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The recent rise of IoT devices in commercial and industrial spaces has created a demand for energy-

efficient and reliable communication solutions. Communication solutions used on IoT devices vary 

depending on the applications. Wireless Low Power Wide Area Network (LPWAN) technologies have 

proven benefits, including long-range, low power, and low-cost communication alternatives for IoT 

devices. These benefits come at the cost of limitations, such as lower data rates. At the same time, 

the demand for faster, cheaper, and more reliable software deployment is becoming more critical 

than ever before. 

 

This thesis aims to find a way of having an automated process where software could be remotely 

deployed into LoRa nodes and investigate whether it is possible to implement a DevOps pipeline with 

both Continuous Integration (CI) and Continuous Deployment (CD) over LoRaWAN. For this thesis, 

an 

IoT LoRaWAN Edge computing application was chosen to determine how to design and implement a 

CI/CD pipeline to ensure a dependable and a continuous software deployment to the LoRaWAN 

nodes. 

Designing and implementing a Continuous Deployment pipeline for this IoT application was made 

possible with the integration of DevOps tools like GitHub and a TeamCity automation server. 

Additionally, a series of scripts have been designed and developed for this case, including automated 

tests, integration to cloud services, and file fragmentation and defragmentation tools. For software 

deployment and verification to the LoRaWAN network, a program was designed to communicate with 

the LoRaWAN network server over the WebSocket communication protocol. 

 

The implementation of DevOps in LoRaWAN applications is affected by the limitations of the 

LoRaWAN protocol. This thesis argues that these limitations can be eliminated using modular 

software and file fragmentation techniques. The implementation presented in this work can be 

extended for various time-critical use cases. The solution presented in this thesis also opens the door to 

combining LoRaWAN with other LPWAN technologies, like NB-IoT, that can  

be activated on demand. 
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1 Introduction 

The global market for semiconductors has grown drastically over the past decades [1][2][3]. 

The usage of intelligent devices, robots and computers has grown substantially in domains 

like smart cities, industrial robots, and smart homes [4][5][6]. This high demand and 

expansion of domains have been accelerated and fuelled by the revolution of computer 

science, technologies, and telecommunication to the point that it has become an integral part 

of human lives. Those intelligent devices and computers have proven reliable, efficient, and 

accurate in accomplishing tasks that humans find repetitive, too complicated, and time-

consuming. The increased number and complexity of these systems and the tasks delegated to 

them have created the need to connect these devices (Machine-to-Machine) and connect them 

to the Internet. The ecosystem of these "things" connected to the Internet has introduced terms 

like cyber-physical systems, IoT (Internet of Things) and edge computing. The complexity 

and quantity of these devices and the expansion of usage domains required secure and 

continuous updates of these devices with the latest technologies and software [7]. This 

continuous software development is critical to meeting information security and business 

requirements. 

The software industry's evolution has produced plenty of technologies, practices, and 

methodologies in an ever-ending quest to solve emerging issues with every recent technology, 

software, development method or development framework. 

The ever-changing nature of software under development introduced through continuously 

developing new features and fixing discovered bugs creates a need for innovating new, robust, 

and reliable ways of testing, deployments and even refining and prioritizing the tasks in the 

backlog. The ability to be agile with development priorities over time in response to market 

needs while focusing on the main development goals and improving the quality has proven 

crucial for the software under development and, therefore, the success of the businesses 

behind it. 

In traditional software development, predictive methodologies like Waterfall, Sashimi and V-

Model are used [8]. In the Waterfall method, the development process goes through long, 

isolated, sequential, and rigid phases [9]. In these isolated phases, different teams work in 

silos where many assumptions are made, and the customer or the stakeholder is only involved 

in the first and last phases. 
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Agile development and DevOps practices were designed to mitigate known disadvantages of 

conventional methods like Waterfall [9]. The Waterfall software development method has 

disadvantages like inflexibility and minimum customer involvement. Delays in any phase in 

such a method are also meant to delay the following phases of the development [8][9].  

When it comes to the IoT industry evolution, there has been a revolution in low power long-

range wireless communication technologies, including communication protocols like Sigfox 

and LoRa. Although these low-powered long-range communication protocols provide a 

reliable solution for low energy consumption and long communication range of end device 

requirements, The lifecycle of an ever-changing software proves challenging in such edge 

computing applications. Limitations with communication like low data rate and cycle duty 

quickly become obstacles to deploying software updates to the end devices. These 

deployment limitations drive the design of such a system to an approach of utilizing central 

Cloud computing instead of an onboard processor, even for simple, undemanding operations. 

Cloud computing, although a great option, comes with its compromises in latency and higher 

communication dependency as the data must be transferred more often. Although LoRa has a 

low data rate, it is essential to deploy software remotely, reliably, and continuously into the 

nodes, especially to think that the end nodes are theoretically deployed in a remote area and 

can have a long lifespan. 

Figure 1-1 Waterfall Software Development Phases 
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1.1 Related Work 

As the LoRa and Firmware deployment over the air has gained popularity in both the research 

and business fields, a few related works have directly or indirectly inspired or helped with the 

work done in this thesis. This section points out some of these related works. 

 

1. Firmware Update Using Multiple Gateways in LoRaWAN Networks [10] 

In this article, the author has conducted extensive experiments and simulations to 

investigate the effect of using multiple gateways while doing Firmware updates over 

the air. The article states a few benefits of using a higher number of Lora Gateways, 

including higher update efficiency, reduced network energy and a faster update time. 

2. How to make Firmware Updates over LoRaWAN Possible [11]. 

The author review and evaluate the impact of LoRa Alliance's proposed firmware 

Over the Air process specifications. For this work, a FUOTA simulation tool called 

FUOTASim was developed to simulate the update process with different FUOTA 

parameters and conclude the most impactful ones. This work concluded that the 

suggested LoRa Alliance FUOTA process's phase of "gathering the identifiers of all 

end devices that are targeted by the update"[12] is unscalable and a potential 

bottleneck with a higher number of end devices. The work also concluded that using 

Lora data rate DR5 achieves a 30% reduction in update time and device energy 

consumption compared to DR0. Also, multicast with class B achieves 17% higher 

update time and 550 times less energy than class C devices consumption than DR0. 

3. Energy Consumption and Scalability of Transmitting Firmware Updates Over 

LoRa [13] 

The thesis introduces a power consumption model based on actual hardware 

measurements. In this thesis project, many experiments were performed to answer the 

questions "What is a reliable model to estimate the energy consumption of a firmware 

update?" and "What is the increase in packet losses during a firmware update?" 

4. Continuous Delivery of Customized SaaS Edge Applications in Highly 

Distributed IoT Systems [14] 

This work presents an architecture deployment for a precision agriculture solution that 

utilizes edge computing and a LoRaWAN network. Future work suggestions included 

extending the proposed architecture to update the LoRaWAN sensors OTA. 
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5. DevOps benefits: A systematic literature review. Software, practice &   

experience [15] 

The author reviews the DevOps benefits reported in the literature and maps these 

benefits with DevOps implementation case studies. The author states that the most 

reported benefits were "Cross-team collaboration and communication" and "Faster 

time to market." which aligns with the premises of DevOps of better communication 

and faster software delivery.  

 

1.2 Thesis Contribution 

This thesis's main contribution is to design and implement an optimized DevOps workflow 

for LoRa applications where computation happens at the Edge. Specifically, the contributions 

of this thesis are the following: 

1. The introduction of a generic design approach for DevOps operations aimed at LoRa-

based edge computing applications. 

2. The design and implementation of a specific design for parametrizable edge 

applications require only upgrading part of the firmware. 

3. Extending the usability and automation of LoRaWAN suggested firmware updates 

over the air FUOTA process as a part of a more inclusive CI/CD process. 

4. The demonstration of the benefits of the proposed approach with a face detection 

application. 

Earlier research has focused on either DevOps or Firmware updates over the air FUOTA 

individually. Software industry research and practices seem to evolve in separation from 

the revolution of embedded computing and IoT, especially LoRa solutions. 

This thesis attempts to draw attention to this gap and hopefully trigger further research 

involving state-of-the-art technologies in software development and IoT industries. 
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1.3 Thesis structure 

This project aimed to design and implement an automated process where software could be 

remotely deployed into LoRaWAN nodes and determine whether it is possible to implement 

an entirely automated DevOps pipeline with Continuous Integration and deployment over 

LoRaWAN. The aim is not to change the design or purpose of a LoRa-based system but to 

discover the possibility of remotely deploying software to the LoRaWAN end-device when 

needed.  

Chapter 2 goes through essential DevOps concepts, metrics, importance, usages, practices, 

tools, and research related to DevOps in the software industry.  

Chapter 3 LoRa technology background on communication, LoRaWAN network architecture 

and components like end devices, network servers, gateways, LoRa Alliance guidelines and 

recommendations, and firmware updates over the air FUOTA. 

Chapter 4 introduces the design and implementation of this thesis project design, the DevOps 

CI/CD implementation, software, image recognition application, remote deployment, the 

LoRaWAN end device, network server, gateway, and the deployment mechanism. 

In the Results Chapter, the outcomes of the implemented system are documented. 

Finally, the conclusions of this work and suggestions for future works are in Chapter 5. 
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2 DevOps 

2.1 What is DevOps 

The traditional software development process has contributed to widening the gap of 

organizational isolation between software development (Dev) and production and operations 

(Ops). DevOps is a new movement in the software industry that introduces a set of principles 

and practices derived from Agile software development principles. These practices aim to 

eliminate the gap between the Dev and Ops teams to enable faster software cycles and help 

solve issues with traditional software development processes. [8][9][16][17] 

• The development team (Dev) takes care of the feature's development, bug fixes and 

software maintenance. This team had no direct communication with customers or 

shareholders; instead, it depended on the Production and Operations team to 

communicate with the end-user. 

• Production and Operation team (Ops) that worked closer to the customers and 

shareholders to deliver the product and maintain the infrastructure needed to ensure 

the stability and functionality of the product (software/system). 

Figure 2-1 Organizational and process introduced Wall of Confusion between Dev and Ops teams 
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Those two teams traditionally worked in silos which hindered their ability to move fast and 

limited the visibility and communication across the software development process. The 

operations team often has minimal knowledge about the software development before the 

actual software release, which tremendously affects their primary goal of stability. Reduced 

stability in the software in question meant questionable reliability and more challenging 

incident recovery. 

This traditional software development model has some issues, including: 

• Software development cycles were exceptionally long, which meant that issues and 

new features took a long time to get addressed due to the inefficiency of the process 

and the lack of communication and visibility. So, bugs, for example, are not 

discovered until the software is released and create issues in the production 

environment. 

• Due to the manual and rigid software release/deployment process, there are ongoing 

issues with integrating and deploying new versions. This process also contributes to 

extending the development cycles. Handovers to the next team also meant that time 

was wasted waiting for other teams to hand over, which translates into a noticeable 

waste along the process. 

• The organizational/functional segregation of teams, their goals and their responsibility 

created a conflict of interest between them. 

• This segregation and lack of communication also created ongoing issues with 

reliability; for example, when the development team tests the software functionality in 

an environment (Server) with specific settings and everything seems to work as it 

should, but after handing over the release to the operations team which is using a 

different environment in their servers unexpected issues are possibly rising. 

These issues result in lower quality and reliability of the software and a slower and inefficient 

development process. 
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2.2 DevOps Metrics  

Measuring the success of DevOps with an organization can be achieved by monitoring 

metrics and KPIs that show software deployment and quality performance. The importance of 

each metric depends on the teams working with the software pipeline, the organization, and 

its goals. These metrics can show how well DevOps is adopted within an organization and 

how the organization can improve. [17][18] 

The DevOps metrics have been classified differently in the literature. The author of [17] 

suggested 3 overlapping metrics categories with metrics affecting one of 3 scenarios. Velocity 

+ Stability, Quality + Stability or Velocity + Quality + Stability. 

1. Velocity Metrics: 

These include metrics like Deployment duration, Deployment frequency, Change 

volume, Lead time, Cycle time, Deployment failure rate and Environment 

provisioning time 

2. Stability Metrics: 

Mean Time to Recovery (MTTR), Deployment downtime, Change failure rate, 

Incidents per deployment, Unapproved changes, Number of hotfixes and Platform 

availability. 

3. Quality Metrics: 

Defect density, Test automation coverage, Defect ageing, Code quality, Unit test 

coverage, Code vulnerabilities, Standards violations, and Defect reintroduction rate. 

 

 

Figure 2-2 Relationship between Velocity, 
Quality and Stability [17] 
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The author in [18] suggests different dimensions of DevOps metrics, including dimensions 

affecting staff, business, customers, process, and technology. 

 

Figure 2-3 DevOps metrics value Dimensions suggested [18] 
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2.3 DevOps process  

Unlike the traditional software development model, the DevOps lifecycle is a continuous 

process where all teams are involved in the entire process. These process phases can be 

modified to best suit the organization's workflow and needs. The focus is on the process's 

stability, velocity, and software quality. [17] 

 

DevOps as a process can be achieved by adopting the following practices or concepts in the 

process of software development [17]: 

• Source Code Management (SCM) 

Source Code Management enables multiple developers to work with the code 

concurrently regardless of geographic location or time. SCM system documents all the 

changes done to source code, and it is crucial to track features and bugs with the 

software later. This detailed tracking is essential for automating the process and fast 

recovery in case of failure, as the issue can be easily pinpointed and rolled back if 

needed. The SCM system would also allow maintaining different branches for bug 

fixes, new features, and minor and major releases. 

Integrating SCM systems with DevOps processes enables integration and automation 

robustness. 

Figure 2-4 DevOps Process 
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• Code reviews 

The code reviewing process ensures the improvement of software quality. Reviews are 

done by other software developers or automated static code quality tools, which helps 

to identify common bugs and issues with the code quality before merging and 

integrating it into the mainstream. 

• Configuration Management 

Configuration Management is done to identify, manage, verify, and maintain any 

configuration for the software and hardware involved throughout the process. This 

practice achieves a status where all teams clearly understand configurations used 

throughout the process, including other teams' configurations. 

• Build management 

Build management is where the source code and all required dependencies, including 

other software and hardware, are put together and built into functioning software. 

Building the software with every change in the source code is essential to pinpoint 

issues effectively. 

• Artefacts' repository management 

This management system is dedicated to keeping and managing the binaries created at 

the build management system. Saving those artefacts is needed to ensure builds are 

repeatable, keeping those for later testing and investigating potential hidden issues. 

• Release management 

Release management facilitates and manages the software's development, testing, 

deployment, and maintenance. The automation of this process relies on the automation 

of all those other processes.  

• Test automation 

Manual testing is very tedious, expensive, and time-consuming. Test automation 

automates all scenarios with all new code pushed to source control. This automation 

means it is possible to extensively and reliably test every new piece of code and 

pinpoint issues discovered during testing. Overall, software quality can be 

substantially improved by test automation. 
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• Continuous Integration 

When working with different pieces of software or multiple software/dependencies, 

Continuous Integration is needed to ensure the quality and functionality of the code as 

early as possible. 

• Continuous Delivery 

After successful integration, the product is automatically delivered to a staging 

environment where issues with business logic can be discovered during the user 

acceptance tests. 

• Continuous Deployment 

Deploying to production is the last point of source code changes after building, 

testing, integrating, and delivering. Doing this requires the automation of the entire 

process.  

• Routine automation 

Automate any routine and repetitive tasks. Tasks like updating version numbers, 

creating a new branch for a release, and copying user-interface localization to or from 

a database can all be automated to save time and increase the quality of the results. 

• Infrastructure as Code (IaC) 

IaC is an integral part of configuration management. IaC aims to identify the entire 

infrastructure used in testing, building and deployment and saves it as a file used by 

the configuration management system to replicate an infrastructure setup such as 

production environment staging (virtual servers, clients, and networks) that is needed 

in the process. 

• Key application performance monitoring/indicators 

Performance metrics are essential to monitoring the software's quality and the 

development lifecycle. Metrics like uptime, downtime, mean time to recovery, mean 

time to detect errors, deployment frequency and lead time are needed when evaluating 

and recognizing specific trends and issues with the overall process and helping to 

improve the development pipeline continuously. 

These practices can be associated with on or phases of the process. Performance Monitoring 

and Routine Automation are required throughout the entire process, as shown in Figure 2-5 
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Adopting these practices requires cultural adaptations throughout the organization and using 

supporting tools and infrastructure. Besides the cultural adoption of DevOps, it requires 

specific tools to practice DevOps successfully. For instance, to be able to practice Test and 

Build automation, an automation server is needed. GitHub, Bitbucket, or any other version 

control tool would be required to practice Source Code Management.[17] 

 

 

 

 

 

 

Figure 2-5  DevOps Process Phases Association with Practices 
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2.4 DevOps Adoption Benefits 

The DevOps movement aims to break down communication and collaboration barriers 

between teams involved in the software development process. This goal refed to as "Tear 

Down the Wall", which is achieved by Adopting a culture in the organization where everyone 

is collaborative. The responsibility in the DevOps process is imposed from End-to-End. So, 

teams would need to work together to achieve a common goal instead of conflicting teams' 

goals. The End-to-End responsibility also means Continues improvement is encouraged as 

everyone needs to adapt to changing circumstances and modern technologies. Automation 

implementation whenever possible means a shorter and more stable development cycle, so 

instead of weeks or months with the traditional development process, the development cycle 

is measured in days, hours or even minutes. The DevOps process focuses on the customer's 

needs and continuously pivots when needed. The process takes a fail-fast strategy which helps 

discover issues as soon as possible, learn from them and fix them quickly. DevOps teams are 

involved at every stage of the software development cycle. The team is cross-functional, and 

responsibilities are shared across teams.[15][18] 

The Accelerate State of DevOps Report by the DevOps Research and Assessment (DORA) 

[18] team at Google Cloud has been researching and publishing the effects of following 

DevOps practices and adaptation on organizations' performance. The report categorizes 

organizations into four categories based on the answers provided by IT professionals on 

software delivery performance metrics, as shown in Table 2-1. 

DORA's previous yearly reports consistently improved performance and reliability results for 

organizations with higher software delivery metrics than those with lower results. The 

Accelerate State of DevOps 2021 shows that organizations within the Elite performers made 

973 times more code deployments and had 6570 times faster lead time from committing code 

to deploy than the low performers' group. The report also shows that the Elite group has three 

times less failure rate and 6570 times faster recovery time from failures than the low 

performers.[18] 
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Table 2-1 Software Delivery performance results per performance category [18] 

Software Delivery 
Performance 
metrics 

Elite High Medium Low 

Deployment 
frequency 

Multiple deploys 
per day 

Between once per 
week and once per 
month 

Between once per 
month and once 
every 6 months 

Fewer than 
once per six 
months 

Lead time for 
changes 

Less than one 
hour 

Between one day 
and one week 

Between one month 
and six months 

More than six 
months 

Time to restore 
service 

Less than one 
hour 

Less than one day Between one day 
and one week 

More than six 
months 

Change failure 0%-15% 16%-30% 16%-30% 16%-30% 
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3 LoRa 

3.1 What is LoRa? 

 Long Range (LoRa) is a Radio Physical Layer (PHY) of a Low Power and Wide Area 

technology (LPWA) communication that uses chirp spread spectrum (CSS) modulation to 

represent the payload bits in multiple chirps. [22]  

 Chirp is a signal with continuously various frequencies. The rate of those chirps is referred to 

as the spreading factor (SF). The spreading factor impacts the communication performance as 

a higher spreading factor means lower chirp rate and, therefore, lower data transmission rate 

and more extended transmission range. The opposite is correct for the lower spreading factor. 

LoRa uses SF between 7 and 12. [22] 

 LoRaWAN is the Media Access Control layer (MAC) defining and maintaining the LoRa 

protocol specifications. These specifications are defined and maintained by the non-profit 

association LoRa Alliance. [19] 

Despite the low data rate, the long-range and low-power nature of LoRa modulation gives an 

advantage in a wide range of Internet of things applications that require end devices with high 

energy efficiency and long-range communication. Such applications can utilize LoRa in peer-

to-peer connections or within a LoRaWAN network. LoRa has proven efficient in smart 

cities, smart agriculture, electric metering, gas metering, smart homes, and even cleaning 

services.  

 

Table 3-1 LoRa DataRate parameters [23] 

LoRa DataRate 

(DR) 

Configuration 
(SF/bandwidth) 

Indicative physical bit 
rate (bit/s) 

Max payload size 
(bytes) 

0 SF12 / 125 kHz 250 51 

1 SF11 / 125 kHz 440 51 

2 SF10 / 125 kHz 980 51 

3 SF9 / 125 kHz 1760 115 

4 SF8 / 125 kHz 3125 222 

5 SF7 / 125 kHz 5470 222 

6 SF7 / 250 kHz 11000 222 
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3.2 LoRaWAN Architecture and Components 

LoRaWAN enables LoRa devices to connect to internet applications over long-range wireless 

communication. In the next section, an introduction to the components of the LoRaWAN 

network.[19] 

 

 

• The network Server is the core of every LoRaWAN Network. The server manages the 

LoRaWAN network, including gateways, end-devices, message routing and 

integrations, adaptive Data rate control and acknowledgement of messages. The 

network server is responsible for message deduplication as well. 

There are various providers of LoRaWAN servers with public, on-premises, and cloud 

hosting options. 

• Join Server (LoRaWAN v1.0.4+) is required to processes join-request messages from 

end nodes and manage root and session keys. 

• LoRa Gateway's primary function is to connect end devices and network servers, and 

it needs to be connected to the Internet to communicate with the network server. 

• Application Server The application processes data from end devices and can schedule 

downlink messages sent to the end devices when needed. 

• End Device or LoRa node is the Edge of the LoRaWAN where either monitoring or 

actuating is required. 

Figure 3-1 LoRaWAN Network Architecture 
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3.3 LoRaWAN End Device Classes 

The end device or node is usually a sensor, or an actuator deployed within the LoRa RF range 

from the nearest gateway. LoRaWAN specification defines 3 different classes of end devices 

Class A, Class B and Class C depending on the application.[19] 

• Class A end devices have two short receive slots following each uplink transmission. 

Class A is primarily suitable for applications where the downlink messages can wait 

for the following uplink message, so the device opens the short downlink listening 

slots right after transmitting its uplink. Class A is the most energy-efficient class. 

 

• Class B devices have scheduled receive slots. The difference with Class A that besides 

the two receive slots, the downlink slots can be scheduled. This scheduling requires a 

time-synchronized downlink (Beacon frame) to be received from the gateway to 

confirm that the device is listening. 

 

 

Figure 3-2 Class A receive windows as appears in [21] 

Figure 3-3 Class B receive windows as appears in [21] 
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• Class C end devices have maximum possible receive slots. A Class C device should 

allow continuous open receiving slots. Class C devices have the lowest latency for 

downlink messages as the device is continuously listening to downlinks. The device's 

always ready for downlink state comes with the cost of higher energy consumption 

compared to Class A and Class B.  

 

3.4 End Device Activation in LoRaWAN 

The end device needs to be personalized and activated for the end device to join the 

LoRaWAN network [19]. After activation, the end device saves the following information: 

• Device Address (DevAddr): A 32bits identifier of the end device within the current 

LoRaWAN network. To be compliant with LoRaWAN (DevAddr) identifier must 

include (AddrPrefix), which should be derived from the Network Server unique 

identifier (NetID) that LoRa Alliance has allocated to the server. This restriction does 

not apply in the case of private network servers. 

• Network Session Key (NwkSKey): This device-specific key is used by the Network 

Server and the End Device to calculate and verify message integrity code to ensure data 

integrity. This key is used to encrypt Mac-specific data frames sent on Port 0. 

• Application Session Key (AppSKey): This device-specific key is used by the 

Application server and end device to encrypt the application-specific data frames. 

 

Figure 3-4 Class C receive windows as appaears in [21] 
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The LoRaWAN specifications [19] define an activation process needed for activating end 

devices. The activation process depends on the activation method used. Either of these 

methods can be used for activation: 

• Over-The-Air Activation (OTAA)  

The end device shall have a globally unique end-device identifier (DevEUI), the Join 

Server identifier, and an AES-128 key (AppKey) To use the OTAA method. In OTAA, 

the end device initiates the join procedure by sending a Join-Request frame that contains 

JoinEUI, DevEUI and DevNonce. DevNonce is a counter starting at 0 and increments 

with the Join requests the device has sent. Join server saves the DevNonce for each 

device, so it ignores the Join-Request frame of the device if DevNonce is not 

incremented. If the end device was permitted to join the network, the Join-server sends a 

Join-Accept frame which allows the end device to calculate the Network Session Key 

(NwSKey) and the Application Session Key (AppSKey). 

In the case of Class C devices, the end device must send a confirmed uplink frame after 

receiving the Joint-Accept frame to finalize the join procedure. 

 

Figure 3-5 OTAA activation in LoRaWAN v1.1 
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• Activation by personalization (ABP) 

This activation method requires the device to have the following pre-allocated identifier 

and keys: Device Address (DevAddr), Forwarding Network Session Integrity Key 

(FNwkSIntKey), Serving Network Session Integrity Key (SNwkSIntKey), Network 

Session Encryption Key (NwkSEncKey) and an Application Session Key (AppSKey). 

This method does not require sending Join-Request or Join-Accept frames, and the 

device can join the network as soon as it is powered up. 

 

Using OTAA is more flexible as the required keys to join the network are created dynamically 

and not predefined and saved into the end device like in ABP activation. An OTAA end 

device can join another LoRaWAN network without needing to reprogram the device.  
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3.5 End-Device Firmware Update Over The Air (FUOTA) 

Updating the end device firmware has become a requirement in IoT to push firmware batches 

and security updates whenever needed. End-device update over the air procedure is highly 

dependent on the architecture of the LoRa application and end-device architecture. This 

process can be implemented as a part of the application layer running on top of a LoRaWAN 

network. LoRa Alliance FUOTA recommendations [12] define the outlines of the network 

architectures and the FUOTA process.  

 

Firmware update over the air is complex and can be achieved with variable technologies and 

methods. High-level recommendations and process descriptions by Semtech [24] and LoRa 

Alliance [12] can be summarized in Figure 3-7. Besides documents published by LoRa 

Alliance and Semtech, the FUOTA process has not yet been standardized. FUOTA steps are 

device-specific, and implementation can vary dramatically according to end-device MCU 

architecture, memory capacity, operating system, bootloader, whether the firmware is 

modular or not, and whether the device is utilizing a cryptographic hardware accelerator or 

not. This lack of standardization leaves the actual implantation to the system and end-device 

designers to decide. 

 

 

Figure 3-6 LoRaWAN FUOTA network architecture as appears in [12] 
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Figure 3-7 FUOTA process as suggested in [24] 
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3.6 LoRa Multicast  

The lack of FUOTA process standardization and the low bit rate of LoRa does add some 

challenges to the FUOTA process. However, the low bit rate issue is solved using LoRaWAN 

radio multicast, where multiple devices can receive a packet transmitted by the network. 

Radio multicast allows the packet to be sent only once and received by all the targeted end 

devices simultaneously.[20] 

 

 

 

 

Figure 3-8 LoRaWAN Multicast 
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Multicast can function with end-devices of Class B and C only. Sending each firmware 

update downlink once as a multicast message, so 1000 end-devices receive it at once, would 

be more efficient than sending the same downlink 1000 times as unicast. Class A devices are 

not suitable for multicast and, therefore, not suitable for FUOTA for the following reasons: 

• Class A devices do not receive downlink messages unless there is an uplink message, 

so for sending firmware in 100 downlink messages, the end device would need to send 

a 100 uplink which significantly raises the power consumption if uplinks are sent only 

to check for downlinks. 

• Class A uplink requirement also significantly slows down the firmware receiving 

process as each downlink message needs to wait for the next time the end device sends 

an uplink message. 

• Redundantly transmitting uplink messages only to receive the downlinks contributes 

to hitting the end device's duty cycle limits and imposes an overhead on network 

traffic. 

Multicast requires end devices to be set up as a part of the multicast group. This setup can be 

remotely achieved in LoRaWAN. LoRa Alliance has defined the process of LoRaWAN 

Remote Multicast Setup with a "Multicast Control" package which is used to: 

• Remotely set or remove multicast security keys to the end device. 

• Report the multicast groups to which the device has been added. 

• Program a Class B or Class C multicast session. 

Figure 3-9 Multicast Control Package functions 
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After the Multicast Setup, the end device saves the McGroupID, the Multicast address, the 

multicast group key, and the Frame counter. 

 

• McGroupID: an end-device-specific integer of the index of the multicast group 

simultaneously supported by the device. The value of this integer can be 0:N-1, where 

N is the maximum number of multicast groups supported by the device 

simultaneously. 

• Multicast address: end device saves a 4bytes network address of the multicast group. 

This address is shared for all the devices in the multicast group. 

• Multicast Group Key (McKey): a Multicast-group-specific key which is used to derive 

the Multicast Application Session Key (McAppSKey) and the Multicast Network 

Session Key (McNwkSKey). 

• Frame counter to register the count of frames sent by the multicast group. 

 

Figure 3-10 End device parameters set by multicast setup 
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3.7 Challenges of remote Firmware deployment over LoRaWAN networks 

Given that the LoRaWAN protocol was designed for applications with low data rates and 

limited data transfer requirements, remote firmware deployment over LoRaWAN becomes 

challenging in many ways. Packets loss and duty cycles would mean taking hours or even 

days to transmit a small file. These remote deployments are affected by many parameters, 

including the following: 

• Duty cycle limits 

The duty cycle can be defined as a proportion of time during which the network is 

used. The time of transmitting is defined as Airtime. LoRa radio communication is 

regulated by European Telecommunications Standards Institute standards in Europe.  

According to these standards, the Duty Cycle of a Lora device is 1% which means that 

for every second the device is transmitting, the device should not transmit for the next 

99 seconds. This limit is an issue when trying to transmit frequently, as in the case of 

FUOTA. 

• Deployed file size 

Typical firmware can range anywhere from a few KB to tens of MB, if not more. A 

larger firmware causes to reach Duty Cycle limits. For example, transmitting a 1 KB 

firmware over LoRa in DR0(max packet size of 51 bytes) requires sending at least 20 

downlink messages, while the duty cycle limits the number of packets with such 

airtime to 12 packets/hour. This rate means the firmware of 1KB needs around 1.6 

hours to be sent [25]. A 10 MB Firmware with the same settings above would need at 

least 192308 downlinks and more than 16000 hours. 

• Data rate used 

A higher DR allows larger packets (up to 222 bytes/packet), but it also has a much 

lower range. Implementing adaptive data rate solutions can help adjust the DR 

according to the distance. 

• The number of updated end devices to updated 

The higher the number of devices to be updated, the longer it would take to finish the 

update (Duty Cycle). This limitation can be elevated by using multicast groups and 

Multiple gateways.[10] 
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Implementing Continuous Deployment to LoRa end devices can be challenged by the low 

data rate, duty cycle and package loss when sending updates over LoRaWAN. 

For example, deploying a firmware or a file to an end device with a size of 10 KB while using 

DR0 mode with a maximum payload of 51bytes would require fragmenting the file into 197 

fragments and sending at least 197 downlinks to each end device. This 10Kb file deployment 

becomes even more challenging when deploying to tens, hundreds, or thousands of end 

devices. There needs to be a mechanism to recover from lost packets while minimizing the 

redundant resending of the fragments.[25] 
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4 Case: CI/CD over LoRa 

4.1 Design 

The main goal of this project is to implement a DevOps Continuous Integration and remote 

deployment pipeline for a LoRaWAN node. This project focuses on LoRaWAN applications 

requiring end devices to do data processing. The case used for this project was to update a 

face recognition application deployed to Raspberry Pi end-devices used for access control. 

The access control is done by a face recognition application that depends on a pre-set of 

reference images of the persons with access rights. The image capturing and processing are 

done on the Raspberry Pi node. The Raspberry PI controls a door locking actuator based on 

the saved authorized person reference images encoding. The goal is to find the possibility of 

updating the face recognition application and its reference images remotely so that the nodes 

can allow access for authorized people as the reference images are changing. The application 

and all new faces encodings must be tested with test automation and deployed to end devices 

over a LoRaWAN network. The application has a web interface to allow system 

administrators to manage the access authorization by adding or removing personnel to the 

designated access area.  

Figure 4-1  LoRaWAN Edge computing CI/CD Design 
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4.2 LoRaWAN Setup 

The LoRaWAN network in this project consists of a LoRaWAN gateway, the nodes, and the 

LoRaWAN Network Server. The setup can vary depending on the gateways, end-devices, 

LoRaWAN server, and the LoRaWAN application, but for this thesis's scope, the setup details 

are mentioned only for the current project hardware and application. The gateway device used 

is a Laird RG186 gateway. Each node consists of a Raspberry PI 3 B+ device, a Raspberry Pi 

Camera rev 1.3 and a LoRa Node PHAT module from Pi Supply. The LoRa Node PHAT 

Module is based on a RAK811 module, integrating a Semtech LoRa module SX1276 and an 

stm32L microcontroller. Using AT commands, this integrated stm32L microcontroller in the 

RAK811 controls the LoRa SX1276 chip through the Raspberry PI UART interface. 

4.2.1 LoRaWAN Server and Gateway Setup 

As discussed earlier, there are multiple operating options and providers of LoRaWAN server 

service. The setup process varies significantly depending on the hosting server option. 

However, the functionality and operating of the LoRaWAN server are similar even across 

different service providers as the primary usage of adding and managing Gateways, end-

devices, HTTP and MQTT integrations functions the same way regardless of the LoRaWAN 

server provider used. So, a few options were assessed, including a private LoRaWAN server 

and a public cloud server. 

Figure 4-2 loriot.io network server geographical locations 
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For this project's LoRaWAN server, LORIOT Community Network Server was used. The free 

network server can be used to build demo applications and LoRaWAN networks. The setup 

starts by registering an account at  https://loriot.io/  after choosing the geographical server 

location for the project. This project's geographically closest available community network 

server was in Frankfurt, Germany (EU1). All the network settings can be adjusted from within 

the web interface of Loriot. The community account has a Sample application and a Sample 

network by default. The gateway can be added to the network simply by choosing Add 

Gateway, then selecting the gateway base platform as in the following Figure. In this project, 

Laird RG1 was the base platform for the gateway. The Gateway eth0 MAC address is needed 

in this configuration. In this case, the Gateway manufacturer provides it and can be found on 

the backside of the gateway device. After adding the gateway, the region configurations can 

be set in the Loriot server. 

 

 

 

Figure 4-3 Laird RG1 Gateway Registration 

https://loriot.io/
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The LoRa network server is set to (LORIOT.io EU) on the gateway web interface. After 

configuring the Loriot server with the correct Gateway parameters, the gateway needs to be 

set to forward messages to the used network server (Loriot.io). In this case, changing the 

gateway configuration after connecting it to the local WAN network can be done through the 

gateway CLI or by accessing the configuration URL (Gateway local IP address) with a web 

browser and providing the username and password. When the gateway setup is done correctly 

on both the LoRaWAN Server and the gateway sides, both sides should show the gateway's 

online and connected status. After setting up the gateway, there needs to be a LoRaWAN 

application which, in this case, the Loriot community account comes by default with one 

sample application (SampleApp) and does not allow creating more applications without 

upgrading the service. 

 

 

Figure 4-4 Laird Gateway forwarder setting to Loriot.io 

Figure 4-5 Loriot server registered gateway dashboard 
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LoRaWAN application is also set, and all needed data can be forwarded to be processed 

further. For this Application, HTTP Push was used to forward required data to Azure 

Function, which saves the data into a database. WebSocket and API tokens are required to be 

used for communicating the LoRaWAN Network server with the rest of the CI/CD system. 

These keys are used to deploy files from the automation server and verify the deployments. 

 

 

 

 

 

 

 

Figure 4-6 Laird Gateway Server Dashboard 
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4.2.2 LoRaWAN end device setup 

This section presents the basic setup of the LoRaWAN node, a simple face recognition 

application and the modifications required to enable the CI/CD pipeline. In this section, the 

focus is on the setup's hands-on aspect. All basic Raspberry PI installation and setup are 

assumed to have been done earlier, so installing OS, the power supply, access control 

mechanism/actuators and actuators controlling software are not discussed as they are out of 

this project scope. 

This setup was done on a Raspbian OS (version 5.10.52-v7+) installed into the Raspberry Pi 

3B+. The setup and installation process requires internet access to install the needed libraries 

and clone the needed Git code. After the setup and node deployment, the node shall be 

updated through the LoRaWAN network. The IoT Node setup, in this case, has two primary 

aspects the LoRaWAN connection and the face recognition application.  

 

 

 

 

 

 

 

Figure 4-7 Raspberry Pi LoRa end device 
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Setting up the Raspberry PI end-device face-recognition application was made as to the 

following: 

1. Mounting the LoRa Node PHAT module on the GPIO interface. 

2. Mounting the Raspberry PI camera module on the CSI interface and enabling the 

Raspberry PI Camera interface using the command sudo raspi-config then navigating 

to Interface Options >> Camera >> Yes 

 

 

Figure 4-8 Enabling Raspberry Pi Camera interface 
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3. Installing the face_recognition library and the needed dependencies. 

sudo apt-get update 

sudo apt-get upgrade 

pip3 install face_recognition 

pip3 install opencv-python 

sudo apt-get install build-essential     cmake     gfortran     git     wget     curl     

graphicsmagick     libgraphicsmagick1-dev     libatlas-base-dev     libavcodec-dev     

libavformat-dev     libboost-all-dev     libgtk2.0-dev     libjpeg-dev     liblapack-dev     

libswscale-dev     pkg-config     python3-dev     python3-numpy     python3-pip     

python3-picamera 

4. For the face_recognition application (GitHub repository, ageitgey/face_recognition), the 

example facerec_on_raspberry_pi.py was used with some minor modifications. This 

modification aims to use the saved reference image encoding file instead of the 

reference image itself to lower the amount of data transferred over the LoRaWAN 

with the remote deployment. Also, changes are needed to automate adding, removing, 

and recognizing reference encoding files. The face recognition code works by loading 

a reference image encoding file from local storage and pairing it with the person's 

name so the application can recognize the person and the name on the video or the 

picture input. The face recognition algorithms are out of this thesis scope and are not 

discussed here. 

After setting up the face recognition application, the LoRaWAN node can be configured. This 

configuration is done for the RAK811 module used for this implementation: 

1. Installing the RAK811 library using pip3 command sudo pip3 install rak811. The 

rak811 command can be used for modules with firmware V2.0.x, and rak811v3 can be 

used with modules with firmware V3.0.x.  

Python library rak811 is used for writing the program operating the module. After the 

installation, the LoRa node module can be configured through the command terminal. 

For example, rak811v3 hard-reset can be called to reset the RAK811 module. 

2. The LoRaWAN node used for this project is written in Python. The node program 

configures the module parameters, joins the LoRaWAN network, sends a heartbeat 

uplink every 60 seconds, decodes the downlink messages, and saves the encoded 

image files received to the desired location on the local storage. After receiving the 

https://github.com/ageitgey/face_recognition
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file, the node also checks the file integrity by checking its checksum, comparing it to 

the file metadata received, and then sending the confirmation to the LoRaWAN server 

as an uplink. This confirmation uplink is needed in the CI/CD pipeline to ensure that 

files have been deployed successfully to the deployment target nodes. 

First, all the needed connection parameters can be set, including the following 

parameters: 

• LoRaWAN mode 0 or P2P mode 1: lora.set_config('lora:work_mode:0') 

•  LoRaWAN end-device Class 0:A or 1:B or 2:C: lora:set_config(‘lora:class:0’)  

•  LoRaWAN joining mode OTAA:0 or ABP:1: lora.set_config('lora:join_mode:1') 

•  LoRaWAN region: lora.set_config('lora:region:EU868') 

• Enable multicast: lora.set_config('lora:multicastenable:1') 

• Set multicast address: lora.set_config('lora:multicast_dev_addr:{MULTICAST_DEV_ADDR}') 

• ABP joining is used, which requires device address, application session and 

network session keys: 

▪ lora.set_config('lora:dev_addr:{DEV_ADDR}') 

▪ lora.set_config('lora:nwks_key:{NWKS_KEY}') 

▪ lora.set_config('lora:apps_key:{APPS_KEY}') 

Figure 4-9  LoRaWAN end device serial output 
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After setting the parameters correctly, the end device can be enrolled on the LoRaWAN 

network on the LoRaWAN server. In Loriot.io, that can be done by navigating to the targeted 

application menu and Enroll Device option and adding the device parameters and keys. 

 

Following a successful enrollment of the end device on the LoRaWAN server, the end device 

can join the LoRaWAN network and actively send and receive packets. The device status, 

statistics and messages can be monitored in the Loriot.io network server web interface. 

 

 

Figure 4-10 Enrolling end devices into Loriot network server 

Figure 4-11 LoRaWAN application activated end device 
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4.2.3 File Deployment over LoRa Network Server 

A file receiving/saving mechanism is needed in the end device program. This mechanism 

needs to mirror how the CI/CD Server file fragmentation and deployment mechanism using 

the LoRaWAN server API calls, which implements a simplified basic FUOTA concept that 

does not follow all the LoRa Alliances recommendations as it is only developed as a proof of 

concept for this project. This File deployment application uses reserved ports 1,2 and 3 to 

send the file deployment path, file hash, and the total message count then use a different 

reserved port to send the fragmented file downlinks as multicast or unicast. The node device 

needs to follow the same concept and receive file metadata in ports 1,2, and 3, followed by 

the fragmented file on the specific port for file fragments. After receiving the number of 

downlink messages stated on port 3 (total message count), the node defragments the received 

file fragments, composes the file, and saves it to the target deployment path (received on port 

1). Finally, the file sha256 hash is checked and verified against the received file hash 

(received on port 2) and the status of the file is reported back to the LoRaWAN server and 

then to the CI/CD server over a WebSocket. 

First, a simple ASP.net C# web application was developed to test fragmenting and deploying 

files using the API interface of the LoRaWAN server. Once the concept was verified, a .net 

core command line application was designed to run automatically on the CI/CD server. The 

command-line application works by passing a few arguments specifying the following 

parameters: 

• Deployment options: Single or multiple 

file deployments. 

• The file or the list of files to deploy. 

• The target file deployment path. 

• The deployment targeted end devices or 

multicast (Device ID/EUI)  

 

 

 

Figure 4-12 LoRa file deployment application 



44 
 

 

Sending files to end devices was done using the LoRaWAN server API interface. The API 

interface allows to send downlinks and enquire about the LoRaWAN network, gateways, and 

end devices. Few considerations were taken when designing and developing this file 

deployment software. 

1. The file fragment size:  

As the LoRaWAN payload has a limitation of 222 B on SF7, there is a need to fragment 

files before sending the downlinks. The fragmentation can be decided according to the 

distance of the farthest end device, targeted by remote deployment, which dictates the 

DataRate and SF configuration. So, the further the most distant node within the 

LoRaWAN network, the smallest fragment size needs to be taken as lower DataRate can 

travel further. Using a smaller than required file fragment can result in too many 

redundant downlinks and causes redundant network traffic and higher energy 

consumption. On the other side, using a more significant fragment size results in the 

LoRaWAN network using the higher DataRate, which travels a shorter distance. The end 

device might not receive the downlinks if it is farther away. 

Further development is needed to optimize the fragment size according to the end-device 

RSSI of uplinks received earlier from the furthermost targeted end-device in the multicast 

group. 

2. The ability to deploy multiple files:  

The software should handle multiple file deployment as there is a possibility of making 

changes to more than one file while developing node software or administrating access 

control.  

Multifile deployment is done by passing a file that includes the list of the deployment 

files. Each change to the repository automatically generates this list with the CI/CD 

server. 

3. The ability to deploy to multiple end devices:  

The software should also deploy files into multiple device addresses or a multicast. The 

list of these devices shall be created automatically by comparing the latest available 

software version with the record of the latest deployed software to each end device or 

multicast. The targeted device list or multicast is passed as an argument to the software. It 

is automated by keeping a record of the deployed versions of the software and the latest 

access control list. 
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4. The ability to verify the success of a file deployment: 

The software should communicate with the end devices to receive deployment status from 

the end device. This communication is also essential to optimize the number of redundant 

downlinks sent, as the software only attempts to resend packets that were reported missing 

by the end device. The status verification contains the number of received packets, the 

amount and identifiers of missing fragments, and the file hash for verification. 

In this case, this communication is achieved by initiating a WebSocket connection with 

the LoRaWAN server, allowing the deployment software to access received uplink 

messages and verify or attempt to resend specific files or fragments. 

5. The ability to efficiently run the software automatically through a script or a CD/CD 

pipeline. 

A .NET Core command line application was developed to allow deploying multiple files 

targeting a unicast of multicast addresses. The application allows setting the target path of the 

deployed files, giving the tool more flexibility. Options were implemented as shown in Figure 

4-13. 

Figure 4-13  LoRaWAN file API deployer options 
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4.3 CI\CD Pipeline 

CI/CD server is the heart of any CI/CD pipeline. In this case, a TeamCity server is used for 

automation, build management, and Continuous Integration to automate the pipelines 

discussed in this section. TeamCity is a highly customizable and configurable build 

automation system. The server relies on build agents to run automation tasks (builds, tests, 

deployments). So, for this project, as the targeted deployment platform was a Raspberry Pi, 

the build agents had to be hosted on Raspberry pi with an identical configuration (system 

image) as the end-nodes to achieve a stable build and test environment that is identical to the 

production environment. Besides the raspberry pi system image, no dedicated Configuration 

Management system was used. The task management system, application monitoring and 

feedback system, and databases are beyond this thesis scope. This section focuses on the 

automation of the testing and deployment tasks. 
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4.3.1 Face Recognition Application Development Pipeline 

The pipeline illustrated in Figure 4-14 makes it possible to continuously test and deploy the 

face recognition application's new features and updates to the end device. The software 

developers of the application are the primary user of this pipeline. 

 

Application pipeline workflow is: 

• Developers choose development tasks from the task management system. 

• Developers write the new code and push it to the face_recognition repository feature or 

bugfix branch. 

• Developers create a pull request to the main development branch. 

Figure 4-14  Face Recognition Application Pipeline 



48 
 

 

• A TeamCity trigger is set to check out and trigger the build process (TeamCity Build 

Chain) with new code check-ins. 

• If the build and the unit tests are successful, the pipeline runs the integration tests. 

• When all the builds and tests configured to run on the development branch are 

successful, the developer is allowed to merge to the main branch. 

• The main branch change triggers the tests, builds with the new code, and assigns a 

version number to the latest binaries. 

• Successful integration tests on the main branch trigger the end device version check 

(saved to a local DB) to determine the list of devices targeted by the newer build version. 

Also, a list of changed files is prepared to pass to the file deployment software. 

• The file deployment software then uses the list of devices that require an update and the 

list of files to be updated to do the fragmented deployment. 

• End devices receive the fragments of the new files, defragment them into the original 

files, and then send a verification or resend request. 

• File deployment software then confirms the updated devices and updates the local 

database with the versions of deployed software for each updated end device. 
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4.3.2 Images Encodings Deployment Pipeline 

The image encodings update pipeline illustrated in Figure 4-15 allows the integration testing 

and deployment of reference face images to end devices. It serves access control system 

administrators to keep the reference images list up to date.  

 

The workflow of this pipeline requires a few modifications compared to the face recognition 

application Pipeline described in the previous section, so no unit testing is needed, as, in this 

pipeline, there is no code change to be tested. There is image reference file testing to verify 

that the reference files created are functioning as expected and can be used to recognize the 

targeted person. The reference images are saved into a central repository/cloud storage. 

Updating these images triggers the following chain of build configurations in the TeamCity 

server: 

• Image encoding extracting. In this step, the build configuration uses the face_recognition 

library to load the image encoding and save the loaded array as a binary file. The usage 

of this array file reduces the amount of data deployed to the node as the array file is 

smaller than the original image.  

Figure 4-15 Images Deployment Pipeline (encodings) 
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• Test the encoding against test images. Adding new faces also requires adding a few test 

images of the same person to test the created encoding against the testing images and 

verify the functionality of the app and the validity of the extracted encoding. 

• Update the encodings repo with the new encoding files. 

• The updated encodings files are then pushed to a central encodings repository to be 

saved and for the changes to be traced. 

• A TeamCity build configuration is triggered with the latest changes to assign a version 

to the latest change and create a list of the latest added encoding files. 

• TeamCity runs a script that checks the latest encodings versions and timestamps in each 

end device which is tracked and recorded in a database. This software creates a list of 

end devices targeted for the encodings update.  

• The File Deployment application then uses the new encodings files list and the list of 

end devices targeted to update. As in pipeline A, end devices then defragment the files 

and verify the files' reception status or require resending the files or specific fragments. 

• File deployment software then confirms the updated devices and updates the local 

database with the versions of deployed encodings for each updated end device.  
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5 Results 

This chapter aims to show the results of the system implantation described in chapter 4, 

designed to implement a CI\CD pipeline that can deploy code updates to end devices over a 

LoRaWAN network. 

The CI\CD system implemented for this project was based TeamCity automation server to 

automate the deployment of new images' encodings and face recognition python scripts to the 

end device. The pipelines used Build Configuration Chain, where the tasks are triggered in 

series. Changes in the GitHub repository trigger the first Build Configuration 

(Face_Encodings_Generator) in the chain. When the build is successful, the build triggers the 

following build in the Build Configuration chain. 

 

 

Figure 5-2 TeamCity Build Configurations 

Figure 5-1 Build Configurations Chain 
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It was possible to track changes, set notifications and spot failures in the build chain. 

TeamCity Build Configurations provides a detailed log for each build step, as shown in the 

following figures. 

  

Figure 5-3 Build Log view in TeamCity 

Figure 5-4 Failed build errors 
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The end device has successfully received the encodings and python code updates with the 

DevOps pipeline implemented and deployment with LoRaWAN downlinks. 

The Raspberry Pi end devices have been set to reboot after successful code deployments. The 

devices also have been configured to run the LoRaWAN node and Face recognition 

application at startup. 

The pipeline improves the visibility and traceability of the changes done in both the image 

and face recognition repository. This visibility and traceability improvement helps decrease 

the system's recovery time or rolling back changes in case of failure.  

 

All needed uplinks downlinks data from the Loriot network server were forwarded using 

Lotiot.io Application HTTP Push to Azure function to collect the uplink and downlink data to 

improve the traceability of changes further. Overall, the system performed as expected, and 

the deployments were successful. 

 

 

Figure 5-5 Repository Commit History 
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5.1 Potential Use Cases and Applications 

We have designed and implemented a face detection application using LoRaWAN and a 

Raspberry Pi as an edge device. We have compared the following two systems to understand 

the potential use cases and further understand potential use applications. 

System A: The system implemented in this thesis utilizes edge computing where LoRaWAN 

end nodes process the images and recognize the ones that have been referenced. There are 2 

CI\CD pipelines in this system in this approach, one for the image encodings deployments 

and the other for the face recognition application new features and bug fixes, as shown in 

Figure 5-6. 

System B: The need for remote LoRa node updates is avoided by utilizing central cloud 

computing integrated with the LoRa network server. The nodes send raw image encodings to 

the cloud to be processed and wait for the results to be sent as downlinks to do the action 

required, as shown in Figure 5-7. 

System A: LoRaWAN Edge processing  

This system has the same approach as the implementation in this thesis that utilizes CI\CD to 

apply changes to end devices over LoRaWAN.  

Figure 5-6 CI/CD for LoRaWAN Edge Computing 
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System B: LoRaWAN Central Cloud Processing 

This system utilizes a central cloud processing (Web Application) to process the images and 

the access management. The system has a CI\CD pipeline continuously deploying changes to 

the could application where the image processing happens. The end devices do not do image 

processing. Instead, it sends the captured images to the web application to process and reply 

to whether a person is recognized or not. 

 

 

System B provides faster software deployment than System A as the deployment is not facing 

the same limitations introduced in System A due to deployment over LoRaWAN. On the 

other hand, the latency of transferring data over the LoRaWAN network affects the image 

processing time as every image captured needs to be encoded and fragmented in the node and 

then sent to the cloud server to be processed. The node must also wait for the cloud server's 

response with the results. This latency in image processing is a potential bottleneck for the 

system when increasing the number of images processed. 

Figure 5-7 CI/CD for Cloud Computing 
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System A provides low latency image processing as the LoRaWAN nodes can process images 

locally. Latency of software or image encodings, on the other hand, is increased.  

In Table 5-1, below are calculations of both systems' LoRaWAN packets amount. The 

calculations assume the following setup: 

• The encoded image file size is 1 KB 

• LoRa packet loss is 0% 

• Applications packets are ignored 

• Transmission is done with DR0 (51 Byte Packets) 

• Packets needed to send one encoded image file is 1000/51 ≈ 20 packets 

• Cloud computing image processing requires one downlink message per processed 

image to return the image recognition result to the LoRaWAN node in System B 

 

Table 5-1 LoRaWAN Packets Calculations with Different System Scenarios 

New images 
(encodings) 

/ day 

Images 
processed 

/ day 

System A System B Increase in packets 
with System B 

compared to System 
A 

Uplink 

/ Day 

Downlink 

/ Day 

Uplink 

/ Day 

Downlink 

/ Day 

1 1 0 20 20 1 1 

100 0 20 2000 100 2080 

1000 0 20 20000 1000 20980 

10000 0 20 200000 10000 209980 

10 1 0 200 20 1 -179 

100 0 200 2000 100 1900 

1000 0 200 20000 1000 20800 

10000 0 200 200000 10000 209800 

 

From the calculations estimated in Table 5-1, there was a dramatic increase in operational 

LoRa traffic in System B, given that daily processed images are less than the number of new 

images that need to be updated daily. The only result that reflected better performance for 

System B was when the new daily images were more than the daily processed images. 
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The study of systems A and B shows that the implementation suggested in this thesis can have 

a noticeable advantage in reducing the LoRaWAN traffic and thereby reducing processing 

latency in various applications. Naturally, the design of the implementation suggested in this 

project could be extended to various time-critical edge computing applications. The design 

suggested in this thesis can be used in use cases such as access control in remote areas or 

large-scale deployments across industrial sites without the need for ubiquitous high-speed 

connectivity. 

Just within the domain of computer vision, this thesis approach could be applied to plate 

recognition or other traffic systems, smart city management (e.g., monitoring of assets or 

automated alert systems) or large-scale monitoring in industrial applications. 

Potential use cases could be extended to systems where equipment configurations need to be 

set remotely over LoRaWAN to gain more flexibility with the system. 



58 
 

 

6 Conclusion 

The main goal of this work was to develop a reliable and efficient automated method for 

updating LoRa nodes' software, which was achieved by combining Continuous Integration 

and Continuous Deployment with the FUOTA concept. In this section, I go through the 

conclusion of this project.  

When writing this thesis, we could not find a comparable end-to-end CI/CD documented 

solution implemented for LoRaWAN edge computing to compare the suggested 

implementation CI/CD performance or metrics. Earlier research focused on either DevOps 

implementation or Firmware updates over the air FUOTA. The work done in this thesis 

attempts to connect the research done in DevOps and FUOTA.  

Although LoRaWAN has its limitations, the solution suggested in this work could benefit 

various use cases, as discussed in Chapter 5. This implementation can be improved by using 

adaptive LoRa date rates where an intelligent system can utilize Received Signal Strength 

Indicator RSSI to optimize the data fragmentation size and the transmitting data rate.  

The use of hybrid communication can also be developed where end devices include higher-

speed communication modules like NB-IoT that can be activated and deactivated remotely 

through the LoRa module, for example, when a more extensive file deployment is required.  
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