
UNIVERSITY OF VAASA REPORTS 33

Test Image
Generator ARMmovie.c
for a Vis-NIR spectral camera development

JARMO ALANDER | SEVERI SUTINEN | DÁNIEL TISZA

Test Image Generator ARMmovie.c: for a Vis-NIR spectral camera development.

Publisher:

University of Vaasa.

School of Technology and Innovations, Automation Technology.

Authors:

Jarmo Alander, Severi Sutinen, Dániel Tisza.

ISBN 978-952-395-040-5 (online)

URN http://urn.fi/URN:ISBN:978-952-395-040-5

ISSN 2489-2580 (University of Vaasa Reports 33, print)

III

Contents

III

1 Introduction 1
1.1 FPGA . 1
1.2 Testing . 3
1.3 Tools . 4
1.4 Related work . 5

2 Camera 6
2.1 Interference filter . 6

3 ARMmovie.c, a test image generator 10
3.1 Control . 10
3.2 Simulation of the camera . 11
3.3 Execution profile . 12
3.4 Parameter input . 12
3.5 Image comparison and animation . 13
3.6 Camera simulation . 14
3.7 LED simulation . 21

3.7.1 Camera with LEDs simulation . 22
3.8 RGB sensitivity analysis . 22

4 Running ARMmovie.c 25
4.1 Running procedure . 25

5 Conclusions and Future 27
5.1 Future . 27

References 28

A Program files 32

List of Figures

1 ICT energy use forecast . 2
2 The multispectral camera imaging a 20€ note 6
3 The camera body daA2500-14uc . 7
4 Camera sensor sensitivities of each RGB channel pixels (Bayer). 8
5 The principle of Fabry-Pérot interferometer. 8
6 The transmission of etalon as the function of wavelength 9
7 The transmission of etalon as the function of wavenumber 10

lV

8 Test image examples . 11
9 Parameter file for ARMmovie.c . 14
10 Comparing two images thru Magnifier glass. 15
11 Frame of the animation of the spectral camera by ARMmovie.c. 16
12 Sensor sensitivity curves drawn on the original image. 17
13 Sensor sensitivity curves drawn on using AUTOpoint. 17
14 Fitting the original draw data on the original image. 18
15 Fitting the averaged draw data on the original image. 18
16 Fitting final filtered and interpolated draw data on the original image. 19
17 Test image (frame 0) . 19
18 Test image (frame 6: 650nm filter setting). 20
19 The sum of channel quantum efficiencies and its inverse. 23
20 Test image leg (frame 17: 800nm filter setting). 24
21 LED spectra simulation for λ0 = 450, 500, 600, and 800nm. 24
22 LED spectra simulation for HLMP-3750/-3390/-1340 Series LED Lamps. . . . 25

List of Tables

1 Properties of the camera. 7
2 Execution time profile of ARMmovie.c. 13
3 Parameters of the model of high efficiency red LED (Fig. 22). 21

University of Vaasa Reports V

Abstract

This report describes a C language program that can be used in both offline or online
generation of test images for a special spectral camera prototype software that is run on
a Field Programmable Gate Array (FPGA). The FPGA has two ARM processor cores
on the same chip where the program can be run under an operating system, such as
Linux, or actually its reduced version called Petalinux, or immediately in a ’baremetal’
mode without any operating system as a stand-alone ARM assembler program. It was this
flexibility of running modes and the limited memory resources of the FPGA boarsd, which
were the main reasons why C language realisation was chosen. The program is designed to
be used for both supporting software development and for online selftest type operations
in the camera support software run on an FPGA that contains also two traditional ARM
processors. The program generates purely synthetic images, or patterns, or can blend real
images read from files with synthetic patterns. There are a set of parameters controlling
the generation details and they can be input from a file, or they can be introduced via
an internal data structure that can be manually tailored before the compilation. The
program can generate single images or a sequence of images that can be e.g. externally
be combined into a gif animation file.

Keywords: embedded systems, FPGA, image filters, image processing, simulation, SoC-
FPGA, testing.

 VI

Acknowledgements

This research was funded by the Academy of Finland, grant number 314522: Spectral
Imaging of Complex Surface Tomographies (SICSURFIS) project in RADDESS program.
Acknowledgements to project companions Heikki Saari, and Roberts Trops at VTT, Anna-
Maria Raita-Hakola, Leevi Annala, and Ilkka Pölönen at University of Jyväskylä; and
Annamari Ranki at Helsinki University Hospital. Acknowledgements to Petri Välisuo and
Juhani Puska for their invaluable help with the boards and software.

1 Introduction

In this project called SICSURFIS developing and applying a filter based spectral camera
(Fig. 2), we have concentrated on the development of the software for the configuration
of the FPGA hardware used with the camera in general, and in this report especially on
the image generation for testing the FPGA software. Before going into the details of the
software we will here briefly introduce the camera hardware, mainly the optical aspects of
it and the FPGA technology in general.

A conventional RGB (color) camera is imaging using three spectral ranges, red, green,
and blue, which is practically enough to record colors as perceived by the human vision
system16. Spectral cameras are able to image on several to even thousands of spectral
wavelength ranges. It means that each pixel is a spectrum of its field of view (FoV). Our
spectral camera is actually an ordinary RGB camera that has an interference filter to select
the wavelength range to be recorded on an RGB sensor. Therefore its pixel is still an RGB
vector, but a filtered one having three channels (R, G, and B) giving optically encoded
spectral information that needs careful post processing to be interpreted as intensities
as the function of wavelength i.e. as the values of the spectra. Observe, that to record
the whole spectrum several images with different filter settings must be taken. The most
obvious applications for this type of spectral camera are those in which you need only a
very limited number of narrow wavelength bands of the spectra, ideally a couple, not the
whole spectra, which would need hundreds of images to be taken. However, due to its
principle of operation there can be considerable crosstalk between the RGB channels. It
is therefore advisable to filter out those wavelengths that are not needed to be measured
or change the camera, actually its cell, to a higher quality one that has less crosstalk18;35.

1.1 FPGA

The huge volume of digital data that has to be processed puts more and more concern
on the energy consumption by digital processing8;15. (Fig. 1) This is especially true for
mobile devices, which should have both long operation times and light weight batteries.
The current share of ICT’s carbon footprint is around 2% of global emissions that is
comparable with that of the aviation industry15.

But on what functions or operations the energy in computing is actually used for? Some-
what surprisingly, it is actually not used in the processing of data, but just to move
the data around, mainly from memory to the processing element also called the Central
Processing Unit (CPU) and then back very soon after the processing. Memory access
operations are repeated millions and millions of times e.g. to process an image consisting
of millions of pixels. The longer the distance the data is moved the more energy must
be used. The energy needed to move a pair of numbers from memory to a processor is
roughly about one thousand (≈ 1, 000) times the energy needed to do a simple operation
like addition of the same pair by the processor. It really pays to think and design how
to avoid unnecessary moving data and do as much as possible processing near the data

University of Vaasa Reports 2

Figure 1: ICT energy use forecast by15.

source, ideally when the data is still in the registers of the processing element. This is the
edge computing paradigm.11

Running the test image generator is in line with this approach, because we are avoiding
unnecessary data movements over longer distances. The test images needed are generated
when ever needed and by the processing element very locally.

Actually we should get rid of the simple program execution altogether because it also
causes unnecessarily busy memory traffic. This problem is solved by an FPGA, that has
the program all the time already ready within the processing element and not in the
memory while running. The down side of this approach is that the programs moved to
FPGA should be static and not extremely complex. Program change is possible but it is
quite slow and complicated so that most FPGA-applications are based on a single fixed
program for simplicity and efficiency. In our case we are trying to do most low level image
processing computations within an FPGA connected to the image source, a handheld
spectral camera.

However, the test image generation is so complex computational operation and not so
frequently needed when compared to other image operations that we are currently not
doing it on the FPGA side but by the processor located on the same chip and having
a fast data bus access to the FPGA. If later there will be a need for more frequent test
image generation then an FPGA based generator might be considered.

University of Vaasa Reports 3

Programming an FPGA is called configuring and the compilation into a functioning circuit
as synthesis. It means that the hardware elements to do the basic digital processing, like
logic gates, multiplexers, adders etc already exists on the FPGA chip. What is missing
is the blueprint how to connect those primitive elements to realise a computing device.
In practice the programming is done using such hardware design languages as VHDL
or Verilog that are used to implicitly model the connections between a huge number
of primitive logic circuits and modules already realized on the chip by the chip maker.
The expression implicit model here means that typically the model being textual is quite
abstract resembling more a traditional programming language code that must be compiled
into an explicit model than any explicit circuit diagram drawing or blueprint. We are here
not going any more details of the FPGA programming; that is left for a few other reports
published by our project.

FPGA is ideal when a lot of processing power is needed energy efficiently with the option of
reprogrammability and when the product volume is not extremely high. A huge number of
industrial electronics and automation devices, like cameras, protection relays, frequency
controllers, medical devices, belong to this in many ways very important category of
potential FPGA applications. An prominent opposite example is a mobile phone, when
the volume is so high that an ASIC is the right choice.

With the introduction of FPGAs with one or more standard (ARM) processors, called
SoC-FPGAs, has finally made FPGAs a really powerful and flexible element in modern
instrumentation, providing both high computational efficiency (FPGA-part) and flexible
user and system interfaces via ARM and Linux or similar operating systems. In our project
we are using SoC-FPGAs made by Xilinx, which is nowadays a part of the Advanced Micro
Devices, Inc (AMD).

In conclusion of FPGAs, we can say that they can both save energy and give excellent
processing speed in certain data intensive applications, like many such found in signal and
image processing fields.

1.2 Testing

Testing is a key activity to produce quality software27. In embedded software production
there are two main activities causing approximately equally high expenses: the program-
ming and the testing. Actually in many cases the testing can even need some more
resources that the programming. This is especially true for application having high qual-
ity and safety standards, like those in aerospace, military, and medical areas. Here we are
dealing with applications that belong mainly the last one: a handheld diagnostic device
that hopefully helps medical doctors to make right diagnosis of melanoma32.

Reference29 gives the following seven reasons why software testing is important:

• economy: the earlier a bug is fixed the lower the costs,

• security: a well tested program should be more secure and reliable than a less tested,

University of Vaasa Reports 4

• quality: is the software running smoothly also in different environments,

• customer satisfaction: a thorough testing also includes user points of views,

• faster development: testing may be run in parallel to development,

• adaptation to new features, when rerunning the tests helps avoid accidental bugs
caused by revising and updating the code, and

• last but not least: the determination of the performance of the software.

One famous program development approach called Test Driven Development (TDD) even
turns the view upside down: testing is done first and it is not before each test has been
implemented that the implementation of the program functions is proceed. TDD approach
leads to well tested and documented programs, so to say automatically, because it encour-
ages the programmers to make simple designs easy to test and inspires confidence because
testing is done rigorously.10

In this report we are concentrating on one aspect of testing image processing software,
namely on the generation of synthetic images that can not only be used in the design
process of the device but also in the final product to help in calibration and selftesting.

1.3 Tools

The definition of software development tool is of practical nature. In a broad sense it is
any software that the programmer is using when creating or maintaining software. Here
it mainly means a set of web pages that are used to generate HDL modules and files to
be run on FPGA or SoC-FPGA. The first tool presented here is actually a C language
program that can be run on the SoC processor or any external PC to generate test images
for the system under development.

The current set of the main tools aiding FPGA programming includes

• ARMmovie.c: test image generator, the topic of this report,

• CSD6.html: constant multiplication code generator for VHDL and SystemVerilog,

• SpektriMarvin3.html: Principle Component Analysis (PCA) of images, PCA ma-
trix generation for CSD6.html,

• SaturaViisari.html: color, like saturation, processing,

• GAGui.html: segmentation filter search and optimisation by genetic algorithm, and

• OpenInsta.html: multispectral image compression.

Here we are presenting the first one, ARMmovie.c, a test image generator.

University of Vaasa Reports 5

1.4 Related work

Frolov et al.14 gives a review of using adversarial generative neural networks to synthesise
images from text. That is an Artificial Intelligence (AI) based technology to generate
images from textual descriptions and example images used to train the networks. However,
that is mainly used for fancy illustrations not for online testing of image processing systems,
but it certainly have potential for also some image processing testing approaches. The
webpage2 reviews ten AI based image generators.

Fajar Suryawan has recently presented an FPGA based geometric pattern test image
generator for VGA displays36.

ZIPcores markets IP core for video test pattern generation41. IP cores for test image
generators are also provided by FPGA vendors, like Xilinx40.

Our group has been one of the pioneers of using evolutionary computing in the context of
software testing, including test image generation3;4;5;6;7;20;21;22;23. However, in this work
due to simplicity and software restrictions caused by the embedding hardware, we are
not using evolutionary computing here, but in some other topics of our project reported
elsewhere.

University of Vaasa Reports 6

Figure 2: The multispectral camera imaging a 20€ note (photo by Dániel Tisza)

2 Camera

The camera is Basler daA2500-14uc with CS-Mount, but the sensor is from another maker
and you can find more information on the sensor from the datasheet28. The typical spectral
characteristics of our spectral camera sensor is shown in Figure 4. For more information
on the camera see e.g.9;25;26;30;31;32;33;34;37;38;39.

2.1 Interference filter

The spectra are filtered by a mirror coated cavity, called etalon, the length of which is
electrically controlled to select wavelengths. This is the so called Fabry-Pérot interferome-
ter, the principle of operation of which is shown in Figure 5. It is a simple but very precise
instrument to filter wavelengths i.e the spectrum of light. Unfortunately its raw output
is somewhat complex to interpret, but luckily we can write programs that can transform
the optical information of the device into a more useful one. The details of that procedure
are described elsewhere.

In Figure 5 light comes from left and goes thru two partially reflecting mirrors, of which
the left one is fixed and the right one is moved by a control voltage. The device is
quite small MicroElectroMechanical System (MEMS), which can be used in small cameras

University of Vaasa Reports 7

Table 1: Properties of the camera.
Make Basler
model daA2500-14uc
type RGB / CMOS
sensor Mouser MT9P031
image size 2592×1944 pixels
bits/pixel 8 or 12
max speed 14 fps
interface USB 3.0
image size 5.7×4.3 mm2

pixel size 2.2×2.2 µm2

power (typical) 1.3 W
weight (typical) 15 g
lens mount CS-mount
operating temperature 0-50 ◦C

Figure 3: The camera body daA2500-14uc (source: Basler AG)

University of Vaasa Reports 8

Figure 4: Camera sensor sensitivities of each RGB channel pixels (Bayer). Notations: Gr
= Green pixel on Red pixel row, Gb = Green pixel on Blue pixelrow. (source: https:
//www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf)

Figure 5: The principle of Fabry-Pérot interferometer. For each wavelength λc the length
of the etalon is set L = n(λ/2) = 6(λ/2) = 3λc, i.e. n = 6, c = R, G, B, NIR.

https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf
https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf

University of Vaasa Reports 9

(e.g. satellites, drones, mobile) and fast; the mass of the moving mirror is really small
allowing rapid accelerations.

When the length of the cavity L is an integer multiple of λ/2, the beam of light is going thru
the interferometer at highest intensity and when L = λ(n+1)/2, then the transmission Te
of the etalon is at its minimum. The value of transmission depends on several parameters:
the reflectivity of the mirrors R, wavelength λ, length of the etalon L, and the angle of
the beam w.r.t the normal of the mirrors Θ:

Te(R,L, λ,Θ) = 1
1 + F (R) sin2(σ(L, λ)/2) ,

where F (R) = 4R/(1 − R)2 is called the coefficient of finesse, σ = (2π/λ)2nL cos Θ is
the phase difference of each successive transmitted beams, and Θ is the angle between
the beam and the normal of the mirrors. In the center of the image Θ = 0, so that
σ = 4nπL/λ. An example of transmission curves calculated by the above equation for
several finesse values (F = 10, 30, 50, 70, 90) is shown in Figure 6. The higher the finesse
value the sharper the transmission peak and the lower the leaking between the peaks,
i.e. in the stop band. Observe, that the curves are shown as the function of wavelength.
However, in spectroscopy the rule is to use wavenumber k = 1/λ because its properties
are often more handy for processing the spectral data as shown in Figure 7, where it gives
equal distances between the transmission peaks. Observe also, that often the unit used
for k is not 1/m but 1/cm.

ppp
pppppppppppp
ppppppp
ppppp
pppp
pppp
pppp
pppp
ppppp
ppp

ppppppppppppppppppppppppp
pppppppppppppppp
ppppppppppp
ppppppppp
pppppppp
ppppppp
ppppppp
pppppppp
pp

ppp
ppp

ppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppp
pppppppppppppppppppppppppp
pppppppppppppppppppppppppp
pppppppppppppppppppppppppppp
pp

pp
pppppppppp
ppppp
pppp
ppp
pp
pp
pp
ppp
ppp

ppppppppppppppppppppp
pppppppppppp
pppppppp
pppppp
ppppp
ppppp
pppp
ppppp
ppppppppp
ppp

ppp
ppp
ppppppppppppppppppppppppppppp
pppppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppp
pppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppppppppppppppp

p
p
p
ppp

ppppppppp
pppp
ppp
pp
pp
pp
pp
pp
ppp

ppppppppppppppppppp
pppppppppp
pppppp
ppppp
pppp
pppp
pppp
pppp
pp

pp
ppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppp
pppppppppppppppppp
ppppppppppppppp
ppppppppppppp
pppppppppppp
pppppppppppp
pppppppppppppp
ppppppppppppppppppppppppppp

p
p
p
pp

ppppppp
pppp
ppp
pp
pp
pp
pp
ppp

ppppppppppppppppp
pppppppp
pppppp
pppp
pppp
ppp
ppp
ppp
pppppp
pp

pp
ppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppppppp
ppppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppppp
ppppppppppppppppppppp

p
p
p
pp

ppppppp
pppp
pp
pp
pp
pp
pp
pp

ppppppppppppppp
pppppppp
ppppp
pppp
ppp
ppp
ppp
ppp
pp

ppp
pppppppppppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppp
pppppppppppp
pppppppppp
ppppppppp
ppppppppp
ppppppppppp
ppppppppppppppppppp

-
λ = 1000 = L/2
⇒ n = 1

λ = 500 = L
⇒ n = 2

λ = 375
⇒ n = 3

λ = 250
⇒ n = 4

λ

6

Te

Figure 6: The transmission of an ideal etalon of length L = 500 for different finesses
F = 10, 30, 50, ... as the function of wavelength. The higher the fitness the sharper the
peak and the lower the stop band.

University of Vaasa Reports 10

ppp
pppppppppppp
ppppppp
ppppp
pppp
pppp
pppp
pppp
ppppp
ppp

ppppppppppppppppppppppppp
pppppppppppppppp
ppppppppppp
ppppppppp
pppppppp
ppppppp
ppppppp
pppppppp
pp

ppp
ppp
ppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppp
pppppppppppppppppppppppppp
pppppppppppppppppppppppppp
pppppppppppppppppppppppppppp
pp
pp

pppppppppp
ppppp
pppp
ppp
pp
pp
pp
ppp
ppp

ppppppppppppppppppppp
pppppppppppp
pppppppp
pppppp
ppppp
ppppp
pppp
ppppp
ppppppppp
ppp

ppp
ppp
ppppppppppppppppppppppppppppp
pppppppppppppppppppppp
pppppppppppppppppp
pppppppppppppppp
pppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
pppppppppppppppppppppppppppppppp

p
p
p
ppp

ppppppppp
pppp
ppp
pp
pp
pp
pp
pp
ppp

ppppppppppppppppppp
pppppppppp
pppppp
ppppp
pppp
pppp
pppp
pppp
pp

pp
ppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppp
pppppppppppppppppp
ppppppppppppppp
ppppppppppppp
pppppppppppp
pppppppppppp
pppppppppppppp
ppppppppppppppppppppppppppp

p
p
p
pp

ppppppp
pppp
ppp
pp
pp
pp
pp
ppp

ppppppppppppppppp
pppppppp
pppppp
pppp
pppp
ppp
ppp
ppp
pppppp
pp

pp
ppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppppppp
ppppppppppppp
ppppppppppp
ppppppppppp
ppppppppppp
ppppppppppppp
ppppppppppppppppppppp

p
p
p
pp

ppppppp
pppp
pp
pp
pp
pp
pp
pp

ppppppppppppppp
pppppppp
ppppp
pppp
ppp
ppp
ppp
ppp
pp

ppp
pppppppppppppppppppppppppppp
ppppppppppppppppppp
pppppppppppppp
pppppppppppp
pppppppppp
ppppppppp
ppppppppp
ppppppppppp
ppppppppppppppppppp

�
λ = 1000 = L/2
⇒ n = 1

λ = 500 = L
⇒ n = 2

λ = 375
⇒ n = 3

λ = 250
⇒ n = 4

λ(k)

6

Te

Figure 7: The transmission of an ideal etalon of length L = 500 for different finesses
F = 10, 30, 50, ... as the function of wavenumber k = 1/λ.

3 ARMmovie.c, a test image generator

The C programming language17 was chosen in order to be able to run the generator in
the embedded environment of SoC-FPGA, where there is not so much language alterna-
tives in practice mainly due to the operating system restrictions. A C language program
can be run on practically any main frame computer and most PCs and microcontrollers
with or without an operating system. Here we are running it in three main computing
environments: on a university server computer where most of our programs, documents,
and data are saved, on personal and shared PCs, and finally on the ARM processor in the
SoC-FPGAs.

The name ARMmovie comes from the ARM processor family and the fact that the program
is able to generate image sequences i.e. video or movie. In practice the image sequence
can be converted into a gif format image animation by Unix/Linux convert command.
It is also possible to call a C language program from e.g. a Java -language program. A
demonstration software where a Java -language program calls a C -language function has
been implemented for Guided Image Filter implementation reported elsewhere.

3.1 Control

ARMmovie’s control input consists of a set of parameters that control the generation and an
optional set of images used as background of the generated test images. The idea has been
that the small program can be used in testing of the camera system also in cases when

University of Vaasa Reports 11

there is no image source present or when doing a selftest for the system. ARMmovie.c is
able to produce test images based entirely on the parameters input to it. It is also able to
generate image sets to be joined into .gif animation files by external programs like the
Unix/Linux command line command convert.

The simulator is written in C so that it may be run even without operating system in
a small FPGA-SoC having ARM processor. That is why file operations are limited to
minimum and so that they can be turned off when run on the object device, on bare
metal. E.g. the camera calibration tables are not read from files but are included as a
part of the program as an .h file. However, the program can be run on UNIX/Linux
operating systems e.g. to produce data for documentation purposes, like this report. In
addition there are several simple AWK-language1 programs that are used to process the
calibration files and/or graphics also for documentation.

The generated image can contain the following features:

• color gradients of size (256 × 256) that are regularly tiled within larger images (see
Fig. 8), the test image size is controllable by the user,

• an animated magnifier glass for showing details in controlled locations, and

• optionally a background image input as a .ppm file.

The output is a one dimensional array containing one generated test image. In the OS-
mode the program is able to save the images as proper image files in a given directory.

Figure 8: Color gradient tiling example (left), Stripes and salt-and-pepper noise on gra-
dients (middle), and animated magnifier glass and color filtering (right). Observe, that
the right image has a different tiling than the left and middle ones. The animation of
the right most image can be seen at http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=

5100TestImage.txt&Page=18

3.2 Simulation of the camera

As told above the spectral camera uses an interference filter to select certain wavelengths.
We can roughly simulate that by adding the fourth step to the image generation algorithm:

http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=18
http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=18

University of Vaasa Reports 12

multiplication of each channel (except alpha) by a given constant (from table RGBw[]):
// Step 4: filtering of channels (VTT MEMS filter):
if (RGBw!=NULL) C = (char) (*(RGBw+c)*C); // camera filter

The rightmost image of Figure 8 has been filter by multiplying with

RGBw = [0.9, 0.8, 0.1].

As can be seen blue color has almost disappeared because it is multiplied by 0.1, while
red and green are only slightly attenuated. A more thorough presentation of the camera
system simulation is given later in this report.

3.3 Execution profile

To see how much time is used in the main functions of ARMmovie.c we took the execution
time profile shown in Table 2. As can be seen, most of the time is used in generating the
testimage (pgmOutput and generateVideoFrameFaster) just as anticipated. Outputting
.ppm (binary) instead of .pgm (ascii text) image files will reduce the output time about
to half and file size to one quarter saving about 75% energy use in file saving.

The next most time is used by Magnifier and interpolate. That are the functions
making the image within the magnifying glass. The interpolate function is very simple,
only one line:
return t*A + (1-t)*B;

How this oneliner can consume so much time? It must be the two multiplications. Un-
fortunately multiplication is quite essential in linear interpolation. Actually the magnifier
glass calls this function twice: for x and y directions. Hence it seems that the four multipli-
cations per pixel consume quite much time, and energy. For a more efficient interpolation
algorithm on FPGA see e.g.19.

After several small refactorings and other modifications, such as reducing the area of
the magnifier glass processing and random noise generation, the speed of the test image
generation was over 20 frames per second on the server.

3.4 Parameter input

ARMmovie.c is controlled by giving it parameters in a string or in a parameter file, which
both contains one command per line starting with one letter command followed by the
parameters of the command. In Figure 9 is is an example of such a file or string. Observe,
that the line after # is a comment. The one letter commands are the following:

• S: Size of the generated image,

• F: File (output) base name,

University of Vaasa Reports 13

Table 2: An example of the execution time profile of ARMmovie.c.
%t

∑
t(s) t(s) calls ms/call function

33.37 0.31 0.31 21 14.78 pgmOutput
29.06 0.58 0.27 21 12.87 generateVideoFrameFaster
15.07 0.72 0.14 6666516 0.00 Magnifyer
8.61 0.80 0.08 11990010 0.00 interpolate
8.61 0.88 0.08 8388608 0.00 generateRGBcolorPattern
4.31 0.92 0.04 2 20.02 generateTestImage
1.08 0.93 0.01 1 10.01 copyImage
0.00 0.93 0.00 6210324 0.00 min
0.00 0.93 0.00 20056 0.00 nextTime
0.00 0.93 0.00 21 0.00 intToStr
0.00 0.93 0.00 20 0.00 videoFrameToDMA
0.00 0.93 0.00 2 0.00 memoryAllocation
0.00 0.93 0.00 1 0.00 showMovie

• I: Image file name for the background,

• W: Weights of camera channels,

• B: Background pattern feature parameters: S, Stripe parameter, and Salt&Pepper
noise parameter,

• L: Lens (magnifier) parameters: Radius, ∆Radius, X0, Y0, ITC, and Magnification,

• V: Video parameters: FrameNumber, FrameNumber max, and ∆time between frames
in animation,

• X: X-coordinate list for the magnifier glass animation, and

• Y: Y-coordinate list for the magnifier glass animation.
The last two parameters (vectors) are used for moving the animated magnifier glass lens
over the image. To see the ’movie’ or animation, convert the .ppm files generated into a
.gif file e.g. by the versatile convert aka ImageMagickTM UNIX command:

convert -delay 200 -loop 0 MunRaami*.ppm myVideo.gif

where delay option gives the time delay between each animation frame and loop 0 starts
animation repeatedly at the first frame (index=0).

3.5 Image comparison and animation

The magnifier glass can be used in image comparison. You know the traditional set up
where two nearly similar images are shown side by side for comparison. Here we can com-
pare images via an animated magnifier glass (Fig. 10), which is halved into two semicircles,

University of Vaasa Reports 14

image size:
S 2048 1080
frame file name
F MunRaami
background image name (.ppm)
I tmp2
camera channel weights
W 400 0.9 0.8 0.2
background image parameters S, Stripes, SaltPepper
B 2 -64 -10000
magnifyer glass parameters: R, dR, X0, Y0, ITC, M
L 200 20 0 0 50 2.0
video, frame, and time difference: FN, FNmax, dt
V 1 10 10
Lens center coordinates:
X 500 500 500 500 500 500 700 900 1100 1300 1500 1700 1700 1700 1700 1700 1700 1700 1700
Y 300 400 500 600 700 800 800 700 600 500 400 300 300 400 500 600 700 800 900

Figure 9: An example parameter file for ARMmovie.c

the upper half showing the input image while the lower part shows the processed image.
Giving proper coordinates of points of interest to the magnifier (X and Y parameter vec-
tors), we can see these points magnified in the animation within one image in one glance
without the need to move eyes between the two compared images.

Also spectral imaging can be animated. Figure 11 shows 8 frames of the animation,
at wavelengths λ = [450, 500, 550, . . . , 800]nm. For an animation of spectral camera
imaging test image Red Admiral see https://lipas.uwasa.fi/~TAU/ICAT1040/Slides/video/

myVideoVTTamiral.gif. More testimages at: https://lipas.uwasa.fi/~TAU/gallery/test/.

3.6 Camera simulation

The sensitivity graphs of the sensor RGB-pixels are shown in Fig. 4. Unfortunately the
datasheet has no further information of the sensitivities than that figure. How to obtain
the numerical values of the graphs, that is described next.

We must somehow scan the image and extract the points. AUTOpoint, the author’s
lecture slide browser, has the option to draw with mouse. The original sensitivity curves
has been drawn on the figure shown in an AUTOpoint slide window by mouse as shown
in Fig. 13. The mouse points are written in real time to browser console using the given
mouse color as background so that the data is easily found within the other text in console
for copy-pasting.

Figure 12 shows the result over drawn by mouse on the original curves of the datasheet.
The mouse points are the coordinates of the image on display window. They have three
main issues that must be solved to get useful data:

https://lipas.uwasa.fi/~TAU/ICAT1040/Slides/video/myVideoVTTamiral.gif
https://lipas.uwasa.fi/~TAU/ICAT1040/Slides/video/myVideoVTTamiral.gif
https://lipas.uwasa.fi/~TAU/gallery/test/

University of Vaasa Reports 15

Figure 10: Comparing two images thru Magnifier glass: upper semicircle the original
image and the lower semicircle the generated image. The animation can be seen at http:

//lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=44

• the data points are irregularly spaced (manual mouse movement),

• the data points are more or less erroneous i.e noisy, and

• the data is in image coordinates of Windows not in the original graph wavelength ×
percent coordinates.

These issues were solved by a few simple .awk programs that cleaned the data, made
averaging i.e. filtering, and finally manually fixing some extra/missing points. The last
issue of mapping the display window to the real data was solved by drawing the original
image on which the drawn data was plotted on using the data coordinates (Fig. 14-16).
After a few iterations the match seemed good enough for the simulation experiments here
and for testing. Anyway, remember, that for the final production use each camera sensor
is unique and careful calibration must be done in order to get the best possible imaging
precision. Finally linear interpolation was used to get a point for each integer value of
wavelength in the range [400,1050] nm.

The numerical data was further transformed to a C language table, which is further used
in ARMmovie.c to produce test image sequences for the image processing pipeline.

http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=44
http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=44

University of Vaasa Reports 16

Figure 11: Upper left: the original image Red Admiral on tansy, images at simulated wave-
lengths 450, 500, 550, 600, 650, 700, 750, and 800 nm. Observe the decreasing intensity
due to the decrease of the sensor sensitivity towards both ends of the spectra. The .gif an-
imation can be seen at http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.

txt&Page=52

http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=52
http://lipas.uwasa.fi/~TAU/ICAT1040/slides.php?File=5100TestImage.txt&Page=52

University of Vaasa Reports 17

Figure 12: Sensor sensitivity curves drawn on the original image using AUTOpoint. The
colours for drawing has been chosen to be more or less like the underlying curve colors.
(background image source: https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf)

Figure 13: Sensor sensitivity curves drawn on using AUTOpoint and saving the points
to browser (here Chrome) console. The colours for drawing the curves are also used as
the background colors of the corresponding console printing. (background image source:
https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf)

https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf
https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf

University of Vaasa Reports 18

ppppppppppppppppppppppppppp
ppppppppppppppppppppppppp
ppp ppp pppppppp ppppp ppp pppppppp p pppppppppppp pp pp pp pppppp pp p p p p p p ppppppppppppppppp ppppppp

pppppp ppp p p pppp pppp pppp p p pp ppppppppp pp p ppp pp pppppp ppp p p pppppppp ppppp ppp pp pppp pp ppppppp pppp p ppp ppppppppppp
pppppppppppppppppp
pppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppp ppppp ppppppp pppp ppppp pppp ppppppp pppppppppppp pppppppp p p pp p pp p p pp p pppppp p p pp p p pp pp ppp ppp p pp pppp p pppp ppp pp pp pp ppppp ppp pp pppp ppppp pppp

pppppppppppppppppppp
pppppppppppppppp
pppppppppppppp pppp p ppppp pppppppppppp pppp pppppppppppppppppppppp ppp ppp pppp p ppp ppp pppp pp p pppp p ppp p ppp pp p ppp ppp p p pp ppp p p p ppp p pppp ppp p ppp p p

Figure 14: Fitting the original draw data on the original image. (background image source:
https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf)

p p
p p

p pp p p p p p p p p p p p p p p p p p
p
p
p pp p p p p p p p p p p

p p
p p
p p

Figure 15: Fitting the averaged draw data on original image. (background image source:
https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf)

https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf
https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf

University of Vaasa Reports 19

pppppppppppppppppp
pp

pp
pp

pppppppppppp
pppppppp
pp

ppppppppppppppppppp
ppppppppppp
pp

Figure 16: Fitting the final filtered and interpolated draw data on the original image.
(background image source: https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf)

Figure 17: Test image (frame 0: the original image of a red admiral Vanessa atalanta (L.
1758) feeding on tansy Tanacetum vulgare (L.).

https://www.mouser.fi/datasheet/2/308/MT9P031-D-1103275.pdf

University of Vaasa Reports 20

Figure 18: Test image (frame 6: 650nm filter setting).

University of Vaasa Reports 21

3.7 LED simulation

An essential part of any imaging system is the illumination. In our case the illumina-
tion for the camera is done using LEDs. There are triplets of seven spectrally different
LEDs having relatively narrow wavelength bands. Each LED of the triplet can be in-
dividually controlled giving the possibility to illuminate the object from three different
fixed directions. The LED spectra can be modeled using Gaussian curve e−(λ−λ0)2/∆λ2 ,
where λ is the wavelength, λ0 is the wavelength of the intensity maximum, and ∆λ is the
width of the band. An example of LED light spectrum is shown in Figure 21. Having
more than one Gaussians as a weighted sum, we can broaden the band boundaries and
modify the shape of the spectrum to better conform the true LED spectra (Figure 22
HLMP-3750/-3390/-1340 Series Lamps). The parameters of the Gaussian sum is given in
Table 3.

Table 3: Parameters of the model of high efficiency red LED (Fig. 22). Observe, that due
to imperfect (manual) scaling of the images, the sum of the weights is 113%.

λ0 ∆λ weight [%]
630 27 75
655 53 24
663 23 10
597 29 4

The calculations were done using LED.awk program that is a small AWK language program.
AWK is a scripting language intended for simple calculations and text processing 1. It is
one of the basic tools of UNIX/Linux operating system and can be used from command
line as well alone as within pipes. AWK programs consists typically of three parts: begin
block, input block, and end block. Begin block starts with keyword BEGIN and is followed
by a block within braces. It is the natural place for setting default values and other
initialisations. The most useful block is the input block which automatically reads
records, one at a time and also extracts fields withing the records. This makes scanning
fixed format text easy with a handful of automatically set variables, like $0 = whole record,
$1 = first field of record, NF = number of fields, NR = number of records, etc. The syntax
of AWK is similar to C (C++, Java, JavaScript, ...) so that it is easy to learn once you
know one of those more well known programming languages.

The last block is the END block, that is a good place for ending the task. Here it is used
to output the graph as a LATEX picture environment commands that plot the graph on
this report. In addition the program outputs the LED efficiency curve as a C language
table for each nanometer as lines starting with ’%@’ so that the data can be extracted and
further included in the camera system simulator program ARMmovie.c as a part of the file
LEDs.h.

Our LED model of using Gaussians is actually similar to the more general Artificial Intel-
ligence (AI) concept called Radial Basis Function (RBF) neural network, which are based

University of Vaasa Reports 22

on weighted Gaussians in n dimensions12.

3.7.1 Camera with LEDs simulation

Now we have both the model of the camera sensor and the LED used as its illuminator.
Combining their functions can be done using the dot product:

Ic(i, j) = p(i, j)
λmax∑
λ=λ0

ILED,λQEc,λ = p(i, j)ILED · QEc,

where Ic(i, j) is the recorded intensity of pixel at (i, j) on channel c (= R, G, or B), p(i, j) ∈
[0, 1] is the reflectivity of the imaged object that covers the pixel (i, j), λ ∈ [λ0, λmax] is the
wavelength, ILED is the intensity profile of the LED, and QEc is the sensitivity (Quantum
Efficiency) of the camera sensor for channel c. For the continuous case the function can
be represented by an integral over the wavelength range:

Ic(i, j) = p(i, j)
∫ λmax

λ=λ0
ILED(λ)QEc(λ)dλ.

Observe, that for practical (numerical) calculations we must further define the physical
units, like what is the power (width) of each wavelength interval in the summing.

Observe also, that the vectors (graphs) for the dot product ILED · QEc should be of equal
length. If they are not then we must use e.g. linear interpolation to make them be of
equal length.

3.8 RGB sensitivity analysis

Let us look a bit closer the sensitivity curves. Figure (19) shows the sensitivity curves
together with the sum of the sensitivities. In the long wavelength region the sum curve
seems to be approximately piecewise linear:

C(λ) ≈

(λ − 785)/200 + 2 if λ ∈ [730, 815]
3(835 − λ)/400 + 2 if λ ∈ [815, 980]
undefined otherwise

i.e.
QENIR ∝ C(λ) ∝ (QER + QEG + QEB).

It means that we can measure the incoming power of the light by using a simple relationship
between the pixel values read from the camera and C(λ). We can e.g. use the camera
to measure optical energy in the NIR band (INIR). Remember e.g. that half of the sun
energy is in the near-infrared band (λ & 800nm). However, there are more simple ways
to measure solar energy. Our camera is designed for more detailed analysis of objects
and their properties, like the condition of diabetic legs and such medical applications like
caries. Figure 20 shows an example of simulating the imaging of a leg having an ulcer.

University of Vaasa Reports 23

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q
q
q

qq

q
qq

qq

q
qq

qq

q
qq

qq

q
qq

qq

q
qq

qq

q
qq

qq

q
qq

qq

q
qq

qq

q
qq

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

q
q
q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

qq
q

q

q

qq
q

q

q

qqq

q

q

qqq

q

q

qqq

q

q

qqq

q

q

qqq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q

q

q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

q
q

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q

q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

qqq

qq

qqq

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q
q

qq

q
q

q

qq

q
q

q

qq

q
q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q

qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
qq

q

q

q
q
q

q

q

q
q
q

q

q

q
q
q

q

q

q
q
q

q

q

q
q
q

q

q

q
q
q

q

q

q
q
q

q

q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

qq

q
qq

qq

q
qq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

qq

qqq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

qq

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q
q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q

q

q

qq
q
q

qq
q
q

qq
q
q

qq
q
q

qqq
q

qqq
q

qqq
q

qqq
q

qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qq

QE [%] / 1/QE
100 / 4

75 / 3

50 / 2

25 / 1

6

λ [nm]

400 500 600 1000
-�

�
�
�
�
�
�

-

-

-

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

C1(λ) = (λ− 785)/200 + 2,

λ ∈ [730, 815]

C2(λ) = 3(835− λ)/400 + 2,

λ ∈ [815, 980]

730 785
815

835

Figure 19: Quantum efficiencies QEc, c ∈ R,G,B of color channels (red = QER, green =
QEG, and blue = QEB) of the camera and the sum of channel quantum efficiencies (black
curve) and its inverse (cyan curve) as function of wavelength λ. Linear regression lines
C1(λ) and C2(λ) in the NIR area shown by dark red lines.

University of Vaasa Reports 24

Figure 20: Test image leg (frame 17: 800nm filter setting).

qqqqqqqq
qqq
qq
qq
qq
qq
qq
qqqq
qqq

qqqqqqq
qqqq
qqq
qqq
qq
qqq
qqqq
qqq

qqqqqqqqq
qqqqqq
qqqq
qqq
qqq
qqq
qqqq
qq

qqq
qq
qq
qq
qq
qq
qqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qq
qq
qq
qq
qq
qqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqq
qq
qq
qq
qq
qq
qqqq
qqqqqqqqqqqqqqqqqqqqqqqqqq

I(λ) [%] = 100× e((λ−λ0)/∆λ)2

100

50

6

λ [nm]

400 500 600 1000
-

785 815

Figure 21: LED spectra simulation for λ0 = 450, 500, 600, and 800nm and ∆λ = 12nm.
The 800nm LED has 1, 2, and 3 Gaussians having common maximum wavelength.

University of Vaasa Reports 25

qq
qq
qqqqqqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
qqqq
q
qqq
q
qqq
q
qqq
q
qqq
q
qqq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq
q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q
qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

qq

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
qq

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q

q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qq
q

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

qqq

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q

q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qq
q
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qqq
qq

-

Figure 22: LED spectra simulation for HLMP-3750/-3390/-1340 Series LED Lamps
(Mouser / Avago) λ0 ≈ 630nm (high efficiency red), ∆λ ≈ 45nm. The model has 3
Gaussians shown by cyan while the total spectra is shown by a red curve that mostly
hide the datasheet curve shown in black. Graphs plotted for comparison on the datasheet
image24. The parameters of the Gaussians are shown in Table 3.

4 Running ARMmovie.c

The current version of the generator is 2, which is shown in the file name, ARMmovie2.c.
The program ARMmovie2.c was run on a SoC development board in which the CPU and
the FPGA are implemented on the same chip. The board we used was Genesys ZU-3EG by
Digilent Inc.13 This board also has an external mSATA memory chip (512 GB) attached
to it. The test image program is used in a Linux environment which is installed on the
Genesys board. Previously this program has been used succesfully with Digilent’s Zybo
Z7-20 SoC board.42

4.1 Running procedure

The testing was done by using the following procedure:

1. The Genesys kit was connected to the laptop (Lenovo Thinkpad T61) and started
by using PuTTy terminal application. The ssh connection between the laptop and
the board was established.

2. The program and image files were copied to the folder /home/ubuntu.

3. From this folder the files were copied to the Genesys kit by using the ssh connection.

University of Vaasa Reports 26

4. The test image program was compiled by: gcc -pg -o myRun ARMmovie2.c -lm.

5. The program was executed by: ./myRun.

6. The test images created by the program were copied to the folder /home/ubuntu by
using the ssh connection.

Using the test image program on the Genesys kit created successfully all of the required
test images. The larger processing capacity and memory allocation of the Genesys kit
make it more efficient in using the program compared to the Zybo Z7-20 board. This
test indicates that the Genesys kit is suitable in creating test images for image processing
pipelines.

University of Vaasa Reports 27

5 Conclusions and Future

In this report we have presented a C language program called ARMmovie.c, which generates
either purely synthetic images or combines a synthetic image with given images (user given
.ppm files) for various embedded camera testing purposes. It was originally designed to
be compact and stand-alone in order to be useful for testing a spectral camera hardware
based on heavily memory limited FPGA-SoC technology but it is not limited to that
application even if it contains several functions that simulate the special spectral image
recording, including illumination by LEDs, of the object system. These features include
the selection of wavelength bands recorded by the camera and illumination of the object
by simulated narrow band LEDs. The program can be run in a stand-alone mode on an
embedded ARM processor on a FPGA-SoC chip or on a PC or similar more conventional
computer. The program functions and outputs are controlled by a few parameters that can
be input as a string (hard coding) or read from a file when run under an operating system.
Some attempts to optimize the processing was also done with the result of considerable
speed-up. The output consists of an image pixel stream that can be input to the FPGA
or external files that can be further combined e.g. into a gif animation.

5.1 Future

Originally the generator was designed to be run under a Java language program with
Java JNI. The Java program could also handle the graphical user interface (GUI) of the
device. However, the current GUI is done using Python. The generated patterns could be
optimised based on the object systems functions using e.g. evolutionary optimisation 21.
For selftesting purposes it could be possible to implement the generator at least partly
on the FPGA. Especially the synthetic pattern is such that it could be implemented on a
HDL, while the real image functions are much better suited for a processor. The generator
could also compare the generated and processed images, which would greatly support the
realisation of selftesting.

University of Vaasa Reports 28

References
[1] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Program-

ming Language. Addison-Wesley Publishing Company, Reading, MA, 1988.

[2] Top 10 AI Image Generators Review. https://topten.ai/
image-generator-review/.

[3] Jarmo T. Alander, Maarit Harju, and Petri O. Välisuo. Optimal testing of embed-
ded software using genetic algorithm — a prestudy. In Jarmo T. Alander, editor,
Proceedings of the Third Nordic Workshop on Genetic Algorithms and their Applica-
tions (3NWGA), pages 299–304, Helsinki (Finland), 18.-22. August. Finnish Artificial
Intelligence Society (FAIS).

[4] Jarmo T. Alander and Timo Mantere. Ohjelmistojen testausta geneettisten algo-
ritmien avulla [Testing programs using genetic algorithms]. In Matti Linna, editor,
Tekniikan koulutusta 10 vuotta Vaasan yliopistossa [10 Years of Technology in the
University of Vaasa], pages 35–38. 1998. (in Finnish).

[5] Jarmo T. Alander and Timo Mantere. Automatic software testing by genetic algo-
rithm optimization, a case study. In Conor Ryan and J. Buckley, editors, Proceedings
of the 1st International Workshop on Soft Computing Applied to Software Engineer-
ing, pages 1–9, Limerick, Ireland, 12.-14. April 1999. Limerick University Press.

[6] Jarmo T. Alander, Timo Mantere, and Pekka Turunen. Genetic algorithm based soft-
ware testing. In George D. Smith, Nigel C. Steele, and Rudolf F. Albrecht, editors,
Artificial Neural Nets and Genetic Algorithms, Proceedings of International Con-
ference (ICANNGA97), pages 325–328, Norwich (UK), April 1997. Springer-Verlag,
Wien.

[7] Jarmo T. Alander, Timo Mantere, Pekka Turunen, and Jari Virolainen. GA in pro-
gram testing. In Jarmo T. Alander, editor, Proceedings of the Second Nordic Workshop
on Genetic Algorithms and their Applications (2NWGA), Proceedings of the Univer-
sity of Vaasa, Nro. 11, pages 205–210, Vaasa (Finland), 19.-23. August. University of
Vaasa.

[8] Anders S. G. Andrae and Tomas Edler. On global electricity usage of communication
technology: Trends to 2030. Challenges, 6(1), 2015.

[9] L. Annala, N. Neittaanmäki, J. Paoli, O. Zaar, and I. Pölönen. Generating hyper-
spectral skin cancer imagery using generative adversarial neural network. In 42nd
Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), pages 1600–1603, Montreal, QC, Canada, 2020.

[10] Kent Beck. Test-Driven Development by Example. Vaseem: Addison-Wesley, 2002.

[11] Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. Are FPGAs suitable for edge
computing? In USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18),
Boston, MA, July 2018. USENIX Association.

https://topten.ai/image-generator-review/
https://topten.ai/image-generator-review/

University of Vaasa Reports 29

[12] D. S. Broomhead and David Lowe. Radial basis functions, multi-variable functional
interpolation and adaptive networks. Memorandum 4148, Royal Signal and Radar
Establishment, 1988.

[13] Digilent’s Genesys ZU-3EG SoC development board. https://www.xilinx.com/
products/boards-and-kits/1-18dv0nz.html, (Accessed 13.5.2022).

[14] Stanislav Frolov, Tobias Hinz, Federico Raue, Jörn Hees, and Andreas Dengel. Ad-
versarial text-to-image synthesis: A review. Neural Networks, 144:187–209, 2021.

[15] Nicola Jones. How to stop data centres from gobbling up the world’s electricity.
Nature, 561:163–166, 2018.

[16] James W. Kalat. Biological Psychology. Wadsworth Thomson Learning, Belmont,
CA, 2001.

[17] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Addison-
Wesley Publishing Company, Reading, MA, 1 edition, 1978.

[18] Woo-Tae Kim, Cheonwi Park, Hyunkeun Lee, Ilseop Lee, and Byung-Geun Lee. A
high full well capacity CMOS image sensor for space applications. Sensors, 19:–, 2019.

[19] Janne Tapio Koljonen, Jarmo Tapani Alander, Vladimir Bochko, and Sami Juhani
Lauronen. Fast fixed-point bicubic interpolation algorithm on FPGA. In Jari Nurmi,
Peeter Ellervee, Kari Halonen, and Juha Röning, editors, Proceedings of The 2019
IEEE Nordic Circuits ans Systems Conference (NORCAS): NORCHIP and Inter-
national Symposium of System-on-Chip (SoC), pages 1–7, Helsinki (Finland), 29.-
30. October 2019. IEEE.

[20] Timo Mantere. Automatic Software Testing by Genetic Algorithms. PhD thesis,
University of Vaasa, Department of Electrical Engineering and Production Economics,
2003.

[21] Timo Mantere and Jarmo T. Alander. Automatic test image generation by genetic
algorithms for testing halftoning methods. In David P. Casasent, editor, Intelli-
gent Systems and Advanced Manufacturing: Intelligent Robots and Computer Vision
XIX: Algorithms, Techniques, and Active Vision, volume SPIE-4197, pages 297–308,
Boston, MA, 5. -8. November 2000. The International Society for Optical Engineering,
Bellingham, WA.

[22] Timo Mantere and Jarmo T. Alander. Automatic software testing by optimization
with genetic algorithms, introduction to the method and considerations of the pos-
sible pitfalls. In Radek Matoušek and Pavel Ošmera, editors, Proceedings of the 7th
International Mendel Conference on Soft Computing (MENDEL 2001), pages 19–23,
Brno (Czech Republic), 6.-8. June 2001. Technical University of Brno.

[23] Timo Mantere and Jarmo T. Alander. Testing a structural light vision software
by genetic algorithms—estimating the worst case behavior of volume measurement.
In David P. Casasent and Ernest L. Hall, editors, Intelligent Robots and Computer

https://www.xilinx.com/products/boards-and-kits/1-18dv0nz.html
https://www.xilinx.com/products/boards-and-kits/1-18dv0nz.html

University of Vaasa Reports 30

Vision XX: Algorithms, Techniques, and Active Vision, volume SPIE-4572, pages
466–475, Boston, MA, 29. -31. October 2001. The International Society for Optical
Engineering, Bellingham, WA.

[24] HLMP-3707, HLMP-3907, HLMP-3750, HLMP-3850, HLMP-3950, HLMP-3960,
HLMP-3390, HLMP-3490, HLMP-3590, HLMP-1340, HLMP-1440, HLMP-1540,
HLMP-K640 T-13/4 (5 mm), T-1 (3 mm), Ultra-Bright LED Lamps Data Sheet.
https://eu.mouser.com/datasheet/2/678/AVGOS05392_1-2524844.pdf.

[25] Antti Näsilä, Christer Holmlund, Endija Briede, Rami Mannila, Roberts Trops,
Martti Blomberg, Ingmar Stuns, Bin Guo, Kai Viherkanto, Kari Rainio, Heikki
Saari, and Anna Rissanen. Cubic-inch MOEMS spectral imager. In Proc. SPIE
10931, MOEMS and Miniaturized Systems XVIII, page 109310F, 4 March 2019.
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/
10931/2508420/Cubic-inch-MOEMS-spectral-imager/10.1117/12.2508420.
short?SSO=1.

[26] Antti Näsilä, Heikki Saari, H. Ojanen, I. Stuns, K. Viherkanto, Christer Holmlund,
R. Mannila, Roberts Trops, and E. Briede. Miniaturized spectral imaging technolo-
gies at VTT. In OIE 2019 The 13th Japan-Finland Joint Symposium on Optics
in Engineering, Espoo and Tallinn, 26-30 August 2019. https://docplayer.fi/
151101301-Proceedings-of-oie-2019.html.

[27] The economic impacts of inadequate infrastructure for software testing. Planning
Report 02-3, National Institute of Standards and Technology, 2002. https://www.
nist.gov/system/files/documents/director/planning/report02-3.pdf.

[28] 1/2.5-Inch 5 Mp CMOS Digital Image Sensor MT9P031. https://www.onsemi.com/
pdf/datasheet/mt9p031-d.pdf.

[29] Pradeep Parthiban. 7 reasons why software testing is important. https://www.
indiumsoftware.com/blog/why-software-testing/.

[30] Ilkka Pölönen, S. Rahkonen, L. Annala, and N. Neittaanmäki. Convolutional neural
networks in skin cancer detection using spatial and spectral domain. In Photonics in
Dermatology and Plastic Surgery 2019, volume SPIE-10851, page 108510B. Interna-
tional Society for Optics and Photonics, February 2019.

[31] S. Rahkonen, E. Koskinen, Ilkka Pölönen, T. Heinonen, T. Ylikomi, S. Äyrämö, and
M. A. Eskelinen. Multilabel segmentation of cancer cell culture on vascular structures
with deep neural networks. Journal of Medical Imaging, 7(2):024001, 2020.

[32] Anna-Maria Raita-Hakola, Leevi Annala, Vivian Lindholm, Roberts Trops, Antti
Näsilä, Heikki Saari, Annamari Ranki, and Ilkka Pölönen. FPI based hyperspectral
imager for the complex surfaces—calibration, illumination and applications. Sensors,
22:3420, 2022.

[33] Heikki Saari, H. Ojanen, and Ingmar Stuns. Novel hyperspectral imager
based on angle-tuned multi pass band filter, LEDs and RGB image sen-

https://eu.mouser.com/datasheet/2/678/AVGOS05392_1-2524844.pdf
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2508420/Cubic-inch-MOEMS-spectral-imager/10.1117/12.2508420.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2508420/Cubic-inch-MOEMS-spectral-imager/10.1117/12.2508420.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2508420/Cubic-inch-MOEMS-spectral-imager/10.1117/12.2508420.short?SSO=1
https://docplayer.fi/151101301-Proceedings-of-oie-2019.html
https://docplayer.fi/151101301-Proceedings-of-oie-2019.html
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/system/files/documents/director/planning/report02-3.pdf
https://www.onsemi.com/pdf/datasheet/mt9p031-d.pdf
https://www.onsemi.com/pdf/datasheet/mt9p031-d.pdf
https://www.indiumsoftware.com/blog/why-software-testing/
https://www.indiumsoftware.com/blog/why-software-testing/

University of Vaasa Reports 31

sor. In OIE 2019 The 13th Japan-Finland Joint Symposium on Optics in
Engineering, Espoo and Tallinn, 26-30 August 2019. https://docplayer.fi/
151101301-Proceedings-of-oie-2019.html.

[34] Heikki Saari, Ilkka Pölönen, Heikki Salo, Eija Honkavaara, Teemu Hakala, Christer
Holmlund, Jussi Mäkynen, Rami Mannila, Tapani Antila, and Altti Akujärvi. Minia-
turized hyperspectral imager calibration and UAV flight campaigns. In Sensors, Sys-
tems, and Next-Generation Satellites XVii, volume SPIE-8889. International Society
for Optics and Photonics, August 2013.

[35] Joseph S. T. Smalley, Xuexin Ren, Jeong Yub Lee, Woong Ko, Won-Jae Joo, Hongkyu
Park, Sui Yang, Yuan Wang, Chang Seung Lee, Hyuck Choo, Sungwoo Hwang, and
Xiang Zhang. Subwavelength pixelated CMOS color sensors based on anti-Hermitian
metasurface. Nature Communications, 11(3916):–, March 2020.

[36] Fajar Suryawan. FPGA-based geometric test pattern generator. In Proceedings of
the 3rd International Conference on Electrical, Communication and Computer En-
gineering (ICECCE), pages –, Kuala Lumpur (Malaysia), 12.-13. June 2021. IEEE,
Piscataway, NJ.

[37] Roberts Trops, Anna-Maria Hakola, Severi Jääskeläinen, Antti Näsilä,
Leevi Annala, Matti A. Eskelinen, Heikki saari, Ilkka Pölönen, and
Anna Rissanen. Miniature MOEMS hyperspectral imager with ver-
satile analysis tools. In Proc. SPIE 10931, MOEMS and Miniatur-
ized Systems XVIII, page 109310W, 4 March 2019. https://www.
spiedigitallibrary.org/conference-proceedings-of-spie/10931/2506366/
Miniature-MOEMS-hyperspectral-imager-with-versatile-analysis-tools/
10.1117/12.2506366.short.

[38] Roberts Trops, Antti Näsilä, Christer Holmlund, and Heikki Saari et.al. Cubic-inch
hyperspectral imager for space exploration. In Finnish Satellite Workshop & Remote
Sensing Days 2020, Aalto University, Dipoli, Finland, 20-22 January 2020. https:
//drive.google.com/file/d/1iglT16hqzKl1G0C5IaMCHgXPb5RLmFEh/view.

[39] F. Vermolen and Ilkka Pölönen. Uncertainty quantification on a spatial Markov-
chain model for the progression of skin cancer. Journal of Mathematical Biology,
80(3):545–574, 2020.

[40] Test pattern generator (IP). https://www.xilinx.com/products/
intellectual-property/tpg.html.

[41] Video test pattern generator. Datasheet, 2022. https://www.zipcores.com/
datasheets/tpg.pdf.

[42] Digilent’s Zybo Z7-20 SoC board. https://digilent.com/reference/
programmable-logic/zybo-z7/reference-manual (Accessed 13.5.2022).

https://docplayer.fi/151101301-Proceedings-of-oie-2019.html
https://docplayer.fi/151101301-Proceedings-of-oie-2019.html
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2506366/Miniature-MOEMS-hyperspectral-imager-with-versatile-analysis-tools/10.1117/12.2506366.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2506366/Miniature-MOEMS-hyperspectral-imager-with-versatile-analysis-tools/10.1117/12.2506366.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2506366/Miniature-MOEMS-hyperspectral-imager-with-versatile-analysis-tools/10.1117/12.2506366.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10931/2506366/Miniature-MOEMS-hyperspectral-imager-with-versatile-analysis-tools/10.1117/12.2506366.short
https://drive.google.com/file/d/1iglT16hqzKl1G0C5IaMCHgXPb5RLmFEh/view
https://drive.google.com/file/d/1iglT16hqzKl1G0C5IaMCHgXPb5RLmFEh/view
https://www.xilinx.com/products/intellectual-property/tpg.html
https://www.xilinx.com/products/intellectual-property/tpg.html
https://www.zipcores.com/datasheets/tpg.pdf
https://www.zipcores.com/datasheets/tpg.pdf
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual

University of Vaasa Reports 32

A Program files

The following files are available at https://lipas.uwasa.fi/~TAU/reports/report22-1/

Program Size (lines) Comment
ARMmovie2.c ∼2,000 the main program
ARMmovie2.h ∼400 definition
QEtable.h ∼650 QE curves
LEDs.h ∼250 LED models
ARMmovie.txt ∼20 parameters
*.ppm á ∼2...14Mbytes ext. input image files

Total ∼5+ files ∼3,300 +ext. .ppm images

https://lipas.uwasa.fi/~TAU/reports/report22-1/

	Abstract
	Acknowledgements

	1 Introduction
	1.1 FPGA
	1.2 Testing
	1.3 Tools
	1.4 Related work

	2 Camera
	2.1 Interference filter

	3 ARMmovie.c, a test image generator
	3.1 Control
	3.2 Simulation of the camera
	3.3 Execution profile
	3.4 Parameter input
	3.5 Image comparison and animation
	3.6 Camera simulation
	3.7 LED simulation
	3.7.1 Camera with LEDs simulation

	3.8 RGB sensitivity analysis

	4 Running ARMmovie.c
	4.1 Running procedure

	5 Conclusions and Future
	5.1 Future

	References
	Program files

