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ABSTRACT

In this work, we developed a precision positioning algorithm for multi-constellation dual-frequency global navigation satellite
systems (GNSS) receivers that predicts the latitude and longitude from smartphone GNSS data. Estimation for all epochs that
have at least four valid GNSS observations is generated. Receivers (especially low-cost receivers) often have limited channels
and computational resources, therefore, the complexity of the algorithm used in them needs to be kept low. The datasets
and results in this paper are based on the data provided by Google under the session "High Precision GNSS Positioning on
Smartphones Challenge" in the Institute of Navigation ION GNSS+ 2021) conference.

We began by exploring and analysing the raw GNSS data which includes the training dataset and its ground truth and the test
dataset without the ground truth. This analysis gave insight into the nature and correlation of the dataset and helped shape the
algorithm that was proposed for the accuracy improvement problem. The design of the algorithm was done using data science
techniques to compute the average of the predictions of several devices data in the same collection (training dataset baseline
coordinates and their ground truth) and then the data was used to train a few selected machine learning algorithms namely,
Linear Regression (LR), Bayesian Ridge (BR) and Neural Network (NN) to predict the offset of the test data baseline coordinates
from the expected ground-truth (which was not provided).

A simple weighted average (SWA) which combines all the previous three ML technique was also implemented. The results
showed improvement in the position accuracy with the simple weighted average (SWA) method having the best accuracy followed
by Bayesian Ridge (BR), Linear Regression (LR), and then Neural Network (NN) respectively.

Keywords - Machine Learning; Linear Regression; Bayesian Ridge; Neural Networks; Simple Weighted Average; Global
Navigation Satellite Systems; Smartphones;, Mean Prediction

I. INTRODUCTION
1. Global Navigation Satellite Systems (GNSS)

Global Navigation Satellite Systems (GNSS) is a term used to collectively describe satellite-based positioning and timing
systems. In the past decades, we have seen significant improvements in the performance of the Global Navigation Satellite
System (GNSS) technology. The time it took to get a first accurate position has been improved from minutes to under thirty
seconds. This improvement has been seen in the early 2000s. The latter half of the decade was the time when receiver sensitivity
improvement was significant, that is, from -130 dBm to -167 dBm. The number of functional positioning satellite constellations
has seen an increase in 2015. In 2000, there was only one global constellation (the USA’s GPS) and as of 2015, there are four
(GPS, GLONASS, BeiDou, and Galileo). This has led to the development of multi-constellation GNSS receivers. Multi-band
GNSS became more affordable as of 2018 due to the modernization of the satellite signals. These advances are the foundations
for the next big steps to be taken in GNSS such as achieving millimeter- or centimeter-level accuracy.

The benefit of multi-constellation GNSS is the availability of more visible satellites that can be used to improve user positioning
performance [1]. This is very useful in challenging environments where GNSS signals could be partially or totally blocked and
can suffer from multipath reflections, for example, in urban areas or places with dense foliage. However, most receivers have
limited tracking receiver channels therefore, it may be not possible, or desirable, to use all satellites in view for positioning.
Other reasons for this include power consumption, multipath or non-line-of-Sight (NLOS) signal measurements, and other
issues [2]. This means a subset of satellites from the available satellites in view needs to be selected.

Randomly selecting satellites can result in a poor satellite geometry, which can increase the geometry dilution of precision
(GDOP), and consequently induce accuracy degradation. It has been common to use a GDOP or weighted GDOP (WGDOP) as
a satellite selection criterion for positioning [1], [3], [4], and [5] etc. This considers only the geometric effects, however, there
are other factors that cause positioning error, such as ionospheric delay, tropospheric delay, and multipath propagation causing
ranging measurement errors.

The Global Navigation Satellite System (GNSS) provides raw signals, which the GNSS chipset in smartphones uses to compute
a position. The Google challenge for which this paper is written provided the data collected from some Android smartphones.
These data were released to be used in computing location down to decimeter or even centimeter resolution, if possible. Google
also provided access to precise ground truth (for training dataset only), raw GNSS measurements, and assistance data from
nearby GNSS stations, in order to train and test machine learning algorithms for providing improved positioning performance.

2. Machine Learning Algorithms

Soft computing techniques are well suited for real-life problems that use methods to extract useful information from complex
and intractable problems in less time. They are tolerant to data that is imprecise, partially incorrect,or uncertain. One of the
important components of soft computing techniques includes machine learning (ML) techniques. The machine learning (ML)
techniques have been used in the literature in order to predict models for estimating the GNSS performance. For example, [6]



have employed Gaussian Process Regression (GPR) model while comparing it to the Autoregressive moving average model,
and the Artificial neural network model, in order to predict ionospheric time delays using Global Navigation satellite system
observations. There are several advantages of making use of these ML techniques for estimation, prediction, and enhancement
of GNSS performance.

ML is a very powerful tool in processing time-series data, as it can be applied in learning time-dependent patterns across
multiple models. It has been found useful in discovery hidden and unknown patterns and information in GNSS data. The GNSS
provides nearly limitless and affordable quantity of data, also, data storage and the growth of less expensive and more powerful
processing capabilities has propelled the growth of ML. When compared to statistical methods, ML techniques enable us to
identify tricky dependencies in data for which exploratory analysis has not enabled the proper determination of the shape of the
underlying model [7]. The aim of using ML is not to generate an explicit formula for the distribution of the data; however, it
is used to train an algorithm to detect the relationships between the features of a data set, directly from the data. This learning
methods makes it possible to avoid making assumptions as seen in many statistical methodologies.

II. MATERIALS, METHODS, AND MODELS

In our work, we used the average of the predictions of several phones in the same data collection using baseline location data
provided by Google. These baseline location data were computed using a simple least square solution. Next, we apply three
machine learning (ML) algorithms Linear Regression (LR), Bayesian Ridge (BR) and Neural Network (NN) respectively to get
the final prediction. These ML algorithms were implemented separately for comparison of their accuracy.

The steps or approach taken are as follows:

1. Data Analysis and Preparation

2. Reject Outlier and Apply Kalman Filter
3. Perform Phones Mean Prediction
4

. Apply Linear Regression (LR), Bayesian Ridge (BR) and Neural Network (NN) respectively to get the final prediction for
Train Dataset

e

Evaluate Train Score

6. Apply Linear Regression (LR), Bayesian Ridge (BR) and Neural Network (NN) respectively to test dataset to get the final
prediction in latitude and longitude.

7. Perform a simple weighted average (SWA) on the results of the BR, LR, and NN models.

1. Data Analysis and Preparation

Google releases a total of 121 traces in the challenge, whose collection process is described in a paper published in the
proceedings of ION GNSS+ 2020 [8]. The data were released twice, first the training data and next the test data. Most of the
data were collected in US Bay area highways with open sky. A small part of some traces show sparse buildings, overpasses, or
trees.

a). Training datasets

The training datasets consisted of 73 traces. The data included GnssLogger files, RINEX observation files, ground truth files,
and derived files (GNSS intermediate values derived from raw GNSS measurements, provided for convenience).

The derived values contains values like:
1. The ionospheric delay in meters, estimated with the Klobuchar model.
The tropospheric delay in meters, estimated with the EGNOS model by Nigel Penna, Alan Dodson and W. Chen (2001).
Raw pseudorange uncertainty in meters.
GNSS constellation type. An integer number, representing the available GNSS constellations.

The satellite ID.

AR T i

The GNSS signal type which is a combination of the constellation name (forexample, GPS) and the frequency band (for
example, L1).

7. The signal transmission time received by the chipset, which is the numbers of nanoseconds since the GPS epoch.



8. The satellite position in meters ([x/y/z]SatPosM) in an ECEF coordinate frame at best estimate of “true signal transmission
time” defined as ttx = receivedSvTimeInGpsNanos - satClkBiasNanos (defined below). They are computed with the
satellite broadcast ephemeris, and have 1-meter error with respect to the true satellite position.

9. The satellite velocity (meters per second - [x/y/z]SatVelMps) in an ECEF coordinate frame at the signal transmission time
(receivedSvTimelnGpsNanos). They are computed with the satellite broadcast ephemeris, with this algorithm.

10. The satellite time correction combined with hardware delay in meters at the signal transmission time (receivedSvTime-
InGpsNanos) called satellite clock bias (satClkBiasM). Its time equivalent is termed as satClkBiasNanos.

11. The satellite clock drift in meters per second (satClkDriftMps) at the signal transmission time (receivedSvTimelnGp-
sNanos). It equals the difference of the satellite clock biases at t+0.5s and t-0.5s.

12. Raw pseudorange in meters (rawPrM). It is the product between the speed of light and the time difference from the signal
transmission time (receivedSvTimeInGpsNanos) to the signal arrival time (Raw::TimeNanos - Raw::FullBiasNanos -
Raw::BiasNanos).

b). Test datasets

In the released test datasets, there are 48 more traces, which include the same types of data and follow the same convention as
the training dataset, except that the ground truth files are not provided. The results of test datasets is used as the prediction of the
expected ground truth. The results are evaluated by Google using the unreleased ground truth via kaggle (www.kaggle.com).
In both the training and test datasets, the derived values can be used to compute a corrected pseudorange which is a closer
approximation to the geometric range from the phone to the satellite.

This can be done using the formula in equation 1:

pc = p + CAtsge — Bisy — CAtyy — CAly, (1)

The baseline locations are then computed using corrected pseudorange and the satellite positions, using a standard Weighted
Least Squares (WLS) solver, with the phone’s position (X, y, z), clock bias (t), and Bisr (The Inter-Signal Range Bias (ISRB)
in meters from a non-GPS-L1 signal to GPS-L1 signals) for each unique signal type as states for each epoch. The GnssLogger
files in both the training and test datasets include: receivedSvTime (equivalent: pseudorange), pseudorange-rate (Doppler),
Accumulated Delta Range (carrier phase), for all visible GNSS satellites: GPS, GLO, GAL, BDS, QZS at 1 Hz. Data also
includes uncalibrated accelerometer, gyroscope, and magnetic field readings. The baseline locations (estimated latitude and
longitude coordinate for both the train/test datasets) were also released. This were generated using a simple approach, weighted
least square (WLS). These baseline locations were used as the primary data for the algorithm implemented in this paper along
side the training dataset (also released as latitude and longitude coordinate).

The next section described the next steps taken in the data pre-processing before the ML algorithms were implemented.

2. Remove Outliers and Apply Kalman Filter

An outlier in an observation set is a point that is unlike other points in an observation set. It is distinct, rare and does not fit to
the other observations set in some way. It can be generally defined as samples that are exceptionally far from the mainstream of
the data.

The causes of outliers could include:
1. Measurement or input error
2. Data corruption
3. A true outlier observation

In general, outliers cannot be precisely defined and identified because of the specifics of each dataset. Rather, raw observations
must be interpreted and a decision made whether a value is an outlier or not. Therefore, great care should be taken not to hastily
remove or change values, especially for small sample size data.

In data pre-processing and cleanup, identifying outliers and bad data is probably one of the most difficult task and it takes time
to get it right. Even with a very deep understanding of statistics and how outliers might affect your data, it is always an area to
address with caution. This is because it does not mean that the values identified will be outliers and should be removed. A way
to approach this may be to plot the identified outlier values against the context of non-outlier values to visualize the possible



systematic relationship or pattern to the outliers. If there are, this may mean that they are not outliers and can therefore, be
explained. Furthermore, this can help the outliers themselves to be more systematically identified.

The removal of outliers was performed using a function adapted from [9]. This function computes the difference in distance
between the previous coordinate and the next coordinate point. It used this to generate a new column that holds the distance
between the previous and next coordinate points and a threshold value is set above which values are regarded as outliers. The
threshold values used in our case was set at 50, based on the analyses of the results from the observation of the distance between
the coordinates.

a). Kalman Filter Implementation

Kalman filter is applied to the results to smooth the output in order to produce more accurate values. The kalman filter function
used is adapted from [10]. The applied Kalman Filter is aimed at improving the baseline slightly.

3. Mean Prediction of the Phone Data

The average of the predictions of several phones in the same data collection from the data provided by Google for the "High
Precision GNSS Positioning on Smartphones Challenge (sponsored by Google)" was computed.

This was done by generating an interpolated latitude, longitude values for different phone times in the same collection. Linear
interpolation was used to achieve this. The generated records to be interpolated were derived using a combination of the time of
collection of the data and the phone used. An open source function from https://www.kaggle.com/t88take/gsdc-phones-mean-
prediction was used to achieve this. Afterwards, the latitude and longitude predictions were made based on the average of the
baseline location predictions of phones in the same collection provided by Google. The open source function used to achieve
this is also from https://www.kaggle.com/t88take/gsdc-phones-mean-prediction.

The next step taken was to apply the results from the phone mean method to some selected ML algorithm as described in the
next section.

ITII. BASELINE APPROACH - MACHINE LEARNING IMPLEMENTATION

The goal of this study is to use machine learning techniques to estimate the position produced by the use of a certain smartphone
taking into account that currently, mobile phones only offer 3-5 meters of positioning accuracy. The approach used in this study
is the baseline approach. We used the baseline location values for the train and test datasets provided by Google. These baseline
location values were computed using a simple least square method. The ground truth data were also provided by Google only
for the training datasets. These ground truth data were the true latitude and longitude coordinates of the data collected using
high end GNSS receivers.

1. Aligning the Ground Truths with Training Data Inputs

The ground truth data were extracted and aligned with training data inputs. This was done in order to have the latitude and
longitude coordinates of the training data and the ground truth data in one dataset to be used in training the ML algorithm. Fig.
1 shows a sample of the aligned data.

collectionName phoneName millisSinceGpsEpoch latDeg IngDeg 1latDeg_truth IlngDeg_truth
0 2020-05-14-US-MTV-1 Pixeld 1273529463442 37.423549 -122.094006 37.423576 -122.094132
1 2020-05-14-US-MTV-1 Pixeld 1273520464442 37.423564 -122.094063 37.423576 -122.094132
2 2020-05-14-US-MTV-1 Pixeld 1273529465442 37.423573 -122.094098 37.423576 -122.094132
3 2020-05-14-US-MTV-1 Pixeld 1273529466442 37.423578 -122.094116 37.423576 -122.094132
4 2020-05-14-US-MTV-1 Pixel4 1273529467442 37.423571 -122.094115 37.423576 -122.094132

Figure 1: Extracting ground truths and aligning with train inputs.

Plotting the training data coordinates against the ground truth can be seen in Fig. 2.
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Figure 2: Plotting predicted vs truth coordinates.

2. One-hot Encoding

Usually, in machine learning (ML) it is recommend or required that you prepare your data in specific ways before fitting a
machine learning model. Categorical data are variables containing label values instead of numeric values and the number of
possible values is often limited to a fixed set. There are often referred to as nominal. A nominal category or a nominal group
is a group of objects or data collectively grouped together on the basis of a particular characteristic or a qualitative property
[11]. Many ML algorithms cannot directly make use of label data. They require all input variables and output variables to be
numeric. This means that categorical data must be converted to a numerical form. For a categorical variable being an output
variable, you may want to convert predictions by the model back into a categorical form. This is done in order to use them in
some application.

A good way to achieve this is to use a one-hot encoding on categorical data. One-hot encoding refers to the process of splitting
the column which contains numerical categorical data to many columns depending on the number of categories present in that
column. This will result to each column containing “0” or “1” corresponding to which column it has been placed. However,
One hot encoder only takes numerical categorical values, therefore, any value of string type must be label encoded (also called
integer encoded) before one-hot encoded. For example, label encoding a gender column could be done as “Female” is 1, “Male”
is 2.

The one-hot encoder then gives binary variables often called “dummy variables” in the form:
Female, Male

1 0

0 1

The one-hot encoding was applied to the "phoneName" variable (name of the phone used to collect the data) of the train and
test data. The train and test columns were then aligned and in Fig 3, we can see the output of the one-hot encoding. The train
and test data after one-hot encoding is illustrated in Fig 4. The next step after one-hot encoding the data is the implementation
of the ML algorithms.



train_update.tail(2)

Mi8 Pixeld PixeldModded PixeldXL PixeldXLModded Pixel5 Samsung520Ultra
131340 0 0 0 0 0 0 1

131341 0 0 0 0 0 0 1

test_update.head(2)

Mi& Pixel4 PixeldModded Pixel4XL PixeldXLModded Pixeld Samsung520Ultra
0 0 1 0 0 0 0 0

1 0 1 0 ] 0 0 0

Figure 3: Performing one-hot encoding.

print(“traini_shape:", trainl.shape)
traini.columns
trainl.head()

trainl_shape: (131342, 11)

latDeg IngDeg latDeg_truth IngDeg_truth Mi8 Pixel4 PixeldModded Pixel4XL Pixel4XLModded Pixel5 Samsung520Ultra
0 37.423549 -122.094006 37423576 -122.004132 0 1 0 0 0 0 0
1 -122.094063 37423576 -122.004132 0 1 0 0 0 0 0
2 -122.094098 37423576 -122.004132 0 1 0 0 0 0 0
3 -122.094116 37423576 -122.094132 0 1 0 0 0 0 0
4 -122.094115 37423576 -122.004132 1] 1 0 0 0 0 0

print("testi1-shape:", test1.shape)
testl.columns
testl.head()

testl-shape: (91486, 2)

latDeg IngDeg Mi8 Pixeld PixeldModded Pixel4XL Pixel4XLModded Pixel5 Samsung520Ultra
0 37.416586 -122.082022 0 1 0 0 0 0 0
1 37416597 -122.082043 1] 1 0 0 0 0 0
2 37416602 -122.082056 0 1 0 0 0 0 0
3 37416603 -122.082064 1] 1 0 0 0 0 0
4 37416605 -122.082067 0 1 0 0 0 0 0

Figure 4: Train and test data after one-hot encoding.

3. Implementing ML Algorithms

Several models were used to attempt to capture the relationship between datasets and overall positioning performance. These
algorithms includes Bayesian Ridge (BR), logistical regression (LR), and a neural networks (NN). For the BR and LR approach,
the one-hot encoding was used to prepare the data. However, for the NN approach, the one-hot was not applied. Each of the
models were used and evaluated separately.

Preliminary tests, implementing all regressor algorithms for a quick performance analysis, showed that these were the most
promising methods.

a). BR and LR Models

Each model was tuned using the one-hot encoded data, The input and output for the model was created from the latitude and
longitude columns of the data. The data is then split into training and validation datasets using the library from sklearn model
selection.

The BR model is now fit using the data. Similarly, the the LR model is fit using the data. The one-hot encoding is then



reversed for each phone data (one-hot decoding). The validation data is used to evaluate the models as seen in Fig. 5 and Fig.
6 in the results section which shows the evaluation score for each phone (50th, 95th and average percentile) for the BR and LR
models respectively. The model is then applied to the complete test data set to predict the latitude and longitude coordinates.
The evaluation of these results is done in kaggle.com as part of the Google competition requirements. These models are adapted
from [12].

b). The NN model
The NN model used here is from the of sklearn python library. The model is adapted from [13].

Feature creation

The features generated are the aggregated features used for training the model. These features includes previous latitude and
longitude, the corrected pseudoranges (correctedPrM) for each satellite from derived files shared by Google, and the latitude and
longitude difference of the training data from the ground truth. These features are generated for both the train and test datasets.

The correlation between train data baseline coordinates and ground truth coordinates are seen in Fig. 5 below.

latDeg truth 1lngDeg truth latDeg IngDeg

latDeg_truth 1.000000 -0.69345 1.00000 -0.893449
IngDeg_truth -0.893450 1.00000 -0.89344 1.000000
latDeg 1.000000 -0.69344 1.00000 -0.893440
IngDeg -0.893449 1.00000 -0.89344 1.000000

Figure 5: Checking the correlation between current and truth coordinates.

Training the NN Model The NN model training is achieved using a skip connection in Keras on Tensor Processing Unit (TPU).
TPU is highly-optimised for large batches and CNNs and has the highest training throughput. It is a custom build ASIC used to
accelerate TensorFlow projects. The model summary is shown in Fig. 6 below.

Model: “"model"

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [(Mone, 41)] -]

dense (Dense) (None, 128} 5376 input_1[8][@]

batch_normalization (BatchNorma (None, 128) 512 dense[@][©]

dense_1 (Dense) (None, 128) 16512 batch_nermalization[e][e]

dropout (Dropout) (None, 128) ] dense_1[@][e]

dense_2 (Dense) (None, 128) 16512 dropout[@][e]

batch _normalization_1 (BatchMNor (None, 128) 512 dense_2[@][0]

dense_3 (Dense) (None, 128) 16512 batch_normalization _i1[@][e]

dropout_1 (Dropout) (None, 128) 2] dense_3[e][e]

add (add) (None, 128) ) dropout_i[e]l[e]
dropout[e][e]

dense_4 (Dense) (None, 128) 16512 add[e][e]

batch_normalization_2 (BatchMor (None, 128) 512 dense_4a[e][e]

dense 5 (Dense) (None, 128} 16512 batch_normalization 2[@][@]

dropout_2 (Dropout) (None, 128) ) dense_s[@][e]

dense_& (Dense) (None, 2} 258 dropout_2[a][e]

Total params: 89,738
Trainable params: 88,9062
Non-trainable params: 768

Figure 6: NN model summary.

4. Implementing Weighted Average of BR, LR and NN Models

The results from the three ML algorithms (BR, LR and NN) were integrated using a simple weighted average (SWA) to check
on improving the results. A simple weight was used. First, equal weights were assigned to the model (i.e., 0.3333), the results



showed slight improvement compared to the individual ML models. Secondly, it was noticed that when different weights were
used, an improvement was seen compared to when the same weights were used.

The different weights were assigned based on the accuracy of the technique. The weight of a certain ML method is the accuracy
of that technique divided by the total accuracy (sum of all the models accuracy). Hence, when the average accuracy of a certain
ML technique increases, its summation weight would increase. However, the total weight sum is 1.

The results are presented and discussed in table 1 in the next section.

IV. DISCUSSION OF RESULTS

This section presents the results and the evaluations of the results.

1. Evaluating the Models
The evaluation of the model is done for all the implemented ML algorithms.
For the BR and LR models:

The evaluation of the model is done on the validation datasets. The training data was split into train data and validation data.
The Fig. 7 and Fig. 8 shows the evaluation of the validation data for the BR and LR models respectively.

For the BR model:
Evaluation details:
phonelame  dist_5@ dist_95 avg_dist 58 55
8 Mig 1.598239 3.615539 2.08288%
1 Pixels 1.312845 7.288858 4.518447
2 PixeldaXlModded 1.372788 3.8229498 2.281393
3 Pixeld 1.538467 9.484965 5.467716
4 PixeldXL 1.334414 4.542833 2.963223
5 SamsungS28Ultra 4.382886 17.265322 18.823784
3] PixeldModded 1.7928626 3.994491 2.896559
Final Evaluation score: 4.495133896204458
Figure 7: Phone level evaluation score for Bayesian Ridge.
For the LR model:

Evaluation details:
phonellame  dist 5@ dist 95 avg dist 58 95

<] Mig8 1.583664 3.598868 2.598866
1 Pixels 1.823719  7.2895082 4.516611
2 PixeldXLModded 1.338838 2.896374 2.1B8682
3 Pixela 1.586424  9.446881 5.476212
4 PixeldXL 1.3967@3 4.545425 2.971a54
5 Samsung528Ultra 4.368654 17.316828 18.838741
6 PiweldModded 1.887393 3.9881278 2.804336

Final Evaluation score: 4.4896633860282297

Figure 8: Phone level evaluation score for Linear Regression.

The Fig. 7 and Fig. 8 show the evaluation score for each phone in the 50th, 95th and average percentile. These are the computed



haversine distance estimation for BR and LR model respectively. The haversine distance estimation is the calculated great circle
distance between two points on the earth.

A function was adopted from [14] to get the prediction and ground truth distance estimation (in meters). The inputs are array-like
and specified in decimal degrees. This is therefore, the distance between the training/validation data baseline coordinates and
the ground truth baseline coordinates.

We can see that the BR model has a better performance than LR model both at the phone level (that is for each phone in most
cases) and at the final evaluation score which is the mean of the average distance for the 50th and 95th percentile (avg-dist-50-95).

For the test data, since we do not yet have the ground truth, the pre-evaluation was done using the predicted baseline coordinates
and the actual baseline coordinates in the original data.

In the LR model on test data:
The prediction for test data, haversine distance is (latitude/longitude)-
haversine distance (smoothed): [0.90276 4.05308457]

The 2D error is then sqrt(0.9028 *pow(2) + 4.0531pow(2)) = 3.6592.

In the BR model on test data:
The prediction for test data, haversine distance is (latitude/longitude)-
haversine distance (smoothed): [0.91345946 4.05016769]

The 2D error is then sqrt(0.9135*pow(2) + 4.0501pow(2)) = 3.6998.

For the NN model: The evaluation of the model is done by calculating the great circle distance between baseline coordinates and
the ground truth in the case of the training datasets. For the test data, since the ground truth was not released, the pre-evaluation
was done using the predicted baseline coordinates and the actual baseline coordinates in the original data.

The prediction for training data, haversine distance is (latitude/longitude)-
haversine distance (smoothed): [2.14165623 9.83846538]

The prediction for test data, haversine distance is (latitude/longitude)-
haversine distance (smoothed): [0.91779853 5.35367849]
2. Visualize NN Model Training History

We created plots from the collected history data for visualization of NN Model Training History. The plots are from training
the model:

1. A plot of model accuracy (Fig. 9).
2. A plot of model loss (Fig. 10).
3. A plot of model learning rate (Fig. 11).
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Figure 9: Plot of Model Accuracy on Train and Validation Datasets.



From Fig. 9, we can see that training the model a little more may not be effective as the trend for accuracy on both datasets has
stopped rising but rather it moves horizontally for the last few epochs. We can also see that the training dataset has not yet been
over-learned by the model, as both datasets show comparable skill.
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Figure 10: Plot of Model Loss on Training and Validation Datasets.

From Fig. 10, the model loss, we can see that the model performs comparably on both train and validation datasets (labeled as
test). If these parallel plots start to show a consistent departure from each other, this could be a good indication to stop training
at an earlier epoch.
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Figure 11: Plot of Model Learning Rate on the Datasets.

From Fig. 11, the model learning rate shows that most of the learning takes place at the first few epochs after which training the
model may not lead to any improvement in the learning.

The history for the validation dataset is usually labeled as test by convention as it can be regarded as a test dataset for the model.

In all ML models, the exact evaluation of the models for the test data with the ground truth is done on kaggle.com as part of the
google competition.

In Table 1, the results of the preliminary evaluation done on kaggle.com for the test data baseline prediction is presented for
each ML model implemented (BR, LR, NN , SWA method).

Table 1: Results from evaluation of test data prediction on kaggle.com

Model List
SWA
WLS Phone mean + | Phone mean + | Phone mean + | same weights different weights
BR LR NN
Accuracy in | 20.49 5.631 5.656 5.743 5.626 5.620
meters (m)




From table 1, we can see that the SWA performs better, followed by the BR, LR and NN model respectively. In the case of the
SWA, when the average accuracy of a certain ML technique increases, its summation weight would increase, thereby, increasing
the accuracy. This is seen in the accuracy improvement when different weights are used compared to using the same weights.

V. CONCLUSION AND FUTURE WORK

The data used in this paper was provided by Google under a competition hosted on kaggle.com for the ION GNSS+ 2021
conference. The Global Navigation Satellite System (GNSS) provides raw signals, which the GNSS chipset in smartphones uses
to compute a position. The accuracy are usually not good enough and can create a “jumpy” experience for many applications
relying on localization.

In this paper, we presented an algorithm that can improve the precision GNSS positioning and navigation accuracy on smart-
phones using a machine learning approach. First, we analyzed the data and pre-processed it for the model by identifying and
removing outliers. Then we applied a "phone mean method" to the data in combination with some pre-selected ML models
namely, bayesian ridge, linear regression, NN model and SWA method respectively to predict the latitude and longitude coordi-
nates. The results show an improvement in the GNSS positioning and navigation accuracy when evaluated against the ground
truth of the data collected using high end GNSS receivers for the same locations. The positioning accuracy obtained is in the
range of 5.620 - 5.743 m (meters). This is an improvement to the WLS of 20.49 meters positioning accuracy.

In future publications (on-going research), we will develop a precision positioning algorithm for multi-constellation dual-
frequency global navigation satellite systems (GNSS) receivers that would select a subset of satellites out of the tracked
ones to achieve improved location accuracy with the help of machine learning. Receivers (especially low-cost receivers and
smartphones) often have very limited channels and computational resources, therefore, the complexity of the algorithm needs
to be kept low. We will use both the GDOP and measurement errors as criteria for satellite selection. From initial analysis,
the trained models will effectively predict pseudorange and delta range residuals and also select the satellites making the most
contribution to the desired GDOP value. The optimization of GDOP and the ability to filter out erroneous pseudorange and
delta range measurements can lead to improved location accuracy. We will also work on integrating "outlier removal" to Kalman
filters (KF) because if they are not removed, they would disturb linear KF heavily. Furthermore, we will first make use of the
available raw GNSS data (including pseudorange rates, accumulated delta range - aka carrier phase, and base station data), and
IMU data to generate a much better position (than WLS used in this study) and then the results will be further improved with
ML.
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