
Distributed Ledger Technologies for
Managing Heterogeneous Computing and

Sensing Systems at the Edge

Smart Systems

Turku Intelligent Embbedded and Robotic Systems (TIERS) Lab

Master’s Degree Programme in Information and Communication Technology

Department of Computing, Faculty of Technology

Master of Science in Technology Thesis

Author:

Daniel Andrés Montero Hernández

Supervisors:

MSc. (Tech) Jorge Peña Queralta

Assoc. Prof. Tomi Westerlund

July 2022

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the
Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

DANIEL ANDRES MONTERO HERNANDEZ: Distributed Ledger Technologies for Man-
aging Heterogenous Computing and Sensing Systems at the Edge

Master of Science Thesis, 61 p.
Turku Intelligent Embedded and Robotic Systems (TIERS) Lab
July 2022

The increased popularity of Internet of Things (IoT) devices, ranging from simple
sensors to powerful embedded computers, has created the need for solutions capable of
processing and storing information near those assets. Edge Computing (EC) has become
a staple architecture when designing solutions for IoT, as it optimizes the workload
and capacity of systems dependent of the Cloud, by placing the required computing
power near to where the information is being produced and consumed. An issue with
these solutions, is that reaching consensus regarding the state of the network becomes
more challenging as they scale in size. Distributed Ledger Technology (DLT) can
be described as a network of distributed databases that incorporate cryptography and
algorithms to reach consensus among the participants. DLT has gained traction over the
past years, particularly due to the popularity of Blockchain, the most well-known type
of DLT implementation. In addition to the capability of reaching consensus, another
key concept that brings EC and DLT together, is the reliability and trust that the latter
offers through transparent and traceable transactions. In this thesis, we present the design
and development of a proof-of-concept system that uses DLT Smart Contracts (SC) as
the core for efficiently selecting Edge Nodes for offloading services. We present the
experiments conducted to demonstrate the efficacy of the system and our conclusions
regarding the usage of Hyperledger Fabric for managing systems at the edge.

Keywords: DLT, Edge Computing, IoT, Hyperledger Fabric, Smart Contracts, Sensing
Systems

Contents

List Of Acronyms 1

1 Introduction 2

1.1 Significance and Motivation . 3

1.2 Related works . 4

1.2.1 DLT and Edge Computing . 4

1.3 Contributions . 5

1.4 Structure . 6

2 Background 7

2.1 Distributed Computing Systems . 7

2.1.1 Cloud Computing . 8

2.1.2 The Edge & Edge Computing 9

2.1.3 Distributed Ledger Technologies 10

2.1.3.1 Distributed Ledgers & Blockchain 10

2.1.3.2 Consensus Algorithms 11

2.1.3.3 Smart Contracts . 13

2.1.3.4 Hyperledger Fabric 14

2.2 Software Components . 18

2.2.1 Go . 18

2.2.2 Docker Containerization . 19

i

2.2.3 VPN . 20

3 Solution Design 21

3.1 RoboMesh Platform . 24

3.1.1 Hyperledger Fabric Network . 25

3.1.1.1 Smart Contract: Inventory Management 27

3.1.1.2 Smart Contract: Resource Collection 29

3.1.1.3 Smart Contract: Latency Collection 33

3.1.1.4 Smart Contract: Offload Selection Collection 36

3.1.1.5 Application: Fabric Network Gateway 39

3.2 IoT Daemon . 43

3.2.1 Resource Collection . 44

3.2.2 Network Latency Measurement 49

4 Implementation and Experiments 51

4.1 Hardware Components . 51

4.2 Experimental Results . 54

4.2.1 Local Network: Ethernet . 55

4.2.2 Local Network: Ethernet and WiFi 56

4.2.3 Local Network and VPN: Ethernet 57

4.2.4 Local Network and VPN: Ethernet and WiFi 58

4.2.5 Mixed Network: Ethernet and WiFi 59

5 Conclusion 60

5.1 Future works . 61

References 62

List of Figures

2.1 Hyperledger Fabric Transaction Flow Overview. 17

3.1 RoboMesh Platform Context Diagram 23

3.2 RoboMesh Platform Container Diagram 24

3.3 RoboMesh Platform Container Diagram 25

4.1 Experiment Configuration - Local Network: Ethernet 55

4.2 Experiment Configuration - Local Network: Ethernet and WiFi 56

4.3 Experiment Configuration - Local Network and VPN: Ethernet 57

4.4 Experiment Configuration - Local Network and VPN: Ethernet and WiFi . 58

4.5 Experiment Configuration - Mixed Network: Ethernet and WiFi 59

iii

List of Tables

3.1 Common CRUD Operations . 26

3.2 Timestamp Object Structure . 27

3.3 Inventory Asset Object Structure . 28

3.4 Property Data Type Structure . 28

3.5 Inventory SC Functions . 29

3.6 Resource SC Functions . 30

3.7 Collected Resource Object Structure . 31

3.8 Resource Statistical Analysis Structure 32

3.9 Resource Object Summary Structure . 32

3.10 Latency SC Functions . 33

3.11 Latency Measurement Object Structure 34

3.12 Latency Result Type Structure . 34

3.13 Latency Analysis Object Structure . 35

3.14 Latency Target Type Structure . 35

3.15 Selected Server Object Structure . 38

3.16 REST Endpoints of the Application for Daemon 39

3.17 REST Endpoints of the Application for Inventory SC 40

3.18 REST Endpoints of the Application for Resources SC 41

3.19 REST Endpoints of the Application for Latency SC 42

3.20 REST Endpoints of the Application for Selector SC 42

iv

3.21 Daemon Scheduled Operations . 43

3.22 Daemon HTTP Exposed Endpoints . 44

3.23 Daemon Collected Resource Object Structure 45

3.24 Host Information Type Structure . 46

3.25 CPU Status Type Structure . 46

3.26 Memory Status Type Structure . 47

3.27 Disk Status Type Structure . 47

3.28 Process Status Type Structure . 48

3.29 Docker Status Type Structure . 48

4.1 HNF Server Hardware Details . 51

4.2 Up Board Squared Details . 52

4.3 Raspberry Pi 4 Details . 52

4.4 Raspberry Pi 3 Details . 53

4.5 DLink DIR-882 Details . 53

4.6 Local Network Experiment Data - Ethernet 55

4.7 Local Network Experiment Data - Ethernet and WiFi 56

4.8 Local Network and VPN Experiment Data - Ethernet 57

4.9 Local Network VPN Experiment Data - Ethernet and WiFi 58

4.10 Mixed Network Experiment Data - Ethernet and WiFi 59

List Of Acronyms

DLT Distributed Ledger Technologies

EC Edge Computing

HFN Hyperledger Fabric Network

IoT Internet of Things

SC Smart Contract

1 Introduction

As a means of bringing together some of the latest key technical developments, we at

TIERS have set out to establish a collaborative and long-term autonomous framework for

distributed robotic systems under the RoboMesh Project. The objective of this document

is to establish a design and part of the development of this framework. For the purpose

of testing the efficacy of such a system, we will be combining and integrating Edge Com-

puting and Distributed Ledger Technologies as the backbone for an efficient and seamless

computational offloading service.

Edge Computing (EC) is a paradigm of distributed computing and a well-established

topological concept, and its primary objective is to optimize workload and capability of

systems, by placing information processing capabilities closer to where things and people

produce and consume said information [1].

The crescent popularization of EC and the Internet of Things (IoT) has been a topic of

research in the past years [2]. This exponential growth of IoT has been leveraged by the

continued interconnection of devices, computing resources and robots. An IoT network is

made up of devices with network capabilities, which monitor data or bring intelligence to

multiple domains [3]. The connection of IoT devices which we will explore in this thesis,

comprised mostly of data collecting sensors, can be defined as a Sensing System.

Distributed Ledger Technology (DLT) has gained traction over the past years as well,

particularly due to the popularity of Blockchain, the most well-known type of DLT imple-

mentation. The technology itself is no longer a novelty. The whitepaper that described the

1.1 SIGNIFICANCE AND MOTIVATION 3

cryptography peer-to-peer monetary exchange was published over a decade ago, and the

main characteristics have remained unchanged; but it has slowly made its way into appli-

cations and situations where financial or value transactions are not the only objectives [4].

DLT implementations have high potential in applications that require the participation of

multiple actors, which may have different objectives in distinct points of time, in which

data transactions need to be recorded, shared, and synchronized across the participants [5].

1.1 Significance and Motivation

There has been a massive introduction of devices that can communicate with each other,

sometimes without the direct intervention of people. It is expected that by 2025 there

would be around 150 billion active device connections. The accelerating growth of IoT

devices in the market has resulted in macroeconomic developments due to the increased

investments in the sector [2], an important incentive for the research and development

of TIERS in this area. This project is also motivated by the objective of the RoboMesh

project that the TIERS research group participates in: implementing a trust-emphasized

framework for the integration of distributed computational offloading orchestration with

multi-modal sensor fusion algorithms and collaborative decision-making. As part of the

aforementioned system, we have designed and developed an extensible DLT-based system

that allows the selection of edge resources for offloading sensor related tasks to of distinct

characteristics in a network.

While distributed resource management plays a crucial role in the efficacy of the sys-

tem, and the implementation of algorithms for sensor analysis in the capabilities of the

system, the focus of this thesis is the design and development of Hyperledger Fabric Smart

Contracts to select the best Edge resource available to perform a specific task.

In summary, our main objective is the design and development of a system that will

collect resource data from edge nodes, measure network latency between the nodes and

1.2 RELATED WORKS 4

other computers acting as sensors, and handle the data storage and edge node selection

for offloading through Smart Contracts. An implementation of task offloading orchestra-

tion will be implemented for testing the capabilities of the system, and we will present

a graphical interface that will support the user of the system. The code will be made

publicly available to our GitHub repository1. This thesis will conclude with our obser-

vations regarding the viability of the usage of Hyperledger Fabric Smart Contracts for

orchestrating task offloading in the Edge.

1.2 Related works

Both Edge Computing and Distributed Ledger Technologies are currently relevant and

novel topics in both the industry and academia. The management of Edge systems is a

challenging topic and research regarding the use of DLT as an assisting technology is

growing in popularity. Security, resiliency and permissioned multi-actor participation;

characteristics of DLT [6], can help overcome the challenge of consensus in the collabo-

rative networks. The system must be able to reach an agreement regarding the state of the

network and the availability of the resources. Consensus is one of the biggest challenges

that we are faced with when planning and designing systems that can be large in scale,

and must also communicate with potentially heterogeneous computing resources while

attempting to bring results in a low-latency basis. For the remainder of this section, we

explore and review the different architecture proposals and prototypes of DLT frameworks

for Edge Computing and Sensing systems.

1.2.1 DLT and Edge Computing

As the advancement of computing technologies allows for extension of systems, Edge

Computing and other similar implementations, such as Fog Computing, become more

1https://github.com/TIERS/fabric-edge-node-selector

1.3 CONTRIBUTIONS 5

prevalent as ways to expand the use of the Cloud. Similar to the Cloud, Edge Computing

has the objective of assisting the user by providing computation power, data storage and

application services in a manner that maintains lower latency and improves the perceived

quality of service. While there exist many benefits to the technology, the literature points

out the challenges that such implementations have regarding the security and privacy of

the information that is processed, due to the constant migration of services across edge

nodes [7].

Literature that explores the application of DLT-backed systems is becoming more

prevalent as the technology becomes more frequent due to the numerous applications that

make use of it, ranging from smart grids to localized communication of IoT devices. One

of the key concepts that is used to tie blockchain technology to the management of Edge

Nodes is the guarantee of data integrity and validity, however, it is also mentioned that the

cryptographic workload required can be computer-intensive depending on the consensus

algorithm that is used [8].

Salimi et al. implemented a proof-of-concept DLT framework and the authors con-

clude that the integration of robotics applications with Hyperledger Fabric can have min-

imal impact on the utilization of computational resources [9].

Peña et al. discussed an architecture that enhances the autonomous operations of

connected robots and vehicles with blockchain as the enabling technology to provide

services and manage resources in a transparent and secure way [10].

1.3 Contributions

The contribution of this document is a proof-of-concept platform for offloading computa-

tional tasks to Edge resources using Distributed Ledger Technologies as the core, and can

be summarized as:

• Hyperledger Fabric Smart Contracts that can store the data, helps determine the tar-

1.4 STRUCTURE 6

gets for latency measurement and selects an edge node based on the task parameters

• a Go application that interfaces with Hyperledger Fabric

• a Go application that can measure the host’s current resource availability, and mea-

sures the host’s latency to specific targets

• configuration file for Postman-like REST-Clients to interact with the system

1.4 Structure

The aim of this document is to detail the design and implementation of a Hyperledger

Fabric system using Smart Contracts, the implementation of an application to interface

with the Hyperledger Fabric Network via REST API, and an application to collect the

resource availability in homogeneous edge computing resources, measure network latency

and execute Docker images.

• Chapter 2 introduces the distributed computation concepts relevant to the work and

details the software, hardware and network components.

• In chapter 3, we describe in detail the proposed Smart Contracts, algorithms, com-

munication methods and design decisions for the system.

• In chapter 4, the implementation of the system is described along the focus of the

tests and the data obtained.

• In chapter 5, we report the results obtained from the experiments.

• Finally, chapter 6 explains the conclusions obtained from the implementation of

this work and outlines future work directions.

2 Background

The main part of the project is the development of the Edge Management and Offload-

ing System by exploiting the characteristics of different distributed computing paradigms,

hence the technologies will be explained in detail in this section. Furthermore, the soft-

ware and hardware used in the deployment of the system will be presented and distin-

guished.

2.1 Distributed Computing Systems

Through the years, multiple definitions for Distributed Computing have appeared in lit-

erature and rarely do these definitions agree with one another. The differences between

these definitions usually lies in the scope of the distributed computing system that is being

described by the authors. For the purpose of this work, we have settled on a combination

of the definitions used by van Steen [11] and Coulouris [12]:

"A distributed system is a collection of autonomous networked computing elements,

that appears to its users as a single coherent system, that communicate and coordinate

their actions by passing messages."

From this definition we can extract the three main characteristics of such systems:

• Existence of multiple entities, or nodes, with their own local memory that behave

independently. Nodes can be described as independent hardware devices, or as

independent software processes. And unlike in other computer paradigms, there is

2.1 DISTRIBUTED COMPUTING SYSTEMS 8

no shared memory pool between the nodes used to orchestrate their efforts [13],

instead:

• Communication between the nodes is handled through message passing. The mes-

saging system may vary between implementations, with some of the common ones

being the use of protocols present in operating systems, such as TCP/IP, or by using

Middleware Message Brokers [14].

• End-clients or users interact with the system as if it were a single entity. Since

achieving a single-system view for a system made up of multiple entities, dis-

tributed systems are often just made to appear to be a single coherent system to

the user by behaving according to the expectations [11].

2.1.1 Cloud Computing

The Cloud, as it is often referred to, is the delivery of a plethora of different services

through the network access. These services offered are typically served by distributing

functionalities through a collection of multiple devices, sometimes in multiple locations.

Cloud computing relies on sharing networked resources to cohesively, seamlessly and

conveniently present functionalities to users with access to the network [15].

Cloud Computing is a popular and relevant topic nowadays due to the proliferation of

the IT service delivery business model. As of today, the reliance on the Cloud has grown

incredibly, due to many of the services we consume over the internet being deployed on

these cloud platforms. The main reason cited for this phenomena is the price advantage

that it presents to individuals and organizations, as the usual pay-per-use model is cheaper

than investing in private infrastructure, considering not only the hardware, but also the

set-up and its maintenance [16], [17].

2.1 DISTRIBUTED COMPUTING SYSTEMS 9

2.1.2 The Edge & Edge Computing

Edge Computing is a distributed computing topology and design paradigm, and is com-

monly used to design the architecture of applications. This particular network topology

supports the introduction of computing applications and services as close as possible to

the source of the data that will be computed. This source of data depends on the particular

use case of the system, but can generally be referred to as the end-user of a system; and

accordingly, this section of the network where the data sources and end-users are located

is referred to as The Edge. [1].

Typically, Edge Computing serves as an additional layer between end-devices and

Cloud services. The main reason why the architecture of a service will include Edge

capabilities is to diminish the latency that exists between the two aforementioned layers.

However, the benefits of this paradigm depend heavily on the application. The relevant

highlights of these benefits are:

• Latency: Since some applications rely on the speed of the responses, processing

near the end-device can provide faster results than Cloud services.

• Privacy and Security: Some designs restrict the flow of data between end users and

edge node, minimizing the transmission of sensitive data. Furthermore, the connec-

tions between the Edge resources and the Cloud can be controlled and monitored.

• Data Bandwidth Efficiency: By routing the data from sensors to an Edge resource

where it can be processed, the amount of information that needs to be sent to the

Cloud services can be dramatically reduced, sending only the relevant data or re-

sults.

Some other benefits include limited autonomy, disconnected operation and local interac-

tivity [18], [19].

2.1 DISTRIBUTED COMPUTING SYSTEMS 10

2.1.3 Distributed Ledger Technologies

Distributed Ledger Technology (DLT), as defined by Wright and De Filippi [20], is a

"distributed, shared, encrypted databases that serve as an irreversible and incorruptible

repository of information". From a technical standpoint, the implementation of a DLT

system can be described as replicated databases that arrange chronological bundles of

transactions in a way that the integrity of each proposed transaction can be checked. The

systems give the users the ability to store and access information in the shared database

using cryptographic validation system. Unlike standard centralized accounting ledgers,

DLTs are maintained by a distributed network of participants [21].

The way that DLT systems achieve the previous definition is by implementing a tech-

nology stack that is mainly comprised of four components: distributed ledger, consensus

algorithms, cryptography and smart contracts [22].

2.1.3.1 Distributed Ledgers & Blockchain

Distributed ledgers are consensually shared and synchronized databases. In contrast to a

centralized ledger, distributed ledgers are less prone to cyber-attacks and fraud, since they

don’t suffer from having a single point of failure [23]. In a Blockchain the data stored

in the ledger is updated in real-time via the consensus of the different nodes present in

the network [24]. Generally, as information is introduced by the users, the transactions

are collected in groups, which are referred to as blocks. Once the system determines

that the block has enough transactions, the block is closed and linked to the previous

block, forming a chain of data, unlike a regular database table. The end result of this

configuration is an irreversible timeline of data transactions, which is why it is generally

asserted that once data is part of the chain, it cannot be removed or edited. [24], [25].

However, some DLT implementations differ from Blockchain. The ledger can be

adapted to function as a "Directed Acyclic Graph". In this context, acyclic means that

not all network peers are required to be in sync at all times and are built around the

2.1 DISTRIBUTED COMPUTING SYSTEMS 11

assumption that over time, using built-in communication methods, all information will

be shared and validated by other nodes [26]. Regardless of the data synchronization

method, we are interested in exploring the permission configurations of these distributed

ledgers, those that are permissionless and those that are permissioned. In a permissionless

implementation, anyone is free to join the network and participate in the activities, as is

the case for Bitcoin; whereas in permissioned ones the operator verifies and selects the

entry of participants. Other implementations are also considered private, but for effects of

this document, these do not count as fully distributed ledgers [27].

These different permission implementations exist due to the growth of enterprise use

cases, some of the performance requirements and underlying characteristics need another

type of network implementation. Permissioned DLT platforms are known for the capa-

bility of delivering enterprise-grade functionalities. A permissionless implementation al-

lows for anonymous clients to participate, and consensus is typically reached via Proof of

Work or Proof of Stake. Whereas the permissioned counterparts, as the Hyperledger Fab-

ric website [28] explains, "operate a blockchain amongst a set of known, identified and

often vetted participants operating under a governance model that yields a certain degree

of trust", in other words, allows for secure interactions between entities that have a com-

mon goal, but do not necessarily fully trust each other. The identification of participants

permits the use of consensus protocols that are less resource intensive.

2.1.3.2 Consensus Algorithms

On logical grounds, distributed systems can’t have a central authority present to validate

and verify each transaction, yet every proposed transaction in a DLT must be secured and

verified. Consensus mechanisms are also the mechanisms that generate new blocks in a

blockchain [29]. Said verification and validation must be put in place to tolerate Byzan-

tine Faults, a known condition and challenge of distributed computing systems. Byzantine

Fault refers to components being prone to failure, and the existance of imperfect informa-

2.1 DISTRIBUTED COMPUTING SYSTEMS 12

tion regarding whether a component has failed [30], [31].

Consensus algorithms commonly present in DLT implementations are:

• Proof of Work (PoW):

Requires members of the network to solve an arbitrary mathematical equation that

generates hashes, long strings of numbers. The hash serves as evidence of the com-

putational power expenditure, and if changes are made to the transaction data used,

the hash will result in an unrecognizable and non-replicable hash. The member

of the network to first solve the problem creates the next block and receives a re-

ward. [31], [32].

• Proof of Stake (PoS):

The members of the network, instead of investing in hardware to quickly solve

equations, invest in the digital currency of the blockchain and use their investment

as collateral, or stake. Nodes with higher stakes are selected to validate new blocks

of data. Consensus is encouraged by removing the collateral from the nodes that

verify bad or fraudulent data, and are awarded in proportion to the stake they took

if the majority of validators agrees on the result [31], [33].

• Practical Byzantine Fault Tolerant (PBFT):

PBFT [34] is an algorithm that uses a system based on roles, communication and

consistency. In a network, nodes with different roles are expected to exist and they

verify cryptographic information generated by each other to vote on a consistent

answer. Other than the communication between the client responsible for the pro-

posal of the transaction, and the mechanism that maintains all distributed ledgers in

sync, it depends on a three-phase consensus protocol:

1. Pre-Prepare: primary node verifies and records a transaction proposal, and

assigns an order number. The information is broadcasted to secondary nodes

2.1 DISTRIBUTED COMPUTING SYSTEMS 13

as a Pre-Prepare message. Pre-Prepare messages are verified by listening

secondary node and begin broadcasting a Prepare message to other secondary

nodes.

2. Prepare: secondary nodes are actively receiving prepare messages from other

secondary nodes, verifying them and ensuring consistency. After the verifi-

cation, secondary nodes broadcast a Commit message.

3. Commit: Once enough commits are received by a node, verified and checked

for consistency, the node confirms that the transaction has been voted by

enough nodes.

• Paxos & RAFT:

Similar algorithms to PBFT exist, like Paxos and RAFT. Different DLT frameworks

have implemented algorithms to make use of the different advantages that they may

have [31], [35]. A characteristic of these two consensus algorithms that is worth

mentioning is that they are not Byzantine Fault Tolerant (BFT) unlike PBFT, in-

stead, they are described as being Crash Fault Tolerant (CFT) [36]. Hyperledger

Fabric, the DLT framework that we will be using for this project, is a permissioned

DLT, meaning that nodes are verified members, and thus, focuses on resolving

crashes rather than Byzantine faults [37]. In other words, the primary nodes are

always expected to act correctly.

2.1.3.3 Smart Contracts

In the context of DLT applications, Smart Contracts are programmed functionalities that

automate the exchange of data inside of a blockchain in a transparent manner. These

mechanisms do not require a middleman to verify the validity of the exchange, since the

mechanism is agreed to by all parties in the network, and all the movements and transac-

tions are recorded into the distributed ledger. The storage of the transactions eliminates

2.1 DISTRIBUTED COMPUTING SYSTEMS 14

mistrust between parties and the absence of a verifying middleman raises the cost and

time efficiency [38]. Said smart contracts are stored as code in the DLT network, and are

executed by members of the network, or they can be triggered automatically when the

conditions match the policies [39].

2.1.3.4 Hyperledger Fabric

Fabric is an open-source, modular and general-purpose DLT framework that offers iden-

tity management and access control features. As presented in the Hyperledger Foundation

website [40]:

Hyperledger Fabric is an enterprise-grade permissioned distributed ledger framework

for developing solutions and applications.

Hyperledger Fabric Properties

Hyperledger Fabric, as explained by it’s own websites [28], [36], [41], [42], presents the

following properties:

• Permissioned DLT

Fabric implements a permissioned DLT. The framework is intended for use within

a single organization or a group of aligned organizations, allowing for members to

interact with each other on the established network.

• Data Objects

In Fabric data objects are referred to as Assets. These data objects can be mod-

eled to represent anything that the organizations in a network agree on. Assets are

represented in both binary and JSON form.

• Smart Contracts & Chaincode

In Fabric, smart contracts are written in Chaincode (CC). CC is the software that

defines the assets and all the instructions regarding the transformation of said assets;

2.1 DISTRIBUTED COMPUTING SYSTEMS 15

also known as the business logic layer. These aforementioned functions are initiated

by a transaction proposal from a client, and result in a set of key-value writes which

can be submitted in the network for ledger state propagation.

• Distributed Ledger

The way that Hyperledger Fabric manages its distributed ledger is through the im-

plementation of a Blockchain and a World State Database.

The Blockchain component is a sequenced and immutable record of all the state

transitions that have occurred in the network. State transitions refers to the result

of every transaction proposal that has been submitted. The data that is created or

modified by the transactions are data objects referred to as assets by Hyperledger

Fabric.

The World State Database is used to record and access the current state of the data

objects. Since the latest versions of the assets are available, the database engine

allows the execution of queries without having to decrypt the latest block in the

chain. Hyperledger Fabric supports two different storage options, LevelDB and

CouchDB

LevelDB is the default storage option, and offers simple key-value and, while very

fast, does not support indexes or the execution of complex queries. CouchDB,

the alternative database, is a document-oriented NoSQL engine. It allows for data

indexing and JSON queries, offering more flexibility.

• Consensus

Since version 1.4.1 of Hyperledger Fabric, the development of the deterministic

consensus algorithm started to focus on using RAFT, the CFT consensus algorithm

explored in the chapter 2.1.3.2 Consensus Algorithms. In figure 2.1 we summarize

how consensus is reached during the transaction flow of Fabric.

2.1 DISTRIBUTED COMPUTING SYSTEMS 16

• Network Components

– Certificate Authority (CA): Entities that store, sign and issue digital certifi-

cates in order to ensure the ownership of a public key. Each organization

should have and manage its own CA.

– Peer: In Fabric, the nodes that maintain the ledger and execute the smart

contract functionalities are known as Peers. These entities are owned and

maintained by each organization in the network, and each participating orga-

nization should have one or more peer nodes in the network. In the 2.1.3.2

PBFT explanation, these would be the secondary nodes. Peers keep a copy

of the ledgers that their respective organization have access to.

– Ordering Service: Made up of nodes that ensure consistency of data in all of

the other peers. They order the transactions in the blocks and perform the

validation and commit mechanisms. In the 2.1.3.2 PBFT explanation, these

would be the primary nodes.

– Channels: A channel is the representation of a private blockchain. Channels

are configured via Policies to allow organizations from joining via authenti-

cation, and also dictate which members can read from or write to the ledger.

Each channel creates a private ledger, allowing for data isolation and confi-

dentiality.

– Dynamic Membership: Fabric supports adding and removing organizations,

peers and ordering service nodes without disrupting operability in the net-

work.

• Transaction Flow

The way that the Fabric framework interacts with data objects is through Transac-

tions. Transactions are the invocations of SC, the business logic packaged as CC in

2.1 DISTRIBUTED COMPUTING SYSTEMS 17

Fabric. Fabric uses RAFT in order to reach consensus in the network. The workflow

includes the following steps [43], [44]:

1. Creation of transaction: The flow begins when the client submits a trans-

action through the application. The transaction is sent to peers from each

organization for endorsement.

2. Endorsement of transaction: Peers verify the client’s identity and authority

before simulating the outcome of the proposed transaction. The peers return

the result of their endorsement as a signature back to the client.

3. Submission to Ordering Service: The client collects the endorsements from

the peers. Once the amount of required endorsements has been received, the

transaction is sent to the ordering service.

4. Verification and Commitment: The Ordering service verifies endorsements,

if it matches, the approved transactions are chronologically ordered and pack-

aged into blocks which are then sent to the peers of the participating organi-

zations. The peers ratify, finalize and commit the transactions to the ledger.

Figure 2.1: Hyperledger Fabric Transaction Flow Overview.

2.2 SOFTWARE COMPONENTS 18

Other noteworthy properties of Hyperledger Fabric is that the execution environment

is containerized in Docker, and the framework supports conventional high-level program-

ming languages, like Java, JavaScript and Go, for the development of Smart Contracts

and Applications.

2.2 Software Components

In this section, we overview the programming language used in the development of the

solution and the OS-level virtualization used.

2.2.1 Go

Go or Golang is a compiled programming language designed at Google. The statically

typed language is similar to C, but offers some extra features such as garbage collection,

memory safety and concurrency options [45]. Concurrency is one of the main reasons

why the language was chosen for the implementation of the project, since during the

design phase of the solution it was assessed that the network latency measuring feature

would need to run concurrently in order to make the solution as fast as possible.

While the solution could have also been implemented in other languages, like Python,

Go has the advantage of being one of the native languages supported by the Fabric SDK,

meaning that Smart Contracts from Fabric’s Chaincode, the application that interfaces

with the Fabric network, and the daemon application that performs the latency checks are

all in the same language, making development more streamlined and code maintenance

sustainable. Additionally, Go applications need to be compiled and built, and the resulting

executable binaries do not have system dependencies.

2.2 SOFTWARE COMPONENTS 19

2.2.2 Docker Containerization

The concept of Containerization, while decades old, became a popular way of packag-

ing and deploying software code after the release of Docker in 2013. This paradigm

consists of allowing the core of the OS, through process isolation and virtualization, to

create lightweight components that can be executed individually by combining source

code, operating system libraries and dependencies. It can be described as a lightweight

virtualisation layer. The main benefit of the technology is allowing software to run consis-

tently in heterogeneous architectures. Additionally, the execution of these containerized

components is more portable and resource-efficient than using virtual machines (VMs).

Developing software components using this paradigm results in components executable

on any operating system that supports containerization, making them portable virtually

anywhere [46].

Docker is a popular set of open-source platform-as-a-service (PaaS) products based

on Containerization that enables managing standardized components. Therefore, as a

container platform, we are required to package only the processes and dependencies nec-

essary to execute code. These processes and dependencies are also shared in the host ma-

chine thanks to Docker, allowing for multiple containerized applications to be executed

with very little overhead [47].

The reason why this particular paradigm is relevant to this project, is that it allows

for applications to be packaged and executed in Linux, Windows and even macOS nodes.

The only real limitation in terms of hardware is the capability of handling the Docker

Engine, and having the required resources for the application to be virtualized. Addition-

ally, the platform works in scenarios where servers with different hardware architectures

and components need to be present. Docker makes the implementation of a distributed

system in heterogeneous computer possible, and the available Application Programming

Interface (API) can be adapted to allow a containerized application to create and run other

containers in the host machine, a key functionality in the design and implementation of

2.2 SOFTWARE COMPONENTS 20

this solution.

2.2.3 VPN

Virtual Private Network (VPN) is a technology that expands the availability of private

networks across a public network. In order to ensure that the data transmitted between

two or more devices in a VPN can not be accessed by other nodes in the public network,

the connection is encrypted [48].

As a means for us to connect multiple devices in different private networks to test the

design and implementation of the project, we will be using ZeroTier-One, an established

solution that offers a free and secure VPN service [49].

3 Solution Design

In this chapter of the project we detail the design of the solution for Managing Heteroge-

neous Computing and Sensing Systems at the Edge.

The requirements that lead to the design of this solution are as follow:

• Collaboration: Resources are required to interconnect with various other devices

and share information between each other.

• Time Sensitive Analysis: The solution must be capable of quickly capturing and

analysing the resource availability in the network.

• Security, Trust & Reliability: In order to achieve long-term functionality, the data

in the system must be stored in a manner that prevents tampering, without affecting

the ability to be shared, the stability or the speed of retrieval.

• Extensibility & Scalability: Due to fast-paced introduction of new devices and tech-

nology, the design must allow for flexibility in terms of configuration and capabil-

ities. The addition of devices to the network must be seamless, whether the new

devices are meant to be nodes capable of processing data, or more IoT devices for

the sensing system.

The platform that we set out to design and implement has the objective of securely

storing the information of the devices from a Sensing System and the Edge Computing

Resources that will be available for offloading tasks. The data that will be stored is a com-

CHAPTER 3. SOLUTION DESIGN 22

bination of authentication information, resource status obtained by monitoring hardware

and the latency that exists between the devices.

Having analysed and understood the base requirements and objectives of the system,

the enabling technology components selected for the solution are:

• Hyperledger Fabric: An enterprise-grade blockchain, stable and extensible frame-

work for permissioned distributed ledgers.

• Go: This programming language compiles components that are fast, easy to deploy

and handle concurrency.

• Docker: Feature-rich containerization platform for deploying applications with min-

imal interference to the Operating System.

• ROS: Open-source framework for development of robotic solutions.

• ZeroTier One: An open-source application that allows the creation and manage-

ment of virtual private networks, enabling P2P connections between devices re-

gardless of their physical connection.

The RoboMesh Platform for offloading at the edge is what was decided after con-

sideration of the requirements, objectives and enablers available to us. As described by

Figure 3.1 RoboMesh Platform Context Diagram, the components are the RoboMesh

Platform, the devices that make up the Sensing System and the Edge Resources.

The first component is the RoboMesh Platform, this system is responsible for the

management of the data that the devices in the network generate. This system is the

combination of two components, a Hyperledger Fabric Network (HFN) with Smart Con-

tracts and a REST Service combined with the Fabric SDK to expose an API that can be

consumed by REST Clients or Web Applications.

The Sensing System is what we will refer to throughout the document as the IoT

devices that capture data. The devices, or the computer that they are connected to, will

deploy a Dockerized Daemon through which they will be monitored.

CHAPTER 3. SOLUTION DESIGN 23

Figure 3.1: RoboMesh Platform Context Diagram

The Edge Resources are the hardware components in the network with the capabilities

to perform tasks of higher complexity. Similarly, these computing devices will execute

the Daemon in order to have their resources monitored, and gather which IoT devices

against which they must measure latency. Additionally, the Daemon will serve as the tool

in charge of executing the offloading tasks.

3.1 ROBOMESH PLATFORM 24

3.1 RoboMesh Platform

In this section of the document we will explore in detail the Smart Contract implementa-

tion and how we interface with the system. The Figure 3.2 RoboMesh Platform Container

Diagram presents a more in-depth look at the interactions between the components that

make up the system. The Distributed Ledger component and the API Application are the

core of the solution.

Figure 3.2: RoboMesh Platform Container Diagram

3.1 ROBOMESH PLATFORM 25

3.1.1 Hyperledger Fabric Network

In the subsubsection 2.1.3.4 Hyperledger Fabric we introduced the internal workings of

the network and the components that encompass it. In this subsection we explain how

the SPA, the API Application and HFN components of the system interact as described

by the Figure 3.3 RoboMesh Platform Container Diagram. In the following sections, the

code and data models are presented.

Figure 3.3: RoboMesh Platform Container Diagram

The components that make up the RoboMesh Platform communicate primarily by ex-

changing JSON objects, although the medium may differ. While the REST component

uses HTTP, the components that make up the DLT network use Gossip, a data dissem-

3.1 ROBOMESH PLATFORM 26

ination protocol which signs messages to ensure authenticity and quickly forwards the

contents between the connected peers [50], since there may exist numerous peer and or-

dering nodes.

In the sections to come, we will describe the object structure of the data that is stored

in the ledger, used to communicate with the multiple components and the functions pro-

grammed. However, as to not duplicate parts of tables, whenever we mention operations

with the intent to create, read, update and delete (CRUD) entries to the ledger, we refer to

those detailed in Table 3.1 Common CRUD Operations.

Common CRUD Operations

Function Name Description

Read Retrieves and returns the information of the device with the spec-

ified ID

Create Created a device in the ledger with the information provided

Update Updates the entry in the ledger for a device with the specified ID

with the information provided

Delete Deletes the entry from the world state database

Exists Checks if a device with the provided ID exists in the world state

database

Table 3.1: Common CRUD Operations

Apart from the CRUD operations, we have also designed a commonly used Times-

tamp Object for the implementation, which is detailed in the Table 3.2 Timestamp Object

Structure. This object stores the time of execution of an operation in different formats.

While storing the time following the ISO 8601 format is enough for human-readable re-

quirements, storing the time in the Unix Timestamp format allows for quicker indexing

abilities, since this format represents the current time elapsed in seconds since the Unix

3.1 ROBOMESH PLATFORM 27

Epoch on January 1st, 1970 at UTC [51].

Timestamp Object

Function Name Description

Local Time ISO 8601 formatted local time of the device

Time in Seconds Unix Timestamp formatted timestamp of the device in Seconds

Time in Milliseconds Unix Timestamp formatted timestamp of the device in Millisec-

onds

Table 3.2: Timestamp Object Structure

3.1.1.1 Smart Contract: Inventory Management

The Inventory Management SC is responsible for securely storing the authentication pro-

cedure for accessing all the devices in the network. The stored object also contains some

characteristics of devices required to properly filter and sort the required resources.

In the current implementation of the system, the authentication information of the de-

vices is stored in plain text, as detailed in Table 3.4 Property Data Type Structure. This is

a security risk and this behaviour must not be replicated in production environments. The

decision behind it was for the sake of quickly implementing the proof-of-concept system.

The recommended way to ensure that devices can connect to each other through SSH,

without risking sensitive information being accessed by unauthorized actors, consists of

generating SSH keys for each computer in the network and distributing them to the Edge

Nodes accordingly.

Since device information is maintained, the main functions of this SC are the CRUD

operations detailed in Table 3.1 Common CRUD Operations. However, in order to quickly

filter and access the information of devices, more functionalities were added, as described

by Table 3.5 Inventory SC Functions. These filters are useful when deciding what devices

3.1 ROBOMESH PLATFORM 28

must be targeted by the latency measurement functionality.

Inventory Asset

Field Data Type Description

ID String Object Identifier

Name String Human-readable name of the asset

Owner String Organization to which the device belongs to

Type Integer Identifies the type of the device

State Integer Used to determine whether the device is enabled or

disabled

Properties Property Contains the filterable characteristics of the device,

and the authentication information

Table 3.3: Inventory Asset Object Structure

Property Data Type

Field Data Type Description

GPU Integer Used to determine whether the device has a GPU

Hostname String The IP through which the device is accessed

HostPort String The port enabled for SSH connection

HostUser String The username used when connecting through SSH

HostPassword String The password used to authenticate

Table 3.4: Property Data Type Structure

3.1 ROBOMESH PLATFORM 29

Inventory SC Functions

Function Name Description

List Servers Retrieves and returns all devices of type 0 stored

List GPU Servers Retrieves and returns all devices of type 0 with a GPU stored

List Robots Retrieves and returns all devices of type 1 stored

List Sensors Retrieves and returns all devices of type 2 stored

List Robots and Sensors Retrieves and returns all devices of types 1 and 2 stored

List All Assets Retrieves and returns all of the existing devices

Table 3.5: Inventory SC Functions

3.1.1.2 Smart Contract: Resource Collection

The Resource Collection SC is responsible for securely storing the historic state of the

computing devices and producing the necessary analysis of the data. In the current im-

plementation, the SC is not directly responsible for measuring the resource usage of the

devices, this responsibility falls on the program described in section 3.2 IoT Daemon.

Since the collection and maintenance of data is necessary the SC implements the

CRUD operations detailed in Table 3.1 Common CRUD Operations. Other functionali-

ties offered help accessing the data collected for a particular device and a simple statistical

analysis of the data for a time window.

The resource data object, called StoredStat in the code, is described in the Table 3.7

Collected Resource Object Structure, and the analysis object in This object is derived

from the ResourceStat object from the Daemon, a full description can be found in subsec-

tion 3.2.1 Resource Collection.

The statistical analysis objects are not stored in the database, these are JSON objects

that the SC generates by gathering data the moment that the function is executed. The

function requires the ID of the device and an amount of minutes. The system then finds

3.1 ROBOMESH PLATFORM 30

all the collected data of the device in the database, and the time frame is two timestamps:

the first timestamp is the moment that the function is executed, and the second timestamp

is generated by subtracting the amount of minutes indicated from the first. This means that

the system always finds the latest recorded information, between the moment of function

execution and some minutes into the past.

Resource SC Functions

Function Name Description

Get All Resources Retrieves and returns all stored resource objects

Get All Resources for De-

vice

Retrieves and returns all stored resource objects for a particular

device

Get Resource for Device

in Time frame

Retrieves and returns the stored resource objects of a device col-

lected in a particular time window

Resource Analysis for

Device in Time frame

Retrieves and analyses the resource objects of a device collected

in a particular time window, returns the Resource Analysis Object

Table 3.6: Resource SC Functions

3.1 ROBOMESH PLATFORM 31

Collected Resource

Field Data Type Description

ID String Object Identifier, created by combining the Inven-

tory ID and the timestamp at the time of the collec-

tion

Hostname String Refers to the Inventory ID, stored on its own for in-

dexing and querying purposes

Timestamp Timestamp Type Timestamp Object

Host Information Host Information

Type

Information that the Operative System from the de-

vice supplies

CPU Status CPU Status Type CPU Information and usage at the time of collection

Memory Status Memory Status

Type

Total capacity of memory and usage percentage at

time of collection

Disk Status List of Disk Status

Type

Lists information and capacity of found disk drives

in device

Process Status Process Status

Type

Information regarding the number of running pro-

cesses in the system

Docker Status List of Docker Sta-

tus Type

Lists the docker containers found in the system and

their information

Table 3.7: Collected Resource Object Structure

3.1 ROBOMESH PLATFORM 32

Resource Statistical Analysis

Field Data Type Description

Hostname String Refers to the Inventory ID

Duration Integer Used to generate the time frame from which the his-

toric data will be selected

Average CPU Float Average CPU Usage during the time frame

Average Memory Float Average Memory Usage during the time frame

Containers Integer Number of running docker containers

Stat Summary List of Resource

Object Summary

Type

Summarized version of the Collected Resource Ob-

ject

Table 3.8: Resource Statistical Analysis Structure

Resource Object Summary

Field Data Type Description

ID String ID from the Collected Resource object from which

this data is generated

Timestamp Timestamp Type Timestamp Object

CPU Average Us-

age

Float Average CPU Usage during time frame

Memory Average

Usage

Float Average Memory Usage during the time frame

Running Contain-

ers

Integer Number of running docker containers

Table 3.9: Resource Object Summary Structure

3.1 ROBOMESH PLATFORM 33

3.1.1.3 Smart Contract: Latency Collection

The Resource Collection SC is responsible for securely storing the historical latency in-

formation between the devices that the Daemon generates. Since this SC also stores data

into the ledger, it requires all of the functionalities that were described in Table 3.1 Com-

mon CRUD Operations.

The other functions that this SC requires are similar to those in the Resource SC;

they help filter out all of the latency measurements done by a certain host, or that include

a certain device as their target. Also in this case, a function generates a summarized

analysis of the historical data, which are detailed in the Table 3.10 Latency SC Functions.

Latency SC Functions

Function Name Description

Get All Measurements Retrieves and returns all stored latency objects

Get All Measurements by

Device

Retrieves and returns all measurements done by a device in a spe-

cific time frame

Get All Measurements by

Target

Retrieves and returns all measurements done to a device in a spe-

cific time frame

Latency Analysis by Tar-

get

Retrieves and analyses the latency measurements done to a device

collected in a particular time window, returns the Latency Analy-

sis Object

Get Latency Targets Returns a list of devices that the asking server needs to measure

latency with

Table 3.10: Latency SC Functions

This SC stores the results of the Latency Measurement Operation described in the

subsection 3.2.2 Network Latency Measurement. The object fields are described by the

Table 3.11 Latency Measurement Object Structure. The function that analyses the historic

3.1 ROBOMESH PLATFORM 34

latency information does not store data and is generated on execution, it returns a list of

the analysis object, explained by the Table 3.8 Resource Statistical Analysis Structure. In

the list there will be an entry of analysis for each server that measured its latency against

the selected target. In order for the servers to know which devices they have to measure

their latency, the servers can request a list of targets, the object fields are specified in the

Table 3.14 Latency Target Type Structure.

Latency Measurement Object

Field Data Type Description

ID String Object Identifier, created by combining the Inven-

tory ID and the timestamp at the time of the collec-

tion

Source String Refers to the Inventory ID, stored on its own for in-

dexing and querying purposes

Timestamp Timestamp Type Timestamp Object

Results List of Latency Re-

sult Type

List of all the latency operations executed by the

server

Table 3.11: Latency Measurement Object Structure

Latency Result Type

Field Data Type Description

Hostname String Refers to the Inventory ID of the device that was

measured by the server

Latency Integer The milliseconds it took to execute the operation

Table 3.12: Latency Result Type Structure

3.1 ROBOMESH PLATFORM 35

Latency Analysis Object

Field Data Type Description

Hostname String Refers to the Inventory ID of the server that per-

formed the measurement operation

Target String Refers to the Inventory ID of the device that was

measured by the server

Duration Integer Used to generate the time frame from which the his-

toric data will be selected

Average Latency Float The average milliseconds that took the executing

server to connect to the target device

Latency Summary List of Integer List of analysed latency results from the past in mil-

liseconds

Table 3.13: Latency Analysis Object Structure

Latency Target Object

Field Data Type Description

Hostname String Refers to the Inventory ID of the server that re-

quested the information

Targets List of Inventory

Asset

Returns a list of Inventory objects, including the

SSH authentication information

Table 3.14: Latency Target Type Structure

3.1 ROBOMESH PLATFORM 36

3.1.1.4 Smart Contract: Offload Selection Collection

The Offload SC, while also being responsible for the storage of data, is responsible for

selecting which server will take part in the offloading of a task, based on the latency and

resource status stored by the previously described contracts.

The SC also implements the necessary CRUD operations described in the Table 3.1

Common CRUD Operations in order to securely store and access the Selection Object

detailed by the Table 3.15 Selected Server Object Structure.

To summarize the process that selects the correct server, described with pseudo-code

in Algorithm 1: Offload Server Selection, the process starts by obtaining the analysis

of Latency Measurements previously performed at the targeted device. The system then

obtains the list of devices identified as servers, depending on whether the property of the

task requires the Edge Node to have a GPU. To ensure that only available devices will

be in the selection, the list is filtered to only include those Nodes which have performed

the latency measurement in the specified time frame. Using the filtered list of devices,

we obtain the analysis of hardware resources of each Node concurrently. Latency and

Resource analyses are merged into a list of Selection Objects. The list is then sorted in

ascending order by the Latency Average. In the case that two or more devices share the

same average, the list is sorted in ascending order by CPU Average, then by Memory

Usage Average and finally by the amount of Containers being executed. This sorting

method ensures that the server with the best connection or more available resources is

selected.

3.1 ROBOMESH PLATFORM 37

Algorithm 1: Offload Server Selection
Input:

Device to Offload task from: target

Task Properties: taskProperties

Minutes for analysis time frame: minutes

Output:

Selected Server : selected;

List of other Servers : selectedServerList;

latencyAnalysis = latencySC.AnalyseLatencyToTarget(target, minutes);

if taskProperties.GPU == TRUE then

serverList = inventorySCGetServerListGPU();

else

serverList = inventorySCGetServerList();

filteredServerList = removeUnusedServers(serverList);

resourceAnalysis = [];

// Analyse each server in list concurrently

for server in filteredServerList do

resource = resourceSC.AnalyseResources(server);

resourceAnalysis.append(resource);

selectedServerList = combineAnalysis(resourceAnalysis, latencyAnalysis);

selectedServerList.sortByValue("latency", "averageCPU");

http.Post(applicationUrl, selectedServerList[0]);

return selectedServerList

3.1 ROBOMESH PLATFORM 38

Selected Server Object

Field Data Type Description

ID String Object Identifier, created by combining the Inven-

tory ID of the device to be offloaded and the times-

tamp at time of selection

Timestamp Timestamp Type Timestamp Object

Target String Inventory ID of the device to be offloaded, stored for

indexing purposes

Selected Asset String Inventory ID of the Edge Node for offloading

Average Latency Float Average latency at time of analysis

CPU Average Us-

age

Float Average CPU Usage at time of analysis

Memory Average

Usage

Float Average Memory Usage at time of analysis

Running Contain-

ers

Integer Number of running docker containers

Table 3.15: Selected Server Object Structure

3.1 ROBOMESH PLATFORM 39

3.1.1.5 Application: Fabric Network Gateway

In order to establish a way to interact with the multiple Smart Contracts hosted in the

HFN, we have implemented a Gateway application. This Gateway provided by the Fabric

SDK uses the network’s signed certificates to authenticate, and can communicate with the

Peer Nodes and Ordering Service to execute the transactions and processes of the Smart

Contracts. The application has a built-in HTTP server that exposes REST Endpoints in

order for the users, and other parts of the network, to communicate and retrieve the data

stored in the Ledger.

The first set of Endpoints, detailed in Table 3.16 REST Endpoints of the Application

for Daemon is destined to be accessed only by the Daemon Application. The tables in

this subsection depict the URL from which the functions can be executed, and which SC

or functionality it correlates to.

REST Endpoints for Daemon

Method and Route Description

POST "/collector" Used for collecting Resources

from Daemon

POST "/measurement" Used for collecting Latency

Measurement from Daemon

Table 3.16: REST Endpoints of the Application for Daemon

The rest of the routed endpoints of the application are all designed to execute the

functionalities implemented by the Smart Contracts, as described in the following tables.

3.1 ROBOMESH PLATFORM 40

Inventory REST Endpoints

Method and Route Description

GET "/inventory" List All Assets

GET "/inventory/servers" List Servers

GET "/inventory/servers/gpu" List GPUServers

GET "/inventory/robots" List Robots

GET "/inventory/sensors" List Servers

GET "/inventory/:asset" Read Asset by ID

PUT "/inventory/:asset" Update Asset by ID

POST "/inventory/" Creates Asset based on Payload

Table 3.17: REST Endpoints of the Application for Inventory SC

3.1 ROBOMESH PLATFORM 41

Resources REST Endpoints

Method and Route Description

GET "/resources" List All Resources

GET "/resources/device/:device" List All Resources for Device

GET "/resources/device/:device/minutes/:minutes" List Resources for Device in

time frame

GET "/resources/analysis/device/:device/minutes/:minutes" Resource Analysis for Device

in time frame

GET "/resources/:id Read Resource by ID

PUT "/resources/:id Update Asset by ID

POST "/resources" Creates Resource based on

Payload

Table 3.18: REST Endpoints of the Application for Resources SC

3.1 ROBOMESH PLATFORM 42

Latency REST Endpoints

Method and Route Description

GET "/latency" List All Latency

GET "/latency/target" Get Latency Targets

GET "/latency/source/:device/minutes/:minutes" Get All Measurements by De-

vice

GET "/latency/target/:device/minutes/:minutes" Get All Measurements by Target

GET "/latency/analysis/device/:device/minutes/:minutes" Latency Analysis for Device in

time frame

GET "/latency/:id Read Latency by ID

PUT "/latency/:id Update Latency by ID

POST "/latency" Creates Latency based on Pay-

load

Table 3.19: REST Endpoints of the Application for Latency SC

Selector REST Endpoints

Method and Route Description

GET "/selector" List All Selections

GET "/selector/:id" Read Selection by ID

GET "/selector/target/:device" Get All Selections for Target

GET "/selector/asset/:device" Get All Selections of Device

GET "/selector/target/:target/minutes/:minutes" Select Device for Target in time

frame

Table 3.20: REST Endpoints of the Application for Selector SC

3.2 IOT DAEMON 43

3.2 IoT Daemon

In order to collect the necessary data from Edge Nodes, perform the latency measurement

operations and execute the offloaded tasks, we designed and implemented a Daemon Ser-

vice in order for all the required tasks to be executed repeatedly. A Daemon is a computer

software that continuously runs in order to perform a specific service [52].

The software implemented in this project uses a CRON Scheduler to perform oper-

ating system, HTTP and Docker operations at a specified time rate. CRON is a Linux

command that allows tasks to be scheduled for execution at a specific time or periodically

[53]. The rate of time at which the operations are executed is configurable by changing

the value, expressed in seconds, in the configuration file of the application. By default,

the Scheduler executes the programmed tasks every 30 seconds, the tasks are detailed in

the Table 3.21 Daemon Scheduled Operations.

Our Daemon is deployed in all of the devices of the network in a Docker Container.

It was programmed to handle a limited amount of operations and it exposes three HTTP

endpoints to allow for remote communication described in Table 3.22 Daemon HTTP

Exposed Endpoints.

Daemon Scheduled Operations

Function Name Description

Resource Collection Collects hardware information and status from the host

Perform Latency Mea-

surement

Retrieves a list of devices from Application and measures latency

between host and targets

Table 3.21: Daemon Scheduled Operations

3.2 IOT DAEMON 44

Daemon Exposed Endpoints

Method and Route Description

GET "/heartbeat" Collects hardware information and returns it without uploading

the results to the Application

GET "/latency" Forces the execution of the scheduled Latency Measurement op-

eration but does not upload results to the Application

POST "/latency" Performs the latency measurement operation to targets specified

in method payload

Table 3.22: Daemon HTTP Exposed Endpoints

3.2.1 Resource Collection

In order to correctly select the Edge Node with enough hardware resources for offloading

the tasks, the Daemon is tasked with collecting the hardware status information on the

device, this is the data that is used for analysis in the Resources SC of the HFN.

The information collected by the application is detailed in the Table 3.23 Daemon

Collected Resource Object Structure and the subsequent tables. It is worth noting that at

the time of collection, the Daemon does not assign an ID to the data, instead, the HFN

Gateway Application is responsible for determining which host is sending the information

and assigning it a unique identifier for storage in the Distributed Ledger.

3.2 IOT DAEMON 45

Daemon Collected Resource

Field Data Type Description

Timestamp Timestamp Type Timestamp Object

Host Information Host Information

Type

Information that the Operative System from the de-

vice supplies

CPU Status CPU Status Type CPU Information and usage at the time of collection

Memory Status Memory Status

Type

Total capacity of memory and usage percentage at

time of collection

Disk Status List of Disk Status

Type

Lists information and capacity of found disk drives

in the device

Process Status Process Status

Type

Information regarding the number of running pro-

cesses in the system

Docker Status List of Docker Sta-

tus Type

Lists the docker containers found in the system and

their information

Table 3.23: Daemon Collected Resource Object Structure

3.2 IOT DAEMON 46

Host Information Type

Field Data Type Description

Hostname String Human-readable name assigned to the device

Boot Time Integer Seconds since the device booted

Platform String Operating System Platform

Virtualization Sys-

tem

String The virtualization platform in which the system re-

lies

Virtualization Role String Whether the system is a virtualiztion guest or host

Host ID String Unique host ID provided by the OS

Table 3.24: Host Information Type Structure

CPU Status Type

Field Data Type Description

Model Name String Model of the CPU

Vendor ID String ID of the CPU Manufacturer

Average Usage Float Average usage percentage of the CPU

Core Usage List of Floats Usage percentage of each CPU Core

Table 3.25: CPU Status Type Structure

3.2 IOT DAEMON 47

Memory Status Type

Field Data Type Description

Total Integer Total Amount of Memory in Bytes

Available Integer Amount of available Memory in Bytes

Used Float Percentage of used memory

Table 3.26: Memory Status Type Structure

Disk Information Type

Field Data Type Description

Device String Name of the Disk

Path String Path through which the Disk is accessed

Label String Human-readable name of Disk

FsType String File System Type of Disk

Total Integer Total size of Disk in Bytes

Used Integer Amount of Bytes of Disk used

Used Percentage Float Percentage of Disk used

Table 3.27: Disk Status Type Structure

3.2 IOT DAEMON 48

Process Status Type

Field Data Type Description

Total Integer Amount of processes running

Created Integer Amount of processes created since boot

Running Integer Amount of currently executing processes

Blocked Integer Amount of currently blocked processes

Table 3.28: Process Status Type Structure

Docker Status Type

Field Data Type Description

Container ID String UUID of the Docker Container

Name String Human-readable name of Docker Container

Image String Image name of the container

Status String Status information of the container

State String Determines whether the container is currently run-

ning

Table 3.29: Docker Status Type Structure

3.2 IOT DAEMON 49

3.2.2 Network Latency Measurement

Performs network latency analysis between the host and the selected targets, instead of

relying on Ping, we authenticate into the system and simulate data transfer to more accu-

rately predict the time-to-reply of the systems.

The process is explained by the Algorithm 2: Latency Measurement

In summary, the algorithm obtains a list of devices to which the program needs to

connect. In a concurrent fashion, the algorithm starts tracking the execution time as it

performs SSH connections to the devices with the obtained authentication data, and prints

information to check the validity of each connection. If the connection is valid, the con-

nection is closed and the execution time is stopped. Once all the concurrent tasks are

finished, the list of measurements is sent to the Application via an HTTP Post. In the case

that a remote connection fails, or the information printed by the device is compromised,

the result is stored as a -1. This negative value is ignored when performing the latency

analysis between the devices, but it remains in the ledger.

3.2 IOT DAEMON 50

Algorithm 2: Latency Measurement
Output:

List of Latency Results : measurementResults;

// Get Targets from Application

targetList = http.Get(applicationUrl);

measurementResults = [];

// Perform tasks concurrently

for target in targetList do

startT ime = time.Now();

sshConnection = ssh.Dial(target.Authentication);

sshConnection.executeCommand("echo " + startTime);

readTerminal = sshConnection.readBuffer();

// Checks validity of connection and value of string

if (readTerminal == startTime) && (sshConnection == TRUE) then

sshConnection.close();

elapsedT ime = time.Since(startTime).Milliseconds();

else

elapsedT ime = -1;

measurementResults.append("target": target.ID, "latency": elapsedTime);

// Send results to Application

;

http.Post(applicationUrl, measurementResults);

return measurementResults;

4 Implementation and Experiments

In this section, we describe the hardware elements of the devices used to test the platform.

We also describe the different experiments made, including the different network topology

configurations of the devices and the data that was gathered.

4.1 Hardware Components

In order to test the network with a variety of servers and devices to act as Edge Nodes

or IoT devices, we have selected four different computers and one router. The following

tables describe the role that each of these devices will have during the experimentation.

HNF Server

Field Description

Role HNF Host and Server

OS Ubuntu 20.04

CPU Intel i7-10750H (12) @ 5.000GHz

GPU NVIDIA GeForce RTX 2060

Memory 64GB

Connection Type Ethernet and WiFi

Table 4.1: HNF Server Hardware Details

4.1 HARDWARE COMPONENTS 52

Up Board Squared

Field Description

Role Server

OS Ubuntu 18

CPU Intel Atom E3950 (4) @ 2.000GHz

GPU N.A.

Memory 8GB

Connection Type Ethernet

Table 4.2: Up Board Squared Details

Raspberry Pi 4 Model B Rev 1.1

Field Description

Role IoT Device

OS Raspbian GNU/Linux 10

CPU ARMv7 BCM2711 (4) @ 1.500GHz

GPU N.A.

Memory 4GB

Connection Type Ethernet and WiFi

Table 4.3: Raspberry Pi 4 Details

4.1 HARDWARE COMPONENTS 53

Raspberry Pi 3 Model B Rev 1.2

Field Description

Role Server

OS Raspbian GNU/Linux 11

CPU ARMv7 BCM2835 (4) @ 1.200GHz

GPU N.A.

Memory 1GB

Connection Type Ethernet

Table 4.4: Raspberry Pi 3 Details

DLink DIR-882

Field Description

Role Router

Connection Type Ethernet and WiFi

Table 4.5: DLink DIR-882 Details

4.2 EXPERIMENTAL RESULTS 54

4.2 Experimental Results

In order to test the efficacy of the platform in a realistic environment, we have prepared

five different network configurations as scenarios. All the experiments will consist of

performing an Edge Node Selection, regardless of configuration, and will follow this

procedure:

1. Set up all devices, ensure connectivity and execute the Daemon container

2. Start the HFN and purge old data from blockchain and database to avoid faulty

analysis

3. Start the Gateway Application

4. Allow the system to collect data and perform latency measurements for 15 minutes.

The Daemon is configured to schedule operations every 30 seconds.

5. Execute the Edge Node Selection functionality for tasks that do not require GPU

with a 10 minute time frame analysis

Once the selection has been performed, the data is retrieved and evaluated. Addition-

ally to the data created and stored by the Smart Contracts, the data outputted by the HTTP

Server of the Gateway Application will let us know the average duration in milliseconds

of function execution.

4.2 EXPERIMENTAL RESULTS 55

4.2.1 Local Network: Ethernet

Figure 4.1: Experiment Configuration - Local Network: Ethernet

For this experiment, all computers are connected with an Ethernet cable to the router. All

network operations are done using the Local Area Network IP Addresses assigned by the

router’s DHCP.

Local Network: Ethernet

Edge Node Connection Latency CPU Memory

HNF Server Ethernet 274.4 ms 4.97% 29.13%

Up Board Ethernet 273.08 ms 2.08% 9.39%

Raspberry 3 Ethernet 280.8 ms 4.88% 14.36%

Table 4.6: Local Network Experiment Data - Ethernet

The Asset selected as the offloading node in this configuration was the Up Board.

In this configuration the latency difference between nodes is negligible. Although the

recorded latency seems high, the ping command indicates that the latency between both

the selected server and the computer acting as the sensor was 0.659 milliseconds.

During the experiment, the HTTP Server reported that the average duration for a read-

only operation was 5.23ms, and the average of a write operation 1.67s.

4.2 EXPERIMENTAL RESULTS 56

4.2.2 Local Network: Ethernet and WiFi

Figure 4.2: Experiment Configuration - Local Network: Ethernet and WiFi

In this experiment, computers with the capability are connected to the router using WiFi.

All network operations are done using the Local Area Network IP Addresses assigned by

the router’s DHCP.

Local Network: Ethernet and WiFi

Edge Node Connection Latency CPU Memory

HNF Server WiFi 526.38 ms 5.70% 29.14%

Up Board Ethernet 286.5 ms 2.05% 9.35%

Raspberry 3 Ethernet 335.3 ms 5.77% 13.88%

Table 4.7: Local Network Experiment Data - Ethernet and WiFi

The selected Edge Node for offloading was the Up Board, averaging 286ms of la-

tency measurement. The ping operation from the Up Board to the Raspberry 4 in this

configuration averages 2.22ms, a noticeable increase from the first experiment.

During the experiment with this configuration the duration of operations remained

close to those from the base experiment, averaging 5.58ms and 1.82s for read-only and

write operations respectively.

4.2 EXPERIMENTAL RESULTS 57

4.2.3 Local Network and VPN: Ethernet

Figure 4.3: Experiment Configuration - Local Network and VPN: Ethernet

For this experiment, all computers are connected with an Ethernet cable to the router. All

network operations are done using the IP Addresses assigned by the ZeroTier One VPN

service.

Local Network and VPN: Ethernet

Edge Node Connection Latency CPU Memory

HNF Server Ethernet 276.18 ms 5.49% 29.62%

Up Board Ethernet 306.62 ms 4.52% 9.05%

Raspberry 3 Ethernet 357.07 ms 11.82% 13.57%

Table 4.8: Local Network and VPN Experiment Data - Ethernet

In this case the HFN Server was selected as the best Edge Node, and the ping com-

mands averages at 1.16ms. While the latency has increased in comparison to the first

experiment, it is still acceptable for most operations.

With the addition of the VPN, the duration of the read-only and write operations seems

to have increased by a negligible amount, they average 6.2ms and 2.11s respectively.

4.2 EXPERIMENTAL RESULTS 58

4.2.4 Local Network and VPN: Ethernet and WiFi

Figure 4.4: Experiment Configuration - Local Network and VPN: Ethernet and WiFi

In this experiment, computers with the capability are connected to the router using WiFi.

All network operations are done using the IP Addresses assigned by the ZeroTier One

VPN service.

Local Network and VPN: Ethernet and WiFi

Edge Node Connection Latency CPU Memory

HNF Server WiFi 331.05 ms 4.49% 29.84%

Up Board Ethernet 341.86 ms 4.47% 9.03%

Raspberry 3 Ethernet 388.94 ms 12.39% 13.79%

Table 4.9: Local Network VPN Experiment Data - Ethernet and WiFi

The selected Edge Node, in this case, was the HNF Server, with the latency measure-

ment averaging at 331.05ms and the ping command at 3.49ms. This experiment has made

clear that using both WiFi and a VPN makes an impact, but the averages between the

servers are consistent.

The HTTP Server did not seem to have been too affected, with the durations averaging

6.02ms and 2.13s for read-only and write respectively.

4.2 EXPERIMENTAL RESULTS 59

4.2.5 Mixed Network: Ethernet and WiFi

Figure 4.5: Experiment Configuration - Mixed Network: Ethernet and WiFi

In this experiment, computers with WiFi are connected to a 4G cellular band. Other

computers remain in the original network. All network operations are done using the IP

Addresses assigned by the ZeroTier One VPN service.

Mixed Network: Ethernet and WiFi

Edge Node Connection Latency CPU Memory

HNF Server WiFi (Cellu-

lar Network)

4735.5 ms 1.98% 30.82%

Up Board Ethernet 448.33 ms 2.50% 9.32%

Raspberry 3 445.21 ms 2.61% 12.64%

Table 4.10: Mixed Network Experiment Data - Ethernet and WiFi

This final experiment confirms that even when using different networks, the system

is still capable of finding an Edge Node. The HNF Server connected to a 4G Cellular

Network has the most latency, and the Up Board was selected as the Edge Node, which

is connected to the same network as the Raspberry 4. The ping average between the

selected node and the target device is 3.52ms. During this experiment, the averages for

the read-only and write operations did change, with the durations being 20.12ms and

3.11s respectively.

5 Conclusion

Motivated by the hypothesis of whether a platform that could accurately select an Edge

Node for the offloading of tasks with Hyperledger Fabric Smart Contracts was feasible,

we have presented the design and implementation of a platform that can analyze the la-

tency and resource availability of nodes in order to select the most fitting server. The

experiments confirm that the permissioned network implemented in the HFN allows for

reliable, trustable and fast distributed applications. We have also presented the multiple

experiments and the data that was gathered from them. From these experiments we were

also able to demonstrate the long-range capability of the system, working at manageable

speeds even when using VPN services and 4G cellular networks.

When using Smart Contracts as the core for an application, the structure of the object

is of utmost importance. During the design process, it must be kept in mind that there

are some limitations to the database queries that we can perform, since the world state

is recorded in a NoSQL engine, and the intent of indexing must be there from the start.

During the experimentation, it became clear that the rate of resource collection and latency

measurement plays an important role in the outcome of the selection, and the rate will

need to vary depending on the requirements of the platform, and may even need to change

from device to device.

5.1 FUTURE WORKS 61

5.1 Future works

In future work, we will expand the platform functionalities to determine whether Smart

Contracts are also a feasible mechanism to share state information required for executing

the offloading of tasks after having selected an Edge Node. The current system can ac-

curately choose nodes based on their current state, and whether the task requires or not

a GPU, but the system is not capable of starting the execution of the tasks, it does not

have the capabilities to track the execution of said tasks nor does the Edge Node Selection

happen autonomously.

Currently, the functionalities of the system do not include a mechanism that ensures

that the growth rate of the world state database will remain constant, which makes the

long-term autonomy evaluation of the platform a challenge. We started designing methods

in which older data can be archived in Cloud systems to avoid the indexing process of the

ledger from deteriorating, thus maintaining the speed of the analysis.

Additionally, we would like to study the performance of the long-range capabilities

of the system using a 5G Mesh Network, and the efficacy of the Offload Selection for

robotics systems that require real-time processing.

References

[1] E. Hamilton, What is edge computing: The network edge explained, Dec. 2018.

[Online]. Available: https://www.cloudwards.net/what-is-edge-

computing/.

[2] W. Shi, G. Pallis, and Z. Xu, Edge computing [scanning the issue], 2019. DOI:

10.1109/JPROC.2019.2928287.

[3] K. Marneweck et al., Why data-over-sound should be a part of any iot engineer’s

toolbox, 2019. [Online]. Available: https://www.arm.com/resources/

white-paper/data-over-sound.

[4] A. Panwar and V. Bhatnagar, “Distributed ledger technology (dlt): The beginning

of a technological revolution for blockchain”, in 2nd International Conference on

Data, Engineering and Applications (IDEA), 2020, pp. 1–5. DOI: 10.1109/

IDEA49133.2020.9170699.

[5] S. K. Krause, N. Harish, and H. L. Gradstein, “Distributed ledger technology (dlt)

and blockchain”, Dec. 2017. [Online]. Available: https://documents.worldbank.

org/en/publication/documents- reports/documentdetail/

177911513714062215/distributed-ledger-technology-dlt-

and-blockchain.

[6] ITU, Itu-t technical report: Focus group on application of distributed ledger tech-

nology, Aug. 2019. [Online]. Available: https://www.itu.int/en/ITU-

T/focusgroups/dlt/Documents/d12.pdf.

https://www.cloudwards.net/what-is-edge-computing/
https://www.cloudwards.net/what-is-edge-computing/
https://doi.org/10.1109/JPROC.2019.2928287
https://www.arm.com/resources/white-paper/data-over-sound
https://www.arm.com/resources/white-paper/data-over-sound
https://doi.org/10.1109/IDEA49133.2020.9170699
https://doi.org/10.1109/IDEA49133.2020.9170699
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/177911513714062215/distributed-ledger-technology-dlt-and-blockchain
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/177911513714062215/distributed-ledger-technology-dlt-and-blockchain
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/177911513714062215/distributed-ledger-technology-dlt-and-blockchain
https://documents.worldbank.org/en/publication/documents-reports/documentdetail/177911513714062215/distributed-ledger-technology-dlt-and-blockchain
https://www.itu.int/en/ITU-T/focusgroups/dlt/Documents/d12.pdf
https://www.itu.int/en/ITU-T/focusgroups/dlt/Documents/d12.pdf

REFERENCES 63

[7] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated blockchain and edge

computing systems: A survey, some research issues and challenges”, IEEE Com-

munications Surveys & Tutorials, vol. 21, no. 2, pp. 1508–153++2, 2019. DOI:

10.1109/COMST.2019.2894727.

[8] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile blockchain

meets edge computing”, IEEE Communications Magazine, vol. 56, no. 8, pp. 33–

39, 2018. DOI: 10.1109/MCOM.2018.1701095.

[9] S. Salimi, J. P. Queralta, and T. Westerlund, Towards managing industrial robot

fleets with hyperledger fabric blockchain and ros 2, 2022. DOI: 10.48550/

ARXIV.2203.03426. [Online]. Available: https://arxiv.org/abs/

2203.03426.

[10] J. P. Queralta, L. Qingqing, Z. Zou, and T. Westerlund, Enhancing autonomy with

blockchain and multi-access edge computing in distributed robotic systems, 2020.

DOI: 10.48550/ARXIV.2007.01156. [Online]. Available: https://

arxiv.org/abs/2007.01156.

[11] M. v. Steen and A. S. Tanenbaum, “Introduction”, in Distributed Systems. Maarten

van Steen, 2017.

[12] G. F. Coulouris, “Characterization of distributed systems”, in Distributed systems:

Concepts and design. Pearson Education, 2012.

[13] C. H. Papadimitriou, Computational complexity, 1994. [Online]. Available: https:

//www.pearson.com/us/higher-education/program/Papadimitriou-

Computational-Complexity/PGM94583.html.

[14] L. Magnoni, Modern messaging for distributed sytems, Sep. 2014. [Online]. Avail-

able: https://iopscience.iop.org/article/10.1088/1742-

6596/608/1/012038.

https://doi.org/10.1109/COMST.2019.2894727
https://doi.org/10.1109/MCOM.2018.1701095
https://doi.org/10.48550/ARXIV.2203.03426
https://doi.org/10.48550/ARXIV.2203.03426
https://arxiv.org/abs/2203.03426
https://arxiv.org/abs/2203.03426
https://doi.org/10.48550/ARXIV.2007.01156
https://arxiv.org/abs/2007.01156
https://arxiv.org/abs/2007.01156
https://www.pearson.com/us/higher-education/program/Papadimitriou-Computational-Complexity/PGM94583.html
https://www.pearson.com/us/higher-education/program/Papadimitriou-Computational-Complexity/PGM94583.html
https://www.pearson.com/us/higher-education/program/Papadimitriou-Computational-Complexity/PGM94583.html
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012038
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012038

REFERENCES 64

[15] P. Mell and T. Grance, The nist definition of cloud computing, Sep. 2011. [Online].

Available: https://csrc.nist.gov/publications/detail/sp/

800-145/final.

[16] J. Frankenfield, How cloud computing works, Jul. 2022. [Online]. Available: https:

//www.investopedia.com/terms/c/cloud-computing.asp.

[17] P. Srivastava and R. Khan, A review paper on cloud computing, Jun. 2018. [On-

line]. Available: https://www.researchgate.net/publication/

326073288_A_Review_Paper_on_Cloud_Computing.

[18] J. McArthur, A. Chandrasekaran, T. Bittman, and T. Zimmerman, “Predicts 2021:

Cloud and edge infrastructure”, Sep. 2018. [Online]. Available: https://emtemp.

gcom.cloud/ngw/globalassets/en/doc/documents/3889058-

the-edge-completes-the-cloud-a-gartner-trend-insight-

report.pdf.

[19] V. Gezer, J. Um, and M. Ruskowsvi, An extensible edge computing: Definition

requirements and enablers, Nov. 2017. [Online]. Available: https://www.

researchgate.net/publication/321134141_An_Extensible_

Edge _ Computing _ Architecture _ Definition _ Requirements _

and_Enablers.

[20] A. Wright and P. De Filippi, “Decentralized blockchain technology and the rise of

lex cryptographia”, Mar. 2015. [Online]. Available: https://papers.ssrn.

com/sol3/papers.cfm?abstract_id=2580664.

[21] H. Kakavand, N. Kost De Sevres, and B. Chilton, “The blockchain revolution:

An analysis of regulation and technology related to distributed ledger technolo-

gies”, Oct. 2016. [Online]. Available: https://papers.ssrn.com/sol3/

papers.cfm?abstract_id=2849251.

https://csrc.nist.gov/publications/detail/sp/800-145/final
https://csrc.nist.gov/publications/detail/sp/800-145/final
https://www.investopedia.com/terms/c/cloud-computing.asp
https://www.investopedia.com/terms/c/cloud-computing.asp
https://www.researchgate.net/publication/326073288_A_Review_Paper_on_Cloud_Computing
https://www.researchgate.net/publication/326073288_A_Review_Paper_on_Cloud_Computing
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/3889058-the-edge-completes-the-cloud-a-gartner-trend-insight-report.pdf
https://www.researchgate.net/publication/321134141_An_Extensible_Edge_Computing_Architecture_Definition_Requirements_and_Enablers
https://www.researchgate.net/publication/321134141_An_Extensible_Edge_Computing_Architecture_Definition_Requirements_and_Enablers
https://www.researchgate.net/publication/321134141_An_Extensible_Edge_Computing_Architecture_Definition_Requirements_and_Enablers
https://www.researchgate.net/publication/321134141_An_Extensible_Edge_Computing_Architecture_Definition_Requirements_and_Enablers
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2580664
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2580664
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2849251
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2849251

REFERENCES 65

[22] G. Suciu, C. Nădrag, C. Istrate, A. Vulpe, M.-C. Ditu, and O. Subea, “Comparative

analysis of distributed ledger technologies”, 2018, pp. 370–373. DOI: 10.1109/

GWS.2018.8686563.

[23] C. Majaski, “Distributed ledgers”, Feb. 2022. [Online]. Available: https://

www.investopedia.com/terms/d/distributed-ledgers.asp.

[24] Ledger, “What is blockchain?”, May 2022. [Online]. Available: https://www.

ledger.com/academy/blockchain/what-is-blockchain.

[25] A. Hayes, “Blockchain explained”, Apr. 2022. [Online]. Available: https://

www.investopedia.com/terms/b/blockchain.asp.

[26] P. Schueffel, “Alternative distributed ledger technologies blockchain vs. tangle vs.

hashgraph - a high-level overview and comparison”, Mar. 2018. [Online]. Avail-

able: https://papers.ssrn.com/sol3/papers.cfm?abstract_

id=3144241.

[27] S. Seth, “Public, private, permissioned blockchains compared”, Mar. 2022. [On-

line]. Available: https://www.investopedia.com/news/public-

private-permissioned-blockchains-compared/.

[28] H. Fabric, “Introduction to hyperledger fabric 2.2”, Jul. 2020. [Online]. Available:

https://hyperledger-fabric.readthedocs.io/en/release-

2.2/whatis.html.

[29] Consensus algorithms in blockchain, May 2022. [Online]. Available: https://

www.geeksforgeeks.org/consensus-algorithms-in-blockchain/.

[30] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem”, ACM

Transactions on Programming Languages and Systems, pp. 382–401, Jul. 1982.

[31] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qi06, “A review on con-

sensus algorithm of blockchain”, pp. 2567–2572, 2017. DOI: 10.1109/SMC.

2017.8123011.

https://doi.org/10.1109/GWS.2018.8686563
https://doi.org/10.1109/GWS.2018.8686563
https://www.investopedia.com/terms/d/distributed-ledgers.asp
https://www.investopedia.com/terms/d/distributed-ledgers.asp
https://www.ledger.com/academy/blockchain/what-is-blockchain
https://www.ledger.com/academy/blockchain/what-is-blockchain
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3144241
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3144241
https://www.investopedia.com/news/public-private-permissioned-blockchains-compared/
https://www.investopedia.com/news/public-private-permissioned-blockchains-compared/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatis.html
https://www.geeksforgeeks.org/consensus-algorithms-in-blockchain/
https://www.geeksforgeeks.org/consensus-algorithms-in-blockchain/
https://doi.org/10.1109/SMC.2017.8123011
https://doi.org/10.1109/SMC.2017.8123011

REFERENCES 66

[32] J. Frankenfield, Proof of work (pow), May 2022. [Online]. Available: https:

//www.investopedia.com/terms/p/proof-work.asp.

[33] E. Napoletano, Proof of stake explained, May 2022. [Online]. Available: https:

//www.forbes.com/advisor/investing/cryptocurrency/proof-

of-stake.

[34] M. Castro and B. Liskov, “Practical byzantine fault tolerance”, OSDI, Mar. 1999.

[Online]. Available: https://pmg.csail.mit.edu/papers/osdi99.

pdf.

[35] T. C. Devs, An introduction to pbft consensus algorithm, Oct. 2020. [Online]. Avail-

able: https://coredevs.medium.com/an- introduction- to-

pbft-consensus-algorithm-11cbd90aaec.

[36] H. Fabric, “The ordering service”, Jul. 2020. [Online]. Available: https://

hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/

ordering_service.html.

[37] Raft. [Online]. Available: https://ebrary.net/206495/computer_

science/raft.

[38] M. Hamilton, “Blockchain distributed ledger technology: An introduction and fo-

cus on smart contracts”, Journal of Corporate Accounting & Finance, vol. 31, no. 2,

pp. 7–12, 2020. DOI: https://doi.org/10.1002/jcaf.22421. [On-

line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.

1002/jcaf.22421.

[39] What are smart contracts on blockchain? [Online]. Available: https://www.

ibm.com/topics/smart-contracts.

[40] Hyperledger fabric. [Online]. Available: https://wiki.hyperledger.

org/display/fabric/Hyperledger+Fabric.

https://www.investopedia.com/terms/p/proof-work.asp
https://www.investopedia.com/terms/p/proof-work.asp
https://www.forbes.com/advisor/investing/cryptocurrency/proof-of-stake
https://www.forbes.com/advisor/investing/cryptocurrency/proof-of-stake
https://www.forbes.com/advisor/investing/cryptocurrency/proof-of-stake
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://pmg.csail.mit.edu/papers/osdi99.pdf
https://coredevs.medium.com/an-introduction-to-pbft-consensus-algorithm-11cbd90aaec
https://coredevs.medium.com/an-introduction-to-pbft-consensus-algorithm-11cbd90aaec
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/orderer/ordering_service.html
https://ebrary.net/206495/computer_science/raft
https://ebrary.net/206495/computer_science/raft
https://doi.org/https://doi.org/10.1002/jcaf.22421
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcaf.22421
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcaf.22421
https://www.ibm.com/topics/smart-contracts
https://www.ibm.com/topics/smart-contracts
https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric
https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric

REFERENCES 67

[41] Hyperledger fabric glossary, Jun. 2021. [Online]. Available: https://hyperledger-

fabric.readthedocs.io/en/latest/glossary.html.

[42] Hyperledger fabric key concepts, Jun. 2021. [Online]. Available: https : / /

hyperledger-fabric.readthedocs.io/en/latest/key_concepts.

html.

[43] Hyperledger fabric transaction flow, Nov. 2021. [Online]. Available: https :

//hyperledger-fabric.readthedocs.io/en/latest/txflow.

html.

[44] Hyperledger fabric: A simplified overview. [Online]. Available: https://web.

archive.org/web/20220718061019/https://www.oak-tree.

tech/blog/hyperledger-overview.

[45] Go - frequently asked questions (faq). [Online]. Available: https://go.dev/

doc/faq.

[46] IBM, Containerization. [Online]. Available: https://www.ibm.com/cloud/

learn/containerization.

[47] ——, What is docker? [Online]. Available: https://www.ibm.com/cloud/

learn/docker.

[48] What is a vpn? - virtual private network, Feb. 2022. [Online]. Available: https:

//www.cisco.com/c/en/us/products/security/vpn-endpoint-

security-clients/what-is-vpn.html.

[49] I. ZeroTier, Protocol design whitepaper: Zerotier documentation. [Online]. Avail-

able: https://docs.zerotier.com/zerotier/manual/.

[50] Gossip data dissemination protocol, Nov. 2021. [Online]. Available: https://

hyperledger- fabric.readthedocs.io/en/latest/gossip.

html.

https://hyperledger-fabric.readthedocs.io/en/latest/glossary.html
https://hyperledger-fabric.readthedocs.io/en/latest/glossary.html
https://hyperledger-fabric.readthedocs.io/en/latest/key_concepts.html
https://hyperledger-fabric.readthedocs.io/en/latest/key_concepts.html
https://hyperledger-fabric.readthedocs.io/en/latest/key_concepts.html
https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
https://hyperledger-fabric.readthedocs.io/en/latest/txflow.html
https://web.archive.org/web/20220718061019/https://www.oak-tree.tech/blog/hyperledger-overview
https://web.archive.org/web/20220718061019/https://www.oak-tree.tech/blog/hyperledger-overview
https://web.archive.org/web/20220718061019/https://www.oak-tree.tech/blog/hyperledger-overview
https://go.dev/doc/faq
https://go.dev/doc/faq
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/docker
https://www.ibm.com/cloud/learn/docker
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html
https://docs.zerotier.com/zerotier/manual/
https://hyperledger-fabric.readthedocs.io/en/latest/gossip.html
https://hyperledger-fabric.readthedocs.io/en/latest/gossip.html
https://hyperledger-fabric.readthedocs.io/en/latest/gossip.html

REFERENCES 68

[51] Unix timestamp - epoch converter. [Online]. Available: https://www.unixtimestamp.

com/.

[52] T. Contributor, What is daemon? - definition from whatis.com, Sep. 2005. [Online].

Available: https://www.techtarget.com/whatis/definition/

daemon.

[53] What is a cron job? - scheduled tasks, Mar. 2021. [Online]. Available: https:

//www.hivelocity.net/kb/what-is-cron-job/.

https://www.unixtimestamp.com/
https://www.unixtimestamp.com/
https://www.techtarget.com/whatis/definition/daemon
https://www.techtarget.com/whatis/definition/daemon
https://www.hivelocity.net/kb/what-is-cron-job/
https://www.hivelocity.net/kb/what-is-cron-job/

	List Of Acronyms
	Introduction
	Significance and Motivation
	Related works
	DLT and Edge Computing

	Contributions
	Structure

	Background
	Distributed Computing Systems
	Cloud Computing
	The Edge & Edge Computing
	Distributed Ledger Technologies
	Distributed Ledgers & Blockchain
	Consensus Algorithms
	Smart Contracts
	Hyperledger Fabric

	Software Components
	Go
	Docker Containerization
	VPN

	Solution Design
	RoboMesh Platform
	Hyperledger Fabric Network
	Smart Contract: Inventory Management
	Smart Contract: Resource Collection
	Smart Contract: Latency Collection
	Smart Contract: Offload Selection Collection
	Application: Fabric Network Gateway

	IoT Daemon
	Resource Collection
	Network Latency Measurement

	Implementation and Experiments
	Hardware Components
	Experimental Results
	Local Network: Ethernet
	Local Network: Ethernet and WiFi
	Local Network and VPN: Ethernet
	Local Network and VPN: Ethernet and WiFi
	Mixed Network: Ethernet and WiFi

	Conclusion
	Future works

	References

