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In subtropical eutrophic coastal waters 

around Hong Kong and the region, the 

explosive growth of phytoplankton (algal 

blooms) is often observed. These blooms 

can lead to water discoloration (e.g. red 

tides), severe dissolved oxygen depletion, 

and shellfish poisoning – resulting in beach 

closures and massive fish kills [1]. For 

example, in April 1998, a devastating red tide 

resulted in the worst fish kill in Hong Kong’s 

history - over 80% (3,400 tonnes) of fish 

stocks in Hong Kong were wiped out, with an 

estimated loss of over USD 40 million. 

Despite significant upgrades of the water 

pollution control infrastructure over the past 

two decades, massive harmful algal blooms 

(HAB) still recur and present formidable 

challenges to fisheries management (Figure 

1). Worldwide, HAB is an important problem 

related to the global challenges of water and 

food security. The onset of a HAB is also 

notoriously difficult to predict.  

 

Traditional approaches of red tide monitoring 

and fisheries management rely on field 

sampling and laboratory analysis of chloro-

phyll-a concentration (Chl-a) - an indicator of 

algal biomass - and manual cell counting and 

species identification, which are resources 

intensive and time consuming. With the 

increasing availability of real time water 

quality sensors, the development of HAB 

early warning systems has become a 

practical possibility. In this article, an 

overview of recent research on the use of 

remotely sensed data in a HAB early warning 

system is described. Two aspects of the 

system are presented: (i) daily forecast of 

algal bloom risk based on prediction of 

vertical density gradients using in-situ real 

time (10 min sampling period) water quality 

data; and (ii) use of machine learning to 

automatically detect target HAB species from 

images (30,000 numbers/hour) monitored by 

a submerged Imaging Flow Cytometer at a 

marine fish farm. Further details can be found 

in the cited references.  

Real time forecasting of algal blooms 

using real time water quality data  

The occurrence of HABs in eutrophic coastal 

waters depends on the complex interaction of 

physical and biological factors that include: 

nutrient supply (e.g. inorganic nitrogen and 

phosphorus), algal growth rate, hydro-meteo-

rological conditions (e.g. solar radiation, 
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Fish is an important source of animal protein in the diet of the Asian population and 60 percent of this is from 

aquaculture. Asia contributes about 90 per cent of the global aquaculture production and has become the most 

important supplier to the global seafood trade [7]. It is expected that population growth and economic development 

will lead to increasing fish consumption and global demand for food fish. In Hong Kong, marine fish culture 

(mariculture) has been a major supplier of high value fish including groupers, snappers and sea breams. Local 

mariculture is carried out in cages suspended by floating fish farm rafts in designated fish culture zones (FCZ) which 

are typically weakly-flushed tidal inlets. 

Figure 1. Typical marine fish culture zone located in a coastal tidal inlet and examples of coastal algal 
blooms and fish kills. 
(a) Examples of coastal algal blooms.                                                          

(b) Typical marine fish culture zone and massive fish kill in April 1998.

Artificial Intelligence



Recently we have developed a daily algal 

bloom risk forecast system based on: (i) a 

vertical stability theory; and (ii) a data-driven 

artificial neural network (ANN) model that 

assimilates high frequency data to predict sea 

surface temperature (SST) and vertical density 

stratification on a daily basis. The model does 

not rely on past chlorophyll measurements 

and has been validated against extensive field 

data.  

 

Field observations show that a stable water 

column is necessary for an algal bloom to 

form. In weakly flushed tidal inlets, it can be 

shown that the vertical turbulent diffusivity, E, 

must be less than a turbulence threshold 

defined by the net algal growth rate and the 

euphotic depth – with E<Ec=4μl2/π2, where 

μ= net algal growth rate and l=euphotic 

depth (proportional to Secchi depth) [13], [14]. If 

the vertical mixing exceeds the critical turbu-

lence threshold, too much algae will be mixed 

out of the photic zone into the non-productive 

lower layer, and a bloom cannot be formed. 

The vertical stability criterion has been verified 

against 191 algal blooms over the past three 

decades [8].  

 

In addition to the water column stability 

condition, a nutrient threshold, i.e. total 

inorganic nitrogen > 120 μg/L and orthophos-

phate > 18 μg/L should be met. If both the 

stability and nutrient criteria are fulfilled, there 

is no restriction for the algal population to 

grow in either physical or biological aspects 
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Figure 2. Conceptual framework for a harmful algal bloom (HAB) early warning system for prognostic 
forecast of algal bloom. 

Figure 3. Daily algal bloom risk forecast framework as a function of 
hydro-meteorological and water quality data expressed in terms of a 
hydrodynamic stability risk factor and nutrient availability for the Yim 
Tin Tsai (YTT) Fish Culture Zone, Tolo Harbour, Hong Kong. 

Figure 4. Artificial Neural Network (ANN) for daily prediction of sea surface 
temperature (SST) and vertical temperature difference (ΔTz); the uppermost 
neuron in the input layer shows the most current real time measurement (when 
data is available). Time averages over several days indicated by over bar.

rainfall, air and water temperature, wind), tidal 

currents, water column transparency (light 

extinction) and turbulent mixing which is 

strongly affected by density stratification. The 

impacts of HAB on water quality also depend 

on algal and dissolved oxygen dynamics, and 

nutrient recycling. An early warning system of 

HAB occurrence (even with a lead time of 1-2 

days) can benefit fisheries management and 

emergency response greatly.  

Building on field observations of algal blooms, 

the use of data-driven methods such as 

Artificial Neural Networks (ANN) to predict 

coastal algal blooms has been attempted [2], [9]. 

However, the measurement frequency (typically 

monthly or biweekly) of most water quality 

monitoring protocols was insufficient to capture 

the highly dynamic variation of hydrodynamics 

and water quality, and in particular algal 

biomass. In recent years, HAB early warning 

systems have increasingly been reported [5], [6], 

[10]. Nevertheless, the development of field 

validated HAB forecast systems remains a 

formidable challenge.  

 

Artificial Intelligence



111hydrolink  number 4/2020

Artificial Intelligence

and hence a bloom is likely to occur. Based 

on long term data, the vertical stability 

criterion and the nutrient threshold can be 

cast into probabilistic or risk terms and 

combined to give a prognostic forecast of 

algal bloom risk (high, medium, low) levels. 

Figure 2 shows a conceptual framework of a 

possible data assimilation system based on 

the integration of 3D and data-driven models, 

and field data.   

 

The availability of high-frequency real-time 

temperature, salinity, dissolved oxygen (DO) 

and chlorophyll fluorescence data (at 10-

minute intervals) opens the possibility of 

forecasting algal bloom risks on daily basis. 

Real-time telemetry data monitoring stations 

have now been set up in 12 key fish culture 

zones in Hong Kong, with spatial distances 

ranging from 2.5 to 20 km. Figure 3 shows the 

flow chart of the implementation of the 

forecasting framework for the Yim Tin Tsai 

marine fish culture zone in Tolo Harbour, Hong 

Kong. The vertical temperature and salinity 

gradients (and hence the density gradient) 

can be forecast by assimilation of data and/or 

model predictions using an Artificial Neural 

Network (ANN). Figure 4 shows an ANN 

model with three layers (input, hidden and 

output layers) for daily forecast of SST and 

vertical temperature difference using inputs of 

daily averaged real-time data in the previous 

day together with past hydro-meteorological 

data. A similar network can be obtained for 

the vertical salinity difference. The tidally and 

wind-induced vertical diffusivity E can then be 

estimated (based on 3D hydrodynamic 

models and predicted density stratification) 

and compared with the critical turbulence 

criterion Ec to give a stability risk factor R. By 

analysing all historical algal bloom events, the 

likelihood of a bloom occurrence based on 

hydrodynamic stability can be cast in terms of 

a probabilistic risk, P(B|R). Similarly, the 

likelihood of a bloom based on nutrient avail-

ability (i.e. concentration of total inorganic 

nitrogen and orthophosphate) can be 

obtained as P(B|N) and P(B|P). The algal 

bloom risk for the next day can then be 

obtained using the multiplication rule and the 

Liebig’s Law of the Minimum: P(B) = P(B|R). 

min[P(B|N),P(B|N)].[8]  

Figure 5 and Figure 6 show respectively a 

daily forecast of vertical temperature and 

salinity differential (at two levels). Based on 

Figure 5. Example daily forecast of vertical temperature differential ΔTz 
using hybrid ANN model, compared with daily-averaged real-time data and 
naive prediction given by data on the previous day. Note that the ANN 
daily forecast is continuous while naive prediction is limited by gaps of 
real-time data.

Figure 6. Example daily forecast of vertical salinity differential ΔSz using 
hybrid ANN model, compared with daily-averaged real-time data and naive 
prediction given by data on the previous day. Note the ANN daily forecast 
is continuous while naive prediction is limited by gaps of real-time data.

Figure 7. Example 
daily forecast of 
vertical turbulent 
diffusivity and bloom 
risk compared with 
measured surface 
and bottom 
dissolved oxygen 
and chlorophyll 
fluorescence for a 
dinoflagellate bloom 
observed at YTT FCZ 
in Mar-Apr 2016 
(causative species: 
Akashiwo 
sanguinea; cell 
count:1,000-10,000 
cells/mL).



the forecast, the vertical density gradient at 

the site can then be determined. The ANN 

model is a hybrid model that is capable of 

making short term forecasts even in the 

absence of in-situ data (e.g. due to data 

logger failure, system malfunctioning or 

equipment maintenance). The system has 

been validated against four years of field data, 

with an accuracy comparable to the field 

performance of commercially available 

systems (0.51 ̊ C and 0.58 psu for the 

temperature and salinity, respectively). It 

should be noted that the model is clearly 

superior to the naïve prediction (prediction of 

today’s conditions being same as yesterday). 

In practical deployment, the presence of real-

time data gaps is the norm rather than the 

exception and it is essential to have a model 

that can perform short-term forecasts even in 

the absence of in-situ real-time data.  

 

Figure 7 shows the variation of the estimated 

vertical diffusivity, algal bloom risk, DO and 

chlorophyll fluorescence in March-April 2016. 

It is seen that with the decrease in vertical 

diffusivity towards the end of March 2016, the 

bloom risk becomes steadily high (P(B)>0.8) 

around 26 March, and the stable water 

column resulted in an algal bloom which was 

sighted on 29 March, 2016. The onset of the 

dinoflagellate bloom was indicated by the 

sharp rise in chlorophyll fluorescence and was 

confirmed by direct onsite measurements 

which revealed the causative species to be 

Akashiwo sanguinea with cell counts of 1,000-

10,000 counts/mL and chlorophyll-a > 10 

μg/L. The photosynthetic production in the 

surface layer resulted in DO supersaturation 

(up to 16 mg/L) and a marked DO differential 

between surface and bottom of 4-10 mg/L. 

The bottom DO was depleted to a low level of 

around 4 mg/L during the bloom which 

subsided after about two weeks. The algal 

and DO dynamics is also associated with 

nitrogen and phosphorus uptake [8].  

 

The vertical turbulence at the site is 

dominated by wind-induced mixing prior to 

the bloom which was coincident with a period 

of low wind (< 2 m/s), neap tide, high water 

transparency (large Secchi depth), and 

increasing temperature and vertical 

temperature (salinity) differentials of 4 ̊ C  

(2 psu) respectively. The bloom occurrence is 

clearly correlated with the predicted algal 

bloom risks. As a bloom will occur if nutrients 

are sufficient, it is found that the bloom risk 

due to stability risk is often a good indicator of 

a bloom.  
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Figure 10. Automated classification of 14 target harmful algal bloom (HAB) species using machine 
learning. (a) Examples of IFCB images for 14 target HAB species. (b) Confusion matrix of classifi-
cation result of test images. Numbers in blue boxes along the diagonal line indicates the correctly 
classified images. Class No. 15 refer to all species other than the 14 targets in (a).

Figure 8. HAB species monitoring at fish culture zone using Imaging Flow CytoBot (IFCB). (a) Field deployment of IFCB at fish raft. (b) IFCB 
(c) Hydrodynamic focusing.

Artificial Intelligence

a b c

Figure 9. Classification using a random forest classifier (ensemble of decision trees trained with 
bootstrap sampling and random feature subspace methods). Extracted features of input image are 
presented to classifier and each tree makes a prediction independently. The number of instances that 
each class i being predicted are counted (Ci) and a percentage score is obtained (Pi). The final 
decision is the class with the maximum score (majority vote).
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Automated classification of high-

frequency microalgae images 

High-frequency microalgae image data can be 

acquired in-situ through an imaging 

FlowCytobot (IFCB) that enables the identifi-

cation of HAB species and estimation of cell 

abundance in real time. The IFCB is an 

automated, submersible equipment that can 

be continuously deployed underwater for 

months [11]. Designed using the principle of 

hydrodynamic focusing and flow cytometry, the 

IFCB is able to capture up to 30,000 high-resol-

ution images (3.4 μm/pixel) in an hour (three 5 

mL samples). The observation range is from 10 

μm to 150 μm, which covers most of the 

common algal bloom species in Hong Kong. 

Analysis of image data at such a high sampling 

rate requires automated taxonomic classifi-

cation using machine learning techniques [12]. 

 

Since March 2019 we have been deploying an 

IFCB at the Yim Tin Tsai (YTT) Fish Culture 

Zone in Tolo Harbour, Hong Kong, to collect 

algal image data and monitor algal species. 

The system is equipped with a 4G cellular 

network connection to facilitate remote 

equipment control and data transfer (Figure 8). 

To collect training samples for development of 

auto-classifier, we have performed manual 

annotation of over 330,000 images collected 

by IFCB during the deployment in YTT. These 

images cover 40 categories from species to 

group levels, including diatoms and dinoflagel-

lates. Automated classification approach of 

IFCB images has been developed using both 

(i) random forest algorithm with robust image 

processing and feature selection techniques; 

and (ii) state-of-the-art transfer learning with a 

pre-trained Convolution Neural Network (CNN) 

(i.e. GoogLeNet). The random forest (RF) [3]  

is an efficient machine learning approach 

predicting the label of an unknown image 

based on extracted image features. As illus-

trated in Figure 9, an ensemble of decision 

trees trained with bootstrap sampling and 

feature bagging make predictions indepen-

dently and the final decision is based on 

majority votes. Fourteen commonly observed 

HAB species of particular interest are selected 

as the training targets (Figure 10(a)). Both RF 

and CNN approaches reach classification 

accuracies of over 80% for all target species. 

Figure 10(b) shows the confusion matrix of 

classification results (using the RF approach) 

of 1,000 test images for each species. The 

columns of the confusion matrix represent the 

number of predictions in each class while its 

rows represent the actual observations in each 

class. Testing against unlabelled IFCB samples 

shows that our developed classification 

approach is very efficient with near real-time 

cell abundance estimation of prevailing 

species - results can be obtained within 1-7 

minutes after a sample is acquired. This 

opens the possibility of adapting IFCB into a 

real-time HAB detection and early warning 

system. 
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