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PROBABILISTIC CHARACTERIZATION OF HYDROLOGIC EXTREMES USING 

BIVARIATE COPULAS 

 
Janga Reddy M.1, and P. Ganguli2  

                                            
 
Abstract:  The study aims to model the joint distribution of drought duration, severity, and peak 

using bivariate copulas. A nonparametric method, based on kernel density function is used to 

determine probability density function (PDF) of drought characteristics. Drought occurrences 

are analyzed by the Standardized Precipitation Index (SPI) computed on the mean areal 

precipitation, aggregated at 12 months, observed in Western Rajasthan meteorological 

subdivision of India. The study also presents conditional distribution and joint return periods - 

computed as mean inter-arrival time, taking into account drought characteristics – severity and 

duration at a time. Application of the proposed methodology shows a good correspondence 

between empirical and theoretical joint distribution, indicating copulas are adequately 

modeling drought characteristics and helping in computation of exceedence probabilities of 

drought events.  

 

Keywords: Standardized Precipitation Index; Drought; Bivariate copulas; Return Period. 

 
INTRODUCTION 

 
In hydrological studies, Drought is a clim atic anomaly, characterized by deficient supply of 
moisture caused due to either from sub-normal rainfall /erratic rainfall distribution / higher water 
need or a com bination of all these factors. Drought is a perennial feature in some regions in 
India. In India, about 33 per cent of the arable land is considered to be drought-prone (i.e., about 
14 per cent of the total land area of the country) and a further 35 per cent can also be affected if 
rainfall is exceptionally low for extended periods (ESCAP, 1995a). Rajasthan is one of the most 
drought prone areas of India with eleven districts of the state are in arid region. In the present 
study the association between the drought characteristics is modeled with bivariate copula. Using 
Copula function the n- dimensional distribution function is linked to its one dimensional margins 
which is itself a contin uous d istribution f unction characterizin g the model’s dependence 
structure. Copulas are able to capture the dependence structure of random variables 
independently from  the m arginal distributions. Traditionally the droug ht properties are 
investigated by univariate frequency analysis (Tallaksen et al., 1997; Fernandez and Salas, 1999; 
Cancelliere and Salas, 2004). R ecently, by recognizing the significant stochastic association 
between the drought variables c opulas has been used in m ultivariate analyses of  drought 
irrespective of the type of marginal distributions they follow (Shiau, 2006; Shiau et al., 2007; 
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Serinaldi et al., 2009).  
 

DROUGHT DEFINITION AND CHARACTERISTICS 

 
The Standardized Precipitation Index (SPI) is a common indicator of drought, which requires 
only rainfall data (McKee et al., 1993). SPI  is the simple, spatially invariant, and probabilistic in 
nature and can be applied to analyze diffe rent typ es of drought phenom enon, such as, 
meteorological, agricultural, hydrological characteristics etc. The temporal nature of the index is 
also helpful in understanding drought dynamics, such as onset and ending, which is difficult to 
track in other indices. Due to its standardized nature, the freq uency of extreme events at any 
location and on any time scale is consistent (Hays et al., 1999). Moreover due to its probabilistic 
nature, SPI is helpful in carrying out drought risk and decision analysis (Guttman, 1998). The 
SPI can m onitor dry and wet periods over a multiple time scales ranging from  1, 2, 3,... , 72 
months. For example, Agricultural users may be interested in shorter time periods, such as SPI 
for 3-6 months, while hydrologists or water managers might be interested in SPI values for 12 
months. Thus, the SPI is a z-score and represents an event departure from the mean, expressed in 
standard deviation units. The threshold for indicating severity of drought based on SPI has been 
adopted from earlier studies. In practice, the computation of the SPI index in a given year i and 
calendar month j, for a k time scale requires (McKee et al., 1993). 
1. Computation of cum ulative preci pitation series ( )1,...,k

ijX i n=  for a particular m onth of 
interest j, where each term is the sum of the actual monthly precipitation with precipitation of the 
k-1 past consecutive months. 
2. Fitting of a gamma distribution function to the series.  
3. Computing the non-exceedence probabilities corresponding to the cumulative precipitation 
values. As the two-parameter gamma function is not defined for zero values, so the cumulative 
probability becomes, ( ) ( ) ( )1F x q q G x= + − ; where, ( )G x  is the distribution function estimated 

for nonzero precipitation ( )x ; and q  is the zero precipitation probability from the historical time 
series. 
4. Computate SPI values by transforming those probabilities into standard normal variable values, 

( )( )1
tSPI F x−= Φ .  

 
 
 
 
 
 
 
 
 
 

     Fig. 1. Drought characteristics using SPI 
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A drought period is assumed as a consecutive number of intervals where SPI values are less than 
-0.8. A definition sketch of drought characteristics is shown in Fig. 1. Drought severity or 
Magnitude (S) is the cumulative values of SPI within the drought duration. For convenience, 
drought severity is taken to be positive, which is given by (Shiau, 2006),  

1

D

i

i

S SPI
=

= −∑                             (1) 

 

COPULA 

 

Definition and Properties of Copula 

 
Definition A 2-dimensional copula is a function C, with domain [ ]20,1  and range [ ]0,1 , and have 

following prope rties, (i) ( ),0 0C u =  [ ]20,1u∀ ∈  (ii) ( ),1C u u= ; sim ilarly  ( )1,C v v=  

[ ]2, 0,1u v∀ ∈ , and  (iii) since ( ),C u v  is a distribution function, C(u2, v2) - C(u2, v1) - C(u1,v2) + 
C(u1, v1) > 0, if 0≤  u1 < u2 ≤  1 and 0 ≤  v1 < v2 ≤  1. 

Sklar Theorem In bivariate case, considering the two correlated random variables X and Y with 
univariate continuous marginal distribution functions Fx(X) = P(X≤ x) and FY(Y) = P(Y≤ y), the 
link between th e joint distribution and copula C , is given by Sk lar’s theorem  (1959), 

( ) ( ) ( ), , ,X Y x YF x y C F x F y= ⎡ ⎤⎣ ⎦ , such that ,x y∀  in ( ),R∈ −∞ ∞ , where ( ), ,X YF x y  is the joint 
cumulative distribution function (CDF) of the random variables X and Y. 
 

SIMULATION STUDY 

 

The Archimedean class of copula is widely used in hydrology because they are easily generated 
and are capable of capturing wide ranges of dependence. They can be expressed as (Genest and 
Mackay, 1986), ( ) [ ] ( ) ( )( )1,C u v u vφ φ φ−= + , for some convex decreasing function on ( ]0,1 , 

where ( )φ •  is known as generator of the copula and [ ] ( )1φ − •  is the pseudo inverse of ( )φ • . 

If ( )0φ = ∞ ; the generator is termed as strict, and inverse exists. In this case, from the above 

expression, the copula is recovered by, C(u,v) = ( ) ( )( )1 u vφ φ φ− + . Non-strict generators are 

those for which ( )0φ < ∞ . In this case, the generators are said to have a singular component and 

analysis should begin by defining a pseudo-inverse, [ ]1φ − . For example, if  ( ) 1t tφ = − , then 
[ ] ( ) ( )1 1 0t max - t,φ − =  and [ ] ( ) ( )( )1

u vφ φ φ− +  = max (u + v – 1, 0).              
      
The two standard nonparametric correlation measures, viz., population versions of Kendall’s τ  
and Spearman’s ρ  could be expressed in terms of copula function (Schweizer and Wolf ,1981). 
The population version of Kendall’s τ  is defined as the probability of concordance minus the 
probability of discordance and is given as, 
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( )( ) ( )( ), 1 2 1 2 1 2 1 20 0X Y P X X Y Y P X X Y Yτ τ ⎡ ⎤ ⎡ ⎤= = − − > − − − <⎣ ⎦ ⎣ ⎦                   (2) 
If there are c number of concordant pairs and d number of discordant pairs, and out of n paired 
sample there are 2

nC  different ways of selecting two pairs, the Kendall’s τ  can be expressed as, 

 c d

c d
τ −
=

+
 = 

2
n

c d

C

−                            (2a) 

Spearman’s ρ  is computed on the ranks of the original data and expressed as,  

ρ  = 
( )

2

2

61
1

id

n n
−

−
                              (3) 

where i i id x y= − = the difference between the ranks of corresponding values of iX  and iY ; and 
n = th e num ber of values in each dataset. The functional form s of different Archimedean 
copulas, with their generator functions and closed form relationship, Kendall’s τ  with copula 
parameter θ  are given in the Table 1. 
 
Table 1. Functional forms of various Archimedean copulas along with their ( )φ •  functions 

(source: Nelson, 1999) 

 

Copula 

 

( )θC u,v  

 

( )θφ t  

 

θ∈  ( ) ( )
( )∫τ

′

 

Clayton ( ) 1
max 1,0u v

θθ θ −
− −⎡ ⎤+ −⎣ ⎦  ( )1 1t θ

θ
− −  

[-1, )\ {0}∞
 

( )2θ θ +  

Gumbel-
Hougaard ( ) ( )

1
exp ln lnu v

θθ θ⎛ ⎞⎡ ⎤− − + −⎜ ⎟⎣ ⎦⎝ ⎠
 ( )ln t

θ−  [1,∞ ) ( )1θ θ−  

 
A widely used copula in hydrology is the Plackett’ s copula which is in a class of its own. The 
functional form of Plackett copula is given in Eq. (4). There is no closed form relationship exists 
for Plackett’s family of copula and Kendall’sτ . The relationship between Spearman’s ρ  and the 
copula parameter for Plackett’s family of copula is given by Eq. (5), (Nelson, 1999).  
 

( ),C u vθ =   
( )( ) ( )( ){ } ( )

( )

2
1 1 1 1 4 1

,
2 1

u v u v uvθ θ θ θ

θ

+ − + − + − + − −

−
    0θ > ; 1θ ≠            (4) 

      uv ,               1θ =  
( )ρ θ  = ( ) ( ) ( )21 1 2 log 1θ θ θ θ θ+ − − −                       (5) 

The selection of appropriate copula is done by computing a nonparametric empirical copula and 
comparing the values to the estimates of parametric copulas. For bivariate case, the empirical 
copula may be computed as (Deheuvels, 1979). 

( )
1

1, ,
1 1

n
i i

n

i

R S
C u v u v

n n n=

⎛ ⎞= ≤ ≤⎜ ⎟+ +⎝ ⎠
∑ I                        (6) 
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where, n = sample size; ( )AI  denotes the indicator variable of the lo gical expression  A and 
taking the value 0 if A is false and 1 if A is true; iR  and iS  stands for the ranks of the observed 
drought variables. The denominator ( )1n +  is used instead of n to avoid numerical problems at 

the boundaries of [ ]20,1 . Following goodness of fi t tests ar e performed (Ane and  Kharoubi, 
2003): 

• Anderson – Darling  
1 ,1

ˆ , ,
max

, 1 ,

n p

i n j n

p p

i j i j
C C

n n n n
AD

i j i j
C C

n n n n

θ

θ θ

≤ ≤ ≤ ≤

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

              (7) 

•  Integrated Anderson-Darling = 

2

1 1

ˆ , ,

, 1 ,

n pn n

i j

p p

i j i j
C C

n n n n
IAD

i j i j
C C

n n n n

θ

θ θ
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦=
⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑∑              (8) 

•  Cramer-von Mises Distance estimator ( )
2

1

1 ˆ , ,
n

n

n C n p

i

i j i j
S d C C

n n n n n
θθ

=

⎛ ⎞⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑          (9) 

    The Cramer-von Mises estimator θ̂  is defined to be θ  that minimizes the above formula. 

After selecting the appropriate copula model, the joint CDF of drought variable obtained from 
copula method is compared with their empirical nonexceedance probabilities using Gringorten’s 
plotting position formula. The 2χ - test is em ployed to study the theoretical joint d istribution 
obtained using copula functions. 
 
CASE STUDY DEATAILS 

 
Western Rajasthan occupies 196,150 Km2 or 57.31% of India’s total arid zone area. The climate 
is characterized by low, highly variab le and uneven distributed rainfall (annual rainfall varies 
from 10-40 cm ), high wind speed, high evaporation losses, and  extremes of seasonal 
temperatures. The percentage coef ficient of vari ability of rainfall is as high as 60-70%, and 
probability of drought is more than 46%. The monthly area-weighted prec ipitation data of 2 6 
rainfall stations in Western Rajasthan meteorological subdivision is obtained for time period of 
January 1930 to Decem ber 2008 from  Indian In stitute of Tropical Meteorology, Pune 
(http://www.tropmet.res.in). The monthly SPI-12 series was calculated and 35 drought events 
were identif ied. F ig. 2(a) show s location of  Western Rajasthan and Fig. 2(b) shows the 
distribution of the time between the end of one droug ht and start of  another in m onths. 
Correlations between the drought characteristics and non-drought time, before/after the drought 
are small and are not statistically significant at 5% level. 
 

Fitting Marginal Distributions 

 

Drought severity, duratio n, and peak are fitted with non-param etric univariate k ernel density 
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estimator with probability density function, ( )
1

1ˆ
n

i
Ker

i

x X
f x K

nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑        (10) 

where, the function ( )K x  is called a kernel and h is the bandwidth that controls the variance of 
the kernel function. 
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         (a)                 (b) 

Fig. 2. (a) Scarcity affected district in Rajasthan (Source: http://gis.rajasthan.gov.in); 
(b) Histogram of months between the end of one drought and start of the next  

 

Drought duration is fitted with Epanechnikov kernel  while severity and p eak are fitted with 
Normal kernel, the expressions for which are given as, 

Epanechnikov kernel  ( ) ( )23 1
4

K x x= −    1 1x− < <               (11a) 

Normal kernel    ( )
21 exp

22
x

K x
π

⎧ ⎫−
= ⎨ ⎬

⎩ ⎭
  x−∞ < < ∞              (11b) 

The bandwidth is chosen as,
1 54

3opth
n

σ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where σ  is the standard deviation and n is the 

length of the data. Table 1 presents pair-wis e association between  the droug ht variable. The 
Kolmogorov-Smirnov (K-S) goodness-of-fit test is used to detect whether the proposed models 
can be used to represent the observed data as shown in Table 2. 
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Table 1. Dependence Characteristics of flood variables 

Dependence Measure Severity-

Duration 

Duration-Peak Severity-Peak 

Pearson’s product moment 
correlation 

0.934 0. 8166 0.8944 

Spearman’s rank 
correlation 

0.964 0 .7626 0.852 

Kendall’s τ  0.9 05 0.612 0.714 
 

Table 2. Details of the K-S test for the proposed model 

Drought variable and 

Kernel type 

Maximum difference between 

theoretical model and observed data 

Critical values of K-S test at 

5% significance level 

Duration-Epanechnikov  0.11346 0.23 
Severity - Normal 0.1672 0.23 
Peak - Normal 0.0962 0.23 

 

Fitting Bivariate Copulas for Drought Variables 

 

The Clayton, Gumbel-Hougarrd, and Plackett copulas are tested to select the best fitted copula. 
For each of the first two Archimedean families, Kendall’s τ  is used for computation of dependent 
parameter. For the Plackett family, Spearman’s ρ  has been used. The dependence parameter and 
corresponding goodness-of-fit test for each copula is presented in Table 3. From Table 3, it can be 
found that Plackett copula is suitable for modeling Severity-Duration combination and Gumbel-
Hougaard is suitable for Duration-peak and Severity-peak combination respectively. To verify the 
copula based joint distribution, Chi-square goodness-of-fit test at 5% significance level was 
performed and the results are presented in Table 4. As a further test, a Monte Carlo simulation 
(Fig. 3) is performed generating margins of 1000 random pairs of ( ),i iu v  chosen from the two 

copula and transformed back into their original units using the marginal distribution ( )XF x  and 

( )YF y , and compared with the observed values (i.e., ( ),i ix y  in this case).  
 

Table 3. Dependence parameter of copula and corresponding goodness-of-fit test statistic 

Copula theta AD IAD CVM 

Clayton 19.25 2 0.629 0.951 8.518 
Gumbel-Hoagaard 10.626 0 .625 0.996 6.347 

 
Severity-

Duration 

Plackett 258 .90 0.619 0.924 3.832 

Clayton 5.0 0.174 0.099 6.184 
Gumbel-Hoagaard 3.5 0.118 0.081 2.368 

 
Severity- 

Peak Plackett 37.99 5 0.124 0.053 6.979 
Clayton 3 .159 0.447 0.442 5.283 
Gumbel-Hoagaard 2.579 0.397 0.406 3.183 

Duration-

Peak 

Plackett 18.60 1 0.405 0.349 6.194 
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Table 4. Comparison of copula-based joint probability distributions with empirical joint 

distributions using
2χ  test statistics 

2χ -test statistic Severity-Duration Duration-Peak Severity-Peak 

Copula model Plackett Gumbel-Hougaard Gumbel-Hougaard 
2χ -value 0.3786 0.3881 1.1718 

cutoff obtained from 
2χ -probability table at  

5% significance level 

11.0705 11 .0705 11.0705 
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    (a)            (b)                  (c) 
Fig. 3. Observed versus simulated data for the fitted copula. (Observed data shown in red). 

 
The conditional distribution [Fig. 4(a)] of drought severity given that drought duration exceeding 
a certain threshold d ′  is expressed as, (Shiau, 2006) 
 

( ) ( )
( )

,
|

P D d S s
P S s D d

P D d

′≥ ≤
′≤ ≥ =

′≥
 = ( ) ( )

( )
, ,

1
S D S

D

F s F d s

F d

′−
′−

 = 
( ) ( ) ( )( )

( )
,

1
S D S

D

F s C F d F s

F d

′−
′−

  (13a) 

Similarly, conditional distributi on [Fig. 4(b)] of droug ht duration given that drought severity 
exceeding a certain threshold s′  is expressed as, 

( ) ( )
( )

,
|

P D d S s
P D d S s

P S s

′≥ ≤
′≤ ≥ =

′≥
= ( ) ( )

( )
, ,

1
D D S

S

F d F d s

F s

′−
′−

=
( ) ( ) ( )( )

( )
,

1
D D S

S

F d C F d F s

F s

′−
′−

   (13b) 

Both Fig. 4(a) and (b) show that the conditional drought severity distribution and the conditional 
drought duration distribution decreases with drought duration and severity respectively; which 
are useful information in evalu ating the wate r-supply capability and needed  auxiliary water 
resources during severe droughts for a specific water-supply system (Shiau, 2006). 
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Fig. 4(a) Conditional distribution of drought severity given drought duration exceeding 

certain threshold; 4(b) Conditional distribution of drought duration given drought 

severity exceeding certain threshold 

 

Joint Return Periods of Drought Severity and Duration 

 

The return period of a variable is the average elapsed time between occurrences of an event with a 
certain magnitude or greater and is a standard criterion in water resources system planning and 
management. When considering drought duration and severity simultaneously, the bivariate return 
periods ( DST  and DST ′ ) can be defined by (i) drou ght duration exceeding a specific value or 
drought severity exceeding another specific value ( )orD d S s≥ ≥  denoted by DST ; (ii) drought 
duration exceeding a specific value and drought severity exceeding anot her specific value 
( )andD d S s≥ ≥  denoted by DST ′ ; Both return periods  in te rms of co pula-based bivariate 
distribution are given by, 

( )
( )DS

E L
T

P D d or S s
=

≥ ≥
=

( )
( ) ( )( )1 ,D S

E L

C F d F s−
                                         (14a) 

( )
( )DS

E L
T

P D d and S s
′ =

≥ ≥
= ( )

( ) ( ) ( ) ( )( )1 ,D S D S

E L

F d F s C F d F s− − +
                    (14b) 

where L  is the inter-arrival time of droughts as shown in Fig. 1., ( )E L  is the expected inter-

arrival time of droughts estimated from observed data, and ( )DF d  and ( )SF s  are the cumulative 
distribution functions of drought duration and severity respectively. The average drought inter- 
arrival time estimated from the observed data is 26.742 months or 2.23 years. For the 2002-03 
drought (July 2002-June 2003) with a duration 12 month and severity 26.96, the return period 
defined by duration and severity separately are 81.48 and 78 years respectively. For the same 
drought event, the bivariate return period defined by Eq. 14(a) and 14(b) are 61.07 and 114.67 
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years respectively. The former is less than both the return period defined by drought duration and 
severity separately while the later is greater than both the return period. The most severe drought 
observed during the study period is 1968-70 (September 1968-July 1970), which lasted for 23 
months with severity of 51.59 has return period of 16.84 and 40.35 years using Eq. 14 (a) and 14 
(b). The contour lines f or specific joint re turn periods, in which ei ther severity or duration 
exceeded, TDS has no bound s, where as, the joint retu rn period, in which both severity and 
duration are exceeded DST ′  are described by horizontal and vertical axes.   
     

 
10

10

20

20

304050 60
70

duration (months)

s
e
v
e
ri
ty

5 10 15 20

10

20

30

40

50

50 100

100

15

150

duration (months)

s
e
v
e
ri
ty

5 10 15 20

10

20

30

40

50

 
 Fig. 5. (a) Joint return period, either severity or duration are exceeded, TDS (years);  

       (b) Joint return period, both severity and duration are exceeded, DST ′  (years) 

 

CONCLUSIONS 

 

Bivariate copula based m ethodology is developed for modeling drought events an d  
corresponding return periods have been estimated using SPI series computed based on mean areal 
precipitation observed in 26 rainfall stations in Western Rajasthan meteorological subdivision of 
India. By using standard statistical tests the best suited copula is selected and it is found that, the 
Plackett copula performed better for severity – duration; and Gumbel-Hougaard for severity-peak 
and duration-peak respectively. The bivariate probabilistic properties of droughts, viz., joint and 
conditional probabilities, as well as joint return periods, have been investigated for comprehensive 
drought assessment. This study concludes that the copula method is a flexible tool for modeling 
dependence between hyd rometerological variables and provides useful inform ation about 
droughts; thereby it can help in better water resources system planning and management.  
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