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ABSTRACT  

     A new theory of turbulent shear flow over a wavy bed is developed using the 

Reynolds averaged Navier-Stokes (RANS) and the time-averaged continuity equations to 

address (1) the characteristics of free surface profiles over stable sinusoidal sand beds and (2) 

the instability criterion of erodible beds leading to the formation of sand waves. In the first 

case, there exists a spatial lag between the free surface and the bed profiles; and if the flow 

depth is reduced, accumulation of heaved wave in the free surface is developed. In the second 

case, the curves of the Froude number Fm versus nondimensional wave number β decide a 

stability zone. For Fm < 0.8, the bed remains stable with the formation of dunes; while for Fm 

≥ 0.8, the bed remains unstable with the formation of standing waves and antidunes.  
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1.  INTRODUCTION 

     The flow characteristics over bed-forms and their formation have been well explored. 

Anderson (1953) analyzed the fully developed sand waves, using potential flow over a 

sinusoidal bed and sediment transport as bed-load. Kennedy (1963) analyzed the 2D stability 

of dunes and antidunes applying potential flow solution. To produce an unstable wave, he 

defined a spatial lag between the local sediment transport rate and the local bed velocity. 

Later, Reynolds (1965) modified Kennedy’s theory by 3D stability analysis, which was 

supplemented by Engelund and Fredsøe (1971), assuming a sediment transport model of 

suspension. Considering real fluid flow, Engelund and Hansen (1966) developed a stability 

theory of flow over a sinusoidal sand-bed. They assumed a departure in pressure distribution 

resulting from the vertical acceleration of fluid induced by the sinusoidal bed. Hayashi (1970) 

provided an improved justification for the spatial lag following a 2D stability analysis based 

on potential fluid flow. Engelund (1970) proposed a model of the sediment transport based on 

the vorticity transport equation of 2D real fluid flow and a diffusion equation of suspended 

sediment load. Smith (1970) applied the same approach but limited to the flow of low Froude 

numbers. Later, Fredsøe (1974) extended Engelund’s (1970) work by introducing the effect of 

the local bed slope on the bed-load transport rate. Richards (1980) gave a stability theory that 

envisages the occurrence of two modes of instability of formation of ripples and dunes.  

     Based on the RANS equations, a theory of turbulent shear flow over a wavy sand-bed 

is developed addressing (i) the characteristics of turbulent shear flow over a stable sinusoidal 

bed and (ii) the instability of a plane erodible bed leading to the formation of sand waves.  

 

 



2. THE REYNOLDS AVERAGED NAVIER-STOKES (RANS) EQUATIONS 
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Figure 1 Definition sketch of flow over an undulating sand-bed 

 

     Figure 1 shows the definition sketch. The x-axis, having an origin O at convenient 

point, is along the mean bed-level and the y-axis is vertically upwards. For erodible sand-bed, 

the bed elevation is a function of x and time t, say h(x, t), where h is the height of sand wave. 

The elevation of wavy free surface profile is also a function of x and t, say η(x, t). However, 

the mean flow depth D is constant. Due to the gradual variation of the bed undulation, the 

maximum amplitude |h| is small compared to the horizontal scale of the bed-forms and |∂h/∂x| 
<< 1. Likewise, |η| must be small and |∂η/∂x| << 1. The instantaneous velocity components (u, 

v) at a point Q(x, y) is split into time-averaged part (u , v ) and fluctuation part (u′, v′) as  
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     The continuity equations for ( u , v ) and (u′, v′) are  
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     The exact RANS equations of 2D turbulent flow are  
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where P (x, y, t) is the time-averaged hydrostatic pressure relative to mass density of fluid ρ, 

τ(x, y, t) is – , that is the Reynolds shear stress relative to ρ, υ is the kinematic viscosity of 

fluid and g is the gravitational acceleration. Eqs. 2 - 3b form an undetermined system, since 

there are six dependent parameters (namely 

____

vu ′′

u , v , u′, v′, P  and τ) against four equations.  

 

 

3. TURBULENCE ASSUMPTIONS 

     The gradients of the Reynolds stresses along x are nearly zero. Thus, one obtains  

τ/ 0x∂ ∂ ≈ ,  
2( ) / 0u x′∂ ∂ ≈ ,  

2( ) / 0v x′∂ ∂ ≈                 (4) 

     The second assumption is on the law of variation of u  with y in turbulent flow. A 

single averaged distribution of u  is assumed following the 1/p-th power law, where p is 

usually taken as 7 for the turbulent flow over a rigid boundary. Thus, one can write  
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where U0 is the maximum velocity at y = η. A theoretical approximation by the power law 

may be sought in the turbulent stresses that dominate the viscous stresses in Eqs. 3a and 3b. 

Thus, one makes the assumption   
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for a slowly varying variable, ζ = (y – h)
1/p

, where p > 1. Since y – h = ζp
 and dy = pζp-1

dζ, the 

first condition in Eq. 6 becomes  
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where ε and δ ≥ 0 are small constants. The left hand side of the above inequality implies that 
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where θ is an uncertainty function. As u  → 0 for ζ → 0, A(x, t) = 0. Setting B(x, t) = U0(x, 

t)/(η–h)
1/p

 and dropping the uncertain small term containing θε, one gets u  in the form of 

Eq. 5, that remains valid for ζ → 0 or y → h. In Eq. 5, the term U0 represents the maximum 

velocity at a flow section, which can be related to the depth-averaged velocity U(x, t) as  
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     Thus, using Eq. 10, Eq. 5 can be written as a function of U as  
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     The continuity equation, Eq. 2, then yields  

pp

h

hy

x

U
hv

/)1(

η
)η(

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

∂
∂

−−=                    (12) 

 

 

4. FLOW ASSUMPTIONS  

     The free surface profile possesses a curvature with insignificant streamwise gradient. 

It implies that as |∂h/∂x| ≈ 0, |∂η/∂x| ≈ 0. By Eq. 2, the advective vertical acceleration is  
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where tanψ is the slope of a streamline through the point Q(x, y) (= v / u ) and κ is the 

curvature of the streamline through the point Q, such that κ(h) ≈ ∂2
h/∂x

2
 and κ(η) ≈ ∂2η/∂x

2
. 



Following the Boussinesq theory, one can assume a linear variation of κ between the 

curvatures κ(h) and κ(η) at levels h and η (that is h ≤ y ≤ η), respectively, so that  
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     With this value of κ in Eq. 13 and u  given by Eq. 5, Eq. 3b is integrated with respect 

to y and the resulting equation is  
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where 
0P  is the value of P  at y = η. The above equation yields ∂P /∂x, noting that the 

contribution of 2v′  is negligible due to negligible variations of turbulence stresses, as given 

in Eq. 4. The gravity, curvature of flow and 1/p-th power law of variation of streamwise 

velocity with height contribute to the expression for ∂P /∂x. The expression for ∂P /∂x is used 

in the momentum equation, Eq. 3a.  

 

 

5. DEPTH-AVERAGED EQUATIONS  

     Taking the depth-averaged continuity equation, Eq. 2, and using Eq. 10, one can write  
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where D(⋅)/Dt = ∂(⋅)/∂t + u ∂(⋅)/∂x. Eq. 16 thus reduces to  
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     For depth averaging Eq. 3a, from Eq. 15 one gets  
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where γ = (p + 1)
2
/[p(3p + 2)]. Similarly, for the advective acceleration by partially 

integrating the third term of the left hand side of Eq. 3a using Eqs. 2 and 11, one gets  
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where σ = (p + 1)
2
/[p(p + 2)]. Using Eq. 4, the integration of Eq. 3a with respect to y, yields  
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where n is the Manning roughness coefficient. In the above derivation, the Reynolds stress 

τ(y) is assumed to vanish at y = h and η. The bed shear stress τ0 is represented in Eq. 20 by 

applying the Manning equation locally as ρ  = τ2
τu 0 = ρgn

2
U

2
(η – h)

1/3
; where uτ is the shear 

velocity at distance x. Differentiating of Eq. 20, one obtains an alternative form of Eq. 20 as  
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     Eq. 20 or 21 can be viewed a generalization of the Saint Venant equation, considering 

1/p-th power law of velocity and the curvature of streamlines. For application of Eq. 21, it is 

assumed that p ≈ 7, yielding σ ≈ 1 and γ ≈ 2/5. In these approximations, the coefficient of the 

second term of the left hand side in Eq. 21 is unity, while the third term becomes negligible. 

 

 

6. FREE SURFACE PROFILES OVER STABLE UNDULATING SAND-BEDS  

     For steady flow over an undulating sand-bed, the flow depth h and the depth-averaged 

velocity U are invariant of t; and the continuity equation, Eq. 17, yields  

qUh =− )η(                            (22) 

where q is the discharge per unit width. Eliminating U from Eq. 21 with the aid of Eq. 22, 

yields the differential equation of the wavy free surface profile as  
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     If the bed has a sinusoidal form as h = a sin(kx), where a is the amplitude and k is the 

wave number, Eq. 23 in nondimensional form is given by  
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where α is the nondimensional amplitude of bed-form (= a/D), β is the wave number with 

respect to mean flow depth (= kD), F is the Froude number [= q/(gD
3
)

0.5
], ϕ is the bed 

characteristic parameter (= n
2
g/D

1/3
),  is the nondimensional horizontal distance (= kx) and 

 is the nondimensional vertical distance [= (η – D)/(αD)].  
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     A typical numerical experiment was conducted for the values of α = 0.1, β = 13, F = 

0.2 and ϕ = 4×10
-3

. Eq. 24 was then solved by the Runge-Kutta method. A satisfactory 

solution was obtained for the initial values of  = 0.8, /  = –0.71 and /  = –

0.002 at the origin  = 0. The wavy free surface profile computed is shown in Figure 2(a). It 

is evident that the spatial lag is  = 3. In another numerical experiment, the value of β was 

reduced to 9.5 keeping the other parameters unchanged. It means that the mean flow depth D 

is reduced. The values that yield closest to periodicity were found to be  = 0.8, /  = 

–1.41 and /  = –0.003. The profile of the free surface is plotted in Figure 2(b), where 

the peaks of the waves definitely show periodic groups of waves in heaving motion.  
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Figure 2 (a) Nondimensional free surface profile for α = 0.1, β = 13, F = 0.2 and ϕ = 4×10
-3

; 

and (b) nondimensional free surface profile for α = 0.1, β = 9.5, F = 0.2 and ϕ = 4×10
-3

 

 

7. FORMATION OF SAND WAVES  

     When the flow Froude number exceeds a certain lower limit, erosion of sand-bed 

begins. The total-load transport qT per unit time and width is thus assumed to be given by  
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where qB is the bed-load transport rate and c is the concentration of sand suspension. The 

total-load satisfies the Exner’s sediment continuity equation. It is  
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where ρ0 is the porosity of bed sand and C(x,t) is the depth-averaged concentration given by 
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     Due to bed slope, modified bed-load qB equation of Meyer-Peter and Müller is  B
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where s is the relative density of sand, d is the median sediment and μ is the particle frictional 

coefficient (~ 0.1). The bed shear stress is obtained from the Manning equation as τ0 = 

ρgn
2
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. Sediment concentration c has an advection-diffusion equation of the type  
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where ws is the terminal fall velocity of sand, εx is the turbulent diffusivity in x-direction and 

εy is the turbulent diffusivity in y-direction. The diffusivities εx and εy are dependent on flow 

conditions. Thackston and Krenkel (1967) estimated εx as  
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     On the other hand, Lane and Kalinske (1941) estimated εy as  
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     For the present analysis from Eq. 26, the quantity of interest is the depth-averaged 

concentration C. Thus, using Eq. 2 into Eq. 29 and integrating between limits h to η, yields  
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     In the flow domain, the time-averaged velocity u  increases with height y, while c 

diminishes. Hence, in Eq. 32, it can be assumed that u c ≈ UC, replacing the velocity and the 

concentration by the averaged values. The integral of the right hand side in Eq. 29 equals  
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     In the above, the first term vanishes as there is no net vertical sediment flux across the 

extreme levels at y = h and y = η. Eq. 29 thus leads to 
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     Thus, using Eqs. 25, 28 and 34 into the Exner equation, that is Eq. 26, finally yields  
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     Eqs. 17, 21 (with σ = 1 and γ = 2/5), 34 and 35 constitute the equation of perturbed 

flow due to erosion of bed. In Eq. 21, κ(h) = ∂2
h/∂x

2
 and κ(η) = ∂2η/∂x

2
 are taken. To 

investigate sand wave propagation, the above set of equations to the first order is linearized as  

0
ηη

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

x

h

x
U

x

u
D

t

h

t
m                  (36a) 

0
η

16

7η
5

2
3

22

3

3

3

3
2 =+

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂
⋅+

∂
∂

+
∂
∂

+
∂
∂

D

Ugn

x
g

x

h

x
DU

x

U
U

t

U m
mm         (36b) 

2

2

0 ε
x

C

x

U
C

x

C
U

t

C
xm
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

                   (36c) 

0μη
3

1
2

)1(
ε)ρ1(

2

2

3/1

2

2

2

0 =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

⋅−
∂
∂

−
+

∂
∂

+
∂
∂

−
x

h

x

h

xD

U

x

U

dDs

Un
G

x

C
D

t

h mm
x   (36d) 

where G is 12[n
2
gd

2
Um

2
D

-1/3
 – 0.047(s – 1)gd

3
]
0.5

 and C0 is the initial average concentration 

that may occur due to mean flow velocity Um. If an exponential distribution of C0 is assumed 

with εy given by Eq. 31, the average concentration C0 is  
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     For propagating wave type solution of the linear system of differential equations [Eqs. 

36a - 36d with Eq. 37], the solution must be of the form  

)exp()λexp(),,,(),,,η( ikxtCUHECUh −=               (38) 

where it is imperative that Re(λ) > 0 for bounded waves to propagate. Here, Re(λ) denotes the 

real part of λ. In this case, the moving wavy bed-form is h = H exp[-Re(λ)t] exp{i[kx – 

Im(λ)t]} and the flow variables remain bounded for t > 0, where Im(λ) denotes the imaginary 

part of λ. However, for t → ∞, the return to zero value of h is physically inhibited by 

weakening erosion process, resulting in wavy bed-forms for all times. By substitution of Eq. 

36b, noting that the constant term (last term) in Eq. 36b has no role in such a stable solution 

analysis; the following linear algebraic equations are therefore obtained:  
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Eliminating E , H , U  and C  from Eqs. 39a – 39d, one gets the quartic equation for λ: 
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     For formation of sand waves, the real parts of all the four roots must be positive. In 

terms of nondimensional quantities as X = λ(D/g)
0.5

, β = kD, Fm = Um/(gD)
0.5

, ϕ0 = Dϕ/[(s – 

1)d], ϕA = 0.083/[(s – 1)(Fm
2ϕ0 – 0.047)]

0.5
, ε = εx/(gD

3
)

0.5
 = 7.25ϕ3/8

Fm and C0 = 4.853×10
-

4
(Fm

2
/ϕ2

)(uτ/ws)
4
, Eq. 40 can then be written as a quartic equation of X. It is 
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     Eq. 41 has four complex roots. Reasonable values of the different parameters are 

selected as ϕ = 2.5×10
-3

, ϕ0 = 600ϕ and uτ/ws = 0.6 for the computation of the four roots of X 

for different values of wave number β and Froude number Fm. It transpires that all four roots 

have positive real parts when the points (β, Fm) in the β-Fm plot, shown in Figure 3, lie in a 

curved band forming a zone in which bed-forms remain unstable without becoming 

unbounded in time. This zone, where significant sediment transport takes place as bed-load 

and suspended-load, contains the experimental data of antidunes and standing waves, having 

higher values of Fm (> 0.8). The zone shrinks to an asymptotic critical line at Fm = 0.177, 



when β becomes large. Below this theoretical value no root of Eq. 41 exists and bed erosion is 

inhibited due to significant reduction of flow velocity. If C0 is set equal to zero, the transport 

process is due to bed-load only. In this case, the lower boundary of the unstable zone 

degenerates into the asymptotic line Fm = 0.177, that is the lower limit for dune formation. For 

validation, experimental data used are due to Tison (1949), Tsubaki et al. (1953), Brooks 

(1954), Barton and Lin (1955), Plate (1957), Laursen (1958), Simons et al. (1961), Kennedy 

(1961a), Kennedy (1961b) and Guy et al. (1966). Importantly, a group of data of dunes, for β 

< 3, is apparent to lie in the inner stable zone, while other group of data with β > 3 appears to 

lie in the outer stable zone following the critical limit line and becoming independent of Fm, 

although small numbers of dune data remain within the unstable zone. However, in Figure 3, 

it is evident that in the dune zone, the stability limits change considerably by the influence of 

gravity. This is in accordance with the fact that the bed-load transport is the principal 

sediment transport mechanism in the dunal regime, whereas the formation of antidune is 

significantly associated with the suspended-load of sediment transport. However, this is in 

conformity with the present curves in general being well supported by the experimental data.  
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Figure 3 Diagram of stability of sand waves for ϕ = 2.5×10

-3
, ϕ0 = 600ϕ and uτ/ws = 0.6. 

 

  

8. CONCLUSIONS  

     A novel theory of turbulent shear flow over a wavy sand-bed has been evolved to deal 

with two important problems: (1) The characteristics of free surface profiles over stable 

sinusoidal sand-beds and (2) the instability principle of plane sand-beds leading to the 

formation of sand waves. Two basic equations obtained (Eqs. 17 and 20 or 21) can be 

regarded as the generalization of the Saint Venant equations of motion. In case of shear flow 

over a stable sinusoidal sand-bed, the free surface profile lags the bed profile, and when the 

flow depth decreases an accumulation of heaved waves in the free surface is formed. In case 

of instability of a horizontal plane sand-bed, at higher Froude numbers Fm (> 0.8), the bed-

forms remain unstable as standing waves and antidunes, while at lower Fm (with no 

suspended-load ), the instability zone is extended to the lower limit of Fm = 0.177.  
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