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ABSTRACT 
 
We present a numerical approach containing a splitting strategy, the method of characteristics 
(MOC), a backward particle tracking technique, and the Galerkin finite element method to solve 
two-dimensional depth-averaged shallow water flow equations which are commonly used to 
describe bay/estuary hydrodynamics.  With the splitting strategy, we first employ the MOC to solve 
equations without the eddy flux terms.  We specifically choose wave front propagation directions for 
the characteristic equations to perform local diagonalization. The characteristics form of the 
governing equation offers great advantages over the conservative form in adapting appropriate 
numerical algorithms and in defining boundary conditions. Innovative hyperbolic numerical 
algorithms can be employed to approximate the system because each of the three equations is a 
decoupled advective transport equation of a wave. The specification of boundary conditions is made 
easy pending the wave direction. The boundary condition for any wave is needed only when it is 
transported into the region of interest. When a wave is transported out of the region, there is no need 
to specify the boundary condition because internal flow dynamics due to this wave affects the 
boundary values of tide and velocity components. In other words, external world will not affect the 
wave that is transported out of the region. The Galerkin finite element method is applied to solve the 
Eulerian step of the Lagrangian-Eulerian form of equations. A standing wave problem was used to 
verify the accuracy and robustness of the approach. Two circulation problems at Salem Harbor and 
San Diego South Bay, respectively, were employed to demonstrate the application of the model. 
 
 
1. INTRODUCTION 
 
Shallow water equations are widely used to model bay/estuary circulation.  In some  cases, the 
equations can have exact solutions under simplifying assumptions [Ghosh and Debnath, 1997]. In 
practice, however, numerical solutions are needed to deal with complicated real-world systems.  The 
rapid progress in the field of computer technology, the advancement of knowledge in numerical 
methods, and most importantly, the growing demand for reliable information on flows in 
bay/estuary areas have encouraged scientists and engineers to use numerical simulation techniques 
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to solve steady/unsteady flow problems.  Many numerical strategies have been presented to handle 
the governing equations where non-linearity is introduced due to the strong coupling between fluid 
depth and velocities.  Some researchers constructed their strategies on the platform of the finite 
difference method [Shi and Toro, 1996; Fennema and Chaudhry, 1989], while others did on the 
finite element [Walters and Barragy, 1997; Petera and Nassehi, 1996] or the finite volume method 
[Zhou and Goodwill, 1997; Anastasiou and Chan, 1997].  The numerical strategies included total 
variation diminishing method [Tseng and Liang, 1997], two-step explicit method [Park et al., 1995], 
semi-implicit method [Cecchi et al., 1998], implicit method [Fennema and Chaudhry, 1989], high-
order time integration scheme [Ozkan-Haller and Kirby, 1997], upwind/upstream numerical 
schemes [Shi and Toro, 1996; Anastasiou and Chan, 1997], filtered solution method [Laible and 
Lillys, 1997], least square method [Muccino et al, 1997; Tseng and Liang, 1997], method of 
characteristics [Lai, 1977; Hirsch et al., 1987], and hybrid Lagrangian-Eulerican method [Hansen 
and Arneborg, 1997; Petera and Nassehi, 1996].  Some numerical modelers have applied parallel as 
well as multigrid methods to improve computational efficiency [Spitaleri and Corinaldesi, 1997; 
Hinkelmann and Zielke, 1996].   
 Recently, the Lagrangian-Eulerian approach has attracted many numerical modelers' 
attention because it can avoid many types of numerical errors when advection/convection dominates 
[Yeh, 1990].  Casulli and Cheng have shown that the approach is unconditionally stable when it is 
used to solve one-dimensional (1-D) shallow water equations [Casulli and Cheng, 1990].  Petera and 
Nassehi  employed a particle tracking technique in the Lagrangian step and have demonstrated their 
approach would provide very stable results for the convection dominated very shallow depth 
computation in estuaries [Petera and Nassehi, 1996].        
 The MOC might be considered the most appropriate way to solve wave or hyperbolic-type 
equations because it approaches problems not only mathematically but also physically.  Lai has 
developed  comprehensive MOC models to solve 1-D shallow water equations [Lai, 1987] and has 
incorporated the MOC with the finite difference discretization to solve 2-D flow equations [Lai, 
1977].  In this study, we incorporate the MOC with the finite element discretization to solve two-
dimensional (2-D) depth-averaged shallow water equations.  When the MOC is used to solve 1-D 
equations (e.g., channel flow equations), diagonalization can be achieved easily [Abbott, 1966].  Its 
application to 2-D cases, however, is not straightforward [Hirsch  et al., 1987].  The three 
characteristics associated with 2-D shallow water equations can be chosen in any direction [Lai, 
1977].  Many iterations might be needed to reach convergence in the numerical simulation if the 
characteristic directions are not appropriately taken.  To handle this, we perform local 
diagonalization for the 2-D characteristic equations.  We also apply the Lagrangian approach to 
solve the characteristic equations, rather than the original governing equations, where a particle 
tracking technique [Cheng et al., 1996] is used to transport characteristic variables along 
characteristic lines.  In the following sections, we will describe first the depth-averaged 
hydrodynamic mathematical model used to simulate bay/estuary circulation, followed by our 
numerical approach associated with the MOC to solve the governing equations.  Finally, we will 
employ two examples to verify and to demonstrate our approach. 
 
 
 
2. SHALLOW WATER WAVE EQUATION 
 
The governing equations of two-dimensional circulation flow in the bay/estuary area can be 
described by shallow water equations which are derived based on the conservation law of water 
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mass and linear momentum and through the depth-averaging process [Wang and Connor, 1975] as 
follows   
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where h  is the water depth, [L] (Figure 1); t  is the time, [M]; V  is the velocity vector, [L/T]; q  is 
the source/sink flow rate due to artificial injection/withdraw, rainfall/evaporation, and 
exfiltration/infiltration from groundwater [L/T]; g  is the gravitational constant, [L/T2]; oZ  is the 
bottom elevation, [L]; bτ  is the bottom shear stress [M/(LT2)]; o  is the reference density, [M/L3]; 
f  is the coriolis force parameter, [1/T]; k  is the unit vector along the vertical direction, 

[dimensionless]; wτ  is the surface wind stress, [M/(LT2)]; τ  is the eddy stress, [M/(LT2)]; R  is the 
radiation stress due to short wave, [M/(LT2)];   is the density deviation from its reference value, 
[M/L3];   is the astronomical tide, [L]; and sp  is the atmosphere pressure on the surface, [M/(LT2)]. 
In general cases, all 12 terms in Eq. (1) must be included. However, in many occasions, only the 
terms marked with the red are included. 
 

Mean Sea Level (Z = 0)

d(x,y)

h(x,y,t)

Sea bed elevation
(Zo(x,y) = - d(x,y))

(x,y,t)

 
 

Figure 1 Definitions of tide η(x,y,t), water depth h(x,y,t), and sea bed elevation Zo(x,y) 
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3. LOCAL DIAGONALIZATION 
 
The governing equations for shallow water circulation and tides in the conservative form can be 
transformed into the wave form as follows (Yeh et al., 2000)  
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where 1W , 2W , and 3W  are three characteristic variables representing the shear, positive gravity, and 
negative gravity wave, respectively, [L/T], [T], and [T], respectively; u  and v  are the x - and y-
velocity, respectively, [L/T];   c gh  is the is the wave celerity [L/T];  oh Z    is the water 
depth [L];   is the tide elevation above mean sea level [L] (Figure 1); oZ  is the bottom elevation 
above a datum [L]; (2)

xk  and (2)
yk  are the x - and y  -components, respectively, of the unit vector of 

the second wave propagation direction (2)k , [1];  1 2 3, , TS S S  is the coupling vector of three waves, 

[L/T2], [1], and [1], respectively;  1 2 3, , TA A A  is the artificial source sink of three waves, [L/T2], [1], 

and [1], respectively;  1 2 3, , TG G G  is the gravity force acting on three waves, [L/T2], [1], and [1], 

respectively;  1 2 2, ,
Tw w w    is the wind stress acting on three waves, [L/T2], [1], and [1], 

respectively;  1 2 2, ,
Tb b b    is the bottom shear stress acting on three waves, [L/T2], [1], and [1], 

respectively;   1 2 3, , TD D D  is the viscous diffusive force acting on three waves, [L/T2], [1], and [1], 

respectively;  1 2 3, , TT T T  is the astronomical tide acting on three waves, [L/T2], [1], and [1], 

respectively;   1 2 3, , TR R R  is the radiation short wave acting on three waves, [L/T2], [1], and [1], 

respectively;  1 2 3, , TC C C  is the coriolis force acting on three waves, [L/T2], [1], and [1], 

respectively; and  1 2 3, , TB B B  is the buoyancy force acting on three waves, [L/T2], [1], and [1], 

respectively.  These 10 vectors [  1 2 3, , TS S S ,  1 2 3, , TA A A ,  1 2 3, , TG G G ,  1 2 2, ,
Tw w w   , 

 1 2 2, ,
Tb b b   ,  1 2 3, , TD D D ,  1 2 3, , TT T T ,  1 2 3, , TR R R ,  1 2 3, , TC C C , and  1 2 3, , TS S S ] are defined 

as follows 
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where (1)
xk  and (1)

yk  are the x - and y  -components, respectively, of the unit vector of the first wave 
propagation direction (1)k ; w

x  and w
y  are the components of surface wind shear stress along the x - 

and y -directions, respectively, over unit horizontal overland area [M/L/T2]; b
x  and b

y  are the 
components of bottom shear stress along the x - and y -directions over unit horizontal overland area 
[M/L/T2]; xx  is the eddy stress in the x -direction on the plane perpendicular to x -direction 
[M/(LT2)]; xy  is the eddy stress in the x -direction on the plane perpendicular to y-direction 
[M/(LT2)]; yx  is the eddy stress in the y -direction on the plane perpendicular to x -direction 
[M/(LT2)]; yy  is the eddy stress in the y -direction on the plane perpendicular to y -direction 
[M/(LT2)];   is the astronomical tide, [L]; xxR  is the radiation stress due to short waves in the x -
direction on the plane perpendicular to x -direction [M/(LT2)]; xyR  is the radiation stress due to 
short waves in the x -direction on the plane perpendicular to y-direction [M/(LT2)]; yxR  is the 
radiation stress due to short waves in the y -direction on the plane perpendicular to x -direction 
[M/(LT2)]; and yyR  is the radiation stress due to short waves in the y -direction on the plane 
perpendicular to y -direction [M/(LT2)].  
It is clear from Eq. (3), we can choose (1)k  and (2)k  to make  1 2 3, , TS S S  =  0,0,0 T  for a complete 
diagonalization of three wave equations in Eq. (2) by selecting (1)k  and (2)k  to satisfy the following 
equations 
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We can always find (1)
xk  and (1)

yk  to satisfy Eq. (5), i.e., wave direction that is tangential to the 
gradient of tidal elevation can always be found. However, we will not be able to find any real 
solutions of (2)

xk  and (2)
yk  in solving Eq. (6) when the discriminant of the quadratic equation, i.e., 
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 is less than zero.  In this case, Hirsh et al. have suggested to select directions 

which minimize the coupling terms [Hirsh et al, 1987], e.g., S2 and S3 in our case here. Under such 
circumstances, we calculate (2)

xk  and (2)
yk  with the following equation [Hirsh et al, 1987] 

 
(2)

(2)

2
tan /y

x

k u v u v
k y x x y

        
                

 (7)  

 
 
It is noteworthy that by choosing wave decomposition with Eqs. (5) and (6) or Eqs. (5) and (7), it 
may be possible to decouple or minimize the coupling terms and obtain diagonalization of the 
shallow water equations. However, numerical experiments show that this approach often suffer from 
convergence problem [e.g., Paillere et al. 1998]. The characteristic directions are dependent on the 
numerical solution and sensitive to the accurate evaluation of the gradients of water depth and 
velocity components. Numerical stability and convergence are the major concern. When 
convergence becomes problematic, four other options are provided in the selection of (1)k  and (2)k  
to overcome the problem. These are: Option 1, (1)k  and (2)k  are chosen arbitrary; Option 2, (1)k  and 

(2)k  are chosen along the Froude line [Paillere et al. 1998]; Option 3, (1)k  is obtained by Eq. (5) and 
(2)k  is chosen along the velocity; and Option 4, (1)k  is obtained by Eq. (5) and (2)k  is chosen to be 

along the opposite direction of (1)k  [Guinot, 2005]. Other ad hoc approaches of selecting (2)k  based 
on some geometric parameters are possible [Katopodes and Strelkoff 1978]. While the first 
characteristic direction can always be selected in the depth gradient direction, the second 
characteristic directions can be chosen arbitrary, for example, along the x-direction, the y-direction 
or the steepest elevation gradients. This approach may be less accurate and grid orientation of the 
numerical solutions may occur. 
 
 
4. BOUNDARY CONDITIONS 
 
In solving Equation (1), the water depth h, and the velocity components, u and v, must be given 
initially or they can be obtained by simulating the steady-state version of the conservative form of 
Eq. (1).  In addition, appropriate boundary conditions need to be specified to match the 
corresponding physical system.  The characteristics form of the governing equation offers great 
advantages over the conservative form in adapting appropriate numerical algorithms and in defining 
boundary conditions. Innovative hyperbolic numerical algorithms can be employed to approximate 
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the system because each of the three equations is a decoupled advective transport equation of a wave. 
The determination of the number of boundary conditions that consist with physics is not 
straightforward when the conservative form of equations is used. However, when the characteristic 
form of equations is used, the number of boundary conditions that conform to the physics can easily 
be determined. We demonstrate how boundary conditions are specified in the following.  A 
boundary segment can be either open or closed.  In the former case, the boundary condition for any 
wave is needed only when it is transported into the region of interest. When a wave is transported 
out of the region, there is no need to specify the boundary condition because internal flow dynamics 
due to this wave affects the boundary values of u, v, and h.  In other words, external world will not 
affect the wave that is transported out of the region. 
  
Open upstream boundary condition (At Open Boundaries during Flood Tide): 
At an open upstream boundary segment, 0 n V ; thus the vorticity is always transported into the 
region from upstream. If (2) 0c n k , then (2) 0c  n k . Under such circumstance, 

 (2) 0c  n V k  and  (2)c n V k  may be less than 0 or greater than 0; thus the positive gravity 
wave is transported into the region and the negative gravity wave may be transported into the region 
or out of the region. Similarly, If (2) 0c n k , then (2) 0c  n k . Under such circumstance, 

 (2) 0c  n V k  and  (2)c n V k  may be less than 0 or greater than 0; thus the negative gravity 
wave is transported into the region and the positive gravity wave may be transported into the region 
or out of the region. If (2) 0c n k , then all three waves are transported into the region. 
Based on the above discussions, it is seen that at an upstream open boundary, either all three waves 
are transported into the region or two waves are transported into the region. Thus, either three 
boundary conditions or two boundary conditions are needed. When three boundary conditions are 
needed, they are given as follows  
 

( ) ( ) ( )( , );  ( , );  and ( , )up up up
b b bh h t u u t v v t  x x x  (8)  

 

where ( ) ( , )up
bh tx , ( ) ( , )up

bu tx  and ( ) ( , )up
bv tx  being functions of the boundary coordinate bx  and 

time t  are the water depth, x-component velocity, and y-component velocity, respectively, of the 
upstream incoming fluid. When two boundary conditions are needed, one of the boundary 
conditions is user’s specified water depth, normal flux, or rating curve flux and the other would be 
obtained by assuming the tangential flux is zero. The third equation for the boundary condition 
would be either the positive gravity wave function or the negative gravity wave function. The three 
equations are mathematically stated as  
 

     
       

( ) ( ) ( )

* * * * * *

( , ), ( , ),  or ( );   0;

  and  , , , ,  or , , , ,

up up up
b n b rh h t h q t h q h h

F u v h u v h F u v h u v h         

      

   

x n V x n V l V
 (9)  

 

where n  is the outward unit vector normal to the boundary; ( ) ( , )up
n bq tx , a function of the boundary 

coordinate bx  and time t , is the normal flux of the upstream incoming fluid; ( ) ( )up
rq h , a function of 

water depth h , is the rated flux at the upstream boundary; l  is the unit vector tangential to the 
upstream boundary;  , ,F u v h , a function of ,  ,  and u v h , is the positive gravity wave function; 

 * * *, ,u v h     is the positive gravity wave forcing function of * * *,  and u v h    in which * * *,  and u v h   , 
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respectively, are the x-component of the velocity, the y-component of the velocity, and water depth 
at the root of positive gravity wave, respectively;  , ,F u v h , a function of ,  ,  and u v h . is the 

negative gravity wave function; and  * * *, ,u v h     is the negative gravity wave forcing function of 
* * *,  and u v h    in which * * *,  and u v h   , respectively, are the x-component of the velocity, the y-

component of the velocity, and water depth at the root of positive gravity wave, respectively. 
  
Open downstream boundary condition (At Open Boundaries during Ebb Tide): 
At an open downstream boundary segment, 0 n V ; thus the vorticity is always transported out of 
the region from upstream. If (2) 0c n k , then (2) 0c  n k . Under such circumstance, 

 (2) 0c  n V k  and  (2)c n V k  may be greater than 0 or less than 0; thus the positive gravity 
wave is transported out of the region and the negative gravity wave may be transported out of the 
region or into the region. Similarly, If (2) 0c n k , then (2) 0c  n k . Under such circumstance, 

 (2) 0c  n V k  and  (2)c n V k  may be greater than 0 or less than 0; thus the negative gravity 
wave is transported out of the region and the positive gravity wave may be transported out of the 
region or into the region. If (2) 0c n k , then all three waves are transported out of the region.  
Based on the above discussions, it is seen that at a downstream open boundary, either all three 
waves are transported out of the region or only one wave is transported into the region. Thus, either 
no boundary condition or only one boundary condition is needed. When no boundary condition is 
needed, the three equations required for the downstream open boundary are obtained based on three 
wave functions as  
 

     
       

( ) ( ) * * *

* * * * * *

( , ) or ( );  , , , , ;

 and , , , ,  or , , , ,

dn dn
b rh h t h q h F u v h u v h

F u v h u v h F u v h u v h

    

         

    

   

x n V
 (10)  

 

where ( ) ( , )dn
bh tx  and ( ) ( )dn

rq h  being functions of the boundary coordinate bx  and time t  are the 
prescribed water depth and rating curve at the downstream boundary. 
  
Closed upstream boundary condition (At Closed Boundaries during Ebb Tide): 
At the closed upstream boundary, the normal flux  must be zero, i.e.,   0h   n V . To satisfy this 
condition, three possibilities can occur: (1) both water depth and the normal component of the 
velocity are zero, (2) normal component of the velocity is zero and water depth is not zero, (3) water 
depth is zero and normal component of the velocity is not zero. For the Possibility (1), all three 
waves are standing and no boundary condition is needed. The three boundary-condition equations 
are obtained with three wave functions.  For Possibility (2), the vorticity wave is standing and one of 
the gravity wave is transported out of the region while the other is transported into the region.  
Under such circumstance, only one boundary condition is required, which is the normal component 
of the velocity equal to zero itself. The other two boundary equations are obtained with the vorticity 
wave function and either the positive wave or the negative wave function.  For Possibility (3), all 
three waves are transported into the region; thus three boundary conditions must be prescribed: one 
is that the depth equal to zero and the other may be obtained by setting both normal and tangential 
components of the velocity equal to zero.  
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Based on the above description, the three equations to determine the water depth, x-component of 
the velocity, and y-component of the velocity for these possibilities are stated as follows  
 

       
   

   
       

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * * * * *

 (1) :  , , , , ;  , , , , ;

 and  , , , ,  

 (2) :  0;  , , , , ; and 

, , , ,  or , , , ,

n n n n n n

n n n

n n n

Possibility F u v h u v h F u v h u v h

F u v h u v h

Possibility F u v h u v h

F u v h u v h F u v h u v h

   

 

 

         

   

 

   

   

n V

 (3) :   0;   0;   and  0Possibility h     n V l V

 (11)  

 

where  ( ) ( ) ( ), ,n n nu v h  is the vorticity wave forcing function of ( ) ( ) ( ),  and n n nu v h  in which 
( ) ( ) ( ),  and n n nu v h , respectively, are the x-component of the velocity, the y-component of the velocity, 

and water depth at old time level n , respectively;  ( ) ( ) ( ), ,n n nu v h  is the positive gravity wave 

forcing function of ( ) ( ) ( ),  and n n nu v h ; and   ( ) ( ) ( ), ,n n nu v h  is the negative wave forcing function 

of ( ) ( ) ( ),  and n n nu v h . It should be noted that for Possibility (3), the rest of normal and tangential 
component of the velocity to zero implies that the boundary conditions will be switched to 
Possibility (1) in the next iteration.  
  
Closed downstream boundary condition (At Closed Boundaries during Flood Tide):  
At the closed downstream boundary, the flow rate must be zero. To satisfy this condition, three 
possibilities can occur: (1) water depth and the normal component of the velocity are zero, (2) the 
normal component of the velocity is zero and water depth is not zero, (3) water depth is zero and the 
normal component of the velocity is not zero. For Possibility (1), all three waves are standing and 
no boundary condition is needed.  The three boundary-condition equations are obtained with three 
wave functions.  For Possibility (2), the vorticity wave is standing and one of the two gravity waves 
is transported out of the region while the other is transported into the region. Under such 
circumstance, only one boundary condition is needed, which is the normal component of the 
velocity equal to zero itself.  For Possibility (3), all three waves are transported out of the region, no 
boundary condition is needed and the three boundary condition equations are obtained with three 
wave functions.  
Based on the above description, the three equations to determine the water depth and velocity 
components for these possibilities are stated as follows  
 

       
   

   
       

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

* * * * * *

 (1) :  , , , , ;  , , , , ;

 and  , , , ,  

 (2): 0;  , , , , ; and 

, , , ,  or , , , ,

n n n n n n

n n n

n n n

Possibility F u v h u v h F u v h u v h

F u v h u v h

Possibility F u v h u v h

F u v h u v h F u v h u v h

   

 

 

         

   

 

   

   

n V

       
   

* * * * * *

* * *

 (3) :   , , , , ;  , , , , ;

 and  , , , ,

Possibility F u v h u v h F u v h u v h

F u v h u v h

         

    

   

 

 (12)  
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5. NUMERICAL APPROXIMATION 
 
To provide robust and efficient numerical solutions of the governing equations, many options and 
strategies are provided in the present model so that a wide range of application-depending 
circumstances can be simulated. When the model is cast in conservative forms [Eq. (1)], the 
governing equations are discretized with the finite element method that satisfies the Ladzhenskaya-
Bauska-Brezz (LBB) condition. When the model is cast in the decoupled wave form, the 
characteristic equations [Eq. (2)] are solved with the Lagrangian approach. To facilitate the 
implementation of boundary conditions, the Lagrangian approach is used to solve the primary 
unknowns on the boundary no matter which form of governing equations is adopted. 
One of the key issues in the employment of Lagrangian approaches is the selection of the directions 
of characteristic waves. For one-dimensional problems, the selection is straightforward since there is 
only one direction.  For two-dimensional problems, there are infinite directions but only two 
independent directions are needed to solve well-posed problems.  Thus, the key in the Lagrangian 
step is the selection of these two directions.  Five options are provided in the present model: (1) both 
angles are specified by users, (2) first angle is along the gradient of the pressure and second angle is 
along the velocity, (3) first angle is along the gradient of the pressure and second angle is by 
diagonalization of the two gravity waves, (4) first angle is along the gradient of the pressure and 
second angle is other side of unite circle [Guinot, 2005], and (5) both first and second angles are 
along the Froude line [Paillere et al. 1998]. When a convergent solution is achieved, all five options 
yield almost identical simulations.  However, for some problems, some of these options have 
difficulties in achieving convergent solutions. These issues have been addressed elsewhere [Huang, 
2006] and will not be repeated here 
 
 
6. EXAMPLE PROBLEMS 

 
Three example problems are presented to demonstrate the successful implementation of the splitting 
algorithm in the diagonalized wave equations. One is presented to verify the model. The other two 
are given to demonstrate the application of the model to real world problems. 
 
6.1     Verification Problem  
 
We used a one-dimensional standing wave example [Wang and Connor, 1975] to verify our 
approach.  This problem was governed by the wave equations as follows 
 

2 2 2 2
2 2 2

2 2 2 2;   ;   u uc c c gh
t x t x

    
  

   
 (13)  

 
where u  is the velocity along the flow direction [L/T]; c  is the wave speed [L/T]; h  is water depth 
[L];   is the tide elevation above the mean sea level [L]; g  is gravity [L/T2].  The domain of 
interest was 200 m long in the x-direction and 50 m wide in the y-direction.  It was discretized with 
20 elements: 10 m x 50 m each.  The mean water depth was 4 meters.  The boundary end at 200x   
m was closed, while the other one at 0x   m was open and the water surface elevation fluctuated up 
and down according to 
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0

2sin
200ox

t 


   
 

 (14)  

 

where o  represents the amplitude of the sinusoidal surface deviation applied to the boundary 0x   
m.  Therefore, we set 0u   m/s at 200x   m to satisfy boundary condition for the simulation.  The 
analytical solution of this linear wave problem is as follows 
 

2 2sin 1 cos
200 2002cos

2 2cos 1 sin
200 2002cos

o

o

c x tu
ch

c

c x t
c

c

  


  


                
 
 

               
 
 

 (15)  

 

 Given initial condition at 50t   s according to Eq. (14), we first chose  0.1o   in this 
example to perform a simulation of 400 seconds, i.e., from 50t   s to 450t   s.  We found the 
numerical solution was essentially unchanged for time step size less than 2.5 seconds and element 
number more than 20, which means we have obtained a grid convergent solution to the 
hydrodynamic flow equation (i.e., Eq. (2)) subject to the prescribed boundary condition. Figures 2 
and 3 depict the numerical results and the analytical solutions of the tide elevation above mean sea 
level at 100x   m and 200x   m, respectively for  o    0.1, 0.05, and 0.025.  The differences 
between the numerical result and the analytical solution of Eq. (2) ((Figures 2(a) and 3(a)) was 
caused by the nonlinear terms accounted for in Eq. (2) but not in Eq. (13).  To prove this, we 
reduced  o  from 0.1 to 0.05 and 0.025 to diminish the nonlinear effect.  It is obvious that the 
difference decreased with the reduction of  o . When o  was reduced to 0.025, we had the 
computational result and the analytical solution match almost precisely (Figures 2(c) and 3(c)).  An 
excellent agreement was also obtained in comparison of the velocity at time equal to 100 s, 200 s, 
300 s, and 400 s for the case of  0.025o   (Figure 4).  It is thus verified that our MOC numerical 
model can solve standing wave problems accurately 
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(c) 0.025o     
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Figure 2 The tide elevation above mean sea level at 100x   m for (a) 0.1o   m, 
(b)  0.05o   m, and (c)  0.025o   m 
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Figure 3 The tide elevation above mean sea level 200x   m for (a) 0.1o   m, 

(b)  0.05o   m, and (c)  0.025o   m 
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(b)  t = 200 s 
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(c)  t = 300 s 
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(d)  t = 400 s 
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Figure 4 Comparison of analytical and numerical x-velocity at various times 
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6.2     Salem Harbor Problem   
 
In this example, we used our model to determine water surface elevation at Salem Harbor [Yeh and 
Kalasinsky, 1977] where a tidal boundary condition was given on the open boundary side (i.e., x = 
5,640 m, Figure 5(a)) and the closed boundary condition was employed at the other boundary sides.  
Twenty semidiurnal tidal cycles were applied, which made a 10 day simulation.  The time step size 
was 20 seconds through the simulation.   The maximum amplitude of the tide was 1.4 m.  The eddy 
viscosity was assumed negligible.  The tidal elevation was at zero initially.  The domain was 
discretized with 275 nodes and 462 triangular elements (Figure 5(a)).  The initial water depth varied 
from 1.4 m to 9.0 m (Figure 5(b)).  Convergence was considered reached when either the maximum 
relative error of water depth was less than 10-4 or the root mean square error was less than 10-8. 
 

(a)  Discretization and point sources 
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Figure 5 (a) Discretization and point sources and (b) Initial tides at Salem Harbor 

 
 Figures 6 and 7 plot the velocities and tidal elevations at T/4, T/2, 3T/4, and T during the 
twentieth tidal cycle where T denotes the time period of a tidal cycle.  Based on the computational 
results, though not shown here, a quasi-steady flow pattern has been reached after three tidal cycles.  
In other words, this quasi-steady flow pattern repeated over and over after it is reached.  The quasi-
steady pattern was determined by comparing water depths of two consecutive tidal cycles at 
corresponding times.  In this case we considered a quasi-steady flow to be reached when the 
maximum deviation of tidal elevation was less than 1 cm.  
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(a)  Time = 0.25 T 

1 m/s

 

(b)  Time = 0.50 T 

1 m/s

 
(c)  Time = 0.75 T 
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(d)  Time = 1.00 T 

1 m/s

 
 

 
Figure 6 Velocity plot at various times of the twentieth tidal cycle, T = Tidal period 
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Figure 7 Tidal contour at various times of the twentieth tidal cycle, T = Tidal period 
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6.3 San Diego South Bay Problem   

 
In this example, we used our model to simulate a hypothetical hydrodynamics at San Diego South 
Bay until a quasi-steady flow pattern reached.  This quasi-steady flow pattern was computed with a 
hydrodynamic flow model which solved shallow water equations with time marching [Yeh et al., 
2000].  The domain was discretized with 1,415 elements and 1,567 nodes (Figure 8).  The mean 
depth varied from 20 meters near the ocean boundary to about 0.4 meter toward the south end of the 
bay.  The flow pattern was determined with a tidal boundary condition implemented on the ocean 
boundary side where the maximum tidal amplitude was 1.2 m and with the rest of the boundary 
treated as closed (Figure 8).  It was also assumed subject to 8 point sources (Figure 8) each with an 
injection rate of 1 m3/s.  Manning's n was assumed 0.01 throughout the entire bay.  Figure 9 depicts 
the contours of water surface elevation in the bay area at various times during one tidal cycle. 
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Figure 8 The domain and its discretization of San Diego South Bay 
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Figure 9 Tidal contour at various times of a tidal cycle at San Diego South Bay 

T = Tidal period 
 

 The quasi steady state hydrodynamics including tides and currents provides the flow field to 
drive sediment, thermal, salinity, and water quality transport.  Transient simulations of these scalor 
transport are beyond the scope of this paper.  Sediment and water quality transport in San Diego 
South Bay are treated in a technical report by Yeh et al. (2000).  
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7. SUMMARY 
 
A splitting strategy is employed in to solve two-dimensional shallow water equations which is used 
to describe circulation in the bay/estuary area.  In this approach, we have used the method of 
characteristics first to solve the equations without including eddy flux terms, and then we accounted 
for these terms with the Galerkin finite element method.  We may achieve local diagonalization by 
choosing two characteristic directions to make the coupling term of three waves zero. The cast of 
conservative form of shallow water equations in characteristic form greatly facilitates the 
implementation of boundary conditions. On open boundaries, either three boundary conditions or 
two boundary conditions are needed during flood tides while either no boundary condition or only 
one boundary condition is needed during ebb tides. On closed boundaries, the implementation of 
boundary conditions is much more involved than conventionally prescribed zero flux conditions. 
The implementation of these complicated boundary conditions at closed boundaries are discussed in 
great detail in this paper. Three examples were used to demonstrate the model. The one-dimensional 
standing wave problem was solved to verify the accuracy and efficiency of the present approach.  
Two field scale problems were employed to demonstrate the feasibility of using the method of 
characteristics to solve shallow water equations: one is the application to Salem Harbor and the 
other is to San Diego South Bay. 
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