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A B S T R A C T   

Prior literature demonstrates that energy prices are characterized by time-varying jumps. However, earlier 
studies do not investigate if the intensity of such jumps appears to be higher amid periods of extreme volatility in 
comparison to normal periods. Employing the GARCH-jump model, this study examines whether jumps occurring 
in energy prices are an indicator of market crashes. To serve this purpose, we consider several downturns in oil 
markets spanning over the last few years. Our empirical analyses reveal that the conditional expected number of 
jumps in WTI and Brent oil futures prices increases significantly amid the depression periods, which is, however, 
not the case when the market functions normally. We, therefore, conclude that such clusters of jumps may 
contain predictive information for oil market crashes and thus provide early signals of future downturns. The 
findings further show that crude oil volatility, the US equity VIX, and economic policy uncertainty play a sig
nificant role in explaining the time-dependent jumps during the turmoil periods. The findings of our research 
could be useful for investors participating in global crude oil markets and for policymakers watching out for the 
impact of energy prices on the economy.   

1. Introduction 

Oil is considered one of the most important production inputs in an 
economy (Vo, 2011). In the US, for instance, nearly 8% of the GDP 
comes from oil. Hence, a rise in energy prices may exert a substantial 
impact on GDP growth by increasing production costs (Vo, 2009). Sig
nificant variations in crude oil prices are, therefore, a matter of serious 
concern for policymakers. In addition, being a strategic commodity, 
crude oil also plays a key role in global financial markets. In fact, earlier 
studies (e.g., Shi and Variam, 2017; Ji et al., 2018) show that energy 
market uncertainty impacts investment decisions as oil is often used to 
hedge portfolio risk. 

Against this backdrop, market participants closely follow energy 
price variability and its forecasts (Manickavasagam et al., 2020). How
ever, acquiring such knowledge seems to be a complex task given that 
energy markets tend to behave differently under diverse market condi
tions (i.e., bearish, normal, and bullish states). Choi and Hammoudeh 

(2010), for example, show that oil prices experience an increment amid 
periods of low volatility, while Gronwald (2012) claims that political 
violence, natural calamities, and terrorist activities could cause sub
stantial drops in energy prices. In addition, high correlations between 
energy and important financial markets (e.g., stock, gold, and exchange 
rate) could also lead to a significant increase or decrease in global energy 
prices (Liu et al., 2013; Tiwari et al., 2020). Hence investors are required 
to have accurate estimates of energy price volatility to precisely assess 
the market risk. 

In addition to time-varying volatility, jumps in energy prices, which 
could occur as a consequence of recessions, terrorist activities, or pan
demics, represent an important element of risk as well. According to 
Bollerslev et al. (2008) and Eraker et al. (2003), jumps in financial time 
series signify a major source of non-diversifiable risk that needs to be 
modeled precisely. Besides, employing appropriate methods for 
capturing time-varying jumps occurring in energy prices is essential 
given that such jumps may result in specification errors in conventional 
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estimation methods.1 Moreover, as jumps in asset prices are occasional 
events, the existence of large price swings in a specific sample period 
could have a significant effect on the volatility prediction (Chiang and 
Chen, 2019). It is, therefore, important to adopt a sophisticated econo
metric approach that can simultaneously capture both jumps and time- 
varying volatility of crude oil prices. 

Given the importance of detecting time-varying jumps in energy 
prices, a growing number of studies have considered employing the 
GARCH-jump process to simultaneously model the jumps and volatility 
in international energy markets. Notable contributions include Zhang 
and Chen (2011), Gronwald (2012), Zhang and Chen (2014), Zhang and 
Qu (2015), Zhang and Tu (2016), Zhang et al. (2018a), Zhang et al. 
(2018b), Dutta et al. (2018), Liu et al. (2020), and Dutta et al. (2020). 

Among these articles, Zhang and Chen (2011), Gronwald (2012), 
Zhang and Chen (2014), Zhang and Qu (2015), Zhang and Tu (2016), 
Zhang et al. (2018a), Zhang et al. (2018b) and Liu et al. (2020) provide 
empirical evidence that crude oil prices are characterized by time- 
dependent jumps, while Dutta et al. (2018) find similar jumps in the 
US ethanol prices. Besides, Dutta et al. (2020) show that jumps also exist 
in the crude oil volatility index (hereafter, OVX) and they do evolve over 
time. All these studies confirm the presence of extreme price movements 
in international energy markets and hence the empirical distributions of 
energy prices seem to have thick tails.2 It is worth mentioning that jumps 
in oil prices have significant implications for other markets as well. 
Zhang and Qu (2015) and Zhang and Tu (2016), for example, show that 
the information on time-varying jumps in oil prices could predict 
changes in the price levels of Chinese agriculture and metal indexes, 
respectively. Overall, these articles argue that taking such jumps into 
account would play a crucial role in making proper investment 
decisions. 

Our study extends the current literature in two major ways. First, 
while previous studies have focused on the significance of modeling 
jump dynamics in energy markets, they do not investigate whether the 
presence of such jumps in energy prices provides early signals of market 
crashes. This paper examines whether time-varying jumps, which could 
occur in energy prices due to unusual news events, have predictive 
content for downturns in international energy markets. Earlier studies 
argue that future market downturns could be realized in a series of 
jumps during a short interval of time. Maheu and McCurdy (2004), for 
instance, claim that the probability that jumps would occur in financial 
time series increases right before the market crash. In addition, Bates 
(1991) demonstrates that when the expected number of jumps in option 
prices escalates, crash fears among market participants seem to be 
increasing. Chan and Maheu (2002) also argue that the intensity of 
jumps is sensitive to economic states, which rise during periods of 
extreme volatility. In sum, all these studies document that systematic 
behavior in jumps is usually observed before the market downturns. To 
the best of our knowledge, we are the first to examine whether time- 
varying jumps in oil prices are an indicator of market conditions. 

Second, unlike prior literature, we attempt to identify the de
terminants of oil price jumps during the turmoil periods given the ex
istence of such jumps in global energy markets. Since jumps in crude oil 
prices represent a large fraction of market volatility, which is usually 
difficult to explain, detecting the key determinants of such price 
movements could provide new information on how oil market risk can 

be hedged. To achieve our goal, we explore the role of different uncer
tainty measures including crude oil price volatility (i.e., OVX), the US 
equity market implied volatility (hereafter, VIX), and economic policy 
uncertainty (hereafter, EPU) indexes. A growing body of literature finds 
evidence that variations in oil prices react significantly to a range of 
uncertainty indicators (Haugom et al., 2014; Antonakakis et al., 2014; 
Bekiros et al., 2015; Aloui et al., 2016; Antonakakis et al., 2017; Miao 
et al., 2017; Wei et al., 2017; Gkillas et al., 2018; Demirer et al., 2018; 
Brandt and Gao, 2019; Liu et al., 2019; Dutta et al., 2020).3 Our 
objective is to assess whether these uncertainty measures have predic
tive information for time-varying jumps in crude oil futures.4 This makes 
an important extension to existing literature given that predicting such 
jumps has important implications to both investors and policymakers. 

The key takeaway from our empirical analysis is that crude oil fu
tures market dynamics are significantly influenced by the extreme price 
movements and that the conditional expected number of jumps in oil 
futures prices increases significantly amid the depression periods, which 
is, however, not the case when the market functions normally. Hence, it 
can be inferred that such clusters of jumps may contain predictive 
contents for oil market crashes, providing early signals of future 
downturns. Testing for the gradual information diffusion hypothesis, we 
also provide statistical evidence that time-varying jumps occurring in 
the global crude oil market can forecast its price changes during the 
ongoing COVID-19 pandemic periods. Our results further show that the 
information content of crude oil volatility, the US equity VIX, economic 
policy uncertainty, and financial stress indexes can successfully explain 
the time-dependent jumps during the stress periods. 

Notably, our findings are novel given that while the expected num
ber of jumps in global crude oil markets tend to increase around the 
financial and health crisis periods, jump intensities during the pandemic 
are higher than those during the 2008 economic downturns. These re
sults indicate that the likelihood of jumps may vary amid periods of 
financial and health crises. Hence, jumps occurring in crude oil markets 
may be heterogeneous with respect to the type of crisis. We also observe 
that oil prices may contain predictive content that the GARCH-jump 
process could exploit in forecasting future market downturns. While 
traditional GARCH and stochastic volatility (SV) models can successfully 
explain smooth persistent changes in volatility, they fail to capture these 
large discrete changes occurring in asset returns. Thus the GARCH or SV 
volatility component of the conditional variance may become less 
important in describing the total volatility while jumps become more 
important just before a crash. 

The rest of the paper is structured as follows: The next section de
scribes the data, while Section 3 presents the methodological frame
work. Our empirical results are discussed in Section 4. Lastly, Section 5 
includes concluding remarks. 

2. Data 

We collect daily observations on WTI and Brent oil futures prices 
from the Thomson Reuters DataStream database. In addition, the 

1 As Li et al. (2016) mention ‘Jump risks are not only important for investors 
who may demand a large premium to carry these risks, but also vital for policy 
makers who must make decisions in real time during times of jump-inducing 
chaotic conditions in financial markets.’  

2 Dutta (2018a) argues that jumps in time series data can lead to serious 
distortion of model specifications, parameter estimation, and volatility fore
casting. Given that time-varying jumps represent an important element of an 
asset’s risk, detecting such jumps is crucial for increasing the accuracy of model 
prediction. 

3 Haugom et al. (2014) show that the realized volatility of oil prices is 
significantly affected by the changes in the levels of crude oil volatility (OVX). 
Dutta et al. (2020) also document that the conditional volatility of WTI oil 
prices is sensitive to OVX shocks. In addition, Antonakakis et al. (2014) argue 
that economic policy uncertainty has substantial impacts on global crude oil 
markets given that uncertainties in economic policy decisions lead to a reduc
tion in firms’ investments, which would cause a negative effect on energy 
prices. Moreover, Liu et al. (2019) claim that increasing geopolitical risk could 
exert impacts on oil prices by affecting the oil supply policy of OPEC countries. 
Overall, trading decisions as well as market sentiments may react significantly 
to these uncertainty indicators, which could cause oil prices to upsurge or 
decline.  

4 The geopolitical risk index has not been used due to lack of daily data 
during the COVID-19 pandemic period. 

A. Dutta et al.                                                                                                                                                                                                                                   



Energy Economics 114 (2022) 106275

3

information on VIX and OVX indexes is retrieved from the website of the 
Chicago Board Options Exchange (CBOE). Finally, the EPU data are 
taken from www.policyuncertainty.com.5 Our sample period ranges from 
10.5.2007 to 30.6.2020. The starting period of our sample depends on 
the availability of OVX data. It is worth mentioning that the chosen 
period encompasses three important events of oil market depressions 
including the 2008 global financial crisis, the 2014 oil market downturn, 
and the ongoing COVID-19 pandemic. 

Table 1 reports the descriptive statistics and unit root test results for 
different oil return and uncertainty indexes. Given that the GARCH- 
jump approach requires stationary data, we use log returns for oil 
market indexes. Of these two crude oil markets, WTI appears to be more 
volatile than Brent. Besides, both indexes exhibit negative skewness and 
seem leptokurtic. Among the uncertainty indexes, which are considered 
at levels, the UK EPU has a higher mean and standard deviation than the 
rest. Moreover, employing the Jarque-Bera test, we also note that none 
of these indexes satisfies the normality assumption. Finally, the results of 
different unit root tests - augmented Dickey-Fuller (ADF), Phil
lips–Perron (PP), DF-GLS, and Ng-Perron (NP) - show that all these in
dexes appear to be stationary. 

Next, Table 2 reports the results of the Lumsdaine and Papel (1997) 
unit root test with two structural breaks. This test is conducted mainly 
for WTI and Brent indexes as we intend to test for time-varying jumps in 
these markets. These findings suggest that for both oil markets, breaks 
occur during the global financial crisis period. We further note that each 
return index appears to be stationary. 

Fig. 1 demonstrates the futures prices of WTI and Brent markets. 
Both indexes exhibit a similar pattern. For instance, each market expe
riences a substantial drop amid the 2008 global financial crisis, 2014 oil 
market recession, and COVID-19 pandemic periods. Notably, the fall in 
oil futures prices during the ongoing COVID-19 crisis period is higher 
than that observed during 2008 as well as 2014 downturns. 

3. Methodology 

3.1. The GARCH-jump process 

The GARCH-jump model, developed by Chan and Maheu (2002), is 
widely employed in recent finance and economics literature (Xiao and 
Zhou, 2018; Zhang et al., 2018a, 2018b; Zhou et al., 2019; Chiang and 
Chen, 2019; Gronwald, 2019; Dutta et al., 2020). The immense popu
larity of this model emanates from the fact that it can successfully 
capture the time-varying jumps, which occur in asset prices due to some 
unexpected major events. Jumps represent a risk, which could emerge as 
a vital factor impacting the investors’ portfolio allocation (Zhou et al., 
2019). Hence capturing time-varying jumps plays a significant role in 
portfolio risk analyses. 

Following Chan and Maheu (2002), we consider the following form 
for the GARCH-jump specification6: 

Rt = π + μRt− 1 + ϵt (1)  

where Rt refers to the log return of an oil index at time t, and ϵt denotes 
the innovation which is split into the following parts: 

ϵt = ϵ1t + ϵ2t (2)  

where ϵ1t is assumed to follow the GARCH (1,1) process as follows: 
ϵ1t =

̅̅̅̅
ht

√
zt, zt~NID(0,1) 

ht = ω+ αϵ2
1t− 1 + βht− 1 (3) 

In addition, ϵ2t refers to a jump innovation taking the following form: 

ϵ2t =
∑nt

l=1
Jtl − θλt (4)  

where Jtl refers to the jump size having a mean θ and a variance d2, 
∑nt

l=1Jtl represents the jump factor, and nt denotes the number of jumps 
at time t, which follows a Poisson distribution defined as: 

P(nt = j|It− 1 ) =
e− λt λj

t

j!
, j = 0, 1, 2,… (5)  

with an autoregressive conditional jump intensity (ARJI) given as: 

λt = λ0 + ρλt− 1 + γξt− 1 (6) 

In Eq. (6), λt represents the time-varying conditional jump intensity 
parameter, λ0 indicates the constant jump intensity, and ξt− 1 is the in
tensity residual. These parameters satisfy the following constraints: λt >

0, λ0 > 0, ρ > 0, and γ > 0. 
Now, let us define the log-likelihood as: 

Table 1 
Descriptive statistics and unit root tests.  

Index → WTI futures Brent futures OVX VIX US EPU UK EPU 

Mean − 0.0137 − 0.0132 37.94 19.94 115.54 320.57 
Standard deviation 3.2496 2.8726 19.40 9.90 82.67 203.04 
Skewness − 2.4565 − 2.6031 4.42 2.41 2.69 2.42 
Kurtosis 99.55 103.34 38.37 10.65 13.88 17.20 
Jarque-Bera test 1286793*** 1397077*** 183,325.8*** 11,307.41*** 20,187.62*** 45,044.46 
ADF test − 11.69*** − 12.93*** − 4.76*** − 4.47*** − 5.80*** − 5.40*** 
PP test − 63.48*** − 58.51*** − 3.55*** − 5.28*** − 34.55*** − 55.70*** 
DF-GLS test − 6.63*** − 8.57*** − 3.97*** − 3.66*** − 4.92*** − 5.37*** 
NPZa − 15.61*** − 40.37*** − 38.97*** − 28.11*** − 45.40*** − 43.13*** 

Notes: This table includes the descriptive statistics and results of unit root tests for different indexes. Returns are considered for the oil markets, while OVX, VIX and 
EPU data appear at levels. ***, ** and * indicate statistically significant results at 1%, 5% and 10% levels, respectively. 

Table 2 
Results of the LP unit root test for WTI and Brent futures returns.  

Markets ↓ TB1 TB2 Number of lags Test statistic 

WTI futures 21.08.2009 16.02.2010 6 − 8.91*** 
Brent futures 07.11.2008 05.05.2009 5 − 13.75*** 

Notes: The critical values for the LP test are - 7.19, − 6.62 and − 6.37 at the 1%, 
5% and 10% levels, respectively. TB1 and TB2 refer to break dates. ***, ** and * 
indicate statistically significant results at 1%, 5% and 10% levels, respectively. 

5 We consider the daily observations for the US and UK EPU indexes. The US 
EPU data are used when predicting the jumps in WTI index, while the UK EPU 
data are considered for predicting the jumps in Brent index. 6 The AR(1) process is chosen based on the AIC and BIC values. 
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L(Θ) =
∑T

t=1
logf (Rt|It− 1 ;Θ)

where Θ = (π,μ,ω,α,β,θ,d,λ0,ρ,γ) and It− 1is the information set. 
We then employ the maximum likelihood estimation technique for 

obtaining these estimates. 

3.2. Determinants of jumps 

In this section, we examine whether different uncertainty indicators 
play any key role in explaining the time-varying jumps in oil prices. As 
mentioned earlier, we aim to use EPU, OVX, and VIX indexes as the 
uncertainty measures. Aloui et al. (2016), for instance, argue that 

variations in the EPU index may detect the supply-side, aggregate-de
mand, and oil-specific demand shocks, which lead to significant changes 
in oil prices. Hence, an upturn (downturn) in EPU would exert a negative 
(positive) impact on the economy, which in turn results in decreasing 
(increasing) demand and supply of crude oil, triggering oil price vola
tility. Balcilar et al. (2016) also hold similar arguments when testing the 
impact of EPU on oil price volatility. Besides, Wei et al. (2017) claim that 
increasing EPU can lead to serious divergence in the expectations of oil 
consumers, producers, and speculators simultaneously, impacting the 
demand, supply, or speculation stock for crude oil. Nevertheless, there is 
no consensus that EPU has emerged as the main determinant of crude oil 
volatility. Other uncertainty indicators such as the crude oil volatility 
index (i.e., OVX) and VIX, which are often considered as measures of 
financial uncertainty, may also drive oil price volatility (Liu et al., 

Fig. 1. WTI and Brent futures price indexes.  
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2013). We, therefore, use the information content of EPU, OVX, and VIX 
indexes to predict oil price jumps. To serve this purpose, we estimate the 
following regression model: 

λt = φ0 +φ1λt− 1 +φ2Ut− 1 + εt (7) 

In the above equation, U refers to a vector of uncertainty indexes. 
Altogether, we run three different sets of regressions (full and sub
samples) to examine the role of VIX, OVX, and EPU indexes in explaining 
the intensities of jumps occurring in oil futures prices If the value of φ1is 
significantly different from zero for a particular uncertainty index, we 
conclude that the uncertainty measure under investigation may contain 
predictive information for the time-varying jumps in international en
ergy markets. 

4. Empirical results 

4.1. Results of the GARCH-jump process 

4.1.1. Full period analyses 
The findings of the autoregressive conditional jump intensity process 

are shown in Table 3. Estimates for both full and subsamples (crisis 
periods) are given in this table. The results of our full period analyses 
suggest that the GARCH coefficients (α, β) are strongly significant, which 
provides evidence of volatility clustering in crude oil futures markets.7 

We further observe that the parameter λ0 is insignificant for both WTI 
and Brent indexes, while ρ, γ appear to be significant in most of the cases. 
This finding implies the time-variability in the jump intensity and 
demonstrates large abrupt price variations. Taking Brent crude as an 
example, the parameter ρ being 0.9945 suggests that the time-varying 
jump intensity is persistent (Chan and Maheu, 2002). Besides, the γ 
coefficient, assessing the sensitivity of λt to a lagged shock ξt− 1, is 
0.1164, implying that an increment in ξt− 1 would lead to a diminished 
impact (0.1164) on the next period’s jump intensity. Moreover, all the 
jump intensity parameters (λ0, ρ, γ) assume positive values, which would 
justify the choice of ARJI specification when detecting time-dependent 
jumps in the Brent market. In addition, the significance of ρ and γ 

confirms the fact that λt, the jump intensity, is influenced by both lagged 
jump intensity (λt− 1) and lagged intensity residuals (ξt− 1). The high 
value of ρ also indicates a high degree of persistence in λt. For the US oil 
market, we report similar findings as well, although the parameter γ is 
found to be insignificant meaning that λt is influenced by its lagged 
values only. 

On the whole, we find evidence that global oil price indexes expe
rience time-varying jumps implying that these markets are characterized 
by unexpected price variations.8 Our findings are in line with Zhang and 
Chen (2011), Gronwald (2012), Zhang and Chen (2014), Zhang and Qu 
(2015), Zhang and Tu (2016), Zhang et al. (2018a), Zhang et al. (2018b) 
and Liu et al. (2020). 

We now focus on the plots (Fig. 2 and Fig. 3) depicting the jump 
intensities of WTI and Brent oil prices for the whole sample period. Fig. 2 
exhibits the predictive information of jump intensity (λt) in forecasting a 
jump in the WTI index. It is evident from this graph that the first jump 
was anticipated during September 2008 (i.e., when Lehman Brothers 
filed a bankruptcy). We then observe an upsurge in the intensity 
parameter amid the 2014 oil price downturn. However, the conditional 
expected number of jumps appears to be less than one during this period 
suggesting that jumps are not much apparent, although global oil mar
kets saw a downturn as a consequence of oversupply of crude oil. Next, 
we detect a cluster of jumps during the ongoing COVID-19 pandemic 
era. The jump intensity parameter starts to increase in March 2020 and 

Table 3 
Estimates of GARCH-jump models.  

Coefficient WTI (Full) Brent (Full) WTI (2008 Crisis) Brent (2008 Crisis) WTI (COVID-19) Brent (COVID-19) 

π 0.0771** 
(0.0369) 

0.0844*** 
(0.0322) 

0.0930 
(0.1513) 

0.0511 
(0.0590) 

0.3681*** 
(0.0509) 

0.4085 
(0.6986) 

μ − 0.0273 
(0.0181) 

0.0277 
(0.0176) 

− 0.0572 
(0.0632) 

0.0543*** 
(0.0207) 

− 0.0653 
(0.0558) 

− 0.0936 
(0.1959) 

ω 0.0557*** 
(0.0170) 

0.0443*** 
(0.0130) 

0.0464 
(0.0824) 

0.0697* 
(0.0362) 

0.0079*** 
(0.0015) 

0.0619 
(0.1755) 

α 0.0562*** 
(0.0121) 

0.0612*** 
(0.0089) 

0.0620*** 
(0.0219) 

0.0464*** 
(0.0051) 

0.0062*** 
(0.0001) 

0.0307 
(0.0390) 

β 0.9127*** 
(0.0180) 

0.8999*** 
(0.0148) 

0.9245*** 
(0.0322) 

0.9253*** 
(0.0061) 

0.9827*** 
(0.0009) 

0.8751*** 
(0.0428) 

θ − 1.1412*** 
(0.3648) 

− 0.4654** 
(0.1867) 

0.1850 
(1.1660) 

− 0.1994 
(1.1503) 

− 1.6252***  
(0.2290) 

− 1.2328 
(3.9432) 

d2 3.7099*** 
(0.6354) 

2.6065*** 
(0.3124) 

− 3.6233*** 
(0.9259) 

5.7786*** 
(0.4952) 

− 3.2363*** 
(0.3573) 

2.4409*** 
(0.7031) 

λ0 0.0049 
(0.0040) 

0.0016 
(0.0011) 

0.0268 
(0.0298) 

0.0421*** 
(0.0128) 

0.0001*** 
(0.00002) 

0.0068 
(0.0066) 

ρ 0.9638*** 
(0.0288) 

0.9945*** 
(0.0038) 

0.8107*** 
(0.1600) 

0.5863** 
(0.1075) 

1.0272*** 
(0.0028) 

0.9919*** 
(0.0494) 

γ 0.2684 
(0.2057) 

0.1164*** 
(0.0421) 

2.2009*** 
(0.4292) 

0.0957** 
(0.0441) 

0.1862*** 
(0.0132) 

0.2226*** 
(0.0749) 

Log-likelihood − 7134.47 − 6929.60 − 990.85 − 901.73 − 235.02 − 232.35 

Notes: This table shows the estimates of GARCH-jump models (see Eqs. (1)–(6)) for full period, 2008 financial crisis period and COVID-19 pandemic period. The crisis 
period sample ranges from 1.1.2008 to 30.6.2009, while the COVID-19 period sample spans from 1.1.2020 to 30.6.2020. ***, ** and * indicate statistically significant 
results at 1%, 5% and 10% levels, respectively. Standard errors are in parentheses. 

7 The quantity, α + β, also suggests a high degree of volatility persistence in 
S&P 500 index. 

8 Outliers are often observed in oil price indexes (Charles and Darne, 2014). 
Identifying outliers, which occur due to wars, natural disasters, political con
flicts, is crucial given that the presence of such outliers can lead to model 
misspecifications, poor forecasts and invalid inferences. We, therefore, examine 
the presence of outliers in the WTI and Brent markets. In doing so, we employ 
the process proposed by Ané et al. (2008). Dutta (2018b) also advocates this 
approach while finding outliers in metal markets. Using this procedure, dis
cussed in Appendix A, we find a number of outliers in global crude oil prices. 
After correcting for these outliers, we re-estimate the GARCH-jump model and 
find that jumps still exist implying that the presence of outliers does not have 
any significant influence on our earlier results. These results are presented in 
the appendix (see Table A1). It is also worth mentioning that when estimating 
the GARCH-jump process after correcting for outliers, we assume that ϵ1t fol
lows the EGARCH process instead of the GARCH (1,1) process as shown in Eq. 
(3). Dutta et al. (2020) also assume the same as the EGARCH model captures 
asymmetry in crude oil price indexes. 
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right before the Black Monday I (i.e., 9 March 2020), we expect a jump 
in the WTI oil price index. The intensity parameter continues to increase 
until May 2020. It is evident that the expected number of jumps is much 
higher during the COVID-19 period compared to the 2008 global 
financial crisis era. These findings indicate that the impact of COVID-19 
on international oil markets seems unprecedented. 

Moving to Fig. 3, we find a similar pattern for the Brent market. The 
main difference is that over the COVID-19 period the intensity of jumps 
in Brent prices is lower than that in WTI prices. One explanation of this is 
that Brent is a better representative of global oil markets than WTI. WTI 
pertains to the US production of crude oil and the US market is more 
sensitive to shocks than the global oil market. Therefore, the expected 
number of jumps appears to be higher for the WTI oil index compared to 
the Brent index. In sum, jumps are frequently observed during the 
turmoil periods, while energy markets function normally throughout the 
low volatility regimes. 

4.1.2. Subsample analyses 
This section includes the discussion of subsample analyses. Two 

different subsamples related to crisis periods are considered. The 2008 

crisis period sample ranges from 1.1.2008 to 30.6.2009, while the 
COVID-19 sample spans from 1.1.2020 to 30.6.2020. Table 3 shows the 
estimates of GARCH-jump models for both subsamples under investi
gation. One interesting finding stemming from this analysis is that for 
the WTI index, the γ parameter is now significant for both subsamples, 
which was not the case when analyzing the full period sample. This 
outcome indicates that current intensity residuals have a significant 
effect on future jump intensity during periods of high uncertainty. For 
the Brent market, on the other hand, both ρ and γ appear to be significant 
in each case. Overall, the estimates suggest the presence of time-varying 
jumps in oil prices amid the turmoil periods. 

Next, Fig. 4 and Fig. 5 exhibit the jump intensities for the sub
samples. During the great recession era, the expected number of jumps 
increased for both WTI and Brent markets when the Lehman Brothers 
filed bankruptcy in September 2008. However, for the WTI index, we 
detect a series of jumps even in March 2008 and in June 2008. Fig. 5 also 
shows a cluster of jumps for global crude oil futures markets amid the 
ongoing COVID-19 pandemic phase. 

We now more closely scrutinize the jump intensities for crude futures 
markets following the inception of novel coronavirus disease. Fig. 6 

Fig. 2. Jump intensity for WTI index (Full period).  

Fig. 3. Jump intensity for Brent index (Full period).  
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displays the jump intensities for both WTI and Brent indexes during the 
period from 01.04.2020 to 20.04.2020. We choose this period to detect 
the presence of jumps right before the oil market crash on 20th April.9 

Hence, our objective is to verify whether there are clusters of jumps 
before the crash. Doing so will allow us to detect these clusters and 
examine if they help predict the market crash. Remarkably, this plot 
shows that for the Brent market at least one jump is expected on each 
day indicating the existence of a cluster of jumps before this historical 
downturn. Looking at the jump intensities for the WTI index, plotted in 
the same figure, we find that at least five jumps were anticipated on the 
day of the market crash. This finding is in line with Chan and Maheu 
(2002) suggesting the significance of jumps which usually occur just 

before major drops in asset prices. 
Note that while the phenomenon of jump intensity is well- 

investigated in the mainstream financial literature (Chan and Maheu, 
2002; Kim and Mei, 2001; Rangel, 2011), examinations of jump 
behavior in the commodity markets are limited (Zhang and Tu, 2016; 
Zhang et al., 2018a, 2018b). Crude oil is a widely traded commodity 
with financial characteristics. Thus, understanding the jump behavior in 
the crude oil market becomes imperative given that the jump dynamics 
in any market are intensified around the phases of economic downturns 
(Maheu and McCurdy, 2004). Our sample period covers two important 
periodical segments of economic downturns: the period of the global 
financial crisis (GFC, 2007–08) and the COVID-19 pandemic. While the 
event of 2007–08 is essentially a financial crisis, the COVID-19 is a form 
of a health crisis. A contagious disease like COVID-19 is likely to have a 
higher impact on the economy than the financial crises, in general, and 
on the oil prices, in particular. The curfews and travel restrictions 
contribute to the sluggish demand for oil. Similarly, the logistics 

Fig. 4. Jump intensity for WTI (a) and Brent (b) indexes (2008 crisis period).  

9 On 20th April 2020, WTI futures price becomes negative, taking the value 
around -$37 per barrel. This is the first time in history when oil prices turn 
negative. 
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industry is constrained due to border closures, hence less transportation 
and consumption of oil. Besides, COVID-19 has also led to job-losses or 
pay-cuts exposing the individuals to lower disposable incomes. Conse
quently, the consumption propensity of the public at large is curbed. The 
demand for the luxury items is expected to fall. For instance, the auto
motive sector in India is hit severely because of lower demand for ve
hicles.10 A current lower demand for vehicles would also have impacts 
on future demand for oil. The plot for oil jump intensity in Fig. 5 also 
comply with our arguments. We can observe higher spikes during the 
COVID-19 sub-period. Thus, it is indeed relevant to reconcile the 

similarities or differences in the response of oil prices during the periods 
of financial and health crises. 

It is also worth mentioning that the process governing the arrival of 
jumps may be heterogeneous with respect to the type of crisis. As evi
denced by our findings, the likelihood of jumps may vary amid periods 
of financial and health crises. Given that the prediction of extreme 
volatility plays a crucial role in risk management, identification of jump 
dynamics in different crisis periods has important implications for oil 
market participants. 

4.2. Summary statistics of jump intensities 

Table 4 reports the summary statistics of the jump intensities for both 
WTI and Brent futures markets. In order to facilitate comparison, these 
statistics are computed for the full period (Panel-A), 2008 crisis period 
(Panel-B), and COVID-19 pandemic period (Panel-C). We find that for 
each of the oil markets, the mean intensity is higher amid the volatile 

Fig. 5. Jump intensity for WTI (a) and Brent (b) indexes (COVID-19 phase).  

10 Chhibber, B. and Gupta, N., “The Indian Automotive industry: from resil
ience to resurgence?”, McKinsey & Company, available at: https://www.mcki 
nsey.com/industries/automotive-and-assembly/our-insights/the-indian-autom 
otive-industry-from-resilience-to-resurgence#, accessed August 11, 2021, 18: 
57 h, IST. 
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periods (2008 financial crisis and COVID-19 pandemic) when compared 
to the full period. In addition, the mean intensity increases significantly 
during the ongoing COVID-19 pandemic time indicating that before the 
fall in global crude oil markets due to the novel coronavirus, the con
ditional expected number of jumps in different energy markets tends to 
increase. Overall, our results reveal that the information on time-varying 
jumps could be used in predicting future market downturns. Therefore, 
we conclude that these jumps in crude oil futures prices may provide 
early signals of market crashes (e.g., 2008 global financial crisis or 
COVID-19 pandemic). Our results also imply that global pandemics have 
a higher likelihood of causing energy market crashes than economic 
crises. Increasing temperatures and the number of extreme weather 
events due to climate change lead to environmental and social condi
tions ripe for pandemics. Hence, this implication may become even more 
important. 

4.3. Determinants of time-varying jumps 

Tables 5 and 6 display the estimates of Eq. (7). These findings will 
verify if OVX, VIX, and EPU indexes contain predictive information for 
future time-varying jumps occurring in international crude oil prices. 
Table 5 shows the results for the WTI index, while Table 6 exhibits the 
findings for the Brent market. These results are based on the analyses of 
the full period, 2008 crisis period and the ongoing COVID-19 pandemic 
period demonstrated in Panels A, B, and C, respectively. 

The findings, reported in Table 5, reveal that both OVX and EPU 
appear to have predictive contents for the intensity of jumps in the WTI 
index when the estimates of Panel A are taken into account. The impact 
of the VIX index, on the other hand, is insignificant. It is also worth 
mentioning that jump intensity is influenced by its past values as well. 
We further notice that among the uncertainty indicators, crude oil 
volatility has a higher impact than the rest as evidenced by the magni
tude of the corresponding coefficients. Hence, for the full period sample, 

Fig. 6. Jump intensity for WTI (a) and Brent (b) indexes (1.4.2020–20.4.2020).  
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OVX seems to be the most influential determinant of oil price jumps. 
These findings are not unexpected given that OVX is a forward-looking 
measure of crude oil volatility and hence it represents markets’ 
consensus on the expected future uncertainty (Maghyereh et al., 2016). 

The results further indicate that none of these uncertainty measures 
can predict future jumps in WTI futures prices during the global finan
cial crisis era given that all the associated coefficients are insignificant. 

Table 4 
Summary statistics of jump intensities.   

Mean Std. Dev. Maximum Minimum 

Panel A: Full sample     
WTI 0.1280 0.1813 2.0832 0.0049 
Brent 0.2860 0.2262 1.2243 0.0016  

Panel B: 2008 crisis     
WTI 0.1498 0.3991 4.3314 0.0000 
Brent 0.5417 0.2928 2.0037 0.1454  

Panel C: COVID-19     
WTI 0.6456 0.6824 5.6128 0.0259 
Brent 0.7247 0.3734 2.3298 0.1392 

Notes: This table reports the summary statistics of the jump intensities for both 
WTI and Brent futures markets. The statistics are computed for full period 
(Panel-A), 2008 crisis period (Panel-B) and COVID-19 pandemic period (Panel- 
C). 

Table 5 
Determinants of jumps in WTI futures prices.   

Estimate Standard error p-value 

Panel A: Full sample    
Constant − 0.0716 *** 0.0053 0.00 
λt− 1 0.5955*** 0.0161 0.00 
OVX 0.0026*** 0.0002 0.00 
VIX 0.00001 0.0002 0.97 
US EPU 0.0002*** 0.00003 0.00 
F-statistic 2345.75***   
R2 (%) 74.02   
D-W statistic 2.38   
VIF 2.94    

Panel B: Financial crisis    
Constant − 0.0102 0.0079 0.19 
λt− 1 0.9461*** 0.0175 0.00 
OVX 0.00025 0.00023 0.28 
VIX 0.00002 0.00003 0.93 
US EPU 0.00004 0.0003 0.12 
F-statistic 1992.66***   
R2 (%) 95.54   
D-W statistic 1.73   
VIF 3.09    

Panel C: COVID-19 crisis    
Constant − 0.2253** 0.0957 0.02 
λt− 1 0.1459 0.1139 0.20 
OVX 0.0032 0.0020 0.11 
VIX 0.0033 0.0038 0.38 
US EPU 0.0012*** 0.0003 0.00 
F-statistic 41.40***   
R2 (%) 58.18   
D-W statistic 2.09   
VIF 4.01   

Notes: This table shows the estimates of Eq. (7) for WTI futures market. The 
results are provided for full period, 2008 financial crisis period and COVID-19 
pandemic period. The crisis period sample ranges from 1.1.2008 to 30.6.2009, 
while the COVID-19 period sample spans from 1.1.2020 to 30.6.2020. ***, ** 
and * indicate statistically significant results at 1%, 5% and 10% levels, 
respectively. VIF refers to variance inflation factor and D–W stands for Durbin- 
Watson. 

Table 6 
Determinants of jumps in Brent futures prices.   

Estimate Standard error p-value 

Panel A: Full sample    
Constant − 0.0066 *** 0.0021 0.00 
λt− 1 0.9403*** 0.0060 0.00 
OVX 0.0004*** 0.0001 0.00 
VIX 0.0005*** 0.0001 0.00 
UK EPU 0.000002 0.000004 0.52 
F-statistic 19,998.64***   
R2 (%) 96.05   
D-W statistic 2.77   
VIF 2.49    

Panel B: Financial crisis    
Constant − 0.0525*** 0.0163 0.00 
λt− 1 0.8121*** 0.0263 0.00 
OVX 0.0027*** 0.0005 0.00 
VIX 0.0001 0.0005 0.71 
UK EPU 0.00001 0.00003 0.62 
F-statistic 1479.12***   
R2 (%) 94.08   
D-W statistic 2.67   
VIF 3.94    

Panel C: COVID-19 crisis    
Constant 0.0499 0.0354 0.16 
λt− 1 0.16262*** 0.0851 0.00 
OVX − 0.0004 0.0005 0.32 
VIX 0.0027** 0.0013 0.04 
UK EPU 0.0003*** 0.0001 0.00 
F-statistic 154.01***   
R2 (%) 83.92   
D-W statistic 2.78   
VIF 4.22   

Notes: This table shows the estimates of Eq. (7) for Brent futures market. The 
results are provided for full period, 2008 financial crisis period and COVID-19 
pandemic period. The crisis period sample ranges from 1.1.2008 to 30.6.2009, 
while the COVID-19 period sample spans from 1.1.2020 to 30.6.2020. ***, ** and 
* indicate statistically significant results at 1%, 5% and 10% levels, respectively. 
VIF refers to variance inflation factor and D–W stands for Durbin-Watson. 

Table 7 
Testing for gradual information diffusion hypothesis for the COVID-19 
subsample.   

Estimate Standard error p-values 

Panel A: WTI    
Constant − 0.1145* 0.0618 0.07 
b0 − 3.8471*** 0.9776 0.00 
b1 5.0468*** 0.5637 0.00 
b2 5.5786*** 0.5518 0.00 
b3 6.6312*** 0.5693 0.00 
b4 7.4119*** 0.6561 0.00 
b5 − 1.0871** 0.5093 0.03 
b6 − 0.9863* 0.5745 0.08 
b7 − 0.3973 0.5677 0.48 
b8 − 0.1843 0.5940 0.76 
H0 : b0 = b1 − 8.8939*** 2.3699 0.00  

Panel B: Brent    
Constant − 0.0892 0.0773 0.25 
b0 4.0688*** 1.1565 0.00 
b1 14.4940*** 1.3385 0.00 
b2 19.0418*** 1.2930 0.00 
b3 4.6366*** 1.3453 0.00 
b4 4.3033*** 1.2932 0.00 
b5 1.7295 1.1576 0.13 
b6 − 1.3940 1.3463 0.30 
b7 0.7468 1.3452 0.58 
b8 − 0.0158 1.3386 0.99 
H0 : b0 = b1 − 10.42*** 2.0849 0.00 

Notes: H0 : b0 = b1is the null hypothesis of the Wald test for the difference be
tween the estimates of the effects of jumps at lag 0 and at lag 1. These estimates 
are obtained for the COVID-19 subsample (1.1.2020 to 30.6.2020). ***, ** and * 
indicate statistically significant results at 1%, 5% and 10% levels, respectively. 
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However, for the COVID-19 subsample, the EPU index emerged as a key 
determinant. This finding could be attributed to the fact that an increase 
in policy uncertainty could cause an upsurge in oil price volatility given 
that oil suppliers can stock up as a result of precautionary motives (Wei 
et al., 2017). In line with our findings, Balcilar et al. (2016) also concur 
that EPU is a driver of oil price fluctuations and that EPU impacts oil 
prices positively amid the period of high uncertainty. 

Looking at the estimates shown in Table 6, we find evidence that 
OVX has, in general, better predictive contents than the VIX and EPU 
indexes. Only for the COVID-19 period, both EPU and the VIX indexes 
outperform OVX as its coefficient is not significant. These results are 
somewhat in line with those reported in Table 3. That is, for both WTI 
and Brent markets, OVX acts as the major determinant of global crude oil 
market jumps. Hence, OVX, which is considered as the leading indicator 
of oil market uncertainty, represents the main source of time-varying 
risk linked to crude oil future prices. We further note that for the 
Brent market, unlike the WTI index, VIX has predictive power for the 
jumps for both the full sample and the COVID-19 subsample. The impact 
of VIX is, however, is insignificant amid the 2008 financial crisis period. 
It is also observed that the EPU index fails to explain the jumps for the 
full sample and that the information content of OVX is important for 
predicting the jumps during the global financial crisis era. 

Overall, our results are consistent with those reported in Haugom 
et al. (2014), Antonakakis et al. (2014), Miao et al. (2017), Wei et al. 
(2017), Tiwari et al. (2020), and Dutta et al. (2020). These studies also 
show that crude oil prices are sensitive to different uncertainty in
dicators. We extend this prior literature in that while the articles cited 
above are focused on the linkage between uncertainty indexes and 

Table 8 
Testing for gradual information diffusion hypothesis for the COVID-19 sub
sample (the case of OVX).   

Estimate Standard error p-values 

Panel A: WTI    
Constant 0.3849** 0.1951 0.04 
b0 − 4.8141*** 0.6876 0.00 
b1 3.7299*** 0.7011 0.00 
b2 0.1610 0.7010 0.82 
b3 − 0.2794 0.6589 0.67 
b4 − 2.4043*** 0.5897 0.00 
b5 − 0.3307 0.7118 0.64 
b6 − 0.0472 0.7019 0.94 
b7 1.4586*** 0.4316 0.00 
b8 − 1.0328 0.6884 0.13 
H0 : b0 = b1 − 8.5441*** 1.0746 0.00  

Panel B: Brent    
Constant 0.4108 0.1709 0.02 
b0 − 5.7509*** 0.6090 0.00 
b1 2.9175*** 0.6218 0.00 
b2 0.1838 0.6217 0.76 
b3 0.3716 0.5279 0.49 
b4 − 1.1481*** 0.6424 0.07 
b5 − 0.4348 0.5325 0.44 
b6 − 0.8119 0.5111 0.12 
b7 − 0.2102 0.6226 0.74 
b8 1.0780* 0.6096 0.07 
H0 : b0 = b1 − 8.6684*** 0.9553 0.00 

Notes: H0 : b0 = b1is the null hypothesis of the Wald test for the difference be
tween the estimates of the effects of jumps at lag 0 and at lag 1. These estimates 
are obtained for the COVID-19 subsample (1.1.2020 to 30.6.2020). ***, ** and * 
indicate statistically significant results at 1%, 5% and 10% levels, respectively. 

Table 9 
Determinants of jumps in WTI futures prices (Additional analyses).   

Estimate Standard error p-value 

Panel A: Full sample    
Constant 0.0005 0.0024 0.81 
λt− 1 0.9993*** 0.0100 0.00 
FS 0.0270*** 0.0052 0.00 
TED 0.0019 0.0037 0.59 
TWEX − 0.0047 0.0048 0.32 
F-statistic 2810.05***   
R2 (%) 78.11   
D-W statistic 2.16   
VIF 3.01    

Panel B: Financial crisis    
Constant 0.0024 0.0043 0.58 
λt− 1 0.9641*** 0.0159 0.00 
FS 0.0173*** 0.0033 0.00 
TED 0.0040 0.0042 0.33 
TWEX − 0.0052 0.0040 0.19 
F-statistic 2097.41***   
R2 (%) 95.86   
D-W statistic 1.81   
VIF 2.97    

Panel C: COVID-19 crisis    
Constant − 0.0117 0.0653 0.86 
λt− 1 0.8516*** 0.1161 0.00 
FS 0.0692** 0.0302 0.02 
TED 0.3063** 0.1534 0.04 
TWEX − 0.0922 0.0791 0.24 
F-statistic 40.66***   
R2 (%) 58.58   
D-W statistic 1.98   
VIF 3.71   

Notes: This table shows the estimates of Eq. (7) for WTI futures market. The re
sults are provided for full period, 2008 financial crisis period and COVID-19 
pandemic period. The crisis period sample ranges from 1.1.2008 to 30.6.2009, 
while the COVID-19 period sample spans from 1.1.2020 to 30.6.2020. ***, ** and 
* indicate statistically significant results at 1%, 5% and 10% levels, respectively. 
VIF refers to variance inflation factor and D–W stands for Durbin-Watson. 

Table 10 
Determinants of jumps in Brent futures prices (Additional analyses).   

Estimate Standard error p-value 

Panel A: Full sample    
Constant 0.0044*** 0.0014 0.00 
λt− 1 0.9757*** 0.0038 0.00 
FS 0.0129*** 0.0026 0.00 
TED 0.0011 0.0018 0.48 
TWEX − 0.0014 0.0024 0.55 
F-statistic 18,367.94***   
R2 (%) 95.88   
D-W statistic 2.53   
VIF 1.86    

Panel B: Financial crisis    
Constant 0.0093 0.0106 0.37 
λt− 1 0.9636*** 0.0139 0.00 
FS 0.0070*** 0.0014 0.00 
TED 0.0081 0.0058 0.16 
TWEX − 0.0017 0.0081 0.83 
F-statistic 1253.69***   
R2 (%) 93.26   
D-W statistic 2.84   
VIF 2.56    

Panel C: COVID-19 crisis    
Constant 0.0667** 0.0335 0.04 
λt− 1 0.8727*** 0.0425 0.00 
FS 0.0252** 0.0125 0.04 
TED 0.0673*** 0.0256 0.00 
TWEX − 0.0359 0.0302 0.23 
F-statistic 134.53***   
R2 (%) 82.26   
D-W statistic 2.37   
VIF 3.22   

Notes: This table shows the estimates of Eq. (7) for Brent futures market. The 
results are provided for full period, 2008 financial crisis period and COVID-19 
pandemic period. The crisis period sample ranges from 1.1.2008 to 30.6.2009, 
while the COVID-19 period sample spans from 1.1.2020 to 30.6.2020. ***, ** 
and * indicate statistically significant results at 1%, 5% and 10% levels, 
respectively. VIF refers to variance inflation factor and D–W stands for Durbin- 
Watson. 
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conventional oil price series, ours treats these indicators as determinants 
of the expected number of jumps occurring in global energy markets. 
Besides, we also document that crude oil VIX has emerged as the main 
determinant of oil price jumps when the full period is considered. This 
finding is somewhat new given that earlier studies find EPU as the main 
uncertainty indicator explaining oil market volatility (Aloui et al., 2016; 
Wei et al., 2017). However, for the COVID-19 subsample, EPU appears 
to be the only significant factor having predictive contents for oil price 
jumps. In sum, our research could be considered as an important 
extension given that predicting such jumps has important implications 
for both investors and policymakers. 

4.4. Additional tests 

4.4.1. Do jumps predict oil returns? 
We now conduct some statistical tests to investigate if the presence of 

jumps in the crude oil market could be used to predict the oil returns. In 

doing so, the gradual information diffusion hypothesis is tested where 
we consider time-varying jump intensities (λt) as predictors for oil 
returns. It is noteworthy that the gradual information diffusion is 
accepted under two conditions: first, if the impact of lagged jumps on oil 
returns has a similar or a larger magnitude than the contemporaneous 
effect of jumps; and second, if the strongest lagged effects appear at 
higher lags. A number of prior works (Driesprong et al., 2008; Xiao et al., 
2019) test for these two conditions when examining the gradual infor
mation diffusion hypothesis. In line with these articles, we introduce 
lags of several trading days between the daily oil returns and lagged 
jumps. If our results support the gradual information diffusion hypoth
esis, we can conclude that the relation between crude oil returns and 
jumps strengthens at higher lags, or investors have difficulty in evalu
ating the effect of oil market jumps. 

Now, To test for the gradual information diffusion hypothesis, we 
estimate the following regression during the COVID-19 pandemic period 
(1.1.2020 to 30.6.2020): 

Fig. 7. WTI and Brent futures prices during Janauary, 2021 to July 2022.  
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Rt = a+
∑8

j=0
bjλt− j + et (8)  

where, Rt refers to the log return of an oil index (WTI/Brent) at time t, λt 
denotes the intensity of jumps in oil returns at time t, and et denotes the 
error term. 

The estimates of Eq. (8) are shown in Table 7. These results 
demonstrate that both conditions of the gradual information diffusion 
hypothesis are satisfied implying that the lagged impacts of jumps are 
similar to that of the contemporaneous impacts or even higher and that 
the lagged impacts of λt reach its peak and then decline as lag size in
creases. For example, in the case of the WTI index, the explanatory 
power of these regressions increases up to a lag of 4 trading days and 
then rapidly decreases. We document similar findings for the Brent price 
series as well. Thus when we introduce lags of several trading days be
tween the daily oil returns and lagged jumps, this substantially 
strengthens the predictability relation. Therefore, we provide evidence 
that jumps in the crude oil market can predict its returns. A possible 
explanation for this result is that investors react to information at 
different points in time, or have difficulty in evaluating the effect of oil 
market jumps on its returns and act with a delay. 

Next, we investigate if jumps in OVX can predict oil market returns. 
In particular, we first estimate the jump intensity (λt) in the crude oil 
volatility index (i.e., OVX) and then use the information on λt to predict 
the crude oil returns. These results, presented in Table 8, do not support 
the gradual information diffusion hypothesis as none of the conditions is 
satisfied. It can be thus concluded that jumps in the traditional oil price 
index, when compared to that in the oil volatility index, have more 
predictive contents for the global crude oil returns during this ongoing 
pandemic. Therefore, the time series of oil prices may alone contain 
some information that the GARCH-jump process could exploit in fore
casting market crashes. 

Our findings are novel considering the fact that this is among the 
initial studies to examine whether time-varying jumps in oil prices are 
an indicator of market conditions. Testing for the gradual information 
diffusion hypothesis, we provide empirical evidence that time-varying 
jumps occurring in the global crude oil market can forecast its price 
changes during the crisis periods. 

It is worth mentioning that while the above analysis reveals that λt 
contains predictive information for oil returns, it does not include the 
out-of-sample forecast results. Given that a good model should also 
accurately forecast the series out of the sample, this issue needs to be 
explored in future works. Note that in order to use jumps to forecast oil 
returns, it is critical to successfully predict jumps before events like 
market crashes occur. One way of doing so is finding the ex-ante prob
ability of at least one jump occurring in crude oil returns. In this regard, 
Chan and Maheu (2002) show that using the GARCH-ARJI process al
lows us to calculate such probabilities. In particular, Eq. (5) can be used 
to obtain the ex-ante measure for the jump probability. This exercise is 
left for future studies. 

4.4.2. Additional determinants of time-varying jumps 
We now consider three other variables as potential indicators of 

financial/economic uncertainty, which may have some crucial impli
cations for oil prices. The first variable is the Trade-Weighted Exchange 
rate (TWEX), which is defined as the weighted average of the foreign 
exchange value of the US Dollar (USD). This index is created using the 
broad currencies used and circulated widely by the other countries. The 
exchange rate plays an essential role in determining the demand for oil, 
especially by the emerging countries, as oil is priced in USD (Aloui et al., 
2012; Basher and Sadorsky, 2006; Das and Kannadhasan, 2020). A 
negative change in the TWEX index indicates an appreciation of the USD 
and vice-versa. The second variable is the TED spread (TED). This index 
is defined as the difference between the interest rates of interbank loans 
and short-term treasury bills. Previous literature has considered TED as 

a measure of financial turmoil (Basher et al., 2018; Girardi, 2015). The 
last index we consider is the Financial Stress Index (FS). FS is the adverse 
conditions in the financial sector originating from macroeconomic 
downturns. Studies in the past have shown that FS could be a relevant 
factor to affect oil prices through the demand channels (Das et al., 2018; 
Gupta et al., 2019). The data for TWEX and TED are obtained from St. 
Louis FRED, whereas the data for FS are retrieved from the website of 
the Office of Financial Research, US Department of the treasury. 

To examine whether these indicators (TWEX, TED, and FS) can 
predict the jumps in crude oil markets, we estimate Eq. (7) using these 
three measures as the explanatory variables, and the results are reported 
in Table 9 (WTI) and Table 10 (Brent). These findings show that finan
cial stress appears to be the only significant factor forecasting oil price 
jumps for both full and subsamples. Our results are consistent with prior 
literature (Das et al., 2018; Gupta et al., 2019) which also document that 
FS has emerged as a major determinant of oil demand, exerting sub
stantial effects on oil price variations. We further find that TWEX cannot 
predict these jumps and this finding could be attributed to the fact that 
the oil indexes we consider are traded in the US and European markets. 
For instance, Aloui et al. (2012) argue that although oil prices might be 
sensitive to TWEX, such impacts are mainly observed in emerging 
markets. Finally, with regard to TED, we report that it can explain the 
jumps during the COVID-19 pandemic period only. This result is not 
unexpected given that TED is considered as an indicator of financial 
uncertainty. Earlier studies (Basher et al., 2018; Girardi, 2015) also 
advocate this result. 

4.4.3. 2021–2022 global energy crisis and time-varying jumps 
In this section, we extend our intial sample to examine whether time- 

varying jumps occur in international crude oil markets during the 
ongoing global energy crisis. Note that the major sources of this crisis 
include the 2021–2022 worldwide supply chain crisis, climate abnor
mality and the Russia–Ukraine war. Of these events, the 2022 Russian 
invasion of Ukraine and subsequent international sanctions against 
Russia have caused a significant drop in the supplies of oil, which has 
lifted the prices of this important commodity (Ahmed et al., 2022). For 
instance, during early March 2022, Brent oil prices exceed US$120 a 
barrel, the highest level since June 2014. Similar upsurges are also 
observed in the WTI market (see Fig. 7). Notably, while we witness large 
drops in crude oil prices during the 2008 financial crisis and COVID-19 

Table 11 
Estimates of GARCH-ARJI model during the 2021–2022 energy crisis.  

Coefficient WTI index Brent index 

π 0.0045*** 
(0.0005) 

0.0043*** 
(0.0007) 

μ 0.0044 
(0.0476) 

− 0.0003 
(0.0458) 

ω 0.00003*** 
(0.000004) 

0.00002*** 
(0.000002) 

α 0.1239*** 
(0.0151) 

0.1317*** 
(0.0133) 

β 0.7628*** 
(0.0114) 

0.7807*** 
(0.0095) 

θ − 0.0378*** 
(0.0078) 

− 0.0380*** 
(0.0098) 

d2 − 0.0316*** 
(0.0064) 

0.0362*** 
(0.0093) 

λ0 0.0414*** 
(0.0104) 

0.0419*** 
(0.0118) 

ρ 0.4521*** 
(0.1704) 

0.4184*** 
(0.1761) 

γ 0.0688 
(0.1959) 

0.0655 
(0.0745) 

Log-likelihood 919.35 946.99 

Notes: The sample covers the period from January 2021 to July 2022. ***, ** 
and * denote statistical significance at 1%, 5% and 10% levels respectively. 
Standard errors are in parentheses. 
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pandemic periods, the ongoing energy crisis causes a sharp increase in 
the WTI and Brent indexes. 

Table 11 exhibits the results of the GARCH-ARJI process for the 
sample period ranging from January 1, 2021 to July 31, 2022. These 
findings confirm that the jump parameters are mostly significant sug
gesting the existence of time-varying jumps in both WTI and Brent fu
tures markets amid the phases of global energy crisis. However, Fig. 8 
depicitng λt reveals that the intensity of such jumps is much lower 
compared to our previous analyses based on the 2008 financial crisis and 
COVID-19 pandemic. Therefore, it can be concluded that although 
jumps represent a common phenomenon in global crude oil prices, their 
intensity mainly increases during the periods of oil price downturns. 

5. Conclusions 

A growing body of literature provides empirical evidence that energy 
prices are characterized by time-varying jumps. However, earlier studies 
do not investigate if the intensity of such jumps appears to be higher 
amid periods of high volatility rather than normal periods. This study 
empirically investigates, employing the GARCH-jump model, whether 
jumps occurring in energy prices are an indicator of market crashes. To 
serve this purpose, we consider downturns in oil markets during the 
2008 global financial crisis, and the ongoing COVID-19 pandemic. 

Our empirical analyses, which are based on WTI and Brent oil futures 
prices, reveal that the conditional expected number of jumps in energy 
prices seems to increase significantly right before the depressions, which 
is, however, not the case when the markets function normally. We thus 
conclude that such clusters of jumps may contain predictive information 

Fig. 8. Jump intensity for WTI (a) and Brent (b) indexes (1.1.2021–31.7.2022).  
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for oil market crashes. This empirical work also examines whether 
different measures of uncertainty play any key role in explaining the 
time-varying jumps in oil prices. To serve this purpose, we consider the 
information content of VIX, OVX, and EPU and FS indexes. The results 
show that all these indicators have adequate power for predicting future 
jumps in global crude oil markets with the crude oil volatility index 
outperforming the rest. As an interesting side note, our findings indicate 
that jump intensities during the pandemic are higher than those during 
the 2008 crisis. This may prove to be an important implication as the 
probability of pandemics rise due to climate change. 

Our findings seem to be of interest to investors holding assets in the 
international crude oil markets and to policymakers who closely watch 
oil prices to design appropriate economic policies. In particular, the 
results have important implications for risk management and hedging 
on various oil assets. For instance, the presence of time-varying jumps in 
oil futures markets indicates that the traditional hedging strategy, which 
is based on the continuous market price movements, could be indecisive 
and lead to sudden loss (Kim and Mei, 2001). Hence, there is a need for 
designing improved hedging strategies which would pay better attention 
to the incidents of unexpected jumps (Gkillas et al., 2020). In addition, 
the results offer implications for policymakers as well. They could 

recommend proper regulations to reduce information asymmetry which 
may mitigate the potential risks linked to global crude oil futures 
markets. 

Future studies could consider dynamic portfolio allocation in the 
energy markets with time-varying jump risk (Zhou et al., 2019). Besides, 
whether exchange rate volatility, geopolitical risk, and financial stress 
could be utilized to predict oil market jumps could be examined. 

CRediT authorship contribution statement 

Anupam Dutta: Conceptualization, Methodology, Software, Formal 
analysis, Investigation, Visualization, Validation, Data curation, Writing 
– original draft. Ugur Soytas: Conceptualization, Methodology, Soft
ware, Formal analysis, Investigation, Visualization, Validation, Data 
curation, Writing – original draft, Writing – review & editing, Supervi
sion. Debojyoti Das: Conceptualization, Methodology, Software, 
Formal analysis, Investigation, Visualization, Validation, Data curation, 
Writing – original draft. Asit Bhattacharyya: Conceptualization, 
Methodology, Investigation, Visualization, Validation, Data curation, 
Writing – original draft.  

Appendix A. Outlier detection method 

We follow Ané et al. (2008) in detecting the presence of outliers. Let Rt be the log return for an oil index on day t, which is modeled as: 

Rt = b0 + b1Rt− 1 + εt (1)  

σ2
t = a0 + a1ε2

t− 1 + a2σ2
t− 1 (2)  

where εt = σtzt with zt being an i.i.d. process such as zt/It− 1~IIN(0,1); It− 1 refers to the filtration of information at time t − 1. 
Rt+1 is considered an outlier if it does not belong to the following interval: 

Rt+1 ∈
[
Rt,t+1 ±F

(
1 −

α
2

)
σt,t+1

]

where, Rt, t+1 is the one-step ahead return forecast given by: 

Rt,t+1 = E(Rt+1/It) = b0 + b1Rt + b2Rt− 1  

and σt, t+1
2 denotes the one-step ahead variance forecast defined as: 

σ2
t,t+1 = var(Rt+1/It) = a0 +(a1 + a2)σ2

t 

Furthermore, F
(
1 − α

2

)
= P

(
zt ≤ 1 − α /2

)
is a fractile of the assumed conditional distribution. 

The above detection procedure is rolled-over until the end of the sample period. Notably, the detection procedure is robust to any model mis
specifications (Ané et al., 2008).  

Table A1 
Estimates of GARCH-jump models after correcting for outliers.  

Coefficient WTI (Full) Brent (Full) WTI (2008 Crisis) Brent (2008 Crisis) WTI (COVID-19) Brent (COVID-19) 

π 0.0688 
(0.1322) 

0.0569** 
(0.0288) 

0.1157 
(0.1327) 

0.0856 
(0.0602) 

− 0.0183* 
(0.0098) 

− 0.5294*** 
(0.0932) 

μ − 0.0301 
(0.0272) 

0.0346 
(0.0298) 

− 0.0888 
(0.0741) 

0.0309 
(0.0246) 

− 0.0768 
(0.0692) 

− 0.1128 
(0.1768) 

ω 0.0578*** 
(0.0108) 

0.0536*** 
(0.0209) 

0.0761*** 
(0.0147) 

0.0598** 
(0.0261) 

0.0061*** 
(0.0019) 

0.0428 
(0.0518) 

α 0.0612*** 
(0.0200) 

0.0876*** 
(0.0178) 

0.0552*** 
(0.0171) 

0.0569** 
(0.0246) 

0.0287*** 
(0.0035) 

0.0286*** 
(0.0029) 

β 0.9233*** 
(0.0492) 

0.8009*** 
(0.1143) 

0.8128*** 
(0.0400) 

0.7892*** 
(0.0118) 

0.9539*** 
(0.0092) 

0.8197*** 
(0.1728) 

θ − 0.7845*** 
(0.2249) 

− 0.3488*** 
(0.0997) 

0.2021 
(0.9871) 

− 0.1756 
(0.8092) 

− 1.2591*** 
(0.6205) 

− 0.4681 
(1.7001) 

d2 2.9980*** 
(0.6592) 

1.9088*** 
(0.5439) 

− 3.0004*** 
(0.9942) 

5.1004*** 
(0.9871) 

− 2.9031*** 
(0.5486) 

2.5421*** 
(0.8883) 

(continued on next page) 
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Table A1 (continued ) 

Coefficient WTI (Full) Brent (Full) WTI (2008 Crisis) Brent (2008 Crisis) WTI (COVID-19) Brent (COVID-19) 

λ0 0.0032 
(0.0058) 

0.0021 
(0.0019) 

0.0299 
(0.0243) 

0.0059 
(0.0073) 

0.0012 
(0.0008) 

0.0138*** 
(0.0051) 

ρ 0.8972*** 
(0.1243) 

0.6459*** 
(0.0102) 

0.8379*** 
(0.1872) 

0.6105*** 
(0.1200) 

0.7865*** 
(0.0155) 

0.7519*** 
(0.0850) 

γ 0.1867 
(0.1798) 

0.1499*** 
(0.0326) 

0.8345*** 
(0.1181) 

0.0837** 
(0.0401) 

0.1671*** 
(0.0377) 

0.3693** 
(0.1800) 

Log-likelihood − 7000.98 − 6811.44 − 876.09 − 858.65 − 211.57 − 218.79 

Notes: This table shows the estimates of GARCH-jump models after correcting for outliers. While estimating this process, it is assumed that the error distribution follows 
the EGARCH model. The crisis period sample ranges from 1.1.2008 to 30.6.2009, while the COVID-19 period sample spans from 1.1.2020 to 30.6.2020. ***, ** and * 
indicate statistically significant results at 1%, 5% and 10% levels, respectively. Standard errors are in parentheses. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2022.106275. 
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