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Abstract
The study comprises three laboratory tests in which typical Finnish highly insulated (HI)
walls were exposed to concentrated leakages of indoor air under steady outdoor tem-
peratures of 1–5 8C. Airflows with a relative humidity of 50% and at rates of 1–3 L/min
were directed close to the wooden frames inside the walls. The thermal resistance
ratios between the exterior sheathing(s) and the whole wall (G) were 20%–22% and
1%–10% for the HI and baseline (BL) walls. The HI walls that presented G values of at
least 20% were observed to be resistant to air exfiltration, and their durability was not
affected by the addition of a gypsum sheathing outside the wooden frame or a more
permeable vapor retarder. This is related to the negative linear correlation that exists
between the moisture accumulation rate in wood-based material and the dew point
depression (DPD) value. The developed approach, called the DPD method, shows that a
significant degree of moisture accumulation does not occur even for DPD values of as
low as 22 8C if the exterior sheathing is vapor permeable. The airflow does not pene-
trate into the rigid mineral wool sheathing, which helps to avoid interstitial condensa-
tion. Regardless of thermal transmittance, the HI and BL walls with maximum G values
of 1% were exposed to a high relative humidity and even interstitial condensation
because the DPD values were often below 22 8C. For these walls, the mold index analy-
sis and visual observations confirmed the local risk for mold growth on the opposite side
of the leakage point. In practice, long-term mold growth may be limited if the seasonal
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periods during which the outdoor temperature is 1–5 8C last for a maximum of about
1 month every year.

Keywords
Exfiltration, air leakage, moisture convection, highly insulated, dew point, mold growth
risk

Introduction

In climates with cold seasons, modern houses have to be thermally well insulated.
For example, in Finland, the benchmark value for the thermal transmittance (U)
of an external wall is 0.17W/m2K. However, even lower values such as 0.12–
0.14W/m2K are widely used to minimize the energy consumption of buildings and
meet strict energy efficiency requirements. The performance of highly insulated
(HI) structures has been studied by, for example, Vinha et al. (2013), Gullbrekken
et al. (2015), Pihelo et al. (2016), Nelson (2017), Gradeci et al. (2018), Viljanen and
Lu (2019), and Viljanen et al. (2021). Such studies have typically focused on the
diffusion of water vapor to the colder outer parts of a HI structure. In lightweight
external assemblies, the role of the effect of convection on hygrothermal perfor-
mance is essential (Ojanen and Kohonen, 1989), but a hermetic external envelope
is prone to errors in execution (Hens, 2016). Air may typically flow through pene-
trations, cracks, joints, and junctions in the building structures (Desmarais et al.,
2000; Kalamees, 2007). The ingress of indoor air into the structure and its flow out
to the outdoor air is called indoor air exfiltration, which may lead to interstitial
condensation during cold periods, whereas infiltration from the outdoor air has a
similar effect in hot climates (American Society of Heating, Refrigerating and Air-
Conditioning Engineers [ASHRAE], 2017).

Airflow may arise from the buoyancy force produced due to the temperature dif-
ference that generates an overpressure in the indoor air, which affects roofs and the
upper sections of external walls, whereas internal buoyancy occurs in the roofs and
walls. Generally, internal buoyancy typically has a pronounced impact on the ther-
mal conductivity of granular loose-fill insulation as the associated air permeability
is higher than, for instance, mineral wool (MW) boards, but Langmans et al. (2012)
also found that internal buoyancy may affect the moisture redistribution inside an
MW insulated wall. By pressurizing an HI test wall using a fan, the authors induced
moisture accumulation in the upper parts of the exterior sheathing, highlighting the
existence of natural convection that was probably exacerbated by the open gaps
located at the bottom and upper part of the interior sheathing. The ventilation of a
building has a significant effect on air leakages. In Finland, buildings are typically
slightly depressurized because of mechanical ventilation that extracts more air from
the building compared to the amount of air supplied. Furthermore, the wind cre-
ates a fluctuating pressure difference (PD) over external walls. On the windward
side of a building, the ventilation cavity of a wall may be pressurized to induce
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simultaneous infiltration and exfiltration, whereas exfiltration is dominant in other
areas of the envelope (TenWolde et al., 1995).

The structural factors that promote uncontrolled airflows can be mitigated
through meticulous workmanship, as indicated by Kalamees and Kurnitski (2010),
because such airflows may require there to be significant defects in the airtightness
of a structure. Langmans et al. (2012) focused on the effect of exterior airtightness
on the hygrothermal performance of HI walls that had a leaky wallboard without
a vapor barrier and a 300-mm-thick cavity insulation. The water vapor diffusion
equivalent air layer thickness (Sd) of the exterior bituminous impregnated soft fiber
board (SFB) was below 0.23m. The moisture content (MC) of the SFB increased
when the outdoor temperature was 3 8C and the indoor air pressure was 5–10Pa
higher than that in the outdoor chamber. The parameter of exterior airtightness
proved crucial, as the highest levels of MC and mold growth were observed in the
SFB that did not have any external air barrier foil. The benefit of exterior airtight-
ness was also discovered by Kalamees and Kurnitski (2010); in their study, a film-
coated sheathing with taped joints was found to be superior to a wood fiberboard
one. For HI assemblies, achieving both interior and exterior airtightness is usually
a design objective, which is justified based on the above findings.

Further, Ojanen and Simonson (1995) studied the effect of airflows between an
old wall and additional insulation placed inside the wall. The moisture accumula-
tion was found to be the highest in two structures that had expanded polystyrene
(EPS) insulation surrounded by vapor retarders. The third, otherwise similar wall
had an MW insulation, which probably helped redistribute the moisture (Ojanen
and Simonson, 1995). Having foam insulation on the outside of the structure may
also cause moisture accumulation in the exterior sheathing if the temperature on
the warm side of the sheathing drops below the dew point of the indoor air
(Desmarais et al., 2000). It is obvious that the water vapor permeability of the
structural layers affects the hygric performance of a wall subjected to exfiltration.

Product imperfections and implementation errors that induce local airflows
inside the structures are one of the most important factors that affect this perfor-
mance (Ojanen and Kohonen, 1989). Derome (2005) experimentally studied the
hygrothermal performance of flat roofs that had cellulose insulation and air exfil-
tration. The results suggested that having a thicker insulation mitigated the changes
in MC in the insulation. Ge et al. (2019) found that, with cellulose insulation, the
relative humidity (RH) in the framing cavity of a wall during an air leakage rose to
65%, whereas, with MW insulation, the RH reached a level of over 90%.

Ge et al. (2019) focused on the thermal resistance (R) value of the materials out-
side the wall frame and found that moisture accumulation in the oriented strand
board (OSB) was less in HI walls that had a 50–76-mm-thick exterior insulation
than the baseline (BL) wall or the deep cavity walls that had only an OSB sheath-
ing. The most vapor-open exterior insulation made of MW performed the best in
these tests, with a leakage rate of 18.9L/min. Trainor et al. (2016) obtained similar
results using lower air leakage rates of 1.2–4.8L/min per square meter of the wall
representing values for airtight buildings. The MC of the OSB sheathing was over
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35 weight percent (wt%) in the walls that had low exterior R values, whereas, in
the wall that had a 140-mm-thick MW and a 76-mm-thick exterior MW, the MC
increased to only 11–13wt% (Trainor et al., 2016). Ojanen and Kumaran (1995)
simulated air leakages with 48% indoor RH to find that a 25-mm-thick exterior
sheathing of MW reduced the rate of moisture accumulation in a wall that had a
145-mm-thick cavity insulation. The potential disadvantages of exterior insulation
include increased detailing at windows and doors in addition to the decreased dry-
ing potential with a vapor-tight exterior insulation.

Desmarais et al. (2000) mapped air leakage patterns inside wood framed walls that
had an 89-mm-thick MW insulation to observe that not only is the temperature distri-
bution affected by air leakage but also moisture accumulation follows the airflow field
inside the wall assembly. The authors classified certain typical leakage paths using the
adjectives ‘‘long,’’ ‘‘concentrated,’’ and ‘‘distributed.’’ A long leakage path is represented
by, for example, a leaky joint of a vapor barrier or a gap between the wallboard and the
adjacent structure. A point defect in the vapor barrier or exterior sheathing enables a
concentrated airflow, whereas an evenly distributed airflow may arise when air perme-
able materials have been used. Derome (2005) observed the airflow patterns in flat roofs
in which the moisture had accumulated in the vicinity of the leakage points, resulting in
the ‘‘caking’’ of the cellulose insulation.

The evaluation of the indoor humidity level is also necessary, as the moisture
risks related to the air leakages of indoor air with a small moisture excess (ME) are
low (e.g. Ferrantelli et al., 2019). This is justified because the moisture accumula-
tion from exfiltration may be evaluated by comparing the indoor vapor concentra-
tion to the vapor concentration of the saturated air at the condensation plane
(Wang and Ge, 2017). The study by Ferrantelli et al. (2019) was conducted in a
Finnish school building, where the indoor ME was only 0.1 g/m3 in September.
Their numerical studies on exfiltration implied moisture accumulation in a floor
junction when the indoor ME is 5 g/m3. Kalamees and Kurnitski (2010) studied the
effect of exfiltration in wall-roof joints of wood framed structures through a labora-
tory experiment considering the joints of a vapor barrier as a leakage path into the
roof. They identified that a leakage rate of 6–12L/min per meter of the joint could
be used as a performance criterion when the ME between the indoor and outdoor
air was 4 g/m3 during a cold period. In Finnish lightweight detached houses, the
ME is typically 1.8 g/m3 in the cold season (Kalamees et al., 2006), which results in
uncomfortably dry indoor air (20%–25%) as the optimal range in terms of human
health and living comfort is about 30%–50% (Wolkoff, 2018). Humidification of
the indoor air may, however, increase the risks affiliated with exfiltration. The
indoor ME levels reported by Ferrantelli et al. (2019) and Kalamees et al. (2006)
suggest that the exfiltration-related moisture risks are higher in residential buildings
compared to service buildings.

The simulations carried out by Ojanen and Kumaran (1995) also showed that
the temperature inside a wall rises with higher leakage rates, and, eventually, inter-
stitial condensation is no longer possible—an aspect that complicates the analysis
of exfiltration. With airflow rates of 0.04–4L/m2min, the impact of airflow on
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temperature distribution was relatively small; but with airflow rates of 22L/m2min
and more, the impact was pronounced (Ojanen and Kumaran, 1995). Such a tem-
perature increase was also reported by Belleudy et al. (2014), who studied the cellu-
lose insulation of an attic space.

Trainor et al. (2016) evaluated the impact of climate on the probability of moisture
accumulation. The higher the heating degree days (HDD) of the three Canadian cities
considered were, the more moisture accumulated in the walls analyzed. The authors
(and, later, Lee et al. (2019)) suggested that, in colder climates, a thicker exterior insula-
tion may be used to reduce the condensation risk created by air leakages. The only wall
that was virtually unaffected by HDD values ranging between 2900 and 5800 was the
one that had vapor-permeable exterior thermal insulation (Trainor et al., 2016). Such
HDD values are typical for climates with cold seasons. For example, in Finland, the
HDD values in Helsinki and Sodankylä were, on average, 3500 and 5700, respectively,
in the last decade, which is a decrease of roughly 400units from the values for the years
1981–2010 (Finnish Meteorological Institute, 2021a).

The hygrothermal performance of HI external envelopes subjected only to diffu-
sion of indoor humidity has been found acceptable in several studies (Airaksinen
et al., 2017; Fedorik et al., 2021; Gradeci et al., 2018; Radon et al., 2018). In the
current study, the performance of HI external walls is tested with considerable
amount of moisture load caused by air exfiltration, which may produce even two
orders of magnitude higher moisture flux compared to diffusion (Ojanen and
Kumaran, 1995). The study focuses, thus, on the impact of poor construction prac-
tice to the moisture safety of building envelopes. Possible impacts of deficient ther-
mal insulation installation to the exfiltration performance are also examined. The
research objective is to ensure the durability of HI external walls by analyzing
whether such construction defects may impair the otherwise acceptable functional-
ity of HI building components. The study consists of three tests, whose experimen-
tal approach is justified in considering the challenges related to the numerical
modeling of air leakages (e.g. Hens, 2015).

As the literature survey highlights the complicated nature of exfiltration, it is dif-
ficult at a general level to determine the consequences of air leakages for the func-
tionality of structures. In order to simplify the analysis, the study focuses only on
low-hygroscopic walls insulated with mineral wool. In addition, the studied walls
are vapor open toward the exterior environment, and the type of defect considered
in the air barrier is a concentrated fault.

In the three tests, HI and BL walls are exposed to controlled airflows from
indoor air into the walls, and controlled leaking to outdoor air is brought about.
Low airflow rates in the range of 1–3L/min are employed next to the wood frames
of the walls to identify the least amount of exfiltration that is detrimental to the
performance of the wall and to maintain the heating effect of the airflow at a mod-
erate level. Trainor (2014) emphasized the need to study such lower air leakage
rates compared to the rate of 14.4L/min, which he used as the value expected at
the high end of the range for dwelling houses.
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The airflow pattern inside HI walls with air-permeable, open-porous cavity
insulation, and exterior sheathing has not been sufficiently studied even though it
affects the hygric risks affiliated with exfiltration. Hence, the first test evaluates the
airflow pattern and moisture transfer inside a HI wall assembly, and targets to
clarify whether the air may flow directly to the facing of sheathing board. The
assessment of the impact of poorly installed cavity insulation to the hygrothermal
performance is also included in the test.

In the two other experiments, the main focus is on the durability and moisture
safety of HI external walls that are subjected to air exfiltration. The impact of the
U-value on the wall performance is analyzed by also studying the performance of
less insulated BL walls. In the second experiment, the air leakage is made to affect
the warm and cold sides of the frame separately to evaluate the effect of the inser-
tion point of the convective moisture load. This test also evaluates the structural
factors that allow significant local air leakage through the walls and the importance
of the indoor RH with respect to the risks of exfiltration. The third test focuses on
the performance of modified HI walls; the exterior MW sheathing is replaced by
the combination of a gypsum sheathing and a MW sheathing, and in the other
alternative, the vapor barrier is more permeable compared to the base case.

The hygrothermal response, moisture accumulation rate, and calculated mold
growth potential of the structures are used to evaluate the performance of the
walls. Based on the observed performance of the walls, recommendations for rea-
lizing HI external walls are made to ensure the durability of the structures to air
leakages. To ease practical design work, this study also proposes a simple method
for evaluating the amount of moisture accumulation in lightweight external assem-
blies from indoor air exfiltration.

Materials and methods

Hygrothermal equations and assessment of mold growth

Equations for analyzing air leakage. The relative distribution of the thermal insulation
over the width of an external assembly affects the consequences of the humidity
transferred by airflows inside a wall. The exterior insulation significantly increases
the relative contribution of the outer parts to the thermal resistance of the walls,
whereas the increase by thin, rigid sheathing boards (e.g. gypsum and plywood) is
only theoretical. Following the concept of the drying potential index (Lehtinen and
Lehtonen, 1997) that describes the distribution of thermal resistance in a wall, we
define the exterior insulation ratio as follows:

G=Rext=Rt ð1Þ

Where, Rext denotes the thermal resistance outside the wood frame (m2K/W), and
Rt is the total thermal resistance of an assembly (m2K/W). In BL walls, the G value
is typically lower than that of HI walls. However, HI walls with low G values have
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also been widely implemented in Finland. Equation (1) was also used by Lee et al.
(2019), who replaced the denominator in the equation with the total thermal resis-
tance inside the exterior sheathing.

The dimensionless temperature (DT) at the observation point i is defined as fol-
lows in the analysis of the measurement results:

DT(x)= Ti � Toutð Þ= Tin � Toutð Þ ð2Þ

Where, Ti is the temperature at the observation point, Tout is the temperature of the
outdoor air, and Tin is the temperature of the indoor air. An increase in the DT is
often caused by a rise in the flow rate at the observation point or may indicate the
condensation of water vapor.

The convective moisture transport rate (kg/s) directed into a structure can be
estimated using the following equation (adapted from the book of Hagentoft
(2001)):

gconv =Qv � (vin � vi) ð3Þ

Where, Qv represents the volume of airflow going into the structure (m3/s), vin rep-
resents the absolute humidity (AH) in the indoor air (kg/m3), and vi represents the
AH at an observation point i. The AHs were calculated by multiplying the AH of
saturated air, which is calculated using equation (4) given by Björkholz (1997), with
the RH expressed as values between 0 and 1:

AHsat = 4:85+ 3:47 Ti

10

� �
+ 0:945 Ti

10

� �2
+ 0:158 Ti

10

� �3
+ 0:0281 Ti

10

� �4 ð4Þ

Where, the temperature Ti is expressed in Celsius. The drying rate of a structure
from point i to the outdoor air (kg/(m2s)) will be calculated based on Fick’s first
law of diffusion (Hagentoft, 2001):

gdif =
D
m

vi�voutð Þ
dx

ð5Þ

Where, D is the diffusivity of water vapor in air (m2/s), vout is the AH in the out-
door air (kg/m3), m is the water vapor diffusion resistance factor (2), and dx is the
thickness of the material (m). The analysis utilized equation (6) to calculate the dew
point temperature ( 8C) from the temperature and the RH (Schoen, 2005):

Tdew = b � að Þ= a� að Þ, ð6Þ

with a= a � Tð Þ= b+ Tð Þ+ ln RHð Þ

Where, a is 17.27, b is 237.3 ( 8C), T denotes the temperature ( 8C), and the RH is
expressed in percentage. The maximum error in the calculated Tdew using equation
(6) is 60.4 8C. The Tdew of the indoor air can be compared to the temperature at an
observation point that is typically located at the colder outer parts of an external

Viljanen et al. 7



assembly. This temperature difference can be expressed as the dew point depression
(DPD) ( 8C):

DPD(x)= Ti � Tdew ð7Þ

Where, Ti denotes the temperature at an observation point ( 8C), which, for exam-
ple, can be the last point inside the wall where the air leakage will be monitored
before the outflow. The value of Ti at the interface of materials can be determined
based on the assumption of steady state temperature distribution (see e.g. Finnish
Standards Association, 2013). A positive DPD value indicates that interstitial con-
densation cannot form at the observation point. On the other hand, a negative
DPD value entails that interstitial condensation is possible, and, because of the
low capillarity and hygroscopicity of certain insulation materials such as MW, even
droplet formation may occur (see generally, Hens (2016)). Thus, moisture accumu-
lation is expected in the building component if the DPD values are negative.

The evaluation of the hygric performance of a structure and the rate of moisture
accumulation obtained using equation (7), called the DPD method, is justified
because it includes the two most important factors regarding exfiltration, which is
otherwise a complex phenomenon: (a) the level of indoor humidity and (b) the ther-
mal conditions at the cold side of the structure. The feasibility of the method can
be analyzed by determining the linear correlation coefficient between the rate of
change in the moisture content of a material and the DPD value in the wall near
this material. For this purpose, the DPD values for the test structures subjected to
concentrated air leaks were calculated according to the average boundary condi-
tions, and the corresponding MC changes of wood-based materials were selected
from the results. The temperatures at the exterior sections of the structures were
determined by assuming steady state temperature distribution across the structures.

Determination of exterior thermal resistance. As the thermal conditions in the exterior
parts of building envelopes depend mostly on the outdoor temperature, steady-
state calculations were performed, where the expected DPD values were evaluated
depending on the outdoor temperature, the G value, and the indoor RH (25%–
50%) and using a constant indoor temperature of 21 8C. The G values, which pro-
duce low DPD values that enable moisture accumulation for a maximum of
2.5months annually, were determined using the charts that included the cumula-
tive percentages of the yearly outdoor temperature in Espoo and Pudasjärvi
(Finnish Meteorological Institute, 2019).

Assessment of mold growth. The effect of the mold found in buildings on indoor air
quality can be evaluated, for example, with the environmental relative moldiness
index (ERMI) (Vesper et al., 2007). The problems can originate from mold growth
inside the building envelope, particularly if air flows from the walls to the rooms.
Several models have been developed for describing such mold growth (Gradeci
et al., 2017). In the current study, we use the Finnish mold growth model
(Lähdesmäki et al., 2008; Viitanen et al., 2008) as a performance indicator for the
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walls. The model is based on the original VTT model (Hukka and Viitanen, 1999),
the basis for which was developed by Viitanen and Ritschkoff (1991). The critical
RH values needed for mold growth, provided by the mold models, differ by only
3%–4% within the temperatures of 0–5 8C at which the mold risk is evaluated in
this study (Gradeci et al., 2017). Regardless, the mold models should be considered
only as an indicative method for determining the likelihood of mold development
(Brischke and Thelandersson, 2014; Gradeci et al., 2017).

The Finnish mold model combines the effect of temperature and RH at an
observation point on the sensitivity of specific materials to mold growth. The lower
limit for the temperature at which mold growth is initiated is 0 8C, which indicates
that the outdoor temperatures used in the tests allowed mold growth. The equation
that describes the temperature-dependent minimum level of RH required for mold
growth (Hukka and Viitanen, 1999) was used to evaluate the severity of the
observed RH levels. The values of the material parameters depended on the point
for which the probability for mold growth was evaluated. The sensitivity classes
for mold growth speed and maximum amount of mold are 1 (very sensitive), 2
(sensitive), 3 (medium resistant), and 4 (resistant). The classification of mold
growth recession speed is 1 (strong), 0.5 (significant), 0.25 (relatively slow), and 0.1
(almost no decline). The used model parameters are displayed in the result figures
of the mold index (MI). The model evaluates the mold growth potential with MI
values of 0–6, which are defined as follows: 0 (no mold growth), 1 (small amounts
of microscopic mold), 2 (distinct microscopic growth), 3 (growth visible to the
naked eye), 4 (distinct growth visible to the naked eye), 5 (abundant growth visible
to the naked eye), and 6 (highly abundant mold growth).

Experimental arrangements

Studying the exfiltration phenomenon and wall performance in separate tests. The first test
evaluated the airflow pattern and moisture transfer inside a HI test wall that had a
sheathing made of MW. The objective was to evaluate the area that is affected by a
local air leakage, and to evaluate if the airflow can directly reach the facing of the
exterior MW board. If the exfiltrating air could penetrate into the exterior sheath-
ing, condensation might occur despite the thermal insulation properties of the
sheathing. On the other hand, the size of the area within the wall which moisture
transfers to reflects ability of the wall to equalize the moisture content in the mate-
rials that are exposed to the convective humidity. The first test was used to analyze
the results of the other tests. As the flow distribution was determined using MC as
a measured value, the first test was named moisture content mapping (MCM).

The second part of the study regarding the durability and hygrothermal
performance of walls was divided into two tests focused on different performance-
influencing factors. The second test, called MCON1, studied the long-term perfor-
mances of a HI and a BL wall that were subjected to a small amount of air
leakage, the structural factors that promote exfiltration, and the impact of the
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direct transfer of moisture to the exterior sheathing. The objective of the third test,
called MCON2, was to evaluate the durability and exfiltration performance of
three different HI walls and a BL wall with improved thermal insulation. These
two tests were focused on the measured hygrothermal conditions inside the walls
and utilized the mold growth model as a performance indicator for the functional-
ity of the walls. In the MCON2 test, the MC of studs was also monitored to evalu-
ate the moisture accumulation rate alongside with the temperature conditions, the
results of which were used to analyze the feasibility of the DPD method. The test
setups and the location of the measurements in the three tests are shown in Figures
1 to 3, and the measurements are further described in Appendix 1.

Description of the wood-framed wall assemblies studied. All the walls studied represented
typical wood-framed external walls used in Finland. The 1.4-m high HI and BL
walls considered in the MCON1 test were insulated with stone wool (SW) (Tables
1 and 2). The BL wall had an exterior gypsum sheathing (EGS) with low thermal
resistance. The HI wall had a 55-mm-thick MW board as the only material outside
the stud, which entails an exterior insulation approach (e.g. Trainor et al., 2016)
and helps reduce cold bridges at the wall frame. In Finland, MW sheathings are
typically used in residential buildings, whereas the EGS represents a more
traditional type of sheathing that is used in several types of buildings. Even if the
U-value for the BL wall, 0.23W/m2K, is higher than the benchmark value for an
external wall in Finland (0.17W/m2K), it was included in this study to examine the
effect of the different U-values on the performance of the walls.

The HI1, HI2, HI3, and BL2 walls included in the MCON2 test were insulated
with GW. The U-values of the HI1–HI3 walls and the BL2 wall were 0.12 and
0.22W/m2K, respectively, corresponding to the values of the other tests (Table 1).
The HI1 wall represented a typical exterior insulated HI wall with a polyethylene
(PE) vapor barrier. The HI2 wall differed from the HI1 wall in terms of its
moisture-adaptive vapor retarder, which was changed to polyamide (PA) to evalu-
ate the impact of the simultaneous convection and diffusion of water vapor. The
HI3 wall was similar to the HI1 wall except that it had an EGS under the exterior
MW board to evaluate the impact of a higher G value on the performance of the
EGS. The BL2 wall illustrated the possibility of improving the performance of a
wall through increasing its G value by covering the EGS with a wood fiber board
(WFB). All the EGSs used in the tests were exterior grade products and had a
weather protection treated cardboard facing. Except for a larger size and the three
vertical studs instead of a one, the test wall in the MCM test was similar to the
HI1 wall. All the HI walls in the three tests, comprised interior horizontal strap-
pings (Table 2) installed above and below the in-blow height. Such horizontal or
vertical strapping is commonly used in Finland for electrical installations and to
decrease the number of perforations in the vapor barrier.

The improper installation of soft thermal insulation materials may lead to verti-
cal air gaps at the outer corners of the insulation. The probability of such failures
increases with the thickness of the insulation layer of the wall. Proper installation
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can be ensured by installing the insulation before the exterior sheathing (Paroc
Group Oy, 2019; Saint-Gobain Finland Oy/ISOVER, 2015). However, uninten-
tional drilling into the insulation space (Desmarais et al., 2000) or different instal-
lation sequences may lead to unintended air gaps, which serve as a path for airflow
(Forest, 1989). To assess the effects of such air cavities, the MCM test included

Figure 1. The setup for the MCM test: (a) horizontal section of the test wall, (b) vertical
section of the wall seen from the side, (c) vertical sections seen from the outside air, and
(d) close-up from the sensor assembly.
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Figure 2. The setup for the MCON1 test: (a) the test walls were assembled into a hot-box,
(b) DET1–2: defect setup in the interior side of the structures during passive convection,
(c) DET3–4: assembly of the in-blow pipes during active convection and the positions of the
airflow outlets, and (d) the setup to create humidified air during active convection.
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Figure 3. The setup and wall sections in the MCON2 test. All measuring points are located on
the same plane: (a) horizontal section at middle height of the upper walls and (b) vertical
sections of the four walls.

Viljanen et al. 13



two installation methods for the 200-mm-thick insulation. At first, the insulation
filled the framing cavity completely, extending 1–10mm over the cold side of the
frames before the exterior sheathing was pressed firmly against the soft wool sur-
face and the wall frame. In the second case, the outer surface of the 200-mm-thick
insulation was curved inward at its vertical sides (Figure 1(a) and (d)). A circular
outflow hole in the wind barrier (WB) board with a 10-mm diameter, the location
of which was altered during the test (Figure 1(c)), was used with the both installa-
tion methods to study the impact of the outlet location on the airflow field and the
hygric conditions.

The Sd values of the PA foil used were 25, 5, and 0.3m if the average RHs affect-
ing the foil were 26%, 60%, and 79%, respectively. The exterior Sd values of the
walls were between 0.07 and 0.1m (Table 1), and the value increased to 0.17m for
the EGS of the HI3 wall. Vapor permeable exterior insulation and sheathing boards
with such Sd values have been used the most in Finnish lightweight walls. The MW
products are lowly hygroscopic, as the equilibrium MC of, for example, stone-
based MW at 85%–97% RH varies in the range of 0.25–0.5 kg/m3 (Viljanen and
Lu, 2019) compared to that of wood fiber insulation, which is 14–35kg/m3 in 66%–
97% RH (Vololonirina et al., 2014). Among the MW products, GW has a higher
hygroscopic capacity, 0.6–4.5 kg/m3 in 85%–97% RH, than SW (Viljanen and Lu,
2019). The flow rate of air through the structure and the flow field of the air inside
the structure depend on the airtightness of the materials used (Table 1). The values
of Table 1 indicate that the attenuation of the airflow inside the walls was the least
for open-porous MW, while foils and sheathing boards increased it.

Moisture loading caused by the exfiltrating airflow. The maximum allowed value for an
air leak through an assembly according to several standards and codes is 12L/
(min�m2), with a PD of 75Pa across the structure (ASHRAE, 2017). As with a PD
of 10Pa and a flow exponent value of 0.75, this limit value corresponds to a rate of
2.6L/(min�m2), the amount of air leakage used in the experiments was set at this
level at most.

In the MCM test, a pipe with an inner diameter of 4mm penetrated the vapor
barrier of the test wall close to its wood frame while maintaining airtightness and
represented a point defect in the vapor barrier (Figure 1(a)). Humidified indoor air
(approx. 50% RH) was blown through the pipe at average rates of 1 and 2.5L/
min. Each in-blow phase with a different location for the air outflow lasted around
2 days, and the structure dried for the same period between the in-blow phases to
minimize its wetting.

The first method employed to create air exfiltration in the MCON1 test is called
passive convection, which included a variable PD across the test walls that causes
air ingress into the warm sections of the walls depending on their airtightness. A
small defect in the vapor barrier next to the wood frame served as a path into the
wall (Table 3). In phases 1–5, the defect was a vertical cut of 10mm (Figure 2(b)).
Starting from the second phase, the indoor chamber was humidified. In the third
phase, a fan was used to increase the PD over the wall to 5.5Pa, and the

14 Journal of Building Physics 00(0)



Table 1. The hygrothermal properties of the wall materials.

Material r (kg/m3) l (W/mK) m (2) Sd (m) L, 1026

(m3/m2sPa)a
qv75Pa

(L/s.m2)b

GWc 23.7 0.033 1.3 250 (200 mm) 19
GW (WBd) 68.6 0.031 1.3 300 (50 mm) 23
GW’s
WB-facinge

0.02 2 0.16

SWf 30.9 0.036 1.3 500 (200 mm) 38
SW (WB) 96.4 0.032 1.3 364 (55 mm) 27
SW’s
WB-facingg

0.015–0.04 \10 \0.75

Drywall 810.9 0.21 8 0.2 (12.5 mm) 0.015
EGSh 759.2 0.21 8 0.2 (9.5 mm) 0.015
Wood frame 513.5 0.129–0.191 7.9–289.7 7E 2 11 (50 mm)i 5E 2 6
WFBj (WB) 280 0.053 4.6 0.6 (25 mm) 0.044
LDPEk foil
(vapor barrier)

76.5 4E 2 12 (0.2 mm)l 3E 2 7

Wall
(test name)

Insulation U value
(W/m2K)

Sd, vapor control
layer (m)

Sd, materials
outside
wood frame (m)

HI (MCON1) SW 0.129 76.5 0.1
BL (MCON1) SW 0.230 76.5 0.07
HI1 (MCON2,
MCM)

GW 0.124 76.5 0.1

HI2 (MCON2) GW 0.124 0.3–25 0.1
HI3 (MCON2) GW 0.124 76.5 0.17
BL2 (MCON2) GW 0.216 (0.196m) 76.5 0.07 (0.185m)

The m value denotes the water vapor diffusion resistance factor, and L represents the air permeability

coefficient. The airflow rate Qv75Pa is determined at 75 Pa PD from the value of L. The U values of the walls

and the Sd values of the vapor control layers and external layers are presented in the bottom part of the

table.
aThickness of material layer is shown in parenthesis.
bThe maximum values for wind barrier products at 75 Pa according to the Finnish Ministry of Environment

(2002) is 0.75 L/sm2 and for continuous air barriers, the tightness limit is 0.02 L/sm2 according to ASHRAE

(2017).
cGlass wool.
dWind barrier.
eFiberglass-based cardboard.
fStone wool.
gDuPont� FireCurb breather membrane.
hExterior gypsum sheathing.
iPinus sylvestris sapwood in the radial direction (Tanaka et al., 2015).
jWood fiber board.
kLow density polyethylene.
lBouma et al. (1997).
mAfter installation of WFB.
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dehumidification of the outdoor chamber was started. In the fourth phase, the
indoor RH was raised to over 50%. In the fifth phase, the PD was raised to 10Pa.
In the sixth phase, the line cuts in the vapor barriers were enlarged to square holes
of 13 1 cm. A circular outlet hole with a 10-mm diameter was also added to the
EGS (Figure 2(c)) to decrease the airtightness of the board and promote airflow
toward the outdoor air. The outlet hole that was located slightly to the side of Point
B (Figure 2(c)) ensured that the air flowed over the surface of the exterior sheathing
before leaving the wall. The exfiltration path used increased the moisture in the insu-
lation space compared to the cases in which the outlet was located opposite to the
inlet (Ojanen and Kumaran, 1995). In Phase 7, the PD and RH were lowered to
0.9 Pa and below 40%, respectively. In the eighth phase, the PD was raised to 10Pa,
and the facing of the exterior sheathing of the HI wall was impaired by a similar
defect as that in the EGS, which had been sealed at this point.

The second method in the MCON1 test, which was similar to the approach used
in the MCM test, is called active convection, in which humidified air (Figure 2(d))
was blown directly over the cold side of the walls (Figure 2(c)). This method was
used for phases 9–16 and represented a situation in which the thermal insulation
does not fill the framing cavity properly or fills it with low hygroscopic materials.

Table 2. Wall compositions listed from the outermost to the innermost layers in the MCON1,
MCON2, and MCM tests (Table 1 presents which test includes the walls).

HI wall (22%) BL wall (1%) HI1 and MCM walls (20%)

55 mm wind barrier (WB) stone
wool (SW)

9.5 mm exterior gypsum
sheathing (EGS)

50 mm WB glass wool (GW)

200 mm SW + 48 3 198 wood
frame

175 mm SW + 48 3 175
wood frame

200 mm GW + 48 3 198
wood frame

0.2 mm polyethylene (PE) foil 0.2 mm PE foil 0.2 mm PE foil
50 mm SW + horizontal 48 3 48
strapping

13 mm drywall 50 mm GW + horizontal
48 3 48 strapping

13 mm drywall 13 mm drywall

HI2 wall (20%) HI3 wall (20.5%) BL2 wall (1%, 10% in phases
4–7)

50 mm WB GW 50 mm WB GW 25 mm wood fiber board
(phases 4–7)

200 mm GW + 48 3 198 wood
frame

9.5 mm EGS 9.5 mm EGS

0.2 mm moisture-adaptive
polyamide foil

200 mm GW + 48 3 198
wood frame

175 mm GW + 48 3 175
wood frame

50 mm GW + horizontal 48 3 48
strapping

0.2 mm PE foil 0.2 mm PE foil

13 mm drywall 50 mm GW + horizontal
48 3 48 strapping

13 mm drywall

13 mm drywall

The G value, determined by equation (1), is presented in the brackets.
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These results were compared to those of the other tests in which the air in-blow was
directed to the warm sections of the walls. A precise amount of airflow (Table 3)
was provided using a rotameter, whereas, with passive convection, the predeter-
mined flow rates could change, for example, if the walls were moved excessively.
Another benefit of this approach was that the temperature and RH of the inlet air
could be controlled and measured directly, while a variation in the indoor condi-
tions could cause small errors when the previous method was used. Further, the
closed humidification system also made it possible to monitor the amount of moist-
ure transferred into the test walls.

In addition to the in-blow method, the factors studied were the defects in the
exterior sheathing, the level of indoor humidity, the exfiltration rate, and the out-
door temperature. The PD over the walls was maintained at 8–10Pa during the
active convection phases. In Phase 10, the ME in the inlet air was increased to
3.2 g/m3. In the 11th phase, the hole in the facing was extended through the exterior
wool board. In Phase 12, the outlet hole in the BL wall was reopened. In Phase 13
and 14, the in-blow rate was raised to 2L/min, and the ME was 3.2 or 5.5 g/m3,
respectively. In Phase 14, the outdoor temperature was lowered to 1 8C, while in
Phase 15, the in-blow rate was lowered to 1L/min, and the ME increased to 6.6 g/
m3. The walls dried during Phase 16. Furthermore, Phase 14 was repeated as Phase
17 to evaluate the impact of airflow through the gap between the inlet pipe and the
vapor barrier (Appendix 2). In Phase 18, the air in-blow was stopped to allow the
walls to dry, after which the structures were opened for a visual inspection and MC
measurements (Gann hydromette HT 75). The air leakage rates directed to the wall
areas of 1m2 during phases 1–17 were set to a maximum value of 2.4L/min to cover
typical pressure conditions across the building envelope and were below 7.3–18.9L/
min used by Ge et al. (2019), Kalamees and Kurnitski (2010), and Langmans et al.
(2012). The lateral dimensions of the walls favored a concentrated air leakage and
low airflow rates.

The convection load in the MCON2 test was also achieved through the active
convection method. The RH level in the in-blow air was 50%. The air leakage rates
(Table 4) were similar to those used in the MCON1 test. The in-blow pipes were
inserted through small holes in the vapor barriers to establish a tight contact
between the materials. The inlet pipes penetrated 20mm into the framing cavity
(Figure 3), and thus, the introduction of moisture into the wall corresponded with
the air ingress through a leaky air barrier.

The MCON2 test was divided into seven phases (Table 4). The first phase repre-
sented moisture transfer by diffusion only. The in-blow of air began in the second
phase, with a flow rate of 1L/min. In the third phase, outlet holes were added to
the exterior part of the walls (Figure 3) to create controlled exfiltration paths, which
were verified by the tests using the tracer gas. In the fourth phase, the WFB was
installed in the BL2 wall, while, in the fifth phase, the airflow rate was tripled to
3L/min in the HI walls. In the sixth phase, the outdoor temperature was lowered
from 5.1 to 1.2 8C. In the seventh phase, the drying phase was started by closing the
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in-blow pipes. Finally, the structures were opened for a visual inspection and to
carry out additional MC measurements.

Environmental conditions in the tests. In previous experimental studies on exfiltration,
outdoor temperatures below and over 0 8C has been used. The MCM test wall
(Tables 1 and 2) was assembled in front of a weather room, where the outdoor
temperature was maintained at a low level of around 1.5 8C to enhance the moist-
ure accumulation in the veneer pieces (Appendix 1) while still allowing their rapid
drying during the test. Employing outdoor temperatures of below zero may have
prevented such drying of the veneer pieces (Forest, 1989). The outdoor RH was
maintained between 75% and 85% with a dehumidifier (Wilfa WDH20) controlled
by a separate hygrostat (Trotec BH30). The indoor chamber was chilled with an
air conditioner (Electrolux EXP34U338CW) and humidified (target level 50%
RH) using the system described in Figure 2(a).

The outdoor temperatures in the MCON1 and MCON2 tests were between 0.9
and 7.2 8C (Table 3) and 1.2–5.1 8C (Table 4), respectively. The lowered outdoor
temperature during the subsequent part of the tests worsened the thermal condi-
tions in the walls. This range of outdoor temperatures corresponds to typical tem-
peratures in Finland, as the average annual outdoor temperatures during the years
2010–2019 in Southern Finland (Espoo), central Finland (Jyväskylä), and
Northern Finland (Pudasjärvi) were 6.5, 4.7, and 2.5 8C, respectively (Finnish
Meteorological Institute, 2019). The outdoor temperature was maintained at over
zero degrees to prevent ice formation inside the walls, which could have prevented
moisture adsorption (Desmarais et al., 2000). Temperatures of above zero also
allow for mold growth on wooden materials (Hukka and Viitanen, 1999).
Although subzero outdoor temperatures induce higher moisture accumulation
from air leakages, such temperatures may not be crucial regarding mold growth in
the long term, as HI walls that transmit vapor outward dry quickly when the out-
door temperature is above zero (e.g. Viljanen and Lu, 2019). Temperatures of 25–
30 8C promote the fastest growth rate of various mold fungi (Sedlbauer, 2001) but
prevent the emergence of high RH levels in the exterior parts of walls subjected to
exfiltration. As the outdoor temperatures of 1–5 8C in Espoo, Jyväskylä, and
Pudasjärvi, are linked to outdoor RHs 75%–90%, 65%–95%, and 70%–90%,
respectively, the dehumidification in the outdoor chamber in the MCON1 test was
set to 80% RH. The outdoor chamber in the MCON2 test was not dehumified.
Solar irradiance, which can decrease exfiltration-related moisture risks in south-
facing facades (Forest, 1989; Fox, 2014), was excluded in the tests. As solar irradi-
ance is negligible in Finland during the cold season (e.g. Viljanen et al., 2021), the
results associated with cold weather are applicable for all the directions of the
facade.

In the indoor climate chamber of the MCON1 test, the hygrostat (Trotec BH-
30), whose setpoint for RH was between 40% and 60%, controlled the humidifica-
tion fan without affecting the measured PD across the walls (Figure 2). The indoor
RH was arranged similarly in the MCON2 test, but the indoor air was not
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pressurized. The indoor air was humidified to minimize its drying effect and to
increase the outward moisture diffusion in the HI2 wall. The indoor temperature
was controlled by radiators and was set to 21 8C, which is a typical value for resi-
dential buildings in Finland.

Results

Results from the MCM test

Environmental conditions measured and general remarks. The temperature and RH of
the in-blow and outdoor air were, on average, 22 8C and 48.2% and 1.5 8C and
82.2%, respectively (Figure 4(a)). The ME was about 4.9 g/m3 between the in-blow
and outdoor air matching with the design values of the ME for hygrothermal
design of 4 g/m3 (Kalamees et al., 2006) and 5 g/m3 (Finnish Association of Civil
Engineers, 2012). The lower value of the ME represents maximum moisture supply
in Finnish lightweight detached houses with an annual non-exceedance probability
of 90% (recommended by ASHRAE (2016)), whereas the higher value that repre-
sents current Finnish guidelines is even more on the safe side as a design criterion.
The ME measured was clearly greater than 1.8 g/m3, which is a typical value for
Finnish timber-frame detached houses in the cold season (Kalamees et al., 2006).

The measured MC levels were analyzed together with the absolute change in the
MCs. The latter was calculated by comparing the instantaneous MC values during
the in-blow phases to the average MC at the start of each phase and 3.3 h before it
(average of 10 values). During the 2-day-long in-blow phases, steady state hygro-
thermal conditions were reasonably reached (Figure 4(d) and (e)), and the results
could be used to evaluate the long-term effects of these conditions.

Areas influenced by point defects. The MC changes in the stud were the highest at
points 1–9 (Appendix 2, Figure A1) for the outlet locations 1, 2, and 4 (Figure
1(c)), underlining the outward direction of the moisture and airflow. In addition,
the accumulation of moisture was observed mostly in an area extending 0.2m (or
slightly more) downward from the in-blow height (Appendix 2, Figure A1). The
increase in MC in the wood frame was highest at the in-blow height and decreased
to zero toward the bottom of the frame. A typical increase of 0.6wt% in the MC
of the frame surface during a single load phase corresponded to only 2% of the
amount of the moisture blown into the wall if Point B is used as an observation
point in equation (3). Most of the humidity transferred toward Point C, where, as
equation (5) indicates, the outward drying by diffusion corresponded to 78% of
the input humidity. A semicircular area of the warm side of the exterior sheathing
(points 16, 17, 19, 20, and 23) with a diameter of 0.2–0.3m was affected the most
by the air leakage (Appendix 2, Figure A2). Considering the vapor openness of the
sheathing, the area affected was likely the same size on the cold side of the sheath-
ing, although the number of measurement points for the same was smaller (Figure
5). Thus, the remaining 20% of the input humidity adsorbed into a half-cylinder-
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shaped part of the exterior wool with a diameter of 0.2m based on the average RH
increase at Points B and C and accounting for the sorption isotherm of rigid GW
(Viljanen and Lu, 2019). The adsorption of humidity into the soft MW was low, as
the slope of the sorption isotherm is zero when the RH is 58%–75% (Figure 4(d)).
The local moisture accumulation on the cold side of the structure that is opposite
to the leakage position is consistent with the results obtained by Derome (2005),
Forest (1989), and Lam (1996).

Impact of outlet location on moisture accumulation. During the outflow from Outlet 3,
the highest MC increase in the frame was observed at points 6, 8, 9, 10, 11, and 13,
indicating that the air and moisture flows turned downward. However, the flow
still affected the MCs in the exterior board but slightly less as compared to the
MCs when Outlet 2 was used. Similarly, the MC changes in the exterior board and
RHs at Points B and C (Figure 4(d)) for Outlet 1 were slightly below the values
measured for Outlet 2, which suggests that having an outlet closer to the inlet loca-
tion increased the outflow of humidity from the structure. The results show that
having an outflow located far away from the inflow position leads to the highest
level of moisture accumulation in the studied assembly, as observed by Ojanen and
Kumaran (1995) with BL walls. The least amount of accumulated moisture can be
expected when the outlets are located directly opposite to the interior leakage
point. Based on the results of Ojanen and Kumaran (1995), the impact of the out-
flow location on the moisture accumulation is even greater in structures that have
low G values. In the phase where Outlet 4 was open, the MCs did not increase near
the outlet, and the tracer gas measurement implied weak outflow (10ppm), indicat-
ing that the airflow had no direct route to the adjacent framing cavity.

Impact of insulation installation and heat convection. With careful insulation installation,
the RH on the warm side of the exterior MW board was 67.5% on average during
the convection loading phases, which was not greatly affected by increasing the in-
blow rate. With imperfect insulation installation, the air gaps spread the exfiltrating
air vertically, thus decreasing the rise of RH at Point B to only 62% regardless of
the outflow position. Similarly, the RH, on average, decreased from 90% to 86.5%
at Point C. The increased spread of humidity also explained the MC changes in the
exterior wool (Figures 4(c) and 5; Appendix 2, Figure A2). On the cold side of the
exterior sheathing, the distribution of the MC changes, which was previously
decreasing in the lateral direction, stabilized between points 34 and 39 (Figure 5).
Based on the results at points 18 and 21, and the fact that the air cavity extended to
points 16, 19, and 22 (Appendix 2, Figure A2), the stabilization of the MCs was
found to be limited by the boundaries of the air gap. At Point B, the RH was well
below the RH threshold for mold growth regardless of the insulation installation;
but at Point C, the conditions were almost the same as the critical RH (Figure 4(d)
and (e)). Furthermore, regardless of the insulation installation method, the in-blow
rate of 2.5L/min increased the RH at Point C above the threshold value of mold
growth, which indicates that Point C was sensitive to air leakage.
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Figure 4. (a, b) The environmental conditions in the indoor and outdoor chambers during the
MCM test, (c) the MC in the frame and in the exterior insulation (dotted lines), (d) RH and AH
at Point B and C and in the outdoor air, (e) temperature in the frame, at Point B and C, on the
warm face of the exterior wool, and in the outdoor air; the air in-blow phases at the top are
named with the corresponding outlet number (e.g. Three denotes the air in-blow phase during
which Outlet 3 was open).
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The higher MC changes at points 27–30 and 40 in the case of an imperfect insu-
lation installation suggested that the contact between the exterior wool and the
frame was less airtight than before (Figure 5; Appendix 2, Figure A2). The re-
tightening of the fasteners of the exterior wool in Phase 1P** did not affect the MC
changes, which were more sensitive to the method of installation used for the cavity
insulation. The contact between the exterior wool and the frame was measured after
the entire test using feeler gauges (0.1–1mm) that were placed between the said
materials. The most air-open route between the two framing cavities was located
13–30 cm below the in-blow height, as a 0.6-mm-thick feeler gauge fit between the
sheathing and the frame only at this spot, where the distance between the sheathing
fasteners (0.7m) was longest. The vertical air gaps allowed the air to flow into the
adjacent framing cavity through the least airproof contact area, highlighting the
importance to install cavity insulation properly to prevent exfiltration. In addition,
the use of a fastener spacing of 0.3–0.4m is recommended, which allowed a gap of
only 0.1–0.2mm between the materials instead of the typical 0.4–0.6m spacing
(Paroc Group Oy, 2019; Saint-Gobain Finland Oy/ISOVER, 2021).

Outside the facing of the MW sheathing, the test wall did not include vertical
ventilation strapping, which typically uses 223 100mm wood boards and extends
25mm from the side of the wall frame. Covering 16% of the membrane on the inlet
side of the wall with such boards may affect the drying ability of the wall in a semi-
circular area, with a radius of 0.2m, located opposite to the inlet position. This
may also be true for the air-sealing paste (Sd value 13m) used at the measurement
points 34–39, which covered 40% of this area. However, the drying ability remains
virtually unaffected due to the low Sd value of 0.02m of the membrane and the
water vapor diffusion resistance factor of 1.3 of the MW.

The temperature at Point B increased by approximately 0.75 and 2 8C for the air-
flow rates of 1 and 2.5L/min, respectively (Figure 5). This increase in temperature
compensated for the impact of the higher in-blow rate on the RH at Point B. With
an improper insulation installation, the temperature increases were 0.6 and 1.6 8C,
respectively, which indicates more effective convective heat transfer. At Point C,
the temperature changes were of 0.15–0.2 8C, with airflows of 2.5L/min. The calcu-
lated heat flux by conduction from Point B to Point C was equal to the combined
convective and radiative heat fluxes on the outer surface of the wall, which indicates
that convection was not involved in the heat transfer through the exterior wool,
and, thus, the air flowed laterally over the warm face of the exterior wool. With a
poor insulation installation, the temperature at Point B during the drying phases
was 0.3 8C higher than that obtained with proper insulation, which explains a local
increase of 6% in the calculated heat flux close to the stud.

The initial MC increase observed during the phases with a 1-L/min in-blow rate
decreased rapidly at Point 36 in the phases with an in-blow rate of 2.5L/min
(Figure 5). Further, the timing of this coincided with the temperature increase at
points B and T1 (Figures 4(e) and 5). At Point T1, the temperature rose to become
close to or more than the dew point of the leakage air, which illustrates the connec-
tion between an increase in the exterior temperatures and a reduction in the

24 Journal of Building Physics 00(0)



moisture accumulation behind the facing of the MW sheathing opposite to the
leakage point. This effect is restricted to a circular area with a radius of 0.1m in
the case of a poor insulation installation; but in the case of proper installation, the
radius was 0.3m (Point 33 and 39), as the convective heat transfer was smaller.

Results from the MCON1 test

Environmental conditions measured and insulation installation. The indoor temperature
varied between 20 and 25 8C, while the outdoor temperature was 5 8C at first and
was later reduced to 1–2 8C (Figure 6(a)). After the first two stages, the indoor RH
was between 30% and 60%, while the outdoor RH was close to 80%. At the inlet,
the air temperature coincided with the indoor temperature, while the RH was
mostly 50%. The ME between the indoor and outdoor chambers varied between 0
and 10 g/m3 (Figure 6(b)), fluctuating above and below both the typical indoor
ME level of 1.8 g/m3 and the design values of the indoor ME of 4 and 5 g/m3 in the
cold season. The ME between the in-blow and outdoor air was the same as it was
between the chambers until Phase 16, at which point the structures dried. After the

Figure 5. The absolute change in the MCs on the warm side of the facing of the MW sheathing
during the in-blow phases of the MCM test. The temperatures at Point B and C also include the
period before the in-blow. The numeric values indicate the location of the measurement points
relative to the origin located at the in-blow.
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test, the dismantling of the walls revealed that the thermal insulation filled the
framing cavities fully, which was achieved by using two insulation boards instead
of a single relatively thicker board.

Effect of impaired airtightness on exfiltration. The stable DTs (Figure 7(c)) observed
during phases 1–5 suggest that the air leakage through the cuts in the vapor bar-
riers was low. In the middle of Phase 3, the dehumidification of the outdoor air
lowered the RH at the exterior side of the walls (Figure 7(b)). In Phase 5, the AHs
increased at Point A due to the indoor air being more humid and the PD rising,
but they were distinctly below the indoor AH. The RHs for the external sections of
the HI and BL walls remained at a safe level of 65%–82%. In Phase 6, the tem-
peratures and AHs rose to become almost equal to the indoor levels at Point A,
which implies an increased airflow rate that was enabled by the enlarged defects
and the hole in the EGS. The DTs increased in both walls at Point B and D, which
supports the previous conclusion. The RH rose to 98%–100% at Point BL(B) and
BL(D) during the 19–30-day period, and condensation may have formed at Point
BL(D). The rise of the RH was slower than that reported in the numerical study of
Ojanen and Kohonen (1989), where 100% RH developed in just a few days. In
their study, a low-G wall was exposed to an indoor air leakage rate of 7.2L/min per
meter of wall, the indoor RH was 60%, and the outdoor temperature was 222 8C,
which could explain the faster condensation. The MI value approached three at

Figure 6. The measured environmental conditions during the MCON1 test: (a) temperature
and RH and (b) the ME between the inlet and outdoor air and between the indoor and outdoor
air in addition to the PD across the walls.
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Point BL(D) during the 35 days of Phase 6 (Figure 7(a)). The RH values in the HI
wall at Point B and D presented a similar trend but remained at a safe level.

In Phase 8, the low airflow rate continued in the BL wall, as can be seen from
the DT results, as the sealing of the EGS nullified the effect of the increased PD.
Steady RHs of 80%–85% were obtained, and the MIs decreased at the exterior side

Figure 7. The results from the MCON1 test: calculated (a) MIs, (b) HDDs, (c) DTs, and
(d) dew point temperatures of the indoor and in-blow air. Measured (b) RH, (d) temperature
and PD. The duration of the MCON2 and MCM tests is illustrated in subfigure (c).
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of the BL wall. The importance of exterior airtightness, as indicated by Kalamees
et al. (2017), was confirmed by these results. The DTs showed that a hole in the fac-
ing of the MW sheathing increased the exfiltration rate only slightly, and this had
no clear effect on the RHs at the cold side of the HI wall.

In Phase 11, the hole in the facing was extended through the rigid MW board,
which impaired the airtightness of the board and created a more direct air and
moisture flow toward the outdoor chamber. Outdoor temperature increased by
2.5 8C (outdoor temperature was manually adjusted only in this test) and outdoor
RH by 2%. Therefore, at the cold side of the walls, the temperatures increased
(Figure 7(d)), and the RHs mostly slightly decreased. These results implied that the
air permeability coefficient of rigid MW (4E2 4m3/m2sPa) can play a major role
in reducing the exfiltration rate through a wall.

Impact of the humidity level of the indoor air. In Phase 9, the RH levels decreased at all
the points because of the low inlet RH of 38% (ME 0.9 g/m3). The leakage rate
was higher than 1L/min in the HI wall based on the DT, which was likely caused
by the joint between the inlet pipe and the drywall that was sealed in an airtight
fashion after Phase 9. When the inlet RH was increased to 51% (ME 3.2 g/m3) in
Phase 10, the RH levels rose to 93%–98% at the cold side of the BL wall in 1week,
and the DPD values lowered to 23.5 8C on average. The high RH raised the MI
values for these points, but the MIs remained acceptable in the HI wall. For the
first time during the experiment, the RH at Point BL(B) was more than the RH at
Point BL(D) (by 4%), as the pipe being located near Point BL(B) reduced the lat-
eral spread of humidity. The DT at Point BL(D) was lower than that in Phase 6,
when the air flowed inside the porous MW to reach Point BL(D). At Point BL(B),
the RH was almost equal in Phase 6 and 10, which caused a similar rise in the MI
during these phases.

Impact of exfiltration rate. In Phase 13, the doubled exfiltration rate slightly increased
the RH at Point BL(D) and HI(C). This small effect is evidenced by the MCM test.
The slight increase in RH only at these points can be explained by the increased
transfer of heat to Point B. In Phase 15, the increased humidity content (ME of
6.6 g/m3) in the leakage air raised the RH to 85% at Point HI(B) even though the
flow rate was halved. This emphasizes the significance of the DPD value for
the hygric conditions compared to the exfiltration rate. The MI values reached the
maximum level of 6 at the cold side of the BL wall.

Influence of outdoor temperature and critical point in the HI wall. The RHs at the cold
side of the walls rose before Phase 12, as the outdoor temperature was decreased.
Reopening the hole in the EGS in Phase 12 did not affect the RHs of the BL wall.
At the end of Phase 11, the RH at Point HI(C) increased to almost 90%, and, for
the first time in the experiment, the MI value also increased slightly. Further, the
RHs remained unchanged on the warm side of the MW sheathing. The hole in
the EGS resulted in a rise in outdoor temperature, which corresponds to 70% of
the temperature increase caused earlier by the hole in the exterior MW sheathing.
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The outdoor RH, however, remained unchanged, and the humidity transferred by
the leakage air continued to accumulate inside the BL wall, which coincided with
the DPD values of 23 to 24 8C at the cold side of the wall.

In Phase 14, the outdoor temperature was lowered from 6.5 to 1.3 8C, which
raised the RH at all points on the cold side of the walls. The elevation of the DT at
Point BL(B) probably resulted from condensation, as indicated by the RH of over
100% at this point and the rise of the RH close to 100% at Point BL(D). At Point
HI(C), the RH was over 95%, as in the MCM test Phase 4*, but the unchanged
DT indicated that condensation did not occur. At this point, the MI continued to
increase but remained below 1, and the DPD value decreased to below 26 8C for
the first time. The RHs at the other points in the HI wall were at a safe level.

The occurrence of the highest RH on the warm side of the facing of the MW
sheathing indicates that this is certainly a critical area regarding moisture accumu-
lation and the damage caused by it. The vapor permeable insulation within and
outside the framing cavity effectively restricted interstitial condensation, and the
foil with Sd values of 0.015–0.04m is obviously the only part in the wall where a
high RH or condensation could occur. However, in the current test, the safety mar-
gin of the wall for exfiltration was not exceeded.

Drying after moisture loading. In Phase 7, the temperatures at Point A and the DTs at
the exterior side returned to the level they were before Phase 6. At the cold side of
the walls, the reduced airflow started to reduce the RH values. The decrease of RH
was faster in the HI wall, which implied that a greater amount of moisture accu-
mulated in the BL wall in the previous phases. Based on the results obtained by
Fox (2014), a more hygroscopic cavity insulation, such as cellulose, may extend the
drying phase compared to the drying periods observed for the BL wall, which may
increase the probability of moisture damage in HI walls.

In Phase 16, the inlet air with 13% RH decreased the RH of 100% at Point
BL(B) by more than 10 units in 4 days, whereas, at Point HI(B), the RH of 82%
declined by more than 20 units in 10 h. As the difference between the exterior Sd
values of the structures was insignificant, and the drying-out ability of the HI and
BL walls in general is at the same level (Viljanen and Lu, 2019), the results con-
firmed the earlier conclusion of higher moisture accumulation in the BL wall. This
was also verified by the MC measurements carried out for the wood frames 22 days
after the test before the maintenance of the environmental conditions was stopped.
The MC at Point BL(B) was 10–11wt%, whereas that at Point HI(B) was 9wt%.
The highest MC of 12wt% was measured at the outer face of the stud in the BL
wall. The MCs were higher on the side of the stud that was subjected directly to
the airflow.

Risk of mold growth opposite to the air leakage. The moisture accumulation in the exter-
ior part of the BL wall was confirmed via a visual inspection after the test; mold
growth was observed on the interior surface of the EGS. The mold covered about
60% of the damaged area, the height and width of which were both 0.2m (Figure
8). This area had an MI value of 5, and it likely delimited the part of the EGS with
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the highest moisture levels during the test. Mold growth was not observed on the
wood studs of the walls, which indicates that planed timber is not as susceptible to
mold growth as EGS. The observation of mold formation in the BL wall is in line
with the local moisture accumulation on the sheathing board observed by
Desmarais et al. (2000). The test setup of this study represents a kind of ultimate
situation where humidity has a direct path to the exterior sheathing, whereas some
leaky joints, such as the joint between the external wall and inserted floor
(Kalamees et al., 2017), may provide a meandering path for the airflow, which
decreases the probability of mold growth compared to a direct flow path.

Molds do not typically grow in temperatures below 0 8C (Hukka and Viitanen,
1999; Sedlbauer, 2001); thus, considering the duration for which Finland experi-
ences outdoor temperatures between 0 and 5 8C (Finnish Meteorological Institute,

Figure 8. Mold growth was observed on the interior face of the EGS after the MCON1 test.
The wood frame was located between the vertical lines, the inlet pipe was located opposite the
spot marked with the letter ‘‘X,’’ and the outlet hole was located next to the letter ‘‘O.’’ The
black ethylene propylene diene monomer (EPDM) sealant is visible at the edges of the EGS
piece, whose outer surface was additionally taped. The EGS piece was removed at the end of
Phase 3 for probe installations. The board was kept intact before that point.

Figure 9. The observed MI development in the BL wall placed in the season whose
temperature corresponds to the outdoor temperature used during the MCON1 test.
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2021b), a small amount of mold (MI value 2–3) may develop during autumn or
spring on very sensitive building materials if a low-G wall is subjected to a signifi-
cant amount of air exfiltration from a point defect (Figure 9). This risk seems to be
slightly higher in South Finland, where the outdoor temperature is between 0 and
5 8C for 61 days of the year, while, in North Finland, such temperatures occur for
49 days. By selecting less vulnerable exterior sheathing materials, the MI values can
be kept below 1 (Figure 9). In winter, the MI levels decrease due to subzero tem-
peratures, and in summer, the high temperatures at the exterior section of a wall
prevent mold growth, based on the measurements in the ventilation cavities of
exterior walls (Viljanen et al., 2021).

Results from the MCON2 test

Environmental conditions measured and insulation installation. The indoor and inlet tem-
peratures were between 19.5 and 24 8C (Figure 10(a)). The outdoor temperature
was 5 8C at first and 1–1.5 8C during the last two phases. The RH of the indoor air
first varied between 30% and 55% and, starting from the middle of the second
phase, between 50% and 60%. The inlet RH was mostly between 45% and 53%,
and the inlet ME was about 4 g/m3, corresponding to the lower design value.

Figure 10. The measured environmental conditions during the MCON2 test: (a) temperature
and RH and (b) the ME between the inlet and outdoor air and between the indoor and outdoor
air in addition to the PD across the walls.
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However, it was increased in Phase 6 to 6 g/m3 (Figure 10(b)). Further, the outdoor
RH varied between 70% and 90%. The PD over the walls was mostly under 1 Pa,
with the outdoor chamber having a lower amount of pressure. After the test, it was
observed that the insulation boards did not fill the framing cavity of the HI walls
completely (Figure 3(a)), as the corners of the 200-mm-thick insulation rounded
when pressed against the exterior wool during the installation process. The impact
of the observed installation defects on the hygrothermal behavior has been evalu-
ated in the MCM test. The probes slightly hindered the installation of the wool
boards, which is a challenge that has also been recognized by Li et al. (2007).
Referring to the observations from the MCM test, it was found that the vertical air
gaps affect the results of the HI1–HI3 walls, but their effect is not decisive in the
context of hygrothermal conditions and the risk of mold growth on the cold side
of the wall.

Effect of exterior mineral wool boards on performance. In Phase 1, RH was 67% at
Point B in the BL2 wall, while that in the HI walls was 54%. Both these values are
well below the mold growth threshold of 80% (Figure 11(b)). In addition, the MCs
remained stable (Figure 11(b)). In Phase 2, the airflow of 1L/min increased the
RH at Point HI3(B) and BL2(B) to 61% and 75%, respectively, in 9 h. At the end
of the phase, the RH at Point BL2(B) had reached a value of 90%. The MC of the
wood frame at Point BL2(B) started to increase at the beginning of the phase but
remained unchanged at Point BL2(B2). This point was 45 cm below the inlet,
where RH followed the level of RH in the outdoor air, reaching a value of 80%
during Phase 2. The hygric response to humid exfiltrating air was local, and the
area affected was similar to the area observed in the MCM test. At the end of
Phase 2, the MI at Point BL2(B) increased to 0.2–0.4 in the sensitivity classes 1
and 2 (Figure 11(a)). As the changes in the RH were small in the HI1 and HI2
walls, their performance was superior to the HI3 wall. At the interface between the
2MW boards, the moisture transfer was faster than that at the interface between
the MW and a more hygroscopic gypsum board with an Sd value of 0.07m.

In Phase 2, the MC of the wood frame also increased for all the HI walls at
Point B, which suggests that the drying ability was insufficient to dehydrate the
humidity transferred by exfiltration. However, in the HI walls, the rate of MC
increase was lower than that in the BL2 wall. At all points with equal exterior Sd
values, the MC results indicated that the HI walls distributed the humidity trans-
ferred by exfiltration more effectively than the BL2 wall, which could be partly
explained by the vertical gaps in the HI walls. In the BL2 wall, moisture mainly
accumulated at the cold side of the frame and, likely, on the EGS. The increase of
the indoor RH from 40% to 60% in the middle of Phase 2 was not observed at
Point B, which implies that both the vapor barriers and the moisture-adaptive foil
of the HI2 wall performed well. The Sd value of the PA foil was 4.5m at the time
(Appendix 2, Figure A4).

In Phase 3, the added outlet holes did not significantly affect the RHs at Point
B, but they stopped the slow increase in the MCs of the HI walls. The stable MCs
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suggested that the humidity flux to the outdoor air was based on both diffusion
and convection, as observed in the MCON1 test. The HI3 wall presented the high-
est MC among all the HI walls of almost 14wt%. The continuous increase in the
MC of the BL2 wall can be explained by a greater accumulation of moisture and a
lower transfer of humidity to the outdoor air compared to the walls with high G

values.

Consequences of thermal conditions on the cold side of walls. In the first phase, the effects
of the higher U value and the cold bridge at the stud resulted in only 0.25–0.45 8C
higher temperature at point BL2(B) as compared to Point C of the HI walls. In
Phase 4, the installation of the WFB to the BL2 wall induced a large difference in
thermal performance, as the DPD at Point B increased from 26 to 23 8C (Figure
11(c)), the DT increased from 0.07 to 0.2 (Figure 11(d)), and the temperature rose
from 6 to 8 8C, while the RH declined from 94% to 85%. The increase in the MI
slowed down, and the MC of the stud started to reduce at Point BL2(B) as the
moisture accumulation in the wall ceased (Figure 11(b)).

In Phase 5, the tripled airflow rate in the HI walls increased the temperatures at
Point B by 1.5 8C and the AH by 0.5–1 g/m3. As expected from the two previous
tests, the changes in the RH were small. The increases in temperature, together
with the ones from the MCM test and the second phase of the MCON2 test, sug-
gest that the temperature increase at Point B is not linearly dependent on the air-
flow rate, as the increase of temperature per volume flow grows when the leakage
rates are raised. The temperature increase was 0.3 and 0.5 8C/(L/min) if the flow
rates were taken as 1 and 3L/min, respectively. In the HI walls, the DPD values at
Point B exceeded 0 (Figure 11(c)), which ceased the slow increase of the MCs
entirely. Starting from the fifth phase, the HI2 wall presented the lowest RH at
Point B of the test walls, as the sensor was moved 8 cm below its original position
and closer to the outlet in the lateral direction. The tripled airflow rate increased
the temperature at Point HI2(A) to the level of the indoor air, lowering the RH,
which increased the Sd value of the vapor retarder to 12.5m. Thus, heat convec-
tion may also improve the moisture safety inside the walls by reducing the perme-
ability of the moisture-adaptive foils.

In Phase 6, the temperatures of the outer parts of the walls reduced, as the out-
door temperature was lowered to 1.2 8C. In the BL2 wall, the temperature decreased
3 8C at Point B, whereas, in the HI walls, the decrease was only 2 8C. At Point B,
the RH of the BL2 wall rose to 97%, and while that of the HI3 wall rose to 83%.
As the RH rose to 69%–75% in the other HI walls, the EGS caused the RH at
Point HI3(B) to increase by at least 11 units. This supports the earlier conclusion
that installing a rigid board inside the exterior insulation weakens its performance.
An exterior rigid board may create a moisture risk during cold weather, especially
if it is more vapor-proof than an EGS or its R value is low. The MC at Point
BL2(B) started to increase again because the DPD lowered from 22.5 to 26 8C
(Figure 11(c)). As observed in the other two tests, the moisture risks in the BL2 wall
were local, as the MC, RH, and MI levels at Point B2 were acceptable. The tripled
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Figure 11. The results from the MCON2 test: the calculated (a) MIs , (c) DPDs, (d) DTs and
HDDs with the measured (b) RH and MC at Point B. Additional results are presented from
points B2, C, and C2.
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airflow in phases 5 and 6 led to an increase in the MEs relative to the outdoor air at
Point C, from 0.1 to 0.3 g/m3, and the RHs were close to 93.5%, as they were dur-
ing the MCM test. Despite the minor increase in vapor content at Point C/C2 in
the HI walls, the MI values remained zero; however, at Point HI2(C), the RH rose
to slightly exceed the outdoor level, and the RH at Point HI2(C2) was the highest
(90%) among all the HI walls. It is obvious that an air leakage combined with
vapor diffusion may slightly aggravate the rate of moisture accumulation even in
structures that have a vapor permeable facing on the sheathing. Thus, decreasing
the vapor resistance of the interior vapor control layer to increase the inward drying
ability of walls with sufficient exterior thermal resistance, as suggested by Trainor
et al. (2016), should be evaluated on a case-by-case basis. For example, the Sd value
of the PA foil in the HI2 wall in the fifth and sixth phase (12.5m) is too low if the
indoor RH is above 50%. The conditions within all the HI walls remained accepta-
ble and were compatible with the simulation results reported by Kalamees and
Kurnitski (2010). These authors concluded that a significantly higher leakage rate
of 12L/(min�m) is needed for moisture to condense on the interior face of the
sheathing, which means that, in the current study, a higher local leakage rate could
have led to more serious consequences.

Structural endurance for short-term air leakages. In Phase 7, the temperatures at Point B
practically stabilized in 10 h after the airflow had been stopped. Based on the RHs
at Point B, the drying of the HI1 and HI2 walls took less than 2 days, the drying of
the HI3 wall took 5 days, and the drying of the BL2 wall took 10days. During this
phase, the amounts of water vapor transferred by diffusion from Point B to the
outdoor air through a square of 400 cm2 were 11.2, 5.6, 2.6, and 2.5 g in the BL2,
HI2, HI3, and HI1 walls, respectively. The values were calculated using equation
(5). Among the HI walls, the amount of dried moisture was the highest in the HI2
wall as a consequence of higher diffusion from the indoor air. At Point BL2(B), the
MI values remained at 3 and 1 with sensitivity classes 1 and 2, respectively. As the
sensitivity class for the cardboard surface of an EGS is 1 (Tuominen et al., 2019),
visible mold formation could be possible in the BL2 wall, although this was not
observed during the visual inspection carried out for the dismantled structures
2 days after the test. The MI values based on this model should apparently be more
than three to reliably indicate a severe mold formation, such as the one presented
in Figure 8. At Point BL2(B), the MC level was 12wt%, while it was 10wt% on
the other side of the frame in the adjacent framing cavity. Similar to previous tests,
the airflow was found to affect the MC of the surface of the wall frame to a greater
extent, which the leakage was directed toward.

Several reasons influence the fact that mold developed in the BL wall but not in
the BL2 wall. The total amount of moisture transferred into the structures was cal-
culated using equation (3) but while disregarding the moisture adsorption or trans-
fer at the exterior structure by omitting the AH term from the observation point.
During the active convection in the MCON1 test, both walls gained 1.8 kg moist-
ure, whereas, in the MCON2 test, the HI walls received 3.6 kg of moisture, while
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the BL2 wall received 2 kg. The amount of moisture transferred to the BL2 wall
during 89 days before the installation of the WFB was 1.2 kg, which is less than the
that transferred by the active convection in the MCON1 test. The lower RH and
the absence of condensation in the BL2 wall can also be affected by the increased
G value during the test, a lower maximum air leakage rate, a difference in the inlet
pipe location, a slightly more hygroscopic GW compared to SW, and a briefer test.
The BL2 wall, with a 1% G-value, withstood the convection loading for 89 days,
which is much longer than the season of 18–34days that promotes mold growth in
Finland (Figure 9).

The DPD method and its validation for building physics

Validation of the method. The dependence of the rate of change of the MC of a wood-
based material on the DPD value was evaluated based on 13 cases, in which a light-
weight wall structure is subjected to concentrated air leakage (Table 5). The results
from the MCM test were not included in Table 5, as they represent values at the
surface of the wall frame, while the method considers those deeper in a material.
The lower the negative DPD value is, the higher the rate of the MC increase in a
studied material (Figure 12). The coefficient of determination (R2) for the linear fit
in Figure 12 was 0.86. Thus, the rate of moisture accumulation from concentrated
air leakages is reasonably explained by the DPD value. With close to zero DPD val-
ues, the rate of the MC increase is limited. The duration and rate of the airflow are
less relevant in such cases. The DPD value may be as low as 22 8C before the rate
of moisture accumulation reaches a significant level (Figures 11(c) and 12). With a
DPD value of 26.4 8C, the MC of a material increases 3wt% during 30 days, which
already represents an undesirable tendency. A higher rate of moisture accumulation
from a line-shaped leakage path observed by Kalamees and Kurnitski (2010) than
that predicted by the linear fit suggests that the slope of the linear fit between DMC
and DPD has a larger negative value with line-shaped defects.

The effect of variable thickness of the exterior sheathing is considered by the
method in the evaluation of the temperature at the observation point. However,
close to the observation point of the DPD, vapor-proof materials may present
exceptionally high moisture accumulation compared to the linear equation in
Figure 12 if the DPD values are negative (Derome and Desmarais, 2006; Ojanen
and Simonson, 1995). Relatively high moisture accumulation has been observed
already with DPD values of about 22 8C in structures that had exterior foam insu-
lation (Sd value about 10m or more) (Ge et al., 2019). Therefore, in the case of
structures that have such vapor-tight materials at their cold side, DPD values
should remain above zero to ensure that no moisture accumulates in the structure.

Although equation (3) indicates that the rate of moisture accumulation poten-
tially increases with the amount of air leakage, it seems that the DPD value is a
more descriptive factor to this (Table 5). The experiments showed the somewhat
linear correlation between the RH at Point B and the DPD value (Appendix 2,
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Figure A3), which, combined with the fact that wood has approximately a linear
moisture capacity at high RH levels, explains the significance of the DPD value.
The MCM test also showed that the RH at Point B depends little on the outlet
location, which may explain the similarity between the current results and the ones
by Ge et al. (2019), although in their study, the in-blow air returned to the indoor
chamber. The airflow rate, however, restricts the applicability of the method; based
on the computer simulations of Ojanen and Kumaran (1995), the heating effect of
the airflow, starts to reduce moisture accumulation inside a low-G wall when a con-
centrated air leakage rate is above 12.5L/min, and with a flow rate of 25L/min,
the accumulation stops completely. Therefore, the DPD method should not be
used when the leakage rate is well above 12.5L/min, as the method ignores the
heating effect of airflow. Based on the observations from the MCON2 and MCM
tests, with a G value of 20%, a flow rate of already 2.5–3L/min may locally prevent
the accumulation of moisture at the cold section of a wall. However, as the MC of
the whole wall increases in this situation, such airflow rates are still detrimental to
the performance of the wall.

Visualization of exterior thermal conditions through two-dimensional DPD distribution. The
average DPD values obtained for the horizontal sections of the HI1 and BL2 walls
during Phase 3 of the MCON2 test were visualized by solving the two-dimensional
temperature distribution and subtracting the average dew point temperature of the
leakage air from the solution. The average values of the temperatures measured for
the indoor, outdoor, and leakage air were used with the average RH of the leakage
air. The heat transfer coefficients were 7.7 and 25W/m2K for the internal and
external surfaces of the 300-mm-wide domains used in the calculations, respec-
tively. The heat convection from the airflow was not considered. At Point B, the
DPD was 26.6 and 22.6 8C for the BL2 and HI1 walls, respectively (Figure 13).

Figure 12. The correlation of the measured MC increase with the DPD value in the studies
described in Table 5.
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This indicates a risk of significant moisture accumulation only in the BL2 wall,
which is consistent with the experiment. The DPD value at HI1(C) (26.8 8C)
explains the possibility of moisture accumulation on the warm side of the facing of
the MW sheathing if the moisture fluxes exceed the drying ability of the wall.
Further, considering the additional temperature increase caused by the convection
at Point B, the DPD variation on the warm side of the MW sheathing (Figure 13)
explains the higher accumulation of moisture measured at points 34, 37, 38, and 39
in the MCM test. The lower the Sd value of the facing of the MW sheathing, the
lower the susceptibility of MW and this facing to mold growth. In addition, the
possibility of moisture transfer toward the adjacent framing cavity makes a wall
with exterior MW insulation more tolerant against air leakages as compared to a
wall that has an EGS. The simulated DPD was 2 and 0.7 8C below the values
derived from the measurements of the HI1 and BL2 walls, respectively, which sug-
gests that the heat convection increased the temperature at Point B more in the
walls that had a high G value. The even DPD values detected for the EGS of the
BL2 wall support the previous conclusion that the moldy area on the EGS of the
BL wall depicted the most humid area of the board.

The HI1 wall modified by using gypsum boards on both sides of the 300-mm-
thick insulation was also analyzed (Figure 13(c)). The DPD at Point B in the modi-
fied HI1 wall was only 0.24 8C lower than that in the BL2 wall, indicating that the
U value contributes to the moisture accumulation caused by exfiltration less than
the G value. The measurements support the fact that the hygrothermal behavior of
the BL and BL2 walls is extremely similar to the HI walls that are equipped with
similar exterior sheathings. Although having a lower temperature at the outer

Figure 13. The numerical solution of the two-dimensional DPD distributions in (a) the HI1, (b)
BL2, (c) and modified HI1 walls during the third phase of the MCON2 test. The exterior
sheathings are highlighted in yellow (MW) and gray (EGS). The calculation was performed with
the commercial software Comsol Multiphysics 5.5 using the Heat transfer in solids module to
consider the heat transferred only through conduction.
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sections of HI walls is a negative feature, its effect on the hygric performance is
negligible, as Ojanen and Hyvärinen (2008) have also stated.

Selection of thermal resistance for exterior sheathing of the wall. In Finland, moisture
accumulation due to air leakages with a G value of about 1% in terms of outdoor
air is possible for about 4–7months annually. This, combined with the results from
the experiments, supports that the G value should be at least 10%. Based on the
experiments, the DPD value may be as low as 22 8C before significant amount of
moisture accumulation. In winter, in Finnish lightweight detached houses, the
indoor RH is typically at a level of 20%–25%, and, thus, a G value of 10% or 20%
(Southern and Northern Finland, respectively) may be used to restrict the period
during which fast moisture accumulation is possible to 2.5months (Figure 14(a)).
With an indoor RH of 35% representing the design level of ME in the cold season,
corresponding G values are 30% and 40% (Figure 14(b)). The analysis shows that
the duration for which the outdoor conditions that enable air leakages to cause

Figure 14. The dimensioning charts to restrict the duration per year (e.g. 20% = 73 days)
during which fast moisture accumulation from exfiltration is possible by choosing the G value
and considering the indoor RH of (a) 25%, (b) 35%, and (c) 50%. The recommended G values
apply to structures with vapor permeable exterior sheathing (Sd value about 0.1 m). With vapor
tight exterior sheathings, the target value of the DPD should be increased to 0 8C.
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moisture accumulation vary in different climates. With an indoor RH of 50%, the
recommended G values would roughly be 50%–60%. It is obvious that in buildings
with such humid indoor air during the cold season, the importance of interior air-
tightness would be emphasized. Figure 14 shows that moisture does not accumulate
during the summer, as also reported by Lam (1996). Figure 14 does not consider
the spread of humidity and heat convection inside the assemblies, which presum-
ably may increase the DPD values by 2–3 8C (Figure 14(c)), hence incorporating
additional certainty into the G values based on the charts.

Discussion

The observations from the experiments highlighted the several benefits of using
insulating exterior sheathing to improve the functionality of wood-framed HI
external walls subjected to air leakages. As the thermal conditions at the outer sec-
tion of a wall have a key impact on the hygric conditions and probability of mold
growth, it is recommended in Finland to use an insulating sheathing that produces
a G value of 10%–20%. A more detailed analysis showed that advantages of exter-
ior insulation are related to the DPD value. With the G values of 20%, the DPD
values were close to zero, which, combined with the heating effect of exfiltrative
airflow, may increase the DPD values to even above zero obstructing the accumu-
lation of moisture.

The critical location in such a wall locates at the warm side of the facing of the
MW sheathing, as the RH may rise to over 95% there. Despite this, significant
moisture accumulation was not observed, and the MI levels remained within safe
limits. Even though MW is not biodegradable, mold can grow in it, as pointed out
by Hyvarinen et al. (2002), using dust as a source of nutrients (Klamer et al., 2004).
Thus, considering the high RH level, it is appropriate to minimize dust infiltration
into the insulation space using dustproof facings such as the one in the HI wall
(DuPont, 2021). The adequate performance of the HI wall is largely explained by
the observed path of airflow inside the wall, which indicates that the air exfiltration
does not penetrate into the MW sheathing. The humid air moves laterally on the
warm face of the sheathing toward the outflow, and diffusion is the only mechan-
ism that transfer moisture directly through the sheathing. A rigid and airtight MW
is recommended for the parts of the building envelope outside the wall frame. An
additional benefit of such a sheathing is that it can even decrease the sensitivity of
the interior air barrier to defects in terms of air exfiltration. Rigid MW board seems
to retain this property even if there is a small hole on its facing. The hygroscopicity
of such a product is higher compared to soft MW, and, thus, the sheathing may
also act as a moisture buffer against exfiltrating humidity.

With an insulating exterior sheathing, the use of an additional, more rigid
sheathing board may be required to stiffen the wall. As the results show that the
performance of the wall with a combination of EGS and MW sheathing is worse
compared to that of the wall with only a MW sheathing, the use of a more vapor
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tight sheathing on the warm side of the MW sheathing is not recommended. The
results suggest that both PE and PA foils function properly as the vapor control
layer for the wall.

The role of a meticulous construction practices is pivotal. The experiments
showed how even a single 13 1 cm2 sized defect in the air barrier combined with a
small hole in the EGS caused significant exfiltration when there was a pressure dif-
ference of 10Pa across the wall. Exfiltration may occur only if there is an open
path for the airflow that extends through the entire wall. Considering the findings
of Langmans et al. (2012), however, interior airtightness is the primary option to
prevent exfiltration. Another example is the thick cavity insulation typical to HI
assemblies, which is easily prone to installation errors. The vertical air gaps that
may arise in the outer section of the framing cavity increase the heat loss at the
wall frame by 6%, but their effect to the hygric performance is limited. A gap
between the stud and the cavity insulation that allows indoor humidity to transfer
directly to the exterior sheathing, however, aggravates the hygric conditions. To
avoid installation defects, it is recommended to insulate the framing cavity with
about 100-mm-thick insulation boards if the exterior sheathing is already in place.
In this context, it is also important to use a dense fastener spacing (0.3–0.4m) for
the exterior MW sheathing to improve exterior airtightness of the wall by a tight
connection to the stud.

The functionality of the wall with an EGS and a low G value is more case-spe-
cific. RH may increase rapidly to 90%–100% in a wall with a G value of about 1%
subjected to concentrated air leaks of at least 1L/min regardless of the thermal
transmittance of the wall. Slight mold growth may develop in autumn or spring on
the EGS because of such an air leak, but the growth can be mitigated by selecting
more robust exterior sheathing materials (e.g. a gypsum board with a fiberglass fac-
ing (Tuominen et al., 2019)). Another option is to increase the G value. A G value
of 10% already improves the performance of the wall significantly, which coincides
with the results of Ojanen and Kumaran (1995). Without such measures, an analy-
sis about the mold survival over the winter is justified. Such assessments are com-
plicated (Robinson, 2001) but necessary in climates with recurring cold periods
when determining the probability of gradually developing mold damage from air
exfiltration.

The developed DPD-method was found to describe the rate of moisture accu-
mulation from exfiltration rather well, and the method may be applied to three-
dimensional cases and other structures like roofs. The value of DPD may be as low
as 22 8C before significant moisture accumulation occurs. The numerical analysis
showed that the hygric performance of HI and BL walls with a G value of 1% is at
the same level, as the DPD values in the HI walls are only 0.1–0.3 8C lower com-
pared to the BL walls. The other computational analysis showed that it is justified
to use 10% higher G value in Northern Finland compared to Southern Finland to
control the amount of moisture accumulation. The DPD analysis should, however,
be considered as an indicative and general method for evaluating the risk of moist-
ure accumulation from exfiltration and designing the G value. The feasibility of this
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method is based on the challenges associated with the numerical models used for
solving practical problems, as stated by Hens (2015).

In practice, fluctuating speed and direction of wind may rapidly change the PD
across the envelope (Lam, 1996). From a practical point of view, the current experi-
ments with continuous exfiltration loads represent a hypothetical situation, which
may arise, for instance, from a faulty operation of the ventilation system, from the
stack effect in high spaces, or from constantly high wind speeds. The leakage types
studied in the tests were concentrated in terms of defect and flow path, which
should be acknowledged when considering the results. For example, a long leakage
path may generate a different response, as the humidity has less space to diffuse
inside the wall structure perpendicular to the inflow of air. On the other hand, dis-
tribution of the leakage rate used (1–3L/min) evenly to a larger wall area may
affect the performance of the walls. The outdoor temperature in the tests is in the
range of 1–5 8C, while real outdoor temperatures vary constantly and can reach,
for example, temperatures under 220 8C in Finland, which aggravates the accumu-
lation of moisture compared to the current results. However, at the same time, sub-
zero temperatures prevent mold growth. Considering the elevated level of indoor
RH used in the experiments, and the fact that snow infiltration is significantly less
than rain infiltration would be at temperatures below zero, walls that have high G

values are expected to perform well under the moisture loads and weather condi-
tions that occur in practice.

Conclusions

Although the hygric risks associated with exfiltration are well known, in practice,
building envelopes comprises defects that impair their local airtightness and may
compromise the functionality of the structures. The results support the importance
of both interior and exterior airtightness for preventing air exfiltration.
Airtightness is always required for the interior side of walls that have an air-
permeable MW insulation, while the exterior sealing complements the envelope by
helping avoid problematic elements such as leaky junctions. When using MW
sheathing, it is recommended to use rigid mineral wool, which, together with the
airtight facing of the sheathing, hinders air exfiltration. Meticulous installation of
the cavity insulation and the exterior sheathing serve the same purpose.

A thick MW insulation of an external wall alone does not explain the moisture
problems caused by exfiltration because the hygric performance of the outmost
section of the thermal insulation layer is practically independent of the U value of
the wall and depends more on the thermal resistance of the exterior sheathing.
Increasing it enhances the tolerance of faults and helps achieve DPD values of near
zero, as the DPD method that was developed in this study predicts excessive moist-
ure accumulation from concentrated air leakages only when the DPD values are
less than 22 8C. Based on the results obtained, the minimum G value recommended
for a HI external wall is 10%. A wall with a G value of 20% can withstand the
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intrusion of indoor air that has an RH of 50% at a rate of 1–3L/min for more
than 100days without virtually any mold damage. A wall with an EGS comprises
a G value of only 1% and has a low resistance to exfiltration humidity, as diffusion
alone generates rather significant RH levels of 67%–83% at the interior face of
EGS. Visible mold damage developed in such a wall within 40 days with an air
leakage rate 1–2L/min and an indoor air RH of 50%. Thus, an HI wall with an
EGS may perform satisfactorily only if additional insulation is used at the outer
side of the EGS (e.g. 50-mm MW board), a more robust type of EGS is used, or in
the absence of air leakages. The performance of air-permeable walls depends par-
tially on the effect of the outdoor temperature on mold damage. A significant mold
damage from exfiltration may require cumulative mold growth over several consec-
utive spring and autumn seasons, in which case, the survival of mold over winter
and summer in less favorable hygrothermal conditions is a crucial aspect.

This study suggests the following measures to improve the durability and func-
tionality of HI external walls regarding the moisture risks created by exfiltrating
airflows:

� Maintain the indoor RH at a maximum of 40% during the cold season (e.g.
assure adequate ventilation and avoid excessive humidification of the indoor
air).

� Use insulating sheathing, which has a G value of at least 10%.
� Use air and dustproof sheathing membranes and sheathing boards.
� Avoid even the existence of a single defect like a 13 1 cm hole in the air bar-

rier layer.
� Meticulously install soft MW into the framing cavity and rigid MW against

the wall frame.

The results also encourage further studies on the performance of a HI external
wall equipped with a rigid exterior sheathing such as a gypsum board, plywood, or
fiber cement board. The long-term performance of walls that are subjected to air
exfiltration should be studied with annual weather conditions. Experimental stud-
ies are recommended based on the sensitivity of the external envelope performance
to various factors, such as the quality of the insulation installation.
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Abbreviations and symbols

AH Absolute humidity (g/m3)
BL Baseline
DPD Dew point depression ( 8C)
DT Dimensionless temperature (2)
EGS Exterior gypsum sheathing
EPS Expanded polystyrene
GW Glass wool
HDD Heating degree days
HI Highly insulated
MC Moisture content (wt%)
MCM Moisture content mapping
ME Moisture excess (g/m3)
MI Mold index (2)
MW Mineral wool
OSB Oriented strand board
PA Polyamide
PD Pressure difference (Pa)
PE Polyethylene
ppm Parts per million
R Thermal resistance (m2K/W)
RH Relative humidity (%)
Sd Water vapor diffusion equivalent air layer thickness (m)
SFB Soft fiber board
SW Stone wool
U Thermal transmittance (W/m2K)
WB Wind barrier
WFB Wood fiber board
XPS Extruded polystyrene
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G Exterior insulation ratio (2) or (%)
m Water vapor diffusion resistance factor (2)

Appendix 1

Measurements and sensor installation

Desmarais et al. (2000) employed thermocouples and gravimetric samples to define the

leakage-induced distribution of airflow inside framed wall assemblies, but MC sensors were

considered more sensitive than the thermocouples with regard to recognizing the changes

caused by the airflow. The authors also concluded that temperature-based mapping requires

there to be a sufficient temperature difference over the structure, and our preliminary tests

indicated that this difference should be larger than 8 8C. Gravimetric sampling includes the

risk of changing the airtightness of the test assembly during the experiment. Derome (2005)

observed air streams visually, but this method may not be optimal with MW because of its

low hygroscopicity. Our preliminary tests also included PD monitoring (see e.g. Li et al.,

2007). These tests showed that the PDs at the different sides of a porous insulation space of

an HI assembly were always close to each other. Based on these observations, the MCM test

focused to measure the MC at the vicinity of the airflow.
To avoid possible disturbance from the probe installations to the hygrothermal behavior

(Li et al., 2007), the MC electrodes used in the MCM test were assembled without affecting

the contact between the stud and the adjacent glass wool (GW). The tips of the electrode

screws were 1–2mm deep in the wood (Figure 1(d)), which enabled the measurement of the

wood MC near the intact surface of the frame. The remaining MC electrodes were placed on

the interior and exterior surfaces of the exterior insulation (Figure 1(a), (c), and (d)). These

sensors consisted of 0.82-mm-thick veneer pieces backed with 1.5-mm-thick polypropylene

plastic pieces. The lateral dimensions of these pieces were 20 and 50mm. These small pieces

of wood enabled MC measurement in the GW using the Material Moisture Gigamodule and

Thermofox devices (Scanntronik Mugrauer GmbH, 2021a). The conversion from the mea-

sured electrical resistance of the wood (pine) and the correction for temperature were carried

out using the program Softfox 3.03 (Scanntronik Mugrauer GmbH, 2021b). The device mea-

sures the maximum MC based on a material-specific electrical resistance. The precision of

the device is 1wt% below 85% RH and 1–4wt% between 85% and 100% RH, and the mea-

surement range is from under 6 to 90wt%. The sensors were sealed into the factory-installed

facing (breather membrane) of the MW using a liquid airtight product. The MC sensors and

their wiring were inserted into the interior face of the GW sheathing to avoid disrupting the

contact between the insulation boards. Temperature and RH were measured at points B and

C in Figure 1 using Vaisala HMP44 probes. Considering the thickness of these probes

(12mm), the measurement point was located 6mm from the inner and outer surface of the

exterior sheathing. The accuracy of the sensors for RH is 62% in 0%–90% RH and 63%

in 90%–100% RH; for temperature, the accuracy is 60.4 8C. The RH sensors were three-

point-calibrated before the tests using saturated salt solutions, which maintained RHs of

11%, 75%, and 97%. The framing cavity dimensions of the wall were designed to provide a

compression ratio that is typical for MW insulation in Finnish framed walls. Thereby the

height and width of the insulation were 1%–2% larger than the cavity dimensions.
At the beginning of the air in-blow phases of the MCM test, tracer gas (sulfur hexafluor-

ide) was added to the in-blow pipe for 60 s with a flow rate of 0.8L/min, after which the in-

blow of air (1L/min/2.5L/min) was started. The location of the air outflow was observed
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for half an hour in the outdoor chamber using a Leybold–Heraeus’s Binos 1.1V gas detector

that had a measuring range of 0–20 parts per million (ppm).
In the MCON1 and MCON2 tests, the Vaisala HMP44 temperature and RH probes were

installed on the walls at mid-height, 85mm above the bottom of the insulation (MCON2),

and in the environmental chambers. The critical location in the vicinity of the in-blow air

was analyzed during the MCM test. Because of the considerably long duration of the

MCON1 test, the RH sensors used in the test were also post-calibrated, and these calibra-

tion coefficients remained almost unchanged. In the MCON2 test, the MC of the wood

frames was measured at a depth of 10–20mm at both heights with the same devices that

were used in the MCM test. The location of the intended outflow of air was occasionally

verified using a tracer gas (Sensistor XRS9012). In all the three tests, the PD across the walls

was monitored with a Beck 984Q pressure transmitter, whose precision is at most 61Pa.
During the first eight phases of the MCON1 test, the exfiltration rates were measured

with an orifice plate pipe (see also Viljanen et al. (2021)). The PDs across the reduction of

the pipe and across the test wall were measured simultaneously using PD meters (Furness

Controls FCO318). The pipe had 0.5-m-long ducts with 100-mm diameters attached to it.

One end of this device was attached on top of the defect in the vapor barrier. The other end

was equipped with a fan whose airflow rate was altered using a voltage regulator. The leak-

age rates were determined only for phases 6–8 (Table 3), as the flow rates before these phases

were too low to be measured, which is a challenge mentioned by Fox (2014).

Wall installation

The plywood frames of the walls (Figures 2(a) and 3) were covered with PE foil on all sides

to prevent moisture from accumulating in them. The vapor barriers were connected to these

frames using tape and liquid waterproofing. The walls were airtight in relation to the hot-

box and test chamber walls (Figures 2 and 3). The installation gaps were filled with MW,

the joints were taped, and the interior airtightness was ensured using liquid waterproofing.

These measures aimed to minimize uncontrolled airflow, which is a major concern in exfil-

tration tests (Li et al., 2007). The ventilation cavity and the siding were omitted from the

walls assuming a ventilation rate of the order 100–200 air changes per hour behind the

facxade (Viljanen et al., 2021).

Appendix 2

Additional results from the experiments

The measured absolute changes in the MC of the wood frame and on the warm face of the

exterior insulation during the in-blow phases of the MCM test are presented in Figures A1

and A2. The measured RH at Point B as a function of the calculated DPD value during the

MCON2 test is presented in Figure A3. The measured RH conditions over the PA foil and

the resulting Sd value in the HI2 wall are presented in Figure A4.

Uncertainty analysis of the MCON1 test

A small additional airflow existed in the presented airflow rates of phases 9–16, which was

created by an open area of 0.7 cm2 between the inlet pipes and the PE foils. The vapor diffu-

sion rates through these holes from the indoor air to Point HI(B) and BL(B) were
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Figure A1. The absolute change in the MCs on the surface of the wood frame during the in-
blow phases of the MCM test. The numeric values indicate the height of the measurement
points that are relative to the in-blow height.
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Figure A2. The absolute change in the MCs on the warm side of the exterior MW during the
in-blow phases of the MCM test. The numeric values indicate the location of the measurement
point relative to the origin located at the inlet.
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approximately 40 and 30mg/h, respectively. According to equation (3), the convective moist-

ure flux through the hole toward Point B in the HI wall was 0.02 g/h during Phase 14 and 15

and zero in the BL wall due to the more humid conditions at Point BL(B). The airflow rates

were evaluated with a PD of 2Pa because the PD over the airtight drywall was already 7–

7.5Pa, and the average total PD was 9Pa during these phases. The moisture load from the

Figure A3. The correlation between the measured RH and DPD at Point B during the
MCON2 test.

Figure A4. The RH conditions on the different sides of the moisture adaptive vapor retarder
(at points A and A0) used in the HI2 wall and the resulting Sd value of this membrane.
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in-blow air to the HI wall was 0.28 g/h, and thus, the additional fluxes corresponded to 7%

of this load. The low impact of the supplementary flux was confirmed in Phase 17, where the

RHs at the cold side of the HI wall differed from the values obtained in Phase 14 by no more

than 3%. Hence, the airflow rates presented in Table 3 are sufficiently accurate.

Viljanen et al. 55


