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Photoplethysmography (PPG) is an optical measurement method for blood pulse
wave monitoring. The method has been widely applied in both clinical and wearable
devices to collect physiological parameters, such as heart rate (HR) and heart rate
variability (HRV). Unfortunately, the PPG signals are very vulnerable to motion
artifacts, caused by inevitable movements of human users. To obtain reliable results
from PPG-based monitoring, methods to denoise the PPG signals are necessary.
Methods proposed in the literature, including signal decomposition, time-series anal-
ysis, and deep-learning based methods, reduce the effect of noise in PPG signals.
However, their performance is insufficient for low signal-to-noise ratio PPG signals,
or limited to noise from certain types of activities. Therefore, the aim of this study
is to develop a method to remove the motion artifacts and reconstruct noisy PPG
signals without any prior knowledge about the noise.
In this thesis, a deep convolutional generative adversarial network (DC-GAN) based
method is proposed to reconstruct the PPG signals corrupted by real-world motion
artifacts. The proposed method leverages the temporal information from the dis-
torted signal and its preceding data points to obtain the clean PPG signal. A
GAN-based model is trained to generate succeeding clean PPG signals by previous
data points. A sliding window moving at a fixed step on the noisy signal is used
to select and update the input for the trained model by the information within
the noisy signal. A PPG dataset collected by smartwatches in a health monitoring
study is used to train, validate, and test the method in this study. A noisy dataset
generated with real-world motion artifacts of different noise levels and lengths is
used to evaluate the proposed and baseline methods. Three state-of-the-art PPG
reconstruction methods are compared with our method. Two metrics, including
maximum peak-to-peak error and RMSSD error, are extracted from the original
and reconstructed signals to estimate the reconstruction error for HR and HRV.
Our method outperforms state-of-the-art methods with the lowest values of the two
evaluation matrices at all noise levels and lengths. The proposed method achieves
0.689, 1.352 and 1.821 seconds of maximum peak-to-peak errors for 5-second, 10-
second, and 15-second noise at the highest noise level, respectively, and achieves
0.021, 0.048 and 0.067 seconds of RMSSD errors for the same noise cases.
Consequently, our method performs the best in reconstructing distorted PPG signals
and provides reliable estimation for both HR and HRV.

Keywords: Motion artifacts removal, Photoplethysmography reconstruction, Gen-
erative Adversarial Network
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1 Introduction

Photoplethysmography (PPG) is a non-invasive measuring method to reflect the

blood volume change of the pulse wave. The method uses a light emitting diode

(LED) to send light to a tissue and a light detector to receive the changing amount

of light transmission from tissue such as the surface of wrist, finger, forehead and

earlobe caused by blood flow [1]. Smartwatches apply the technique to collect PPG

signals from the wrist of the watch users. Various healthcare applications using PPG

signals have been proposed, focusing on sleep monitoring, blood pressure monitoring,

and cardiovascular diseases. [2]–[4].

However, the PPG signals can be easily affected by noise during data collection.

Such noises caused by the external environment and user’s motion artifacts are

commonly seen in PPG signals. The external environment may distort the collected

PPG. For example, the ambient light from a room light with variable frequency

causes saturation noise to PPG signals [5]. The motion artifacts caused by the daily

activities of the subject may also be collected together with PPG by a wearable

device. PPG signals with these noises may result in unreliable decision making.

The quality of the PPG signal is indicated by the signal-to-noise ratio (SNR),

which is the ratio between signal power and noise power. The larger the SNR value is,

the less the PPG signal is distorted. Although spectral analysis and different filtering

methods can reduce the effect of most of the noises in PPG signals, the motion

artifacts, which have overlapped frequency-domain features with clean PPG signals,
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are especially difficult to remove. Therefore, an accurate PPG signal reconstruction

method to eliminate the effect of motion artifacts is necessarily required for studies

working with PPG signals.

Many studies have been proposed to detect the motion artifacts in PPG signals.

Various time and frequency-domain features are extracted to classify whether the

signal is clean or not. The noisy segment is then excluded from further analysis [6].

However, these methods can not produce continuous PPG signals or provide reliable

estimation for certain health-related parameters, such as heart rate variability.

Signal components analysis methods are proposed to improve the PPG signal

quality. These methods decompose the noisy PPG signals into noise components and

clean components based on mathematical algorithms. Then, the noise components

are removed, and the methods reconstruct the PPG with only clean components

provided by the algorithms to improve the signal quality [7]–[11].

Time-series based methods are also applied for PPG signal reconstruction. These

methods regard the PPG signal as time-series data, and train the model with the

clean signal before the distorted PPG signal. Then, the trained model predicts

the succeeding data points based on the previous clean PPG signals to perform

the reconstruction for PPG signal [12]. However, these methods fail to reconstruct

signals with low SNR values. The reconstruction results from these methods are

also highly dependent on the quality of proceeding signals.

In addition, deep-learning based methods are recently applied to reconstruct the

signals. These models are trained to produce the clean PPG signals as output [13],

[14]. However, the models are only developed for certain types of noises.

As a result, we believe that a robust PPG signal reconstruction method is re-

quired to regenerate the distorted PPG signals without prior knowledge about the

noise such as type, noise level, or length of noise.
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1.1 Research questions

This study, therefore, intends to focus on the following two research questions in

motion artifacts removal in PPG signals.

1. Can the distorted PPG signals be reconstructed accurately, especially when

SNRs are low?

2. Is the information in the distorted signal and the proceeding points enough to

reconstruct the PPG signal?

One of the important issues in reconstructing noisy PPG signals is to deal with

signals with low SNR. The waveform of such signals at high noise levels is largely

corrupted. Hence, no useful information can be extracted from the fiducial points

such as peaks and valleys to reconstruct clean PPG.

Another issue is that real-world motion artifacts can be caused by various types

of activities in daily life. Without any other signal as a reference for motion artifacts,

the motion artifacts in the noisy PPG signals do not have a certain representative

feature, which makes it hard to be distinguished from clean signals. The only avail-

able information is the proceeding PPG data points and the distorted segment itself.

Therefore, we focus on the solutions to these two research questions in this study.

1.2 Contributions

In this thesis, we propose a deep convolutional GAN-based method to reconstruct

noisy PPG signals distorted by motion artifacts. The proposed method leverages

the information from both the noisy segment itself and its proceeding signals. The

PPG data used in the study is collected by smartwatches. The model is trained

with clean PPG signals and tested with PPG signals at different noise levels. Our

method is evaluated by the noisy dataset generated by real-world motion artifacts
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with different noise duration and SNRs. Finally, we compare the proposed method

with the other three state-of-the-art methods by extracting types of errors that

represent the reconstruction error of heart rate and heart rate variability. The

major contributions of the thesis can be summarized as follows:

1. A GAN-based method is proposed to reconstruct noisy PPG signals distorted

by real-world motion artifacts using the information within the signal and

proceeding points.

2. A test dataset containing distorted PPG signals with different noise lengths

at noise levels with SNR values ranging from -25 dB to 30 dB is generated to

evaluate the performance of the proposed method, compared to the existing

three state-of-the-art methods.

3. Two metrics representing the reconstruction error of HR and HRV are ex-

tracted to evaluate the performance of proposed method, compared to three

existing state-of-the-art methods.

This thesis is related to the accepted publication [15].

1.3 Thesis content summary

The rest of the thesis is organized as follows. Chapter 3 reviews the related work on

PPG noise cancellation. Chapter 2 introduces the background of PPG and the used

model. Chapter 4 provides the details of the collection, participant recruitment, and

the wearable device for the dataset used in this study. The data processing, model

architecture, and the reconstruction method is presented in Chapter 5. Chapter

6 presents the implementation of the other three state-of-art methods to compare

with our proposed method. The results and discussion of the signal reconstruction

from all the methods are introduced in 7. Chapter 8 is the conclusion.



2 Background

In this chapter, we introduce the PPG and GAN.

2.1 Photoplethysmography

Photoplethysmography (PPG) is a non-invasive optical technique that reflects the

change of blood flow by measuring the amount of light absorption or reflection [16].

When the heart beats, the blood flow in the vessels changes correspondingly. The

tissue on the blood vessels has different light absorption or reflectivity rate for the

same wavelength with or without blood flows. The technique uses a light emitter

and a light sensor to detect the light change caused by cardiovascular activity on

the skin.

A typical PPG waveform is shown in Figure 2.1. One cycle of a typical PPG

waveform includes systolic peak, dicrotic norch, and diastolic peak. The rising edge

of the waveform reflects the systole, and the amplitude of the systolic peak is related

to stroke volume [17]. The falling edge of the waveform is the diastole and wave

reflections. The dicrotic notch is caused by the closure of heart valves and the reverse

flow of blood, which is commonly seen in subjects with healthy heart valves [18].

The PPG signals can be easily collected using various wearable devices, including

smart rings and smartwatches. As it is easy to implement with low cost, PPG

has been frequently used in different health monitoring tasks. The cyclic change

of the PPG waveform is able to measure various physiological parameters, such as
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Figure 2.1: Typical waveform of PPG signals.

heart rate (HR), respiration rate [19], heart rate variability (HRV)[20], blood oxygen

saturation [21], blood pressure [22] and ankle pressure [23].

2.1.1 Noise in Photoplethysmography

The raw PPG signals are usually noisy. The noises are mainly caused by the en-

vironment, measuring devices, and body movements of participants. We describe

three types of noise, including white noise, baseline wander and motion artifacts,

which are commonly seen in PPG signals.

White noise White noise is the type of noise with a uniform distribution. In

other words, the white noise has a zero mean and standard deviation of 1 [24].

Baseline wander Baseline wander is a low-frequency artifact usually caused by

subjects’ movements, such as respiration. The baseline wander drifts PPG signals

baseline up or down over time [25].
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Motion artifact The motion artifact (MA) is the noise caused by the movement

of subjects. Although the PPG signals are widely used in daily monitoring devices,

the signal is vulnerable to noises caused by participants’ daily activities such as

running, waving hands, and finger tapping. Such artifacts corrupt the PPG signals,

thus leading to inaccurate estimation for the health-related parameters.

Figure 2.2 shows an example of a 10-second clean PPG signal and a PPG sig-

nal corrupted by motion artifact. Figure 2.2 (a) and (c) are the waveforms, and

Figure 2.2 (b) and (d) illustrate the corresponding power spectral density (PSD).

The PSD is the power of the signal at the corresponding frequency. As indicated in

Figure 2.2(b), the frequency with the largest power in the clean PPG signal is 1.5

Hz, which corresponds to the HR. However, the HR frequency in Figure 2.2(d) is not

clear due to the MAs. Therefore, the MAs cannot be removed by frequency-based

filters, because the frequencies of clean signals and artifacts overlap.

2.1.2 Heart rate variability

Heart rate variability (HRV) refers to the change between the successive heartbeat

[26]. It is caused by the interaction between the brain and heart, which is regulated

by the non-linear activity of the autonomic nervous system (ANS) [27]. The HRV

is able to reflect neurocardiac health. Previous studies have proved that HRV is

correlated with stress, panic, and worry [28].

The root mean square of successive differences between normal heartbeats (RMSSD)

is one of the important HRV parameters, which reflects the differences between suc-

cessive heartbeat interval. It can estimate HRV mediated by vagal activities [27].

The reduced RMSSD level is highly correlated with the risk of sudden unexplained

death in epilepsy [29].

Many studies have been carried out to monitor the daily HRV of participants.

Due to the simplicity and low cost, PPG-based wearable devices are used in such
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Figure 2.2: Waveform and power spectral density from 10-second PPG segment

and artifact. The clean PPG and artifacts are in blue and green. (a) Clean PPG

waveform, (b) clean PPG PSD, (c) motion artifact waveform, and (d) motion artifact

PSD.

health-monitoring studies [30]–[32]. It is also easy to extract different HRV param-

eters from the PPG waveform. Therefore, the quality of PPG signals has a large

effect on HRV parameters.
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2.2 Generative adversarial network

The Generative adversarial network (GAN) is a network structure proposed by

Goodfellow et al. to generate synthetic data [33]. Figure 2.3 illustrates the stan-

dard structure of GAN. The model consists of two sub networks, i.e., a generator

and a discriminator. The generator learns the distribution of the input data and

reconstructs the input. The discriminator classifies whether the data is original or

generated by the generator. The two sub networks compete with each other during

training until the difference between the original and generated data is minimized.

Therefore, GAN can be used to generate and reconstruct the data. Different studies

have applied such feature to de-noise images in computer vision tasks. [34], [35].

Xreal Xgenerated yclassified
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..
..

..
..
..

..
..
.. ......

......

......
...... ..

..
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..
..
..

..
..
..

..
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Generator Discriminator

Figure 2.3: The architecture of Generative Adversarial Network

2.2.1 Deep Convolutional Generative Adversarial Network

Although GAN can maximize the likelihood by the design of competition between

generator and discriminator, the training of GAN is often unstable, which results

in nonsensical synthesized data [36]–[38]. The deep convolutional generative ad-

versarial network (DC-GAN) is proposed to solve the problem [39]. DC-GAN is

a GAN-based neural network with modified convolutional structure. Compared to
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the initial GAN, the DC-GAN adopted three latest changes in convolutional neural

networks:

• Using stride convolutional layers to downsample the data instead of max pool-

ing.

• Excluding fully-connected hidden layers in deep network achitecture.

• Using Batch Normalization between layers.

The DC-GAN architecture has been proved to be more stable and effective in

learning the representation of data [39]. Compared to GAN, DC-GAN is more used

to infer data based on contextual information, such as image colorization [40] or

inpainting corrupted images [41].



3 Related work

Noises distort the waveform of PPG signals, making it difficult to extract accurate

health-related parameters for variable-based analysis. Methods to reduce the effect

of noise are needed. However, PPG de-noising is a challenging task, especially with

high noise level and long noise duration. In this chapter, we describe previous studies

dealing with the MAs in PPG signals. To tackle the problem, previous studies can

be divided into 2 categories: (1) signal quality assessment methods, which give a

classification result of whether a PPG segment is clean or not, and (2) noise removal

methods, which remove the noise component and produce de-noised signals.

3.1 Quality assessment methods

The quality assessment methods classify the PPG signals as noisy or clean by ex-

tracting various features in the time or frequency domain. For instance, in the

study from [6], the authors calculated the statistic values, including kurtosis, skew-

ness, and standard deviation of each segment, and detected the motion artifacts

by the statistic threshold set from clean signals. Likewise, in [42], other features

such as variation in approximate entropy, Shannon entropy, and spectral entropy

are extracted to further classify the signal as clean or not by the elliptical envelope

algorithm.

Recently, deep-learning-based anomaly detection methods are also applied to as-

sess the PPG signal quality. In deep learning-based methods, the model itself acts
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as the feature extractor and consequently relieves the work of feature engineering.

The study conducted by [43] proposed a 1-dimensional convolution neural network

to detect whether each 5-second PPG signal segment was distorted by motion ar-

tifacts. The PPG signals were blindly sectioned to 5-second segments regardless of

any peak or valley information. Then the segments were normalized and fed into

the 13-layer 1-D convolutional neural network (CNN) model to output the "clean"

or "artifact" labels. Similarly, in [44], the authors implemented a bi-directional re-

current neural network-based auto-encoder to detect and remove motion artifacts

in an unsupervised manner. The methods mentioned above can accurately evaluate

the PPG signal quality. However, such methods only differentiated the PPG signals

as clean or noisy, but did not improve the signal quality.

3.2 Noise removal methods

Classifying the signal as good or bad is insufficient to obtain the noise-free PPG

signal, as excluding the noisy part in the signal would cause loss of collected data.

Therefore, in addition to the signal quality assessment methods, many studies are

proposed to eliminate the noise components in signals by analyzing different time

and frequency features in reference and PPG signals.

3.2.1 Reference-signal-based method

Reference-signal-based methods use another reference signal which is recorded si-

multaneously as the PPG signals to provide information about either noise or clean

PPG. Based on different design of data collection, the collected simultaneous signal

can either be the reference of noise or clean PPG signals. The authors in [7][8]

designed adaptive filters with accelerometers and gyroscopes signals as references of

noise to filter out the motion artifacts in noisy PPG signals. Masinelli et al. used
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the Electrocardiogram (ECG) signals as a reference of ground true HR to remove

motion artifacts by spectral analysis [45]. Despite the improved HR estimation,

these reference signal-based methods still suffer from the limitations of the inaccu-

rate detection of reference sensors. Moreover, extra sensors such as accelerator and

ECG sensors are needed for the research, which makes the setup more complicated.

3.2.2 Signal-component-analysis methods

Signal components analysis methods are applied to reduce the noise in PPG signals.

These methods decompose the noisy signal into noise and clean components, and

then remove the noise component in the signal to obtain the reconstructed clean

signal. In [9], the noisy PPG signals were first decomposed into a sum of Intrinsic

Mode Function (IMF) by Empirical Mode Decomposition(EMD) to improve the

signal quality and then reduce the noise by Discrete Wavelet Transform (DWT). In

[10] , the authors set the upper and lower envelope boundaries to minimize the MAs

in the signals. However, these methods fail to reconstruct the signals when the noise

level is high.

3.2.3 Time-series methods

Time-series methods are applied to estimate clean PPG signals while the signal

is noisy. These methods take the predecidual samples into account during recon-

struction since the physiological activities are time-causal processes. In [12], the

combination of a Kalman filter and Auto-regressive (AR) model was introduced to

predict the value on the time t + 1 using the values on and before time t, hence

avoiding the motion artifacts caused by sudden subjects’ movements. In [46], the

authors used the fiducial points such as peak, foot, diastolic peak, and diastolic

notch from a previous clean PPG segment to reconstruct a new one by cubic spline

interpolation. However, these methods highly rely on the amount and quality of
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proceeding data to reconstruct the signal.

3.2.4 Deep-learning-based methods

Deep learning models are also developed to reconstruct PPG signals. The study

from [13] first transform 1-D PPG signals to its representative 2-D images. Then, a

Cycle Generative Adversarial Network (CycleGAN) was trained to de-noise and re-

construct images. Finally, the de-noised image was transformed back to clean PPG

signals. Similarly, in [14], a bidirectional recurrent auto-encoder was trained by

minimizing the difference between synthesized noisy PPG signals and their original

clean signals. Then, the trained model was able to produce clean PPG signals when

the input signals were noisy. Although deep learning models have achieved good

performance on large datasets, these deep-learning-based methods only considered

the noise caused by certain types of movement, such as waving and shaking hands.

Moreover, these methods were tested by manually generated noisy PPG dataset.

The noisy signals in the test set were synthesized by adding the noises to clean sig-

nals, which guaranteed that the noisy segment must contain clean PPG information.

Hence, these methods may fail when clean PPG signals are faded in the corrupted

signals in real life.

The methods using either quality assessment or noise removal methods are in-

sufficient to eliminate the effect of motion artifacts on PPG signals. The mentioned

methods are limited to either short-term analysis of signals or certain types of noises

caused by specified activities. Consequently, a method to reconstruct the PPG

waveform distorted by real-world motion artifacts without any prior knowledge of

the noise is needed.



4 Dataset

In this chapter, we introduce the dataset used to train, validate and test the model

in this thesis.

The PPG data used in this thesis is a part of a health monitoring study conducted

by the Health Technology Group at the University of Turku [47]. The PPG data

was collected in Southwest Finland for one month, from July to August 2019. The

participants were monitored without any limitation of activities, which allows to

collect real-world signals in daily life.

There are 46 participants included in the study. The participants were asked to

wear the wearable device on their non-dominant hands 24 hours for 7 days. The

recruited participants meet the following requirements:

• Being able to use the wearable device for 24 hours.

• No cardiovascular diseases.

• No symptoms of other diseases during monitoring.

• No restricted physical activities.

Table 4.1 summarizes the background information of all the participants in the study

[48].

The wearable device used in the study is a Samsung Gear Sport smartwatch [49].

The size of each smartwatch is 44.6 × 42.9 × 11.6mm in height, width, and depth

with a 30.2 mm main display. The watch is embedded with Wi-Fi at 802.11 b/g/n
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Table 4.1: Background information of participants

Parameters Values Values

Age, years, mean (SD) 32.5 (6.6)

BMI, mean (SD) 25.4 (5.2)

Exercise

Almost daily 8

A few times a week 13

Once a week or fewer 6

Education level

Primary school 1

High school 6

College 6

University 14

Employment status

Working 22

Student 1

Unemployed 3

Other 1

2.4GHz and Bluetooth v4.2. It is water resistant with the pressure of 5 atmospheres

or 50 meters under water. The internal memory of the smartwatch is 0.75 GB

of random-access memory (RAM), and 4 GB of read-only memory (ROM). The

watch is programmed by the Tizen operating system and utilizes sensors, including

accelerator, gyroscope, and PPG sensor.

With our customized data collection application, 16-minute continuous PPG and

accelerator/gyroscope signals are collected every half an hour at sampling frequency

of 20 Hz. The first minute of the collected signals is removed because the time is

for device calibration. The setup enables the battery life of the smartwatches to be

longer than 24 hours.

The internal memory of the smartwatches is sufficient for storing the collected
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data. The collected data is first stored in the watch’s internal storage. After the

monitoring, the data is sent to our cloud service for storage.



5 Proposed method

In this chapter, we introduce our GAN-based proposed method, including the model

architecture, loss functions, training process, and reconstruction method with trained

model. We also describe the preparation of training, validation, and test PPG

datasets, which are used for model training, hyperparameter selection, and evalua-

tion of the method performance, respectively.

5.1 Proposed model architecture

In our study, we develop a deep convolutional GAN-based model to reconstruct the

noisy signals distorted by MAs. Previous studies showed that GAN is a powerful

approach to de-noise images[34], [50]. We apply such a feature to our study to

train a model by clean PPG signals and then use the trained model to denoise PPG

signals distorted by MAs.

Our GAN-based model consists of two sub networks: a generator and a dis-

criminator. The generator learns to generate synthesized clean PPG signals from

their previous data points, while the discriminator learns to distinguish whether the

signals are original input or synthesized by the generator. The two sub-networks

compete with each other during training, and consequently the model learns how to

synthesize clean PPG signals by the information from previous data.

Inspired by [51], we adopt a similar structure to GANomaly, which uses an Auto-

encoder architecture for the generator and an encoder architecture for the discrim-
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Figure 5.1: The architecture of proposed model. K, S, and P represent the kernel

size, stride and padding parameters in convolutional layers respectively

inator. The deep convolutional layers are modified and applied to our model. The

architecture of our proposed model is illustrated by Figure 5.1. In each epoch, the

model takes 15-second clean PPG signal as input, and then the generator generates

its succeeding 2.5 second PPG signal as output. The original succeeding 2.5-second

PPG signal is the ground truth. The generator is optimized by minimizing the

difference between the estimated succeeding PPG and its ground truth. The dis-

criminator is updated by minimizing the classification error of whether the signal is

the original ground truth or estimated by the generator. The K, S, and P in Figure

5.1 represent the kernel size, stride, and padding parameters in convolutional layers,

respectively.

Generator The generator follows an Auto-encoder structure, i.e., an encoder and

a decoder. The generator is trained to generate synthetic succeeding clean signals.
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The encoder stacks 5 1D-convolutional layers to compress the PPG input to its rep-

resentative features in latent space. The decoder stacks 3 transposed 1D-convolution

layers and flattens its output by one dense layer to re-generate the PPG signal by

the bottle-neck features.

Encoder The generator is then followed by another encoder. The encoder acts as

a feature extraction part of the generator, which stacks 4 1D-convolution layers to

downscale both the estimated signal from the generator and the real PPG signal to

find their representative features in latent space.

Discriminator The discriminator, aiming to distinguish whether the signal is real

or synthesized by the generator, uses the same encoder architecture to compress

both reconstructed signals and original input to their corresponding representative

features. Then, the Sigmoid layer classifies the features to values "1" or "0", repre-

senting the true and fake label.

5.1.1 Loss functions

To optimize each sub-network in the pipeline, we use the same three loss functions

i.e., the encoder loss, contextual loss, and adversarial loss, as in [51] to optimize the

model during training.

Encoder loss The encoder loss Lenc is the difference between the representative

features compressed from synthesized and real PPG signals by the generator encoder

mentioned in Section 5.1. The loss is calculated as:

J(fg, fo) =
1

256

256∑︂
i=1

|fgi − foi|2 (5.1)

where fg and fo are the latent features of generated and original PPG signal,

respectively, and i is the index in a batch of samples with a size of 256. The value

is backpropagated to update the generator in each iteration.
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Contextual loss The contextual loss Lcon is the difference between the original

and the estimated succeeding signal from the generator in 5.1. The loss is calculated

as:

J(sg, so) =
1

256

256∑︂
i=1

|sgi − soi| (5.2)

where sg and so are the generated signal and its original ground truth, respectively.

The value is also backpropagated to update the generator each iteration.

Adversarial loss The adversarial loss is the standard discriminator loss. Binary

cross-entropy is used as the loss function to calculate the difference between the

actual and classification labels (i.e., real/fake) obtained by the discriminator. The

value is backpropagated to optimize the discriminator each iteration.

In this model, except for the last layer of the discriminator which uses Sigmoid

to give a binary output, all the other activation functions are Rectified Linear Units

(ReLU). The batch normalization is performed between layers with dropout rate

of 0.5 to avoid overfitting. The weights for networks are randomly initialized, and

Adam is chosen as the optimizer.

5.1.2 Reconstruction method

In this thesis, we propose a sliding window method to reconstruct the noisy PPG

signals with the trained model. As the real-world distorted PPG signals are not

guaranteed to contain clean PPG signals, our proposed method uses a sliding window

reconstruction method to leverage the information from both noisy signals and its

proceeding clean signals.

Figure 5.2 indicates the reconstruction process of proposed method. A sliding

window with a fixed length is used to select input and feed the signals to the gen-

erator. The first iteration starts at only clean signal before the distorted part. The

generator takes the window of input and gives a prediction of succeeding data points.
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Figure 5.2: The reconstruction process of proposed method

Then the signal is updated by averaging the prediction and the original noise. In the

next iteration, the window moves forward with a step, and repeats the process of

making a prediction, updating the signal by average value, and moving the window

to feed updated signals as input to the trained model. The iterations continues until

the window sweeps to the end of the segment.

In our case, the sliding window length is 15 seconds, and the shift size of each

step is 2.5 seconds to ensure each prediction at least contains one cardiovascular

cycle.

5.2 Model training

In this section, we represent the training process of our proposed GAN-based model.

The model is only trained with clean PPG signals. Thus the model only learns the

distribution of clean PPG signals during training, and the trained parameters are

not suitable for generating other signals than clean PPG signals. For example, if

the input contains clean PPG and other noise at the same time, and the generator

encoder compresses both clean PPG and noise to their representative bottleneck

features, the trained generator decoder with its parametrization, can not reconstruct
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the noise from the bottleneck feature of noise. Therefore, training with only clean

signals enables the model to produce clean PPG signals from the noisy segment.

The model calculates the three types of loss mentioned in Section 5.1.1 and back-

propagates them to optimize the generator and discriminator of the model during

training. The model performing best on the validation set is selected to reconstruct

noisy signal in the testing phase. Note that for the reconstruction method in this

thesis, z-score standardization is applied to each PPG segment before feeding it into

models.

5.2.1 Training and validation data preparation

We preprocess the raw PPG signals before feeding the data into our proposed model.

Figure 5.3 is the block diagram, which illustrates all the steps of the preparation for

the training and validation dataset. We introduce each preprocessing step shown in

Figure 5.3 in the remainder of this section.

5.2.2 Segmentation and filtering

We use the PPG data collected in the study described in Chapter 4 to train and

validate the model. The dataset contains 15-minute raw PPG signals from 46 par-

ticipants, and the data from 37 of them form the training and validation dataset.

We first section the 15-minute raw PPG signals into 30-second segments to keep

consistent with the input size of our signal quality assessment method. Then, we

implement a 4-order high-pass Butterworth filter with a cutoff frequency of 0.5 Hz

to remove baseline wander. Figure 5.4 indicates one of the filtering results after the

high-pass Butterworth filter. Figure 5.4 (a) is one of the 30-second segment before

filtering, while Figure 5.4 (b) is the segment after filtering. As indicated in Figure

5.4, the baseline of the raw PPG signal drifts up at 16 seconds, while after applying

the high-pass filter, the baseline becomes stable throughout the 30-second segment.
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Figure 5.3: Block diagram of training data preparation
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Figure 5.4: PPG signal (a) before filtering, and (b) after filtering

The filter can remove the unrelated low-frequency components and baseline wander.

5.2.3 Signal quality assessment

We used a Support Vector Machine (SVM) to assess the PPG signal quality in this

thesis. The assessment technique takes 30-second PPG signal as input, and produces

a classification result of whether the segment is clean or noisy. The assessment

method is from [42], which extracts five features from the PPG waveform, including

spectral entropy, Shannon entropy, approximate entropy, kurtosis, and skewness

from each 30-second PPG. Then these features are fed into an SVM to classify the

clean signals and noise.

Figure 5.5 indicates one of the classification results from SVM. (a) is one of the

30-second segments classified as clean, while (b) as noisy by the SVM. The SVM
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Figure 5.5: PPG signal classified as (a) clean segment, and (b) noisy segment by

SVM.

can effectively assess the quality of PPG signals.

Finally, we used the classified labels to select only clean PPG signals from all

the filtered 30-second signals. The obtained clean PPG signals are used as the data

for the training and validation set.

The clean PPG data from 27 participants of the study is used for training, and

the clean PPG from the other 10 participants forms the validation dataset. In

total, 61117 30-second clean PPG segments are used to train the model, and 19661

segments for the validation set to select hyperparameters for the model.
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5.3 Test data preparation

We synthesize a test dataset containing noisy PPG signals distorted by real-world

MAs. The test dataset is generated to evaluate the method’s performance on differ-

ent noise levels and noise lengths. In this section, we introduce the preparation of

the test dataset used in the study.

The steps of preparing the test dataset are shown in Figure 5.6. The preprocess-

ing steps are similar to the preparation of the training and validation dataset. The

raw PPG signals are first sectioned into 30-second segments. Then, the sectioned

segments are filtered by a high-pass filter with cut-off frequency of 0.5 Hz to remove

baseline wander. The same signal quality assessment method is used to produce

the clean or noisy label for 30-second PPG segments. The classified clean and noisy

segments are put into our noisy signal generation function to synthesize noisy PPG

signals with required noise levels.

5.3.1 Noisy signal generation

The PPG data from the remaining 9 participants is used to synthesize the noisy PPG

test set at different noise levels and duration. A noisy signal generation method is

used in this thesis to synthesize the noisy test dataset. The noisy signals with differ-

ent SNR values are needed for evaluating the reconstruction results from methods.

The noisy signals are generated by the clean data and MAs mentioned in Section

5.2.3

In the thesis, we used a generate function to integrate clean signals and MAs at

different noise levels. The noisy generation process follows the Algorithm 5.3.1. The

explicit steps are introduced as follows.

Clean PPG signal selection: Randomly select a clean 30-second segment from

the 9 individuals (S).

Noise selection: Randomly select a noise segment (N) from the MA dataset from



5.3 TEST DATA PREPARATION 28

15-minute raw PPG

signal

High pass

Butterworth filter
SVM

Filtering

Signal quality assessment

Input PPG signal
30-second segments

Segmentation

Segmentation

Filtered PPG

Noisy signal generation

Classified labels

Test set

Noisy signal generation

Figure 5.6: Block diagram of test data preparation
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Listing 1 The generator function
Initialize:

win_size ← window size

batch_size ← number of batch size

while j < batch_size do

S ← a window of the clean PPG signal is chosen randomly

N ← select a noise frame randomly

wN ← a random number with uniform distribution (0,16)

X ← S + wNN

SNR ← calculate the SNR

j + = 1

end while

the 9 individuals. The MA dataset contains MAs with three noise lengths, including

5-second, 10-second, and 15-second motion artifacts. The noise segments are selected

accordingly with these three different lengths.

Noisy PPG generation: A noisy PPG signal is calculated by a weighted arith-

metic mean:

X = wSS + wNN (5.3)

where wS and wN are the weights of the clean signals and noise, respectively. In

this thesis, wS equals to 1, while wN is a random generated number which follows

a uniform distribution ranging from 0 to 16. Note that we select a window corre-

sponding to the noise length (i.e. 5-second, 10-second, and 15-second) at the end of

each segment to add noises.

SNR extraction: We then calcuate the SNR values for each generated noisy PPG

signal using the following Equation 5.4:

SNR = 10 log
PSignal

PNoise

(5.4)
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where PSignal is the power of clean signal, and PNoise is the power of the selected

motion artifacts.

The generated noisy 5-second, 10-second, and 15-second PPG signals with SNRs

ranging from -25 dB to 30 dB are used as the data for the test set. In total, the

generate function in Section 5.3.1 generates 16384 30-second segments for each noise

length.



6 State-of-the-art methods

This chapter introduces the state-of-the-art PPG reconstruction methods that we

use as baseline. Three PPG noise removal methods are selected in this thesis. All

the baseline methods do not need any reference signals to keep consistent with

our proposed method, and each of them is selected to represent the corresponding

method category, including a time time-series, a signal decomposition, and another

deep-learning based method mentioned in Chapter 3. The time-series method uses

the proceeding samples to predict the distorted part of the signal, where we select

the combination of Kalman filter and AR model proposed in [12] to represent the

method of this category. The signal decomposition methods analyze the noise and

clean PPG components in the noisy signal, and only exclude the noise component

to reduce the effect of motion artifacts in corrupted signals. In this regard, we select

the EMD and DWT method proposed in [9] as a representation of reconstruction

methods in this category. Deep-learning based method develop different models to

reconstruct PPG signals. Other than our proposed GAN-based method, we select

the Bidirectional Long Short-Term Memory (LSTM) method proposed in [14] to rep-

resent the performance of the deep-learning models with other network architecture,

which only focus on certain types of noises.
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6.1 Kalman filter and Auto regression model

We select the Kalman filter and AR model from [12]. The method uses the signals

before noise as training data to predict the succeeding data. The Kalman filter

and AR model is selected as the state-of-the-art method to represent the time-series

method.

The Kalman filter is a filter that leverages the observation from the past to

estimate unknown variables. The estimation is calculated by providing solutions

with the least-squares method [52]. The Kalman filter in the selected method is

used to update the coefficients for the AR model.

The Auto regressive (AR) model is a prediction method on time-series data,

which holds the assumption that the variable of interest is linearly correlated with

its past values. It predicts the value of the variable on time t by values of the variable

in the past from time 0 to time t − 1 [53]. The AR model in the selected method

is implemented to predict the succeeding PPG data points. The combination of

Kalman filter and AR model works together to optimize the prediction over time by

all the data before the current time.

In our case, the parameters for the Kalman filter follow the same values in [12],

that is, the noise covariance matrix of is a normal distribution with the values of

mean and standard deviation equaling to 0 and 0.2, respectively. The order p for

the AR model is obtained by AIC criterion.

6.2 Empirical Mode Decomposition and Discrete Wavelet

Transform

The method that combines EMD and DWT to reconstruct PPG signals is from [9].

The EMD and DWT method is chosen to represent the signal decomposition method

for PPG signal reconstruction.
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The EMD is a signal decomposition method for non-stationary signals. The

method decomposes the signal into a set of components, namely Intrinsic Mode

Function (IMF) [54], which only have one zero between successive extrema and a

zero local mean. In the selected state-of-the-art method, the EMD first decomposes

the signal to different levels of IMF components. Then the most relevant component

is chosen to improve the signal quality.

The DWT is also a signal decomposition method that maps the signal in time

domain to frequency domain [55]. A mother wavelet is used to decompose the signal

into a set of high-frequency and low-frequency wavelets. At each level, the signals

are filtered by high-pass and low-pass filters to obtain the detail coefficients (i.e.

the high-frequency coefficients) and the approximation coefficients (i.e. the low-

frequency coefficients). The signals are then reconstructed by a linear combination

of the wavelet functions weighted by this set of wavelet coefficients. In the selected

method, the DWT takes the output component from the EMD, and then uses the

output IMF as input of DWT to further reduce the noise.

Same parameters in [9] are used in this thesis, that is, to choose the first IMF

from EMD as the input for DWT and use Daubechies 4 with decomposition level of

5 as the mother wavelet for DWT.

6.3 Bidirectional Long Short-Term Memory Auto-

encoder

The bidirectional recurrent denoising auto-encoder (BRDAE) is selected from [14].

It represents the state of the art of other deep-learning based methods.

The bidirectional recurrent neural network (RNN) is a deep-learning based method

commonly used in tasks dealing with sequential data. Compared with the feed-

forward network, RNN considers the time dependencies between the previous and
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Figure 6.1: The architecture of Bidirectional LSTM method

current hidden state. Therefore, the RNN is able to store the history information

of data. In the selected method, a bidirectional Long Short-Term Memory (LSTM)

layer is applied to the Auto-Encoder model to extract time dependencies in PPG

signals.

We follow the same BRDAE architecture in [14] (see Figure 6.1). The model

takes 250 nodes as input and uses a 40-node bidirectional LSTM layer as hidden

layer. The bottleneck feature is then reconstructed to an output size of 250 nodes

again. The root mean square error between reconstructed signal and true values

is calculated and backpropagated to the model as the loss of each training epoch.

Adam is selected as the optimizer with a learning rate of 0.001.

The training data for the model is augmented by three types of noise, including

white noise, slope noise, and saturation noise. They are randomly added to the

clean PPG signal to train the model.

The white noise is the random noise with zero mean and normal distribution de-

scribed in Chapter 2.1.1. The noisy signal with white noise Xwhite can be synthesized

using the following equation:
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Xwhite
i = Si +

1

3
·N(0, 1) (6.1)

where, Si is the ith sample of the original clean signal, and N(0, 1) indicates the

normally distributed white noise with mean and standard deviation equaling to 0

and 1, respectively. Figure 6.2 shows an example of the synthesized noisy PPG

signal with white noise (in orange), and its clean ground truth (in blue).

The slope noise is the noise that causes sloping shift to the baseline of signals.

The noisy signal with slope noise Xslope can be synthesized using the following

equation:

Xslope
i = Si +

4

N
· i · U(−1, 1) (6.2)

where Si is the ith sample of the original clean signal, and i is the index of the sample.

N is the total sample number in the signal segment. U(-1, 1) represents a random

number that follows a uniform distribution between -1 and 1. 4 is considered as the

highest slope for the synthesized signal, which is the same value from [14].

The saturation noise represents the distorted PPG signals below or above the

analog-to-digital conversion (ADC) range during measurement. The noisy signal

with saturation noise Xsaturation can be synthesized using the following equation:

Xsaturation
i = 0or1, ifx1 ≤ i ≤ x2

Xsaturation
i = Si, otherwise

(6.3)

where x1 is the starting index of the saturation noise, which is a random number

selected from a uniform distribution between 0 and total sample number N . x2 is

the end index of the saturation noise, which is dependent on the value of x1. The x1

and x2 should meet the requirement that X2−X1 ≤ 20% ·N because the maximum

duration of saturation noise should be less than 20% of the total signal noise. The

20% value is chosen to keep consistent with the training details in [14].
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Figure 6.2: An example of synthesized PPG signal with white noise (orange) and

ground truth (blue)
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Figure 6.3: An example of synthesized PPG signal with slope noise (orange) and

ground truth (blue)

The model is trained by minimizing the differences between the synthesized noisy

signal and its original clean signal. In testing, the final trained model takes the noisy

signals as input and then outputs the reconstructed clean signal.
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Figure 6.4: An example of synthesized PPG signal with saturation noise (orange)

and ground truth (blue)



7 Results and discussion

In this chapter, we present the reconstruction results obtained by the proposed and

the selected three state-of-the-art methods. All the methods are evaluated by the

test dataset obtained in Section 5.3.1, which contains noisy PPG signals distorted

by 5-second, 10-second, and 15-second real-world motion artifacts. In each noise

length group, the SNR values of the signals range from -25 dB to 30 dB.

We introduce the two metrics, i.e., the maximum peak-to-peak error and the

RMSSD error, which are used to evaluate the method performance.

7.1 Setup

The proposed method and the Bidirectional LSTM method are implemented by

PyTorch [56]. The Kalman and AR methods are implemented by pykalman [57],

statsmodel [58] package. The EMD and DWT method uses pyEMD [59], and Py-

Wavelets [60] package in Python.

In the thesis, the training process of the proposed method runs 1000 epochs

in total, and a batch size of 256 is used for each epoch. The Bidirectional LSTM

method runs 2000 epochs for training with a batch size of 250 samples, which is

the same as the process proposed in [14]. For both the proposed and Bidirectional

LSTM method, the model that performs best on the validation set is chosen as the

final model for testing.

For experiments from all the methods, we used a Linux machine with AMD
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Ryzen Threadripper 2920x 12-Core processor, NVIDIA TITAN RTX GPU (24 GB

memory), and 126 GB RAM.

7.2 Performance evaluation

In this section, we introduce the two metrics used for the evaluation of method

performance. Two types of errors: maximum peak-to-peak error and RMSSD error,

are extracted from original and reconstructed signals, which represent the HR and

HRV errors respectively, to evaluate the reconstruction results.

7.2.1 Maximum peak-to-peak error

The peaks in the original signal and the reconstructed signals are first paired in

time order. The pair with the maximum distance from each other is the maximum

peak-to-peak error. The maximum peak-to-peak error is used to estimate the heart

rate error between the reconstructed and original signals. The error is calculated as:

Errorpeak−to−peak = max(|Peaksreconstructed − Peaksoriginal|) (7.1)

7.2.2 RMSSD error

The root mean square of the successive peak interval difference (RMSSD) is an

important HRV parameter[61]. The RMSSD error is used to estimate the HRV

error between the reconstructed and original signals. The RMSSD error between

reconstructed signal and ground truth is calculated as:

ErrorRMSSD = |RMSSDreconstructed −RMSSDoriginal| (7.2)
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7.3 Reconstruction results

The model performance is evaluated by three lengths of noise, including 5-second,

10-second, and 15-second. The three types of noise duration represent PPG signal

distorted by short to long MAs. The reconstruction errors, including maximum

peak-to-peak and RMSSD error of signals at different noise levels and lengths of

noise, are presented in this section.

An example of the reconstructed PPG waveform distorted by 5-second noise at

a high noise level (i.e. SNR = -8.093 dB) is illustrated in Figure 7.1. The blue,

orange and red lines represent the ground truth, synthesized noisy signal, and the

reconstructed signal respectively. As shown in Figure 7.1 (b), our proposed method

performs the best at reconstructing PPG peaks and waveforms compared to the

ground truth in blue.

7.3.1 5-second noise

The noisy signals distorted by 5-second noise reflect the impact of short-term MA

on PPG signals. The performance of all the methods on PPG signals distorted by 5-

second noise in different SNR groups is indicated in Figure 7.2. Figure 7.2 (a) shows

the maximum peak-to-peak error, and Figure 7.2 (b) is the RMSSD error. The

Kalman and AR, EMD and DWT, bidirectional LSTM, and the proposed method

are indicated by blue, yellow, green and red lines, respectively. The quantitative

values are shown in Table 7.1.

As indicated in Figure 7.2 (a), our method outperforms other baseline methods in

all SNR groups with the lowest peak-to-peak error. For example, when SNR is at -25

dB, the maximum peak-to-peak error from the proposed method is 0.689 seconds,

while the error from Kalman and AR method is 2.948 seconds, the EMD and DWT

is 1.131 seconds, and the Bidirectional LSTM is 1.053 seconds. This indicates that

the proposed method is able to estimate reliable HR with PPG distorted by 5-second



7.3 RECONSTRUCTION RESULTS 41

0 1 2 3 4 5
Sample

−3
−2
−1

0
1
2

Am
pl

itu
de

(a
.u

.)
(a) Synthesized signal

Ground truth
Synthesized signal

0 1 2 3 4 5
Sample

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

Am
pl

itu
de

(a
.u

.)

(b) Proposed model

Ground truth
Reconstructed signal

0 1 2 3 4 5
Sample

−3
−2
−1

0
1
2

Am
pl

itu
de

(a
.u

.)

(c) Bidirectional LSTM

Ground truth
Reconstructed signal

0 1 2 3 4 5
Sample

−4
−3
−2
−1

0
1
2

Am
pl

itu
de

(a
.u

.)

(d) EMD + DWT

Ground truth
Reconstructed signal

0 1 2 3 4 5
Sample

−2
−1

0
1
2

Am
pl

itu
de

(a
.u

.)

(e) Kalman + AR

Ground truth
Reconstructed signal

Figure 7.1: Reconstruction results from proposed method and baseline methods

(SNR=-8.09 dB). Blue dotted line is the clean ground truth.(a) Synthesized signal,

(b) Proposed method, (c) Bidirectional LSTM, (d) EMD and DWT, and (e) Kalman

and AR.
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Table 7.1: Performance of all methods on 5-second noise

SNR (dB)
Proposed method Kalman + AR EMD + DWT Bidirectional LSTM

P-to-P RMSSD P-to-P RMSSD P-to-P RMSSD P-to-P RMSSD

-25 0.689 0.021 2.948 0.109 1.131 1.526 1.053 0.045

-20 0.599 0.018 2.045 0.080 1.090 1.095 1.052 0.045

-15 0.533 0.014 1.672 0.061 1.083 0.687 0.997 0.043

-10 0.407 0.011 1.342 0.041 1.046 0.442 0.926 0.038

-5 0.312 0.009 1.200 0.033 0.939 0.256 0.828 0.034

0 0.264 0.007 1.155 0.030 0.835 0.200 0.691 0.028

5 0.220 0.006 1.142 0.029 0.691 0.147 0.595 0.023

10 0.211 0.006 1.094 0.028 0.613 0.129 0.548 0.020

15 0.224 0.006 1.066 0.026 0.633 0.143 0.515 0.019

20 0.215 0.006 1.098 0.028 0.562 0.134 0.504 0.019

25 0.222 0.006 1.066 0.027 0.599 0.146 0.52 0.019

30 0.212 0.006 1.120 0.027 0.591 0.138 0.489 0.018
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Figure 7.2: Reconstruction errors from all methods with 5-second noise. (a) Maxi-

mum peak-to-peak error, and (b) RMSSD error.

noise.

Our method also obtains the lowest RMSSD error at all noise levels. As indicated

in Figure 7.2 (b), when SNR is at -25 dB, the RMSSD error from proposed method

is 0.021 seconds. However, the error from Kalman and AR method is 0.109 seconds,

the EMD and DWT is 1.526 seconds, and the Bidirectional LSTM is 0.045 seconds.
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The results show that the proposed method can also produce reliable estimation for

HRV with PPG distorted by 5-second noise.

Moreover, the proposed method is more robust to low SNR signals. As shown

in Figure 7.2, all methods except Kalman and AR obtain a maximum peak-to-peak

error less than 1.0 seconds when the SNR is at 30 dB. However, the errors increase

when the SNR values decrease. For instance, when the SNR values drop from 30dB

to -25dB, the peak-to-peak error from the proposed method only increases from

0.212 to 0.684 seconds, while such increase is higher in Kalman and AR, EMD and

DWT, and Bidirectional LSTM method, with values of 1.120 to 2.948 seconds, 0.591

to 1.131 seconds, and 0.489 to 1.053 seconds, respectively.

Similarly, for RMSSD errors, such increase from the proposed method is still

the smallest. When SNR decreases from 30 dB to -25 dB, the RMSSD error from

proposed method only increases from 0.006 to 0.021 seconds. However, the EMD and

DWT, which has the highest RMSSD error, increases from 0.138 to 1.526 seconds.

The RMSSD error increases of Kalman and AR method is 0.027 to 0.109 seconds,

and Bidirectional LSTM method is 0.018 to 0.045 seconds.

For signals distorted by short-term MAs, the HRV parameters are more affected

than the HR parameters. However, Our method obtains the lowest RMSSD errors

in all SNR groups. At the same time, when SNR decreases, the increase of RMSSD

error from the proposed method is the smallest. In addition, the proposed method

also obtains the lowest peak-to-peak error in all SNR groups. Therefore, our method

is robust to high noise level, and can produce reliable reconstruction estimation for

both HR and HRV for PPG distorted by short-term MAs.

7.3.2 10-second noise

The noisy signals distorted by 10-second noise evaluate the model performance of

increased length of MA to PPG signals. The performance of all the methods on PPG
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Table 7.2: Performance of all methods on 10-second noise

SNR (dB)
Proposed method Kalman + AR EMD + DWT Bidirectional LSTM

P-to-P RMSSD P-to-P RMSSD P-to-P RMSSD P-to-P RMSSD

-25 1.352 0.048 4.965 0.282 2.385 2.540 2.041 0.082

-20 1.187 0.039 4.368 0.228 2.340 2.214 1.986 0.080

-15 0.986 0.030 3.413 0.150 2.368 1.687 1.879 0.075

-10 0.790 0.023 2.796 0.098 2.164 0.994 1.816 0.070

-5 0.610 0.017 2.358 0.071 1.897 0.510 1.558 0.059

0 0.448 0.012 2.193 0.060 1.595 0.280 1.239 0.046

5 0.365 0.009 2.159 0.058 1.357 0.186 1.011 0.035

10 0.355 0.009 2.224 0.059 1.209 0.166 0.878 0.030

15 0.319 0.008 2.079 0.055 1.084 0.160 0.804 0.027

20 0.332 0.008 2.150 0.058 1.091 0.162 0.813 0.028

25 0.305 0.008 2.022 0.054 1.070 0.150 0.812 0.027

30 0.350 0.009 2.164 0.059 1.094 0.168 0.796 0.026

signals distorted by 10-second noise in different SNR groups is indicated in Figure

7.3. Figure 7.3 (a) shows the maximum peak-to-peak errors, and Figure 7.3 (b) is

the RMSSD errors from all SNR groups. The Kalman and AR, EMD and DWT,

bidirectional LSTM and proposed method are indicated by blue, yellow, green and

red lines, respectively. The quantitative values are shown in Table 7.2

As indicated in Figure 7.3 (a), the proposed method still performs the best in all

SNR groups compared to other baseline methods when PPG signals are distorted by

10-second noise. The peak-to-peak errors from the proposed method are the lowest

at all noise levels. For example, when SNR is at -25 dB, the maximum peak-to-

peak error from the proposed method is 1.352 seconds, while the error from Kalman

and AR method is 4.965 seconds, the EMD and DWT is 2.385 seconds, and the

Bidirectional LSTM is 2.041 seconds. This indicates that the proposed method is

able to estimate reliable HR with PPG distorted by 10-second noise.
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Figure 7.3: Reconstruction errors from all methods with 10-second noise. (a) Max-

imum peak-to-peak error, and (b) RMSSD error.
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The RMSSD errors from our proposed method in 10-second noise case are also

the lowest at all noise levels. As indicated in Figure 7.3 (b), when SNR is at -

25 dB, the RMSSD error from proposed method is 0.048 seconds. However, the

error from Kalman and AR method is 0.282 seconds, the EMD and DWT is 2.540

seconds, and the Bidirectional LSTM is 0.082 seconds. The results show that the

proposed method can also produce reliable estimation for HRV with PPG distorted

by 10-second noise.

Similar to the 5-second case, the proposed method shows robustness to signals

with low SNR values. As shown in Figure 7.3, all methods except Kalman and AR

obtain a maximum peak-to-peak error less than 2.0 seconds when the SNR is at

30 dB. However, the errors increase when the SNR values decrease. For instance,

when the SNR values drop from 30dB to -25dB, the peak-to-peak error from the

proposed method only increases from 0.350 to 1.352 seconds, while such increase is

higher in Kalman and AR, EMD and DWT, and Bidirectional LSTM method, with

values of 2.164 to 4.965 seconds, 1.094 to 2.385 seconds, and 0.796 to 2.041 seconds,

respectively.

For RMSSD errors in 10-second noise length case, such increase from the pro-

posed method is still the smallest. When SNR decreases from 30 dB to -25 dB,

the RMSSD error from the proposed method only increases from 0.009 to 0.048

seconds. However, the EMD and DWT increases from 0.168 to 2.540 seconds. The

RMSSD error increases of Kalman and AR method is 0.059 to 0.282 seconds, and

Bidirectional LSTM method is 0.026 to 0.082 seconds.

When the noise length increases, the effect of noise on both HR and HRV also

increases. However, our method still outperforms all state-of-the-art methods with

the lowest peak-to-peak and RMSSD errors in all SNR groups. Moreover, when

the reconstruction errors increase with the noise level, our method has the smallest

increase in the reconstruction error for HR and HRV. Consequently, our method
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Table 7.3: Performance of all methods on 15-second noise

SNR (dB)
Proposed method Kalman + AR EMD + DWT Bidirectional LSTM

P-to-P RMSSD P-to-P RMSSD P-to-P RMSSD P-to-P RMSSD

-25 1.821 0.067 7.772 0.567 3.647 1.476 2.848 0.112

-20 1.647 0.059 6.479 0.420 3.655 1.441 2.818 0.109

-15 1.374 0.047 5.303 0.290 3.565 1.202 2.774 0.104

-10 1.019 0.031 4.298 0.173 3.320 0.778 2.513 0.094

-5 0.723 0.021 3.502 0.113 2.975 0.480 2.255 0.082

0 0.499 0.013 3.263 0.094 2.425 0.285 1.727 0.063

5 0.389 0.009 3.367 0.094 1.821 0.170 1.400 0.048

10 0.350 0.008 3.190 0.088 1.693 0.163 1.124 0.036

15 0.324 0.007 3.077 0.086 1.437 0.135 1.076 0.035

20 0.328 0.007 3.086 0.086 1.469 0.158 1.042 0.034

25 0.328 0.007 3.298 0.093 1.530 0.153 0.996 0.033

30 0.312 0.007 3.134 0.088 1.543 0.165 0.998 0.031

is still robust to low SNRs when noise length increases, and can produce reliable

estimation for HR and HRV in signals distorted by 10-second MAs.

7.3.3 15-second noise

The noisy signals distorted by 15-second noise are used to evaluate the model per-

formance of PPG distorted by longer MAs (compared to the MAs evaluated earlier).

The performance of all the methods on PPG signals distorted by 15-second noise in

different SNR groups is indicated in Figure 7.4. Figure 7.4 (a) shows the maximum

peak-to-peak, Figure 7.4 (b) is the RMSSD error. The Kalman and AR, EMD and

DWT, bidirectional LSTM and the proposed method are indicated by blue, yellow,

green and red lines, respectively. The quantitative values are shown in Table 7.3

As indicated in Figure 7.4 (a), the proposed method outperforms other state-

of-the-art methods in all SNR groups when PPG signals are distorted by 15-second
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Figure 7.4: Reconstruction errors from all methods with 15-second noise. (a) Max-

imum peak-to-peak error, and (b) RMSSD error.

noise. Our proposed method achieves the lowest value of peak-to-peak error at all

noise levels. For example, when SNR is at -25 dB, the maximum peak-to-peak error

from the proposed method is 1.821 seconds, while the error from Kalman and AR

method is 7.772 seconds, the EMD and DWT is 3.647 seconds, and the Bidirectional

LSTM is 2.848 seconds. This indicates that the proposed method is able to estimate
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reliable HR with PPG distorted by 15-second noise.

The proposed method also achieves the lowest value of RMSSD error in all SNR

groups. As indicated in Figure 7.4 (b), when SNR is at - 25 dB, the RMSSD error

from the proposed method is 0.067 seconds, while the error from Kalman and AR

method is 0.567 seconds, the EMD and DWT is 1.476 seconds, and the Bidirectional

LSTM is 0.112 seconds. This indicates that the proposed method is able to estimate

reliable HRV with PPG distorted by 15-second noise.

Similar to previous noise length cases, the proposed method shows robustness to

signals with low SNR values. As shown in Figure 7.3, all methods except Kalman

and AR obtain a maximum peak-to-peak error less than 2.0 seconds when the SNR is

at 30 dB. However, the errors increase when the SNR values decrease. For instance,

when the SNR values drop from 30dB to -25dB, the peak-to-peak error from the

proposed method only increases from 0.312 to 1.821 seconds, while such increase is

higher in Kalman and AR, EMD and DWT, and Bidirectional LSTM method, with

values of 3.134 to 7.772 seconds, 1.543 to 3.647 seconds, and 0.998 to 2.848 seconds,

respectively.

For RMSSD errors in signals with 15-second noise case, such increase from the

proposed method is still the smallest. When SNR decreases from 30 dB to -25 dB,

the RMSSD error from the proposed method only increases from 0.007 to 0.067

seconds. However, the EMD and DWT, increases from 0.165 to 1.476 seconds. The

RMSSD error increases of Kalman and AR method is 0.088 to 0.567 seconds, and

Bidirectional LSTM method is 0.031 to 0.112 seconds.

When the PPG signals are distorted by long MAs, the MAs have a significant

impact on both HR and HRV. However, our method still outperforms the baseline

methods with the lowest peak-to-peak and RMSSD errors. In addition, when the

peak-to-peak and RMSSD errors increase as the SNR values decrease, our method

obtains the smallest value for such increase of error in signals distorted by 15-second
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noise. Therefore, our methods show robustness to high noise level and can produce

reliable estimation for both HR and HRV in signals distorted by long MAs.

7.4 Impact of Noise Duration

In addition to the robustness of low SNR level discussed above, our method also

shows a better performance to longer noise duration for estimating HR and HRV.

We take the examples from the highest (30 dB) and lowest (-25 dB) SNR groups

to clarify the problem. The maximum peak-to-peak error increases when the noise

length increases. With our proposed method, such increase is the smallest compared

to all baseline methods.

In -25 dB SNR, the maximum peak-to-peak error from the proposed method

increases from 0.689 to 1.821 seconds, when the noise duration increases from 5

seconds to 15 seconds. However, the maximum peak-to-peak error from Kalman and

AR method increases from 2.948 to 7.772 seconds, the EMD and DWT increases

from 1.131 to 3.647 seconds, and the Bidirectional LSTM increases from 1.053 to

2.848 seconds.

In 30 dB SNR, the maximum peak-to-peak error from the proposed method

increases from 0.212 to 0.312 seconds, when the noise duration increases from 5

seconds to 15 seconds. However, the maximum peak-to-peak error from Kalman and

AR method increases from 1.120 to 3.134 seconds, the EMD and DWT increases

from 0.591 to 1.543 seconds, and the Bidirectional LSTM increases from 0.489 to

0.998 seconds. Therefore, the proposed method is also robust to longer noise length.



8 Conclusion

In this thesis, we proposed a GAN-based method to reconstruct PPG signals dis-

torted by real-world motion artifacts.

The proposed method was trained with clean PPG signals and reconstructed

noisy signals using both current noisy signal, and the prediction based on previous

clean PPG samples. The proposed method thus leveraged the temporal information

in both current and proceeding data points, and enabled the reconstruction of PPG

signals at high noise level. For preparing the training, validation and test dataset,

the raw PPG signals were filtered and sectioned into 30-second segments. Then the

quality of the signals is assessed to obtain the clean and distorted PPG signals.

A noisy test dataset was generated to evaluate the performance of our proposed

and state-of-the-art methods in the literature. The test dataset contained noisy PPG

signals corrupted by motion artifacts collected in daily life. The noisy segments in

the test dataset were generated at different noise levels and noise duration.

The proposed method was compared with three other state-of-the-art PPG recon-

struction methods in the literature, including a time-series, a signal decomposition

and a deep-learning based method. All methods were evaluated by extracting two

types of errors: maximum peak-to-peak error and RMSSD error, which represent

the HR and HRV errors, respectively.

Our method performed the best at all noise levels with different noise lengths

and produced the lowest values of the two types of error. The results indicated
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that our method was effective to reconstruct noisy PPG signals distorted by real-

world motion artifacts with low SNR values and long noise duration. The proposed

method could consequently provide reliable estimation for both HR and HRV.
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