
1

Design and Implementation of CI\CD over LoRaWAN

Continuous Integration and Deployment in LoRaWAN Edge Computing Applications

Smart Systems

Master's Degree Programme in Information and Communication Technology

Department of Computing, Faculty of Technology

Master of Science in Technology Thesis

Author:

El Motasim Gumaa

Supervisors:

MSc (Tech) Jorge Peña Queralta

Assoc. Prof. Tomi Westerlund

July 2022

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin Originality Check service.

2

Master of Science in Technology Thesis

Department of Computing, Faculty of Technology

University of Turku

Subject: Smart Systems

Programme: Master's Degree Programme in Information and Communication Technology

Author: El Motasim Gumaa

Title: Design and Implementation of CI\CD over LoRaWAN.

Number of pages: 62 pages

Date: July 2022

The recent rise of IoT devices in commercial and industrial spaces has created a demand for energy-

efficient and reliable communication solutions. Communication solutions used on IoT devices vary

depending on the applications. Wireless Low Power Wide Area Network (LPWAN) technologies have

proven benefits, including long-range, low power, and low-cost communication alternatives for IoT

devices. These benefits come at the cost of limitations, such as lower data rates. At the same time,

the demand for faster, cheaper, and more reliable software deployment is becoming more critical

than ever before.

This thesis aims to find a way of having an automated process where software could be remotely

deployed into LoRa nodes and investigate whether it is possible to implement a DevOps pipeline with

both Continuous Integration (CI) and Continuous Deployment (CD) over LoRaWAN. For this thesis,

an

IoT LoRaWAN Edge computing application was chosen to determine how to design and implement a

CI/CD pipeline to ensure a dependable and a continuous software deployment to the LoRaWAN

nodes.

Designing and implementing a Continuous Deployment pipeline for this IoT application was made

possible with the integration of DevOps tools like GitHub and a TeamCity automation server.

Additionally, a series of scripts have been designed and developed for this case, including automated

tests, integration to cloud services, and file fragmentation and defragmentation tools. For software

deployment and verification to the LoRaWAN network, a program was designed to communicate with

the LoRaWAN network server over the WebSocket communication protocol.

The implementation of DevOps in LoRaWAN applications is affected by the limitations of the

LoRaWAN protocol. This thesis argues that these limitations can be eliminated using modular

software and file fragmentation techniques. The implementation presented in this work can be

extended for various time-critical use cases. The solution presented in this thesis also opens the door to

combining LoRaWAN with other LPWAN technologies, like NB-IoT, that can

be activated on demand.

Keywords: LoRaWAN, Edge Computing, DevOps, FUOTA, Continuous Integration, Continuous

Deployment

3

Table of contents

1 Introduction 5

1.1 Related Work 7

1.2 Thesis Contribution 8

1.3 Thesis structure 9

2 DevOps 10

2.1 What is DevOps 10

2.2 DevOps Metrics 12

2.3 DevOps process 14

2.4 DevOps Adoption Benefits 18

3 LoRa 20

3.1 What is LoRa? 20

3.2 LoRaWAN Architecture and Components 21

3.3 LoRaWAN End Device Classes 22

3.4 End Device Activation in LoRaWAN 23

3.5 End-Device Firmware Update Over The Air (FUOTA) 26

3.6 LoRa Multicast 28

3.7 Challenges of remote Firmware deployment over LoRaWAN networks 31

4 Case: CI/CD over LoRa 33

4.1 Design 33

4.2 LoRaWAN Setup 34

4.2.1 LoRaWAN Server and Gateway Setup 34

4.2.2 LoRaWAN end device setup 38

4.2.3 File Deployment over LoRa Network Server 43

4.3 CI\CD Pipeline 46

4.3.1 Face Recognition Application Development Pipeline 47

4.3.2 Images Encodings Deployment Pipeline 49

5 Results 51

5.1 Potential Use Cases and Applications 54

4

6 Conclusion 58

References 59

Appendices 61

Appendix 1 list of figures 61

Appendix 2 list of tables 62

5

1 Introduction

The global market for semiconductors has grown drastically over the past decades [1][2][3].

The usage of intelligent devices, robots and computers has grown substantially in domains

like smart cities, industrial robots, and smart homes [4][5][6]. This high demand and

expansion of domains have been accelerated and fuelled by the revolution of computer

science, technologies, and telecommunication to the point that it has become an integral part

of human lives. Those intelligent devices and computers have proven reliable, efficient, and

accurate in accomplishing tasks that humans find repetitive, too complicated, and time-

consuming. The increased number and complexity of these systems and the tasks delegated to

them have created the need to connect these devices (Machine-to-Machine) and connect them

to the Internet. The ecosystem of these "things" connected to the Internet has introduced terms

like cyber-physical systems, IoT (Internet of Things) and edge computing. The complexity

and quantity of these devices and the expansion of usage domains required secure and

continuous updates of these devices with the latest technologies and software [7]. This

continuous software development is critical to meeting information security and business

requirements.

The software industry's evolution has produced plenty of technologies, practices, and

methodologies in an ever-ending quest to solve emerging issues with every recent technology,

software, development method or development framework.

The ever-changing nature of software under development introduced through continuously

developing new features and fixing discovered bugs creates a need for innovating new, robust,

and reliable ways of testing, deployments and even refining and prioritizing the tasks in the

backlog. The ability to be agile with development priorities over time in response to market

needs while focusing on the main development goals and improving the quality has proven

crucial for the software under development and, therefore, the success of the businesses

behind it.

In traditional software development, predictive methodologies like Waterfall, Sashimi and V-

Model are used [8]. In the Waterfall method, the development process goes through long,

isolated, sequential, and rigid phases [9]. In these isolated phases, different teams work in

silos where many assumptions are made, and the customer or the stakeholder is only involved

in the first and last phases.

6

Agile development and DevOps practices were designed to mitigate known disadvantages of

conventional methods like Waterfall [9]. The Waterfall software development method has

disadvantages like inflexibility and minimum customer involvement. Delays in any phase in

such a method are also meant to delay the following phases of the development [8][9].

When it comes to the IoT industry evolution, there has been a revolution in low power long-

range wireless communication technologies, including communication protocols like Sigfox

and LoRa. Although these low-powered long-range communication protocols provide a

reliable solution for low energy consumption and long communication range of end device

requirements, The lifecycle of an ever-changing software proves challenging in such edge

computing applications. Limitations with communication like low data rate and cycle duty

quickly become obstacles to deploying software updates to the end devices. These

deployment limitations drive the design of such a system to an approach of utilizing central

Cloud computing instead of an onboard processor, even for simple, undemanding operations.

Cloud computing, although a great option, comes with its compromises in latency and higher

communication dependency as the data must be transferred more often. Although LoRa has a

low data rate, it is essential to deploy software remotely, reliably, and continuously into the

nodes, especially to think that the end nodes are theoretically deployed in a remote area and

can have a long lifespan.

Figure 1-1 Waterfall Software Development Phases

7

1.1 Related Work

As the LoRa and Firmware deployment over the air has gained popularity in both the research

and business fields, a few related works have directly or indirectly inspired or helped with the

work done in this thesis. This section points out some of these related works.

1. Firmware Update Using Multiple Gateways in LoRaWAN Networks [10]

In this article, the author has conducted extensive experiments and simulations to

investigate the effect of using multiple gateways while doing Firmware updates over

the air. The article states a few benefits of using a higher number of Lora Gateways,

including higher update efficiency, reduced network energy and a faster update time.

2. How to make Firmware Updates over LoRaWAN Possible [11].

The author review and evaluate the impact of LoRa Alliance's proposed firmware

Over the Air process specifications. For this work, a FUOTA simulation tool called

FUOTASim was developed to simulate the update process with different FUOTA

parameters and conclude the most impactful ones. This work concluded that the

suggested LoRa Alliance FUOTA process's phase of "gathering the identifiers of all

end devices that are targeted by the update"[12] is unscalable and a potential

bottleneck with a higher number of end devices. The work also concluded that using

Lora data rate DR5 achieves a 30% reduction in update time and device energy

consumption compared to DR0. Also, multicast with class B achieves 17% higher

update time and 550 times less energy than class C devices consumption than DR0.

3. Energy Consumption and Scalability of Transmitting Firmware Updates Over

LoRa [13]

The thesis introduces a power consumption model based on actual hardware

measurements. In this thesis project, many experiments were performed to answer the

questions "What is a reliable model to estimate the energy consumption of a firmware

update?" and "What is the increase in packet losses during a firmware update?"

4. Continuous Delivery of Customized SaaS Edge Applications in Highly

Distributed IoT Systems [14]

This work presents an architecture deployment for a precision agriculture solution that

utilizes edge computing and a LoRaWAN network. Future work suggestions included

extending the proposed architecture to update the LoRaWAN sensors OTA.

8

5. DevOps benefits: A systematic literature review. Software, practice &

experience [15]

The author reviews the DevOps benefits reported in the literature and maps these

benefits with DevOps implementation case studies. The author states that the most

reported benefits were "Cross-team collaboration and communication" and "Faster

time to market." which aligns with the premises of DevOps of better communication

and faster software delivery.

1.2 Thesis Contribution

This thesis's main contribution is to design and implement an optimized DevOps workflow

for LoRa applications where computation happens at the Edge. Specifically, the contributions

of this thesis are the following:

1. The introduction of a generic design approach for DevOps operations aimed at LoRa-

based edge computing applications.

2. The design and implementation of a specific design for parametrizable edge

applications require only upgrading part of the firmware.

3. Extending the usability and automation of LoRaWAN suggested firmware updates

over the air FUOTA process as a part of a more inclusive CI/CD process.

4. The demonstration of the benefits of the proposed approach with a face detection

application.

Earlier research has focused on either DevOps or Firmware updates over the air FUOTA

individually. Software industry research and practices seem to evolve in separation from

the revolution of embedded computing and IoT, especially LoRa solutions.

This thesis attempts to draw attention to this gap and hopefully trigger further research

involving state-of-the-art technologies in software development and IoT industries.

9

1.3 Thesis structure

This project aimed to design and implement an automated process where software could be

remotely deployed into LoRaWAN nodes and determine whether it is possible to implement

an entirely automated DevOps pipeline with Continuous Integration and deployment over

LoRaWAN. The aim is not to change the design or purpose of a LoRa-based system but to

discover the possibility of remotely deploying software to the LoRaWAN end-device when

needed.

Chapter 2 goes through essential DevOps concepts, metrics, importance, usages, practices,

tools, and research related to DevOps in the software industry.

Chapter 3 LoRa technology background on communication, LoRaWAN network architecture

and components like end devices, network servers, gateways, LoRa Alliance guidelines and

recommendations, and firmware updates over the air FUOTA.

Chapter 4 introduces the design and implementation of this thesis project design, the DevOps

CI/CD implementation, software, image recognition application, remote deployment, the

LoRaWAN end device, network server, gateway, and the deployment mechanism.

In the Results Chapter, the outcomes of the implemented system are documented.

Finally, the conclusions of this work and suggestions for future works are in Chapter 5.

10

2 DevOps

2.1 What is DevOps

The traditional software development process has contributed to widening the gap of

organizational isolation between software development (Dev) and production and operations

(Ops). DevOps is a new movement in the software industry that introduces a set of principles

and practices derived from Agile software development principles. These practices aim to

eliminate the gap between the Dev and Ops teams to enable faster software cycles and help

solve issues with traditional software development processes. [8][9][16][17]

• The development team (Dev) takes care of the feature's development, bug fixes and

software maintenance. This team had no direct communication with customers or

shareholders; instead, it depended on the Production and Operations team to

communicate with the end-user.

• Production and Operation team (Ops) that worked closer to the customers and

shareholders to deliver the product and maintain the infrastructure needed to ensure

the stability and functionality of the product (software/system).

Figure 2-1 Organizational and process introduced Wall of Confusion between Dev and Ops teams

11

Those two teams traditionally worked in silos which hindered their ability to move fast and

limited the visibility and communication across the software development process. The

operations team often has minimal knowledge about the software development before the

actual software release, which tremendously affects their primary goal of stability. Reduced

stability in the software in question meant questionable reliability and more challenging

incident recovery.

This traditional software development model has some issues, including:

• Software development cycles were exceptionally long, which meant that issues and

new features took a long time to get addressed due to the inefficiency of the process

and the lack of communication and visibility. So, bugs, for example, are not

discovered until the software is released and create issues in the production

environment.

• Due to the manual and rigid software release/deployment process, there are ongoing

issues with integrating and deploying new versions. This process also contributes to

extending the development cycles. Handovers to the next team also meant that time

was wasted waiting for other teams to hand over, which translates into a noticeable

waste along the process.

• The organizational/functional segregation of teams, their goals and their responsibility

created a conflict of interest between them.

• This segregation and lack of communication also created ongoing issues with

reliability; for example, when the development team tests the software functionality in

an environment (Server) with specific settings and everything seems to work as it

should, but after handing over the release to the operations team which is using a

different environment in their servers unexpected issues are possibly rising.

These issues result in lower quality and reliability of the software and a slower and inefficient

development process.

12

2.2 DevOps Metrics

Measuring the success of DevOps with an organization can be achieved by monitoring

metrics and KPIs that show software deployment and quality performance. The importance of

each metric depends on the teams working with the software pipeline, the organization, and

its goals. These metrics can show how well DevOps is adopted within an organization and

how the organization can improve. [17][18]

The DevOps metrics have been classified differently in the literature. The author of [17]

suggested 3 overlapping metrics categories with metrics affecting one of 3 scenarios. Velocity

+ Stability, Quality + Stability or Velocity + Quality + Stability.

1. Velocity Metrics:

These include metrics like Deployment duration, Deployment frequency, Change

volume, Lead time, Cycle time, Deployment failure rate and Environment

provisioning time

2. Stability Metrics:

Mean Time to Recovery (MTTR), Deployment downtime, Change failure rate,

Incidents per deployment, Unapproved changes, Number of hotfixes and Platform

availability.

3. Quality Metrics:

Defect density, Test automation coverage, Defect ageing, Code quality, Unit test

coverage, Code vulnerabilities, Standards violations, and Defect reintroduction rate.

Figure 2-2 Relationship between Velocity,
Quality and Stability [17]

13

The author in [18] suggests different dimensions of DevOps metrics, including dimensions

affecting staff, business, customers, process, and technology.

Figure 2-3 DevOps metrics value Dimensions suggested [18]

14

2.3 DevOps process

Unlike the traditional software development model, the DevOps lifecycle is a continuous

process where all teams are involved in the entire process. These process phases can be

modified to best suit the organization's workflow and needs. The focus is on the process's

stability, velocity, and software quality. [17]

DevOps as a process can be achieved by adopting the following practices or concepts in the

process of software development [17]:

• Source Code Management (SCM)

Source Code Management enables multiple developers to work with the code

concurrently regardless of geographic location or time. SCM system documents all the

changes done to source code, and it is crucial to track features and bugs with the

software later. This detailed tracking is essential for automating the process and fast

recovery in case of failure, as the issue can be easily pinpointed and rolled back if

needed. The SCM system would also allow maintaining different branches for bug

fixes, new features, and minor and major releases.

Integrating SCM systems with DevOps processes enables integration and automation

robustness.

Figure 2-4 DevOps Process

15

• Code reviews

The code reviewing process ensures the improvement of software quality. Reviews are

done by other software developers or automated static code quality tools, which helps

to identify common bugs and issues with the code quality before merging and

integrating it into the mainstream.

• Configuration Management

Configuration Management is done to identify, manage, verify, and maintain any

configuration for the software and hardware involved throughout the process. This

practice achieves a status where all teams clearly understand configurations used

throughout the process, including other teams' configurations.

• Build management

Build management is where the source code and all required dependencies, including

other software and hardware, are put together and built into functioning software.

Building the software with every change in the source code is essential to pinpoint

issues effectively.

• Artefacts' repository management

This management system is dedicated to keeping and managing the binaries created at

the build management system. Saving those artefacts is needed to ensure builds are

repeatable, keeping those for later testing and investigating potential hidden issues.

• Release management

Release management facilitates and manages the software's development, testing,

deployment, and maintenance. The automation of this process relies on the automation

of all those other processes.

• Test automation

Manual testing is very tedious, expensive, and time-consuming. Test automation

automates all scenarios with all new code pushed to source control. This automation

means it is possible to extensively and reliably test every new piece of code and

pinpoint issues discovered during testing. Overall, software quality can be

substantially improved by test automation.

16

• Continuous Integration

When working with different pieces of software or multiple software/dependencies,

Continuous Integration is needed to ensure the quality and functionality of the code as

early as possible.

• Continuous Delivery

After successful integration, the product is automatically delivered to a staging

environment where issues with business logic can be discovered during the user

acceptance tests.

• Continuous Deployment

Deploying to production is the last point of source code changes after building,

testing, integrating, and delivering. Doing this requires the automation of the entire

process.

• Routine automation

Automate any routine and repetitive tasks. Tasks like updating version numbers,

creating a new branch for a release, and copying user-interface localization to or from

a database can all be automated to save time and increase the quality of the results.

• Infrastructure as Code (IaC)

IaC is an integral part of configuration management. IaC aims to identify the entire

infrastructure used in testing, building and deployment and saves it as a file used by

the configuration management system to replicate an infrastructure setup such as

production environment staging (virtual servers, clients, and networks) that is needed

in the process.

• Key application performance monitoring/indicators

Performance metrics are essential to monitoring the software's quality and the

development lifecycle. Metrics like uptime, downtime, mean time to recovery, mean

time to detect errors, deployment frequency and lead time are needed when evaluating

and recognizing specific trends and issues with the overall process and helping to

improve the development pipeline continuously.

These practices can be associated with on or phases of the process. Performance Monitoring

and Routine Automation are required throughout the entire process, as shown in Figure 2-5

17

Adopting these practices requires cultural adaptations throughout the organization and using

supporting tools and infrastructure. Besides the cultural adoption of DevOps, it requires

specific tools to practice DevOps successfully. For instance, to be able to practice Test and

Build automation, an automation server is needed. GitHub, Bitbucket, or any other version

control tool would be required to practice Source Code Management.[17]

Figure 2-5 DevOps Process Phases Association with Practices

18

2.4 DevOps Adoption Benefits

The DevOps movement aims to break down communication and collaboration barriers

between teams involved in the software development process. This goal refed to as "Tear

Down the Wall", which is achieved by Adopting a culture in the organization where everyone

is collaborative. The responsibility in the DevOps process is imposed from End-to-End. So,

teams would need to work together to achieve a common goal instead of conflicting teams'

goals. The End-to-End responsibility also means Continues improvement is encouraged as

everyone needs to adapt to changing circumstances and modern technologies. Automation

implementation whenever possible means a shorter and more stable development cycle, so

instead of weeks or months with the traditional development process, the development cycle

is measured in days, hours or even minutes. The DevOps process focuses on the customer's

needs and continuously pivots when needed. The process takes a fail-fast strategy which helps

discover issues as soon as possible, learn from them and fix them quickly. DevOps teams are

involved at every stage of the software development cycle. The team is cross-functional, and

responsibilities are shared across teams.[15][18]

The Accelerate State of DevOps Report by the DevOps Research and Assessment (DORA)

[18] team at Google Cloud has been researching and publishing the effects of following

DevOps practices and adaptation on organizations' performance. The report categorizes

organizations into four categories based on the answers provided by IT professionals on

software delivery performance metrics, as shown in Table 2-1.

DORA's previous yearly reports consistently improved performance and reliability results for

organizations with higher software delivery metrics than those with lower results. The

Accelerate State of DevOps 2021 shows that organizations within the Elite performers made

973 times more code deployments and had 6570 times faster lead time from committing code

to deploy than the low performers' group. The report also shows that the Elite group has three

times less failure rate and 6570 times faster recovery time from failures than the low

performers.[18]

19

Table 2-1 Software Delivery performance results per performance category [18]

Software Delivery
Performance
metrics

Elite High Medium Low

Deployment
frequency

Multiple deploys
per day

Between once per
week and once per
month

Between once per
month and once
every 6 months

Fewer than
once per six
months

Lead time for
changes

Less than one
hour

Between one day
and one week

Between one month
and six months

More than six
months

Time to restore
service

Less than one
hour

Less than one day Between one day
and one week

More than six
months

Change failure 0%-15% 16%-30% 16%-30% 16%-30%

20

3 LoRa

3.1 What is LoRa?

 Long Range (LoRa) is a Radio Physical Layer (PHY) of a Low Power and Wide Area

technology (LPWA) communication that uses chirp spread spectrum (CSS) modulation to

represent the payload bits in multiple chirps. [22]

 Chirp is a signal with continuously various frequencies. The rate of those chirps is referred to

as the spreading factor (SF). The spreading factor impacts the communication performance as

a higher spreading factor means lower chirp rate and, therefore, lower data transmission rate

and more extended transmission range. The opposite is correct for the lower spreading factor.

LoRa uses SF between 7 and 12. [22]

 LoRaWAN is the Media Access Control layer (MAC) defining and maintaining the LoRa

protocol specifications. These specifications are defined and maintained by the non-profit

association LoRa Alliance. [19]

Despite the low data rate, the long-range and low-power nature of LoRa modulation gives an

advantage in a wide range of Internet of things applications that require end devices with high

energy efficiency and long-range communication. Such applications can utilize LoRa in peer-

to-peer connections or within a LoRaWAN network. LoRa has proven efficient in smart

cities, smart agriculture, electric metering, gas metering, smart homes, and even cleaning

services.

Table 3-1 LoRa DataRate parameters [23]

LoRa DataRate

(DR)

Configuration
(SF/bandwidth)

Indicative physical bit
rate (bit/s)

Max payload size
(bytes)

0 SF12 / 125 kHz 250 51

1 SF11 / 125 kHz 440 51

2 SF10 / 125 kHz 980 51

3 SF9 / 125 kHz 1760 115

4 SF8 / 125 kHz 3125 222

5 SF7 / 125 kHz 5470 222

6 SF7 / 250 kHz 11000 222

21

3.2 LoRaWAN Architecture and Components

LoRaWAN enables LoRa devices to connect to internet applications over long-range wireless

communication. In the next section, an introduction to the components of the LoRaWAN

network.[19]

• The network Server is the core of every LoRaWAN Network. The server manages the

LoRaWAN network, including gateways, end-devices, message routing and

integrations, adaptive Data rate control and acknowledgement of messages. The

network server is responsible for message deduplication as well.

There are various providers of LoRaWAN servers with public, on-premises, and cloud

hosting options.

• Join Server (LoRaWAN v1.0.4+) is required to processes join-request messages from

end nodes and manage root and session keys.

• LoRa Gateway's primary function is to connect end devices and network servers, and

it needs to be connected to the Internet to communicate with the network server.

• Application Server The application processes data from end devices and can schedule

downlink messages sent to the end devices when needed.

• End Device or LoRa node is the Edge of the LoRaWAN where either monitoring or

actuating is required.

Figure 3-1 LoRaWAN Network Architecture

22

3.3 LoRaWAN End Device Classes

The end device or node is usually a sensor, or an actuator deployed within the LoRa RF range

from the nearest gateway. LoRaWAN specification defines 3 different classes of end devices

Class A, Class B and Class C depending on the application.[19]

• Class A end devices have two short receive slots following each uplink transmission.

Class A is primarily suitable for applications where the downlink messages can wait

for the following uplink message, so the device opens the short downlink listening

slots right after transmitting its uplink. Class A is the most energy-efficient class.

• Class B devices have scheduled receive slots. The difference with Class A that besides

the two receive slots, the downlink slots can be scheduled. This scheduling requires a

time-synchronized downlink (Beacon frame) to be received from the gateway to

confirm that the device is listening.

Figure 3-2 Class A receive windows as appears in [21]

Figure 3-3 Class B receive windows as appears in [21]

23

• Class C end devices have maximum possible receive slots. A Class C device should

allow continuous open receiving slots. Class C devices have the lowest latency for

downlink messages as the device is continuously listening to downlinks. The device's

always ready for downlink state comes with the cost of higher energy consumption

compared to Class A and Class B.

3.4 End Device Activation in LoRaWAN

The end device needs to be personalized and activated for the end device to join the

LoRaWAN network [19]. After activation, the end device saves the following information:

• Device Address (DevAddr): A 32bits identifier of the end device within the current

LoRaWAN network. To be compliant with LoRaWAN (DevAddr) identifier must

include (AddrPrefix), which should be derived from the Network Server unique

identifier (NetID) that LoRa Alliance has allocated to the server. This restriction does

not apply in the case of private network servers.

• Network Session Key (NwkSKey): This device-specific key is used by the Network

Server and the End Device to calculate and verify message integrity code to ensure data

integrity. This key is used to encrypt Mac-specific data frames sent on Port 0.

• Application Session Key (AppSKey): This device-specific key is used by the

Application server and end device to encrypt the application-specific data frames.

Figure 3-4 Class C receive windows as appaears in [21]

24

The LoRaWAN specifications [19] define an activation process needed for activating end

devices. The activation process depends on the activation method used. Either of these

methods can be used for activation:

• Over-The-Air Activation (OTAA)

The end device shall have a globally unique end-device identifier (DevEUI), the Join

Server identifier, and an AES-128 key (AppKey) To use the OTAA method. In OTAA,

the end device initiates the join procedure by sending a Join-Request frame that contains

JoinEUI, DevEUI and DevNonce. DevNonce is a counter starting at 0 and increments

with the Join requests the device has sent. Join server saves the DevNonce for each

device, so it ignores the Join-Request frame of the device if DevNonce is not

incremented. If the end device was permitted to join the network, the Join-server sends a

Join-Accept frame which allows the end device to calculate the Network Session Key

(NwSKey) and the Application Session Key (AppSKey).

In the case of Class C devices, the end device must send a confirmed uplink frame after

receiving the Joint-Accept frame to finalize the join procedure.

Figure 3-5 OTAA activation in LoRaWAN v1.1

25

• Activation by personalization (ABP)

This activation method requires the device to have the following pre-allocated identifier

and keys: Device Address (DevAddr), Forwarding Network Session Integrity Key

(FNwkSIntKey), Serving Network Session Integrity Key (SNwkSIntKey), Network

Session Encryption Key (NwkSEncKey) and an Application Session Key (AppSKey).

This method does not require sending Join-Request or Join-Accept frames, and the

device can join the network as soon as it is powered up.

Using OTAA is more flexible as the required keys to join the network are created dynamically

and not predefined and saved into the end device like in ABP activation. An OTAA end

device can join another LoRaWAN network without needing to reprogram the device.

26

3.5 End-Device Firmware Update Over The Air (FUOTA)

Updating the end device firmware has become a requirement in IoT to push firmware batches

and security updates whenever needed. End-device update over the air procedure is highly

dependent on the architecture of the LoRa application and end-device architecture. This

process can be implemented as a part of the application layer running on top of a LoRaWAN

network. LoRa Alliance FUOTA recommendations [12] define the outlines of the network

architectures and the FUOTA process.

Firmware update over the air is complex and can be achieved with variable technologies and

methods. High-level recommendations and process descriptions by Semtech [24] and LoRa

Alliance [12] can be summarized in Figure 3-7. Besides documents published by LoRa

Alliance and Semtech, the FUOTA process has not yet been standardized. FUOTA steps are

device-specific, and implementation can vary dramatically according to end-device MCU

architecture, memory capacity, operating system, bootloader, whether the firmware is

modular or not, and whether the device is utilizing a cryptographic hardware accelerator or

not. This lack of standardization leaves the actual implantation to the system and end-device

designers to decide.

Figure 3-6 LoRaWAN FUOTA network architecture as appears in [12]

27

Figure 3-7 FUOTA process as suggested in [24]

28

3.6 LoRa Multicast

The lack of FUOTA process standardization and the low bit rate of LoRa does add some

challenges to the FUOTA process. However, the low bit rate issue is solved using LoRaWAN

radio multicast, where multiple devices can receive a packet transmitted by the network.

Radio multicast allows the packet to be sent only once and received by all the targeted end

devices simultaneously.[20]

Figure 3-8 LoRaWAN Multicast

29

Multicast can function with end-devices of Class B and C only. Sending each firmware

update downlink once as a multicast message, so 1000 end-devices receive it at once, would

be more efficient than sending the same downlink 1000 times as unicast. Class A devices are

not suitable for multicast and, therefore, not suitable for FUOTA for the following reasons:

• Class A devices do not receive downlink messages unless there is an uplink message,

so for sending firmware in 100 downlink messages, the end device would need to send

a 100 uplink which significantly raises the power consumption if uplinks are sent only

to check for downlinks.

• Class A uplink requirement also significantly slows down the firmware receiving

process as each downlink message needs to wait for the next time the end device sends

an uplink message.

• Redundantly transmitting uplink messages only to receive the downlinks contributes

to hitting the end device's duty cycle limits and imposes an overhead on network

traffic.

Multicast requires end devices to be set up as a part of the multicast group. This setup can be

remotely achieved in LoRaWAN. LoRa Alliance has defined the process of LoRaWAN

Remote Multicast Setup with a "Multicast Control" package which is used to:

• Remotely set or remove multicast security keys to the end device.

• Report the multicast groups to which the device has been added.

• Program a Class B or Class C multicast session.

Figure 3-9 Multicast Control Package functions

30

After the Multicast Setup, the end device saves the McGroupID, the Multicast address, the

multicast group key, and the Frame counter.

• McGroupID: an end-device-specific integer of the index of the multicast group

simultaneously supported by the device. The value of this integer can be 0:N-1, where

N is the maximum number of multicast groups supported by the device

simultaneously.

• Multicast address: end device saves a 4bytes network address of the multicast group.

This address is shared for all the devices in the multicast group.

• Multicast Group Key (McKey): a Multicast-group-specific key which is used to derive

the Multicast Application Session Key (McAppSKey) and the Multicast Network

Session Key (McNwkSKey).

• Frame counter to register the count of frames sent by the multicast group.

Figure 3-10 End device parameters set by multicast setup

31

3.7 Challenges of remote Firmware deployment over LoRaWAN networks

Given that the LoRaWAN protocol was designed for applications with low data rates and

limited data transfer requirements, remote firmware deployment over LoRaWAN becomes

challenging in many ways. Packets loss and duty cycles would mean taking hours or even

days to transmit a small file. These remote deployments are affected by many parameters,

including the following:

• Duty cycle limits

The duty cycle can be defined as a proportion of time during which the network is

used. The time of transmitting is defined as Airtime. LoRa radio communication is

regulated by European Telecommunications Standards Institute standards in Europe.

According to these standards, the Duty Cycle of a Lora device is 1% which means that

for every second the device is transmitting, the device should not transmit for the next

99 seconds. This limit is an issue when trying to transmit frequently, as in the case of

FUOTA.

• Deployed file size

Typical firmware can range anywhere from a few KB to tens of MB, if not more. A

larger firmware causes to reach Duty Cycle limits. For example, transmitting a 1 KB

firmware over LoRa in DR0(max packet size of 51 bytes) requires sending at least 20

downlink messages, while the duty cycle limits the number of packets with such

airtime to 12 packets/hour. This rate means the firmware of 1KB needs around 1.6

hours to be sent [25]. A 10 MB Firmware with the same settings above would need at

least 192308 downlinks and more than 16000 hours.

• Data rate used

A higher DR allows larger packets (up to 222 bytes/packet), but it also has a much

lower range. Implementing adaptive data rate solutions can help adjust the DR

according to the distance.

• The number of updated end devices to updated

The higher the number of devices to be updated, the longer it would take to finish the

update (Duty Cycle). This limitation can be elevated by using multicast groups and

Multiple gateways.[10]

32

Implementing Continuous Deployment to LoRa end devices can be challenged by the low

data rate, duty cycle and package loss when sending updates over LoRaWAN.

For example, deploying a firmware or a file to an end device with a size of 10 KB while using

DR0 mode with a maximum payload of 51bytes would require fragmenting the file into 197

fragments and sending at least 197 downlinks to each end device. This 10Kb file deployment

becomes even more challenging when deploying to tens, hundreds, or thousands of end

devices. There needs to be a mechanism to recover from lost packets while minimizing the

redundant resending of the fragments.[25]

33

4 Case: CI/CD over LoRa

4.1 Design

The main goal of this project is to implement a DevOps Continuous Integration and remote

deployment pipeline for a LoRaWAN node. This project focuses on LoRaWAN applications

requiring end devices to do data processing. The case used for this project was to update a

face recognition application deployed to Raspberry Pi end-devices used for access control.

The access control is done by a face recognition application that depends on a pre-set of

reference images of the persons with access rights. The image capturing and processing are

done on the Raspberry Pi node. The Raspberry PI controls a door locking actuator based on

the saved authorized person reference images encoding. The goal is to find the possibility of

updating the face recognition application and its reference images remotely so that the nodes

can allow access for authorized people as the reference images are changing. The application

and all new faces encodings must be tested with test automation and deployed to end devices

over a LoRaWAN network. The application has a web interface to allow system

administrators to manage the access authorization by adding or removing personnel to the

designated access area.

Figure 4-1 LoRaWAN Edge computing CI/CD Design

34

4.2 LoRaWAN Setup

The LoRaWAN network in this project consists of a LoRaWAN gateway, the nodes, and the

LoRaWAN Network Server. The setup can vary depending on the gateways, end-devices,

LoRaWAN server, and the LoRaWAN application, but for this thesis's scope, the setup details

are mentioned only for the current project hardware and application. The gateway device used

is a Laird RG186 gateway. Each node consists of a Raspberry PI 3 B+ device, a Raspberry Pi

Camera rev 1.3 and a LoRa Node PHAT module from Pi Supply. The LoRa Node PHAT

Module is based on a RAK811 module, integrating a Semtech LoRa module SX1276 and an

stm32L microcontroller. Using AT commands, this integrated stm32L microcontroller in the

RAK811 controls the LoRa SX1276 chip through the Raspberry PI UART interface.

4.2.1 LoRaWAN Server and Gateway Setup

As discussed earlier, there are multiple operating options and providers of LoRaWAN server

service. The setup process varies significantly depending on the hosting server option.

However, the functionality and operating of the LoRaWAN server are similar even across

different service providers as the primary usage of adding and managing Gateways, end-

devices, HTTP and MQTT integrations functions the same way regardless of the LoRaWAN

server provider used. So, a few options were assessed, including a private LoRaWAN server

and a public cloud server.

Figure 4-2 loriot.io network server geographical locations

35

For this project's LoRaWAN server, LORIOT Community Network Server was used. The free

network server can be used to build demo applications and LoRaWAN networks. The setup

starts by registering an account at https://loriot.io/ after choosing the geographical server

location for the project. This project's geographically closest available community network

server was in Frankfurt, Germany (EU1). All the network settings can be adjusted from within

the web interface of Loriot. The community account has a Sample application and a Sample

network by default. The gateway can be added to the network simply by choosing Add

Gateway, then selecting the gateway base platform as in the following Figure. In this project,

Laird RG1 was the base platform for the gateway. The Gateway eth0 MAC address is needed

in this configuration. In this case, the Gateway manufacturer provides it and can be found on

the backside of the gateway device. After adding the gateway, the region configurations can

be set in the Loriot server.

Figure 4-3 Laird RG1 Gateway Registration

https://loriot.io/

36

The LoRa network server is set to (LORIOT.io EU) on the gateway web interface. After

configuring the Loriot server with the correct Gateway parameters, the gateway needs to be

set to forward messages to the used network server (Loriot.io). In this case, changing the

gateway configuration after connecting it to the local WAN network can be done through the

gateway CLI or by accessing the configuration URL (Gateway local IP address) with a web

browser and providing the username and password. When the gateway setup is done correctly

on both the LoRaWAN Server and the gateway sides, both sides should show the gateway's

online and connected status. After setting up the gateway, there needs to be a LoRaWAN

application which, in this case, the Loriot community account comes by default with one

sample application (SampleApp) and does not allow creating more applications without

upgrading the service.

Figure 4-4 Laird Gateway forwarder setting to Loriot.io

Figure 4-5 Loriot server registered gateway dashboard

37

LoRaWAN application is also set, and all needed data can be forwarded to be processed

further. For this Application, HTTP Push was used to forward required data to Azure

Function, which saves the data into a database. WebSocket and API tokens are required to be

used for communicating the LoRaWAN Network server with the rest of the CI/CD system.

These keys are used to deploy files from the automation server and verify the deployments.

Figure 4-6 Laird Gateway Server Dashboard

38

4.2.2 LoRaWAN end device setup

This section presents the basic setup of the LoRaWAN node, a simple face recognition

application and the modifications required to enable the CI/CD pipeline. In this section, the

focus is on the setup's hands-on aspect. All basic Raspberry PI installation and setup are

assumed to have been done earlier, so installing OS, the power supply, access control

mechanism/actuators and actuators controlling software are not discussed as they are out of

this project scope.

This setup was done on a Raspbian OS (version 5.10.52-v7+) installed into the Raspberry Pi

3B+. The setup and installation process requires internet access to install the needed libraries

and clone the needed Git code. After the setup and node deployment, the node shall be

updated through the LoRaWAN network. The IoT Node setup, in this case, has two primary

aspects the LoRaWAN connection and the face recognition application.

Figure 4-7 Raspberry Pi LoRa end device

39

Setting up the Raspberry PI end-device face-recognition application was made as to the

following:

1. Mounting the LoRa Node PHAT module on the GPIO interface.

2. Mounting the Raspberry PI camera module on the CSI interface and enabling the

Raspberry PI Camera interface using the command sudo raspi-config then navigating

to Interface Options >> Camera >> Yes

Figure 4-8 Enabling Raspberry Pi Camera interface

40

3. Installing the face_recognition library and the needed dependencies.

sudo apt-get update

sudo apt-get upgrade

pip3 install face_recognition

pip3 install opencv-python

sudo apt-get install build-essential cmake gfortran git wget curl

graphicsmagick libgraphicsmagick1-dev libatlas-base-dev libavcodec-dev

libavformat-dev libboost-all-dev libgtk2.0-dev libjpeg-dev liblapack-dev

libswscale-dev pkg-config python3-dev python3-numpy python3-pip

python3-picamera

4. For the face_recognition application (GitHub repository, ageitgey/face_recognition), the

example facerec_on_raspberry_pi.py was used with some minor modifications. This

modification aims to use the saved reference image encoding file instead of the

reference image itself to lower the amount of data transferred over the LoRaWAN

with the remote deployment. Also, changes are needed to automate adding, removing,

and recognizing reference encoding files. The face recognition code works by loading

a reference image encoding file from local storage and pairing it with the person's

name so the application can recognize the person and the name on the video or the

picture input. The face recognition algorithms are out of this thesis scope and are not

discussed here.

After setting up the face recognition application, the LoRaWAN node can be configured. This

configuration is done for the RAK811 module used for this implementation:

1. Installing the RAK811 library using pip3 command sudo pip3 install rak811. The

rak811 command can be used for modules with firmware V2.0.x, and rak811v3 can be

used with modules with firmware V3.0.x.

Python library rak811 is used for writing the program operating the module. After the

installation, the LoRa node module can be configured through the command terminal.

For example, rak811v3 hard-reset can be called to reset the RAK811 module.

2. The LoRaWAN node used for this project is written in Python. The node program

configures the module parameters, joins the LoRaWAN network, sends a heartbeat

uplink every 60 seconds, decodes the downlink messages, and saves the encoded

image files received to the desired location on the local storage. After receiving the

https://github.com/ageitgey/face_recognition

41

file, the node also checks the file integrity by checking its checksum, comparing it to

the file metadata received, and then sending the confirmation to the LoRaWAN server

as an uplink. This confirmation uplink is needed in the CI/CD pipeline to ensure that

files have been deployed successfully to the deployment target nodes.

First, all the needed connection parameters can be set, including the following

parameters:

• LoRaWAN mode 0 or P2P mode 1: lora.set_config('lora:work_mode:0')

• LoRaWAN end-device Class 0:A or 1:B or 2:C: lora:set_config(‘lora:class:0’)

• LoRaWAN joining mode OTAA:0 or ABP:1: lora.set_config('lora:join_mode:1')

• LoRaWAN region: lora.set_config('lora:region:EU868')

• Enable multicast: lora.set_config('lora:multicastenable:1')

• Set multicast address: lora.set_config('lora:multicast_dev_addr:{MULTICAST_DEV_ADDR}')

• ABP joining is used, which requires device address, application session and

network session keys:

▪ lora.set_config('lora:dev_addr:{DEV_ADDR}')

▪ lora.set_config('lora:nwks_key:{NWKS_KEY}')

▪ lora.set_config('lora:apps_key:{APPS_KEY}')

Figure 4-9 LoRaWAN end device serial output

42

After setting the parameters correctly, the end device can be enrolled on the LoRaWAN

network on the LoRaWAN server. In Loriot.io, that can be done by navigating to the targeted

application menu and Enroll Device option and adding the device parameters and keys.

Following a successful enrollment of the end device on the LoRaWAN server, the end device

can join the LoRaWAN network and actively send and receive packets. The device status,

statistics and messages can be monitored in the Loriot.io network server web interface.

Figure 4-10 Enrolling end devices into Loriot network server

Figure 4-11 LoRaWAN application activated end device

43

4.2.3 File Deployment over LoRa Network Server

A file receiving/saving mechanism is needed in the end device program. This mechanism

needs to mirror how the CI/CD Server file fragmentation and deployment mechanism using

the LoRaWAN server API calls, which implements a simplified basic FUOTA concept that

does not follow all the LoRa Alliances recommendations as it is only developed as a proof of

concept for this project. This File deployment application uses reserved ports 1,2 and 3 to

send the file deployment path, file hash, and the total message count then use a different

reserved port to send the fragmented file downlinks as multicast or unicast. The node device

needs to follow the same concept and receive file metadata in ports 1,2, and 3, followed by

the fragmented file on the specific port for file fragments. After receiving the number of

downlink messages stated on port 3 (total message count), the node defragments the received

file fragments, composes the file, and saves it to the target deployment path (received on port

1). Finally, the file sha256 hash is checked and verified against the received file hash

(received on port 2) and the status of the file is reported back to the LoRaWAN server and

then to the CI/CD server over a WebSocket.

First, a simple ASP.net C# web application was developed to test fragmenting and deploying

files using the API interface of the LoRaWAN server. Once the concept was verified, a .net

core command line application was designed to run automatically on the CI/CD server. The

command-line application works by passing a few arguments specifying the following

parameters:

• Deployment options: Single or multiple

file deployments.

• The file or the list of files to deploy.

• The target file deployment path.

• The deployment targeted end devices or

multicast (Device ID/EUI)

Figure 4-12 LoRa file deployment application

44

Sending files to end devices was done using the LoRaWAN server API interface. The API

interface allows to send downlinks and enquire about the LoRaWAN network, gateways, and

end devices. Few considerations were taken when designing and developing this file

deployment software.

1. The file fragment size:

As the LoRaWAN payload has a limitation of 222 B on SF7, there is a need to fragment

files before sending the downlinks. The fragmentation can be decided according to the

distance of the farthest end device, targeted by remote deployment, which dictates the

DataRate and SF configuration. So, the further the most distant node within the

LoRaWAN network, the smallest fragment size needs to be taken as lower DataRate can

travel further. Using a smaller than required file fragment can result in too many

redundant downlinks and causes redundant network traffic and higher energy

consumption. On the other side, using a more significant fragment size results in the

LoRaWAN network using the higher DataRate, which travels a shorter distance. The end

device might not receive the downlinks if it is farther away.

Further development is needed to optimize the fragment size according to the end-device

RSSI of uplinks received earlier from the furthermost targeted end-device in the multicast

group.

2. The ability to deploy multiple files:

The software should handle multiple file deployment as there is a possibility of making

changes to more than one file while developing node software or administrating access

control.

Multifile deployment is done by passing a file that includes the list of the deployment

files. Each change to the repository automatically generates this list with the CI/CD

server.

3. The ability to deploy to multiple end devices:

The software should also deploy files into multiple device addresses or a multicast. The

list of these devices shall be created automatically by comparing the latest available

software version with the record of the latest deployed software to each end device or

multicast. The targeted device list or multicast is passed as an argument to the software. It

is automated by keeping a record of the deployed versions of the software and the latest

access control list.

45

4. The ability to verify the success of a file deployment:

The software should communicate with the end devices to receive deployment status from

the end device. This communication is also essential to optimize the number of redundant

downlinks sent, as the software only attempts to resend packets that were reported missing

by the end device. The status verification contains the number of received packets, the

amount and identifiers of missing fragments, and the file hash for verification.

In this case, this communication is achieved by initiating a WebSocket connection with

the LoRaWAN server, allowing the deployment software to access received uplink

messages and verify or attempt to resend specific files or fragments.

5. The ability to efficiently run the software automatically through a script or a CD/CD

pipeline.

A .NET Core command line application was developed to allow deploying multiple files

targeting a unicast of multicast addresses. The application allows setting the target path of the

deployed files, giving the tool more flexibility. Options were implemented as shown in Figure

4-13.

Figure 4-13 LoRaWAN file API deployer options

46

4.3 CI\CD Pipeline

CI/CD server is the heart of any CI/CD pipeline. In this case, a TeamCity server is used for

automation, build management, and Continuous Integration to automate the pipelines

discussed in this section. TeamCity is a highly customizable and configurable build

automation system. The server relies on build agents to run automation tasks (builds, tests,

deployments). So, for this project, as the targeted deployment platform was a Raspberry Pi,

the build agents had to be hosted on Raspberry pi with an identical configuration (system

image) as the end-nodes to achieve a stable build and test environment that is identical to the

production environment. Besides the raspberry pi system image, no dedicated Configuration

Management system was used. The task management system, application monitoring and

feedback system, and databases are beyond this thesis scope. This section focuses on the

automation of the testing and deployment tasks.

47

4.3.1 Face Recognition Application Development Pipeline

The pipeline illustrated in Figure 4-14 makes it possible to continuously test and deploy the

face recognition application's new features and updates to the end device. The software

developers of the application are the primary user of this pipeline.

Application pipeline workflow is:

• Developers choose development tasks from the task management system.

• Developers write the new code and push it to the face_recognition repository feature or

bugfix branch.

• Developers create a pull request to the main development branch.

Figure 4-14 Face Recognition Application Pipeline

48

• A TeamCity trigger is set to check out and trigger the build process (TeamCity Build

Chain) with new code check-ins.

• If the build and the unit tests are successful, the pipeline runs the integration tests.

• When all the builds and tests configured to run on the development branch are

successful, the developer is allowed to merge to the main branch.

• The main branch change triggers the tests, builds with the new code, and assigns a

version number to the latest binaries.

• Successful integration tests on the main branch trigger the end device version check

(saved to a local DB) to determine the list of devices targeted by the newer build version.

Also, a list of changed files is prepared to pass to the file deployment software.

• The file deployment software then uses the list of devices that require an update and the

list of files to be updated to do the fragmented deployment.

• End devices receive the fragments of the new files, defragment them into the original

files, and then send a verification or resend request.

• File deployment software then confirms the updated devices and updates the local

database with the versions of deployed software for each updated end device.

49

4.3.2 Images Encodings Deployment Pipeline

The image encodings update pipeline illustrated in Figure 4-15 allows the integration testing

and deployment of reference face images to end devices. It serves access control system

administrators to keep the reference images list up to date.

The workflow of this pipeline requires a few modifications compared to the face recognition

application Pipeline described in the previous section, so no unit testing is needed, as, in this

pipeline, there is no code change to be tested. There is image reference file testing to verify

that the reference files created are functioning as expected and can be used to recognize the

targeted person. The reference images are saved into a central repository/cloud storage.

Updating these images triggers the following chain of build configurations in the TeamCity

server:

• Image encoding extracting. In this step, the build configuration uses the face_recognition

library to load the image encoding and save the loaded array as a binary file. The usage

of this array file reduces the amount of data deployed to the node as the array file is

smaller than the original image.

Figure 4-15 Images Deployment Pipeline (encodings)

50

• Test the encoding against test images. Adding new faces also requires adding a few test

images of the same person to test the created encoding against the testing images and

verify the functionality of the app and the validity of the extracted encoding.

• Update the encodings repo with the new encoding files.

• The updated encodings files are then pushed to a central encodings repository to be

saved and for the changes to be traced.

• A TeamCity build configuration is triggered with the latest changes to assign a version

to the latest change and create a list of the latest added encoding files.

• TeamCity runs a script that checks the latest encodings versions and timestamps in each

end device which is tracked and recorded in a database. This software creates a list of

end devices targeted for the encodings update.

• The File Deployment application then uses the new encodings files list and the list of

end devices targeted to update. As in pipeline A, end devices then defragment the files

and verify the files' reception status or require resending the files or specific fragments.

• File deployment software then confirms the updated devices and updates the local

database with the versions of deployed encodings for each updated end device.

51

5 Results

This chapter aims to show the results of the system implantation described in chapter 4,

designed to implement a CI\CD pipeline that can deploy code updates to end devices over a

LoRaWAN network.

The CI\CD system implemented for this project was based TeamCity automation server to

automate the deployment of new images' encodings and face recognition python scripts to the

end device. The pipelines used Build Configuration Chain, where the tasks are triggered in

series. Changes in the GitHub repository trigger the first Build Configuration

(Face_Encodings_Generator) in the chain. When the build is successful, the build triggers the

following build in the Build Configuration chain.

Figure 5-2 TeamCity Build Configurations

Figure 5-1 Build Configurations Chain

52

It was possible to track changes, set notifications and spot failures in the build chain.

TeamCity Build Configurations provides a detailed log for each build step, as shown in the

following figures.

Figure 5-3 Build Log view in TeamCity

Figure 5-4 Failed build errors

53

The end device has successfully received the encodings and python code updates with the

DevOps pipeline implemented and deployment with LoRaWAN downlinks.

The Raspberry Pi end devices have been set to reboot after successful code deployments. The

devices also have been configured to run the LoRaWAN node and Face recognition

application at startup.

The pipeline improves the visibility and traceability of the changes done in both the image

and face recognition repository. This visibility and traceability improvement helps decrease

the system's recovery time or rolling back changes in case of failure.

All needed uplinks downlinks data from the Loriot network server were forwarded using

Lotiot.io Application HTTP Push to Azure function to collect the uplink and downlink data to

improve the traceability of changes further. Overall, the system performed as expected, and

the deployments were successful.

Figure 5-5 Repository Commit History

54

5.1 Potential Use Cases and Applications

We have designed and implemented a face detection application using LoRaWAN and a

Raspberry Pi as an edge device. We have compared the following two systems to understand

the potential use cases and further understand potential use applications.

System A: The system implemented in this thesis utilizes edge computing where LoRaWAN

end nodes process the images and recognize the ones that have been referenced. There are 2

CI\CD pipelines in this system in this approach, one for the image encodings deployments

and the other for the face recognition application new features and bug fixes, as shown in

Figure 5-6.

System B: The need for remote LoRa node updates is avoided by utilizing central cloud

computing integrated with the LoRa network server. The nodes send raw image encodings to

the cloud to be processed and wait for the results to be sent as downlinks to do the action

required, as shown in Figure 5-7.

System A: LoRaWAN Edge processing

This system has the same approach as the implementation in this thesis that utilizes CI\CD to

apply changes to end devices over LoRaWAN.

Figure 5-6 CI/CD for LoRaWAN Edge Computing

55

System B: LoRaWAN Central Cloud Processing

This system utilizes a central cloud processing (Web Application) to process the images and

the access management. The system has a CI\CD pipeline continuously deploying changes to

the could application where the image processing happens. The end devices do not do image

processing. Instead, it sends the captured images to the web application to process and reply

to whether a person is recognized or not.

System B provides faster software deployment than System A as the deployment is not facing

the same limitations introduced in System A due to deployment over LoRaWAN. On the

other hand, the latency of transferring data over the LoRaWAN network affects the image

processing time as every image captured needs to be encoded and fragmented in the node and

then sent to the cloud server to be processed. The node must also wait for the cloud server's

response with the results. This latency in image processing is a potential bottleneck for the

system when increasing the number of images processed.

Figure 5-7 CI/CD for Cloud Computing

56

System A provides low latency image processing as the LoRaWAN nodes can process images

locally. Latency of software or image encodings, on the other hand, is increased.

In Table 5-1, below are calculations of both systems' LoRaWAN packets amount. The

calculations assume the following setup:

• The encoded image file size is 1 KB

• LoRa packet loss is 0%

• Applications packets are ignored

• Transmission is done with DR0 (51 Byte Packets)

• Packets needed to send one encoded image file is 1000/51 ≈ 20 packets

• Cloud computing image processing requires one downlink message per processed

image to return the image recognition result to the LoRaWAN node in System B

Table 5-1 LoRaWAN Packets Calculations with Different System Scenarios

New images
(encodings)

/ day

Images
processed

/ day

System A System B Increase in packets
with System B

compared to System
A

Uplink

/ Day

Downlink

/ Day

Uplink

/ Day

Downlink

/ Day

1 1 0 20 20 1 1

100 0 20 2000 100 2080

1000 0 20 20000 1000 20980

10000 0 20 200000 10000 209980

10 1 0 200 20 1 -179

100 0 200 2000 100 1900

1000 0 200 20000 1000 20800

10000 0 200 200000 10000 209800

From the calculations estimated in Table 5-1, there was a dramatic increase in operational

LoRa traffic in System B, given that daily processed images are less than the number of new

images that need to be updated daily. The only result that reflected better performance for

System B was when the new daily images were more than the daily processed images.

57

The study of systems A and B shows that the implementation suggested in this thesis can have

a noticeable advantage in reducing the LoRaWAN traffic and thereby reducing processing

latency in various applications. Naturally, the design of the implementation suggested in this

project could be extended to various time-critical edge computing applications. The design

suggested in this thesis can be used in use cases such as access control in remote areas or

large-scale deployments across industrial sites without the need for ubiquitous high-speed

connectivity.

Just within the domain of computer vision, this thesis approach could be applied to plate

recognition or other traffic systems, smart city management (e.g., monitoring of assets or

automated alert systems) or large-scale monitoring in industrial applications.

Potential use cases could be extended to systems where equipment configurations need to be

set remotely over LoRaWAN to gain more flexibility with the system.

58

6 Conclusion

The main goal of this work was to develop a reliable and efficient automated method for

updating LoRa nodes' software, which was achieved by combining Continuous Integration

and Continuous Deployment with the FUOTA concept. In this section, I go through the

conclusion of this project.

When writing this thesis, we could not find a comparable end-to-end CI/CD documented

solution implemented for LoRaWAN edge computing to compare the suggested

implementation CI/CD performance or metrics. Earlier research focused on either DevOps

implementation or Firmware updates over the air FUOTA. The work done in this thesis

attempts to connect the research done in DevOps and FUOTA.

Although LoRaWAN has its limitations, the solution suggested in this work could benefit

various use cases, as discussed in Chapter 5. This implementation can be improved by using

adaptive LoRa date rates where an intelligent system can utilize Received Signal Strength

Indicator RSSI to optimize the data fragmentation size and the transmitting data rate.

The use of hybrid communication can also be developed where end devices include higher-

speed communication modules like NB-IoT that can be activated and deactivated remotely

through the LoRa module, for example, when a more extensive file deployment is required.

59

References

[1] Gartner. (2022). Semiconductor industry revenue worldwide from 2012 to 2023 (in

billion U.S. dollars). Statista. Statista Inc. Accessed: July 22, 2022.

https://www.statista.com/statistics/272872/global-semiconductor-industry-revenue-

forecast/

[2] WSTS. (2022). Integrated circuits semiconductor market size worldwide from 2009 to

2022 (in billion U.S. dollars). Statista. Statista Inc.. Accessed: July 22, 2022.

https://www.statista.com/statistics/519456/forecast-of-worldwide-semiconductor-

sales-of-integrated-circuits/

[3] IC Insights. (2022). Capital expenditure in the global semiconductor industry from

2000 to 2022 (in billion U.S. dollars). Statista. Statista Inc.. Accessed: July 22, 2022.

https://www.statista.com/statistics/864897/worldwide-capital-spending-in-the-

semiconductor-industry/

[4] IoT Analytics. (2018). Distribution of smart city IoT projects worldwide as of January

2018, by segment. Statista. Statista Inc.. Accessed: July 22, 2022.

https://www.statista.com/statistics/869332/internet-of-things-smart-cities-projects-by-

segment/

[5] Richter, F. (2021). Rise of the Robots. Statista. Statista Inc.. Accessed: July 23, 2022.

https://www.statista.com/chart/26210/operational-stock-of-industrial-robots/

[6] Statista. (2021). Number of Smart Homes forecast in the World from 2017 to 2025 (in

millions). Statista. Statista Inc.. Accessed: July 23, 2022.

https://www.statista.com/forecasts/887613/number-of-smart-homes-in-the-smart-

home-market-in-the-world

[7] Behmann, F, & Wu, K 2015, Collaborative Internet of Things (C-IoT): For Future

Smart Connected Life and Business, John Wiley & Sons, Incorporated, New York.

Available from: ProQuest Ebook Central. [July 23 2022].

[8] Stephens, R 2015, Beginning Software Engineering, John Wiley & Sons,

Incorporated, Somerset. Available from: ProQuest Ebook Central. [July 18 2022].

[9] Flewelling, P 2018, The the Agile Developer's Handbook : Get More Value from Your

Software Development: Get the Best Out of the Agile Methodology, Packt Publishing,

Limited, Birmingham. Available from: ProQuest Ebook Central. [July 18 2022].

[10] Charilaou, C. et al. (2021) Firmware update using multiple gateways in lorawan

networks. Sensors (Basel, Switzerland). [Online] 21 (19), 6488–.

https://www.statista.com/statistics/272872/global-semiconductor-industry-revenue-forecast/
https://www.statista.com/statistics/272872/global-semiconductor-industry-revenue-forecast/
https://www.statista.com/statistics/519456/forecast-of-worldwide-semiconductor-sales-of-integrated-circuits/
https://www.statista.com/statistics/519456/forecast-of-worldwide-semiconductor-sales-of-integrated-circuits/
https://www.statista.com/statistics/864897/worldwide-capital-spending-in-the-semiconductor-industry/
https://www.statista.com/statistics/864897/worldwide-capital-spending-in-the-semiconductor-industry/
https://www.statista.com/statistics/869332/internet-of-things-smart-cities-projects-by-segment/
https://www.statista.com/statistics/869332/internet-of-things-smart-cities-projects-by-segment/
https://www.statista.com/chart/26210/operational-stock-of-industrial-robots/
https://www.statista.com/forecasts/887613/number-of-smart-homes-in-the-smart-home-market-in-the-world
https://www.statista.com/forecasts/887613/number-of-smart-homes-in-the-smart-home-market-in-the-world

60

[11] Khaled Abdelfadeel et al. (2020) How to make Firmware Updates over LoRaWAN

Possible. arXiv.org.

[12] LoRa Alliance Technical Committee, (2019). FUOTA process summary technical

recommendation. LoRa Alliance, Technical Recommendation TR002, January, p.v1

[13] Van Nieuwamerongen, S., 2021. Energy Consumption and Scalability of

Transmitting Firmware Updates Over LoRa. Master of Science thesis. Delft

University of Technology. Accessed: November 25, 2021.

http://resolver.tudelft.nl/uuid:35f508c3-ab2c-4c69-b9f9-f1437d027404

[14] Lopez-Viana, R. et al. (2020) Continuous Delivery of Customized SaaS Edge

Applications in Highly Distributed IoT Systems. IEEE internet of things journal.

[Online] 7 (10), 10189–10199.

[15] Faustino, J. et al. (2022) DevOps benefits: A systematic literature review. Software,

practice & experience. [Online]

[16] Verona, J., 2018. Practical DevOps. Packt Publishing.

[17] COUPLAND, M., 2021. DEVOPS ADOPTION STRATEGIES. [S.l.]: Packt

Publishing.

[18] DevOps Research and Assessment (DORA) team at Google Cloud, 2021. Accelerate

State of DevOps 2021.[Online]

[19] LoRa Alliance Technical Committee, (2017). LoRaWAN™ Specification Version

1.1. LoRa Alliance Technical Committee: Barcelona, Spain.

[20] LoRa Alliance Technical Committee, (2018). LoRaWAN Remote Multicast Setup

Specification v1.0.0. LoRa Alliance

[21] The Things Network. 2022. Device Classes. [online] Available at:

https://www.thethingsnetwork.org/docs/lorawan/classes [Accessed 12 September

2021].

[22] Semtech Corporation, (2015). AN1200.22 LoRa™ Modulation Basics

[23] LoRa Alliance Technical Committee, (2020). RP002-1.0.1 LoRaWAN Regional

Parameters

[24] Semtech Corporation, (2020). LoRaWAN: Firmware Updates Over-the-Air

[25] Airtime calculator for LoRaWAN. 2022. [online] Available at:

https://avbentem.github.io/airtime-calculator/ttn/eu868 [Accessed 26 February 2021].

http://resolver.tudelft.nl/uuid:35f508c3-ab2c-4c69-b9f9-f1437d027404
https://www.thethingsnetwork.org/docs/lorawan/classes
https://avbentem.github.io/airtime-calculator/ttn/eu868

61

Appendices

Appendix 1 list of figures

Figure 1-1 Waterfall Software Development Phases

Figure 2-1 Organisational and process introduced Wall of Confusion between Dev and Ops

teams

Figure 2-2 Relationship between Velocity, Quality and Stability [17]

Figure 2-3 DevOps metrics value Dimensions suggested [18]

Figure 2-4 DevOps Process

Figure 2-5 DevOps Process Phases Association with Practices

Figure 3-1 LoRaWAN Network Architecture

Figure 3 2 Class A receive windows as appears in [21]

Figure 3 3 Class B receive windows as appears in [21]

Figure 3 4 Class C receive windows as appears in [21]

Figure 3 5 OTAA activation in LoRaWAN v1.1

Figure 3 6 LoRaWAN FUOTA network architecture as appears in [12]

Figure 3 7 FUOTA process as suggested in [24]

Figure 3 8 LoRaWAN Multicast

Figure 3 9 Multicast Control Package functions

Figure 3 10 End device parameters set by multicast setup

Figure 4 1 LoRaWAN Edge computing CI/CD Design

Figure 4 2 loriot.io network server geographical locations

Figure 4 3 Laird RG1 gateway Registration

Figure 4 4 Laird Gateway forwarder setting to Loriot.io

Figure 4 5 Loriot server registered gateway dashboard

Figure 4 6 Laird Gateway Server Dashboard

Figure 4 7 Raspberry Pi LoRa end device

Figure 4 8 Enabling Raspberry Pi Camera interface

Figure 4 9 LoRaWAN end device serial output

Figure 4 10 Enrolling end devices into Loriot network server

Figure 4 11 LoRaWAN application activated end device

Figure 4 12 LoRa file deployment application

Figure 4 13 LoRaWAN file API deployer options

Figure 4 14 Face Recognition Application Pipeline

Figure 4 15 Images Update Pipeline (encodings)

Figure 5 1 Build Configurations Chain

Figure 5 2 TeamCity Build Configurations

6

10

12

13

14

17

21

22

22

23

24

26

27

28

29

30

33

34

35

36

36

37

38

39

41

42

42

43

45

47

49

51

51

62

Figure 5 3 Build Log view in TeamCity

Figure 5 4 Failed build errors

Figure 5 5 Commit History in images repository

Figure 5 6 CI/CD for LoRaWAN Edge Computing

Figure 5 7 CI/CD with Cloud Computing

52

52

53

54

55

Appendix 2 list of tables

Table 2-1 Software Delivery performance results per performance category [18]

Table 3-1 LoRa DataRate parameters [23]

Table 5-1 LoRaWAN Packets Calculations with Different System Scenarios

19

20

56

