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ABSTRACT 

 

Coherent structures are an intrinsic feature of many turbulent flows that are often 

observed in many natural and man-made engineering applications. The work presented in this 

paper can be classified into twofold. In the first part, the spatial distributions and topological 

change of turbulent structures in an idealized vortex street are investigated using the analytical 

approach. In the second part, the 3D numerical simulation is carried out for the flow field of a 

compound open channel to generate the horizontal vortices at the interface of main channel 

and flood plain. The formation of singular points in the coherent structures, and the topological 

change of turbulent structures with the singular points are investigated. It is observed that the 

turbulent structures are changed spatially depending on the structures of singular points (i.e. 

vortex and saddle points). The topological change of turbulent structures in the horizontal 

vortices of the compound channel is found to be consistent with that of approximate solution 

of the ideal vortex street. 
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1. INTRODUCTION 

 

Flows with large scale vortices due to shear layer instability are often observed in many 

natural, geophysical as well as anthropogenic activities. In turbulent shear flows, they play a 

vital role in the overall development of flow through the entrainment, mixing and momentum 

exchange between fast and slow speed fluids. Figure 1 shows an example of the span wise cut 

of coherent structure, in particular in the plane mixing layer. The outer contour of coherent 

vorticity denotes the structure boundary. It shows that there are two critical points in the 

structure: the saddle (S) characterized by negligible spanwise vorticity, and the center of 

vortex (C) characterized by peak spanwise vorticity. Based on the experimental results on 

turbulent structures of a plane shear layer, Hossain (1986) reported that the structure of 

turbulent normal stresses at vortex point are elliptical in shape; on the other hand, the 

turbulent shear stresses show hyperbolic profile. The same patterns are also confirmed in 

further studies with turbulent axisymmetric jets and wakes.  

Among the turbulence models, the k–ε model is the most popular and frequently 

adopted one (Jaw and Chen, 1998). However, the standard k–ε model cannot produce 

satisfactory results for the flow field having high rate of strain and rotation because of its 

isotropic assumption of eddy viscosity. On the other hand, a non-linear model is capable of 

handling the rotational effects as well as anisotropy of turbulence. Since, this type of model 



has been using for calculating many turbulent flows that contain vorticity in the flow field, it 

is worthy to examine the non-linear models predictability of turbulent structures in an ideal 

vortex street.  
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Figure 1 Sketch of a coherent vortex in plane mixing layer 

   

The work presented in this paper can be classified into twofold. In the first part, an 

approximate solution is derived for turbulent characteristics of an ideal vortex street. The 

Stuart vortex, which contains both vortex and saddle patterns in its vorticity contour, is 

considered for this analysis. The aim is to explore the model applicability to large scale 

vortices, and to investigate the spatial topological change of turbulent structures with singular 

points. 

In a compound channel, the large scale vortices are formed at the interface of main 

channel and flood plain. Although the vortex characteristics in a compound channel are 

studied by many researchers both in experimental and numerical means, all are concentrated 

mainly on the effect of vortices on cross-sectional flow or turbulence profiles as well as on the 

channel resistance properties. However, as far as authors’ knowledge, the spatial change of 

turbulent structures with the singular points of large scale vortices are not reported for 

compound open channel flows. In this study, 3D numerical simulation is carried out for the 

flow field of a compound open channel to generate the coherent horizontal vortices at the 

interface of main channel and flood plain. The formations of singular points (i.e. vortex and 

saddle patterns) in the coherent structures, and the topological change of turbulent structures 

with the singular points are investigated.  

 

2. GOVERNING EQUATIONS 

 

The 3D equations for the k–ε model can be expressed as follows: 
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In standard k–ε model, the Reynolds stresses are determined as Eq. (5). 
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In this study, a 2nd order non-linear model expressed in Eq. (6) is used, where Cμ and Cβ  are 

considered as a function of strain (S) and rotation (Ω) parameters.  
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In Eq. (6), 
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Here,  σk = 1.0, σε= 1.3, cε1 = 1.44 cε2 = 1.92, c10 =0.40, c20 =0.0 and c30 = -0.13, have their 

standard values. 

Table 1 shows two sets of model constants. The actual values of model constants in Cμ 

and Cβ determined in our previous studies (Ali et al., 2006) are given in Run-1. Run-2 shows 

a set of trial values that will be used to investigate the sensitivity of empirical functions to the 

structural change of turbulent properties in the vortex point (Focus). 

 

Table 1 Estimated (Run-1) and trial (Run-2) values of model constants 

 

Model 

Const. 

cμ0 cns cnΩ cds cdsΩ cdΩ cds1 cdΩ1 cdsΩ1 mds mdΩ 

Run-1 0.09 0.005 0.0068 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003

Run-2 0.09 0.01 0.007 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003

 

3. APPRPXIMATE SOLUTION OF STUART VORTICES 

 

The equation for stream function of the Stuart vortex can be expressed as follows: 

( )xAy coscoshlog +=ψ                             (11) 

here, 0 ≥ A ≥ -1 is a constant and indicates the eccentricity of the elliptical streamline of the 

vortex. A moderate eccentricity of A=- 0.5 is used in this calculation. Although Stuart vortex 

is a solution of Euler equation, it is shown that the turbulence can be generated in the fixed 

flow field of this vortex.  

The stream function of Stuart vortex is expanded using the Taylor’s function, near the 

origin (0, 0) and at a periodic distance of (π, 0), for the flow field of vortex center and saddle 

point, respectively. The approximated stream functions for focus and saddle points are given 

in Eqs. (12) and (13), respectively. Their stream-line contours are shown in Figure 2. 
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Figure 2 Streamline contour of Stuart vortex approximated by Taylor function at  

(a) vortex center (focus)  (b) saddle point 

 

3.1 Turbulent structures at vortex center (Focus) 

 

From Eq. (12), the velocity field for the vortex point is calculated as 
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In order to determine turbulent stresses using Eq. (6), we need to know the distribution 

of turbulent kinetic energy (k) and dissipation rate (ε). The following polynomial functional 

forms are assumed for the distributions of k and ε. 
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here, k00, k01, k10, k02, k20, k11 are the unknown coefficients for k; and ε00, ε01, ε10, ε02, ε20, ε11 

are that for ε distributions respectively. 

Substituting the assumed k and ε distributions [Eqs. (15) and (16)] into k–ε equations 

[Eqs.(3) and (4)], the following algebraic expressions are derived considering the relations 

among the coefficients for the same power of variables (x, y) in each equation. To avoid the 

complexity in solving a large number of equations, the higher order terms of k01, k10, k02, k20, 

k11, ε01, ε10, ε02, ε20 and ε11 are neglected to form a set of linear equations. 
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Solving the twelve equations from Eqs. (17) to (28), twelve unknowns are determined in 

terms of model constants. Substituting the obtained values of unknown coefficients into Eqs. 

(15) and (16), the k and ε profiles are calculated. The distributions of turbulent intensities and 

shear stresses are obtained by non-linear constitutive equations.  

Figure 3 shows the turbulent structures at the center of vortex determined by 

approximate solution using the model constants of Run-1. It is observed that, the profiles for 

turbulent kinetic energy (k), dissipation rate (ε) [Figures (a) and (b)] as well as the turbulent 



normal stresses in x, y and z directions, expressed as 11uu , 22uu  and 33uu  respectively, 

[Figures (c), (d) and (e)] show elliptical structures; on the other hand the turbulent shear stress 

in xy plane ( 21uu ) show hyperbolic (saddle pattern) profile [Figure (f)] at the center of vortex. 

These features are consistent with the previous experiments reported for free shear flows. 
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Figure 3 Turbulent structures by approximate solution for vortex point (Run-1): 

  (a) k (b) ɛ  (c) 11uu  (d) 22uu   (e) 33uu   (f) 21uu  
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Figure 4 Turbulent structures by approximate solution for vortex point (Run-2): 

(a) k  (b) ɛ  (c) 11uu  (d) 22uu   (e) 33uu   (f) 21uu  

 

The set of model constants for Run- 2 is a trial set of model constants to investigate the 



influence of functional form of Cμ on turbulent structures. Figure 4 shows the turbulent 

structures at vortex center predicted by Run-2. It is observed that the turbulent kinetic energy 

(k), and turbulent intensities, 11uu  and 22uu , show hyperbolic profile instead of elliptical 

structures. That means, Run-2 fails to predict the actual turbulent structures that observed in 

previous experimental studies. By comparing the results for two set of model constants, it can 

be concluded that the turbulent structures in a vortex is sensitive to the functional form of Cμ. 
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Figure 5 Turbulent structures by approximate solution at saddle point (Run-1): 

(a) k  (b) ɛ  (c) 11uu   (d) 22uu   (e) 33uu   (f) 21uu  
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Figure 6 Cross-section of compound open channel 

 

3.2 Turbulent structures at Saddle point 

 

Applying the same procedure as vortex point (Focus) described in last section, the 

turbulent structures are calculated for saddle point using the stream function given in Eq. (13). 

The calculated profiles for k, ε and turbulent stresses are shown in Figure 5. It is observed that 

the turbulent energy, dissipation rate and turbulent normal stresses show hyperbolic profile 

(saddle pattern) in a saddle point. However, the shear stress shows elliptical structure. 

From analytical solution, it can be concluded that the turbulent structures are changed 

with the spatial distance depending on the structure of singular points. The turbulent normal 

stresses show elliptical profiles near vortex center, which changed to hyperbolic profile near 



saddle point at a stream-wise periodic distance of π.  However, the shear stresses show 

hyperbolic structure at vortex center and changes to elliptical at saddle point. The spatial 

change of turbulent structures for turbulent kinetic energy and dissipation rates are found 

similar to turbulent normal stresses. These features are consistent with the previous 

experiments of coherent vortices in plane shear layer and turbulent jets (Hossain, 1986).  
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Figure 7 Plan view of flow vector showing the horizontal vortices at the interface of main 

channel and flood plan (a part of flow domain is shown at t =300 sec) 
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Figure 8 Turbulent structures near the center of a vortex ( x =200~380 cm): (a) plan view of 

flow vectors (b) k  (c) ε  (d) 11uu  (e) 22uu  (f) 33uu  (g) 21uu  

 



4. LARGE SCALE VORTICES IN COMPOUND CHANNEL  

   

The code solves the governing equations for mean velocities and turbulent flow field 

discretized with the finite volume method and is based on a staggered grid system. The 

cross-section of the flume is shown in Figure 6. The computational domain is consist of 200 

grids in longitudinal (stream-wise, x), 42 in transverse (width-wise, y) and 11 in vertical 

(depth-wise, z) directions. The hydraulic variables shown in Figure 6 are B=200, b=75.5, 

H=7.5 and h=5 cm with a longitudinal slope of 1/1000. nmc (= 0.01) and nfp (= 0.028) denote 

the Manning’s roughness coefficient for main channel and flood plain, respectively. Since the 

present work is mainly focused on the modeling of large scale vortices, the averaged flow 

properties are not included here. However, the simulation details and the predictability of 

present model to the mean flow properties can be found in Ali et al. (2007). 
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Figure 9 Turbulent structures near the saddle point ( x =400~450 cm): (a) plan view of flow 

vector, (b) k  (c) ε  (d) 11uu  (e) 22uu  (f) 33uu  (g) 21uu  

 

Figure 7 shows the plan view (horizontal) of simulated flow vectors near the interface 

region at t=300 sec. The focus and saddle patterns in the generated coherent vortices are 

observed in this figure clearly. The turbulent structures for a vortex point (focus) is shown in 

Figure 8 for the stream-wise distance of 200 to 380 cm. The flow vectors of individual vortex 

is shown in Figure 8(a). The figure indicates that the turbulent normal stresses in x, y and z 

directions, expressed as 11uu , 22uu  and 33uu respectively, show the contours in elliptical 

structure at the vortex center. The structures of turbulent kinetic energy (k) and dissipation 

rate (ε) are similar to turbulent normal stresses. On the other hand, the turbulent shear stress in 

xy plane ( 21uu ) shows hyperbolic profile. The results are well agreed to the approximate 



solutions of turbulent structures in an ideal vortex street.  

The turbulent structures for a saddle point are shown in Figure 9. It is observed that the 

turbulent energy and dissipation rate as well as turbulent normal stresses show hyperbolic 

profile (saddle pattern) in a saddle point. However, the shear stress shows elliptical structure. 

Therefore, the changes of topological structures of turbulent stresses in the large scale vertices 

of a compound channel are found compatible to the analytical solution of the ideal vortex 

street, and hence, to the available experimental studies on free shear flows.  

It is also found that the turbulence productions follow the structures of turbulent shear 

stresses. The quantitative comparison indicates that the turbulence production at the vortex 

center is very small, but is larger in the upstream and downstream directions, being the 

maximum at the saddle on either side. This feature is also consistent with the previous 

experiments of coherent structures in free shear flows. 

 

5. CONCLUSION 

 

Based on a non-linear k–ε model, approximate solutions are derived for the turbulent 

properties of an idealized vortex street to examine the predictability of the model for large 

scale vortices. The unsteady 3D numerical simulations are also carried out for a compound 

channel, and the spatial change of turbulent structures with singular points are investigated. 

The findings are summarized below： 

• The Stuart vortex, which contains both vortex and saddle patterns in its vorticity contour, is 

considered as an ideal simple vortex street. The turbulent structures of the vortex street are 

found to be sensitive to the functional form of the coefficient of eddy viscosity, Cμ.  

• The turbulent structures are found to be changed with the spatial distance depending on the 

structures of singular points. It is observed that the turbulent normal stresses show elliptical 

structure near vortex center, which changes to hyperbolic profile near saddle point at a 

stream-wise periodic distance of π. However, the shear stress show hyperbolic structures at 

vortex center, and the structure changes to elliptical at saddle point. 

• The topological change of turbulent kinetic energy and dissipation rates with stream-wise 

spatial distance are found similar to the turbulent normal stresses. 

• The model is found to be capable of generating the horizontal vortices at the interface of 

main channel and flood plain. 

• The turbulent structures in horizontal vortices observed at the interface of main channel and 

flood plain are well agreed with that of approximate solutions of an ideal vortex street and 

consistent with previous experimental observations of coherent structures in free shear 

flows.  
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