eagleson (1970) found that using non-uniform 

flow depth  as initial condition, non-uniform rainfall in the source term, or increasing inflows as the 

boundary condition may cause the formation of kinematic shock wave. Borah and Prasad (1980) 

presented the propagating shock-fitting scheme (PSF)to simulate overland flow with shock waves. 

Ponce (1991) summarized four physical conditions necessary for the occurrence of kinematic shock 

waves. Singh (2001) reviewed the formation and determination of kinematic shock waves. 

Due to the complex geometry, non-uniform roughness and non-uniform rainfall pattern, it is 

impossible to derive a general analytical solution for the kinematic wave equation. Ponce (1991) 

reviewed the presence of numerical diffusion and numerical dispersion using the finite difference 

schemes. Singh (2001) summarized three numerical techniques for solving the kinematic wave 

equation: (1) method of characteristic, (2) finite difference method, and (3) finite element method. 

Kazezyılmaz-Alhan et al. (2005) compared the performance of several finite difference schemes and 

recommended the MacCormack scheme as a preferred solution technique over other finite difference 

schemes. 

Recently, the Godunov-type finite volume method has been widely used in solving shallow 

water equations (LeVeque 2002, Toro 2009) because of its wide applicability, strong stability, and 

high accuracy. One of the most popular Godunov-type methods is a second-order, TVD (Total 

Variation Diminishing) scheme, namely the MUSCL (Monotone Upstream-centered Schemes for 

Conservation Laws) scheme (van Leer 1979). The MUSCL scheme is a high-resolution scheme 

because (1) the spatial accuracy of the scheme is equal to or higher than second order; (2) the 

scheme is free from numerical oscillations or wiggles; (3) high-resolution is produced around 

discontinuities. In general, the high-resolution schemes are considered as a tradeoff between 

computational cost and desired accuracy (Toro 2009, Harten 1983). 

Another popular but relatively new method is the high-order WENO (Weighted Essentially 

Non-Oscillatory) finite volume scheme (Shu 1999). High-order means the order of accuracy is equal 

to or higher than third-order accuracy. According to Shu (2009), the WENO scheme is suitable for 

the complicated problems, such as flow having both shocks and complicated smooth structures (e.g., 

small perturbation). Although the computational cost of high-order WENO scheme can be 3 to 10 

times than a second-order high-resolution scheme, it is still preferable because of its high-order 

accuracy in both time and space. 

This study compares the Godunov-type finite volume method using MUSCL scheme and 

WENO scheme with the finite difference method using MacCormack scheme. The paper is 

organized as follows: Section 2 introduces the kinematic wave equation and its analytical solutions; 

Section 3 discusses the numerical schemes: the MacCormack scheme, the MUSCL scheme and the 

WENO scheme; Section 4 shows the results of typical test cases. Finally, several concluding 

remarks are given in section 5. 

 

 

2. GOVERNING EQUATIONS 
 

The one dimensional kinematic wave equation for flows over a slope is given by (Lighthill, et al., 

1955, Eagleson, 1970): 

 

 
0

h q i
t x

 
 

 
 (1) 
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whereh  is the depth of flow; q  is the discharge per unit width; 0i i f   is the rain excess; i  is the 

intensity of rainfall; f  is the infiltration rate; t  is the time; x  is the downslope distance. 

For the overland flow, the discharge q  is defined as: 

 

 
mq h  (2) 

 

where m is the exponential, and α is the coefficient. For fully turbulent flow, the coefficients are 

given by Ponce (1989): 

 

 
0

1 5
,  

3
S m

n
    (3) 

 

wheren  is the Manning’s roughness coefficient; 0S  is the bottom slope. It is obvious that the flux 

function ( )q h  is a convex function (Toro 2009, Jacovkis et al. 1996) because the second order 

derivative is positive: 

 

 
2

2

2
( 1) 0, for 0md q m m h h

dh
      (4) 

 

The one dimensional kinematic wave equation can be solved by the method of characteristics 

(Eagleson 1970, Kazezyılmaz-Alhan et al. 2005).The analytical solution is to calculate the outflow 

hydrograph at the downstream end of the domain ( Lq q , x L ) in response to the rainfall excess 

within a specified duration. 

Given a constant rainfall excess ( 0i ) and the following initial condition 

 

 0 ( 0 and 0 )h t x L     (5) 

 

and the boundary condition, 

 

 0 ( 0 and 0)h t x    (6) 

 

The two possible outflow hydrographs are: 

Case 1 ( r ct t ): 

 

 

0

0

1 1

0

,  for 

, to solve  use: ,  for 

[ ( )],  for 

L c
m

L L L L c c r
m
L L r r

h i t t t
q h h h i t t t t

L h h i m t t t t


  

  


   
    

 (7) 

 

Case 2 ( r ct t ): 
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0

0

1 1

0

, for 

, to solve use: , for 

[ ( )], for 

L r
m

L L L L r r p

m
L L r p

h i t t t
q h h h i t t t t

L h h i m t t t t



  

  
   


   

 (8) 

 

where rt  is the duration of rainfall, and ct  is the time of concentration: 

 

 

1/
1

0

mm

c
Lit


 
  
 

 (9) 

 

and pt  is defined as: 

 

 
*

*

01
, , c r

p r c Lr rm
Lr

t t Lt t t h i t
m h 


     (10) 

 

 

3. NUMERICAL SCHEMES 
 

Since the kinematic wave equation is a nonlinear hyperbolic partial differential equation, different 

numerical schemes exhibit different amounts of numerical diffusion and dispersion depending on the 

nature of schemes. Numerical diffusion often presents itself as the attenuation of the kinematic 

wave, while numerical dispersion is responsible for oscillations or negative outflows near large 

gradients.  Ponce (1991) discussed intrinsic numerical diffusion and dispersion of finite difference 

schemes. Kazezyılmaz-Alhan et al. (2005) evaluated several finite difference schemes for solving 

kinematic wave equation: the linear explicit scheme, the four-point Pressimann implicit scheme, and 

the MacCormack scheme. The study (Kazezyılmaz-Alhan et al. 2005) recommended the second-

order MacCormack scheme is preferable to the second-order four-point implicit scheme. However, 

Kazezyılmaz-Alhan et al. (2005) did not test the currently popular Godunov-type finite volume 

schemes (LeVeque 2002, Toro 2009), which is suitable for solving the nonlinear hyperbolic 

equations. To provide comparisons with classical finite difference schemes, a study of two high-

resolution Godunov-type finite volume schemes, the MUSCL finite volume scheme and the WENO 

finite volume scheme, is presented in this paper. All the selected schemes are explicit, but differ in 

order of accuracy. The MUSCL scheme is a second-order scheme while the WENO scheme is fifth-

order. 

 

3.1 MacCormack Finite Difference Scheme 
 

The MacCormack scheme (MacCormack 2003) is a commonly used Lax-Wendroff type finite 

difference scheme to solve hyperbolic PDEs. This two-step scheme is second-order accurate in both 

time and space. Compared to the first-order scheme, the MacCormack scheme does not introduce 
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numerical diffusions in the solution. However, the numerical dispersions can be introduced in the 

region of large gradients. 

The MacCormack scheme is a variation of the two-step Lax-Wendroff scheme. It includes 

two steps: a predictor step followed by a corrector step. The predictor step uses forward difference 

approximations while the corrector step uses backward difference approximations for spatial 

derivatives. The order of differencing can be reversed from time step to time step (i.e., 

forward/backward differencing followed by backward/forward differencing). The time step used in 

the predictor step is t  in contrast to / 2t used in the corrector step. 

Predictor step: 

 

 1

1 0( )n n n n
i i i i

th h q q i t
x





    


 (11) 

 

Corrector step: 

 

 
1 1 1 1

1 0

1 1
( ) ( )

2 2

n n n n n
i i i i i

th h h q q i t
x

   


        
 (12) 

 

where subscript i  is the spatial index; superscript n , 1n , and 1n  are the temporal indices; t  is 

time step; x  is the space step. 

 

 

3.2 MUSCL Finite Volume Scheme 
 

The MUSCL scheme was introduced by van Leer (1979). It’s the first second-order TVD Godunov-

type finite volume scheme. MUSCL uses piecewise linear approximation to reconstruct the depths at 

the interfaces of cells: 

 

 1/2 1/2i i i ih h h r     (13) 

 

where ih  is flow depth at the center of cell i ; 1/2ih   is the reconstructed depth at the interface 1/ 2i   

of cell; ih  is the limited depth gradient of cell i ; 1/2ir  is the distance from the cell center to the 

interface 1/ 2i  . 

The limited gradients can be calculated by several slope limiters (Minmod, Superbee, etc.). 

Here the van Leer limiter(van Leer 1974, Causon et al. 2000) is used in the study: 

 

 L R L R

L R

h h h h
h

h h
    

 
  

 (14) 

 

where 1i i
L

h hh
x


 


 and 1i i

R
h hh

x
 

 


. 
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The local Lax-Friedrichs (LLF) method (LeVeque,2002) is used to calculate the fluxes 

across the cell interfaces: 

 

  1/2 1 1/2 1

1
( )

2
i i i i i iQ q q a h h        (15) 

 

 1/2 1max( , )i i ia c c   (16) 

 

where c is the celerity and defined in (25). 

Based on calculated numerical fluxes across the interfaces, the solution can be updated by a 

time marching method. Instead of using the predictor-corrector method of MUSCL-Hancock 

scheme, the second-order TVD Runge-Kutta method (Gottlieb et al. 1998) is employed in the study 

to discretize the time derivative.The second-order TVD Runge-Kutta method (RK2) can be written 

as: 

 

 

(1)

1 (1) (1)

( )

1 1 1
( )

2 2 2

n n
i

n n

h h t L h

h h h t L h

   

    
 (17) 

 

where the operator ( )L h  is defined as: 

 

 
0

1
( ) ( )L h Q h i

x
  

   (18) 

 

For a TVD Runge-Kutta method, it is guaranteed that each intermediate solution also 

satisfies the TVD criteria to avoid spurious oscillations in the solution. Because of this, it is a better 

choice to incorporate a TVD Runge-Kutta method for solving hyperbolic problems. 

 

 

3.3 WENO Finite Volume Scheme 
 
The first WENO scheme was provided by Liu et al.(1994). Jiang et al.(1996) presented a general 

framework to construct arbitrary high order WENO schemes. Details about WENO schemes can be 

found in Shu(1999, 2009). Instead of using the piecewise linear reconstruction procedure in the 

MUSCL scheme, the WENO finite volume scheme uses the WENO reconstruction procedure to 

obtain an approximated function value at the cell interface. The WENO reconstruction procedure 

consists of four steps: 

Step 1. Calculate the smoothness indicators: 
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2 2

1 2 1 2 1

2 2

2 1 1 1 1

2 2

3 1 2 1 2

13 1
( 2 ) ( 4 3 )

12 4

13 1
( 2 ) ( )

12 4

13 1
( 2 ) (3 4 )

12 4

i i i i i i

i i i i i

i i i i i i

h h h h h h

h h h h h

h h h h h h







   

   

   

      

     

      

 (19) 

 

Step 2. Calculate the third-order approximations at cell interfaces: 

 

 

(1)

1/2 2 1

(2)

1/2 1 1

(3)

1/2 1 2

1 7 11

3 6 6

1 5 1

6 6 3

1 5 1

3 6 6

i i i i

i i i i

i i i i

h h h h

h h h h

h h h h

  

  

  

   

    

   

 (20) 

 

Step 3. Calculate the nonlinear weights: 

 

 


  


2
1 2 3

, with , 1, 2,3
( )

j j
jj

j

ww w j
w w w


 

  
 

 (21) 

 

where
610   for actual calculations; j  is the linear weights, and is given by: 

 

 
1 2 3

1 5 5
, , 

16 8 16
      (22) 

 

Step 4. Calculate the fifth-order approximation as a convex combination of the three third-

order approximations: 

 

 (1) (2) (3)

1/2 1 1/2 1 1/2 1 1/2i i i ih w h w h w h       (23) 

 

The derivative in time is discretized by the third-order TVD Runge-Kutta method(Gottlieb et 
al. 1998), which is a three-step method: 

 

 

(1)

(2) (1) (1)

1 (2) (2)

( )

3 1 1
( )

4 4 4

1 2 2
( )

3 3 3

n n

n

n n

h h t L h

h h h t L h

h h h t L h

   

    

    

 (24) 
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where the operator ( )L h  is given by equation (18). 

 

 

4. RESULTS 
 

This section evaluates the selected schemes in a variety of flow conditions because a given scheme 

does well for a test case does not guarantee it will do well for another test case.  In order to evaluate 

the performances of these schemes, it is necessary to choose test cases with exact solutions. For this 

reason, the one-dimensional propagations of a shock wave and a rarefaction wave are selected. Then 

the behaviors of these schemes in a long time period are tested by a wave steepening example. 

Finally, two synthetic rainfall-runoff cases are selected to demonstrate the actual performance of 

different schemes. 

 

4.1 Shock Wave 
 

The shock wave and rarefaction wave are the intrinsic features of the hyperbolic equations, so does 

the kinematic wave equation. The celerity of kinematic wave is defined as (Lighthill et al. 1955): 

 

 
1mc mh mv    (25) 

 

where v  is flow velocity. Consider the following initial-value problem for the kinematic wave 

equation: 

 0

0

, if 
( ,0)

, if 

L

R

h x x
h x

h x x


  
 (26) 

 

If we assume L Rh h , we will have L Rc c .This means that a shock wave will arise. The 

exact shock wave solution for the kinematic wave equation is: 

 

 0

0

, for ( ) /
( , )

, for ( ) /

L

R

h x x t S
h x t

h x x t S
 

   
 (27) 

 

where S  is the shock wave speed. For the kinematic wave equation, according to the Rankine-

Hugoniot jump condition (Toro, 2009), S  is equal to: 

 

 
m m
R L

R L

h hS
h h

 



 (28) 

 

In the study, the following parameters are used: the channel length 10.0 mL  ; the bed slope 

0 0.0016S  ; the Manning’s coefficient 
1/30.025 s/mn  ; the simulation time 3.5 st  ; the time step 

0.01 st  ; the grid spacing 0.1 mx  . The initial condition is: 1.0 mLh  and 0.5 mRh  . The 

boundary conditions are zero-depth gradient at both the entrance and the exit of the channel. 

The flow depth profiles calculated by the numerical schemes and the exact solution are 

plotted in Error! Reference source not found.. The results show that the numerical diffusions near 
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the front of shock wave are small for all the numerical schemes. But the numerical dispersion using 

the MacCormack finite difference is large. Many wiggles are generated near the wave front. 

 

 
Figure 1 Results of shock wave test case.  (Above: global view. Bottom: zoom view.) 

 

4.2 Rarefaction Wave 
 
Reconsider the initial-value problem described in Eq.(26), and assume L Rh h ,  we have L Rc c . 

This time, instead of generating a shock wave, a rarefaction wave is generated near the discontinuity 

since the celerity at the head of the discontinuity is greater than that at the tail and, consequently, the 
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discontinuity continually expands as it propagates. For the kinematic wave equation, the exact 

solution of rarefaction wave is: 

 

 

0

0 0

0

, for 

( ) , for 

, for 

L L

R L
L L L R

R L

R R

x xh c
t

x x h h x xh h c c c
t c c t
x xh c

t

 



       

 


 (29) 

 

The parameters used in the rarefaction test case are summarized as: the channel length 

10.0 mL  ; the bed slope 0 0.0016S  ; the Manning’s coefficient 
1/30.025 s/mn  ; the simulation 

time 3.0 st  ; the time step 0.01 st  ; and the grid spacing 0.1 mx  . The initial condition is: 

0.5 mLh  and 1.0 mRh  . The boundary conditions are zero-depth gradient at both ends of the 

channel. 

 

The calculated profiles are plotted in Error! Reference source not found.. The results are 

similar to the shock wave case: the MacCormack scheme generated notable oscillations at the tail of 

the rarefaction wave. Taylor et al. (1972) tested the MacCormack scheme for solving the Burgers’ 

equation and found that the MacCormack scheme is unstable for rarefaction wave under some 

conditions. This study finds that the same phenomenon occurred to kinematic wave equation. The 

reason is that the oscillations lie in the lower flow depth part of the rarefaction wave instead of 

higher part of the shock wave. This makes it easy to get unrealistic negative depth values in the case 

of rarefaction waves. Therefore, for the rarefaction wave, the MacCormack scheme is not as stable 

as the MUSCL scheme or the WENO scheme. 
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Figure 2 Results of rarefaction wave test case. (Above: global view. Bottom: zoom view.) 

 

4.3 Wave Steepening 
 

One of the prominent features of the hyperbolic equation is that discontinuities will be generated 

even the initial water surface is smooth. So it’s important for a scheme to preserve the sharpness of 

discontinuous fronts in a long-time simulation. This test case is to test the long time behavior of the 

schemes, especially the ability of anti-diffusion. 

Here are the parameters in the test case: the channel length 10.0 mL  ; the bed slope 

0 0.0016S  ; the Manning’s coefficient 
1/30.025 s/mn  ; the simulation time 100.0 st  ; the time 

step 0.01 st  ; and the grid spacing 0.1 mx  . The initial condition is: 

 

  2max 0.5, 1.0 ( 1.0)h x    (30) 

 

This initial condition will create a parabolic perturbation in the channel (Error! Reference source 
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Figure 3 Initial condition of long time evolution case. 
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wave (tail). This scenario is detrimental to the MacCormack scheme because the oscillations 

occurred behind the shock wave will drown out the parabolic perturbation immediately (Error! 
Reference source not found.). 
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not found.. After 100 seconds, the fronts of the perturbation are still sharp. The numerical diffusion 
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Figure 4 Oscillations of the MacCormack scheme. (number of nodes = 501, t = 2.0 s) 
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Figure 5 Results of wave steepening test case. (Above: global view. Bottom: zoom view) 

 

4.4 Uniform Rainfall-runoff Overland Flow 
 
The test case is presented by Kazezyılmaz-Alhan et al.(2005) to test the rainfall-runoff overland 

flow.  For this case, the duration of rainfall is longer than the time of concentration ( r ct t ). The 

parameters are listed here: the channel length 182.88 mL  ; the bed slope 0 0.0016S  ; the 

Manning’s coefficient 
1/30.025 s/mn  ; the duration of rainfall 0.5 hrt  ; the rainfall excess 

0 50.8 mm/hi  ; simulation time 1 ht  ; the time step 1.0 st  ; and the grid spacing 1.83 mx  . 

The initial condition is 0.0 mh  . The boundary conditions are zero-depth gradient at the outlet and 

zero depth at the inlet. 

 

Error! Reference source not found. plots the outflow hydrographs calculated by the 

numerical schemes and the exact solution calculated by Eq.(7). Since there isn’t any 

discontinuity/perturbation in the domain, the results obtained by the three numerical schemes are 

very close to the exact solution. The comparisons of the peak of the hydrographs show that the 

WENO scheme yields the closest results to the exact solution without any oscillation. 
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Figure 6 Hydrograph of uniform rainfall-runoff case. (Above: global view. Bottom: zoom view.) 
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Figure 7 Non-uniform rainfall distribution 
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the solution of the MacCormack scheme.  
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Figure 8 Results of non-uniform rainfall-runoff test case (T=850s). (Above: global view. Bottom: 

zoom view) 
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Figure 9 Hydrograph of non-uniform rainfall-runoff test case. (Above: global view. Bottom: zoom 

view) 
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case. On the other hand, the Godunov-type finite volume methods present better performance than 

the finite difference method. There are no oscillations in the solutions using the MUSCL scheme or 

the WENO scheme. The high-order WENO scheme shows the best resolution power in all test cases. 

Although the computational costs are higher than the MacCormack scheme’s, to ensure numerical 

stability, we recommend the MUSCL/WENO schemes as the preferred techniques for solving the 

kinematic wave equation. 
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